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Abstract

We previously proved that almost all words of length n over a finite alphabet
A with m letters contain as factors all words of length k(n) over A as n → ∞,
provided lim supn→∞ k(n)/ log n < 1/ log m.
In this note it is shown that if this condition holds, then the number of occurrences
of any word of length k(n) as a factor into almost all words of length n is at least
s(n), where limn→∞ log s(n)/ log n = 0. In particular, this number of occurrences
is bounded below by C log n as n →∞, for any absolute constant C > 0.
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1 Notation and preliminary results

Let A be a finite alphabet of cardinality |A| = m. A word b ∈ A∗ is said to be a factor
of a ∈ A∗ if there exist p, q ∈ A∗ such that a = pbq [1]. A factor b of a word a can occur
in a in different positions, each of those being uniquely determined by the length of the
prefix of a preceding b. For example, abc occurs in abcababc in positions 0 and 5. If
α1 ∈ A, let α = α1 . . . α1 ∈ A∗ be the word of length |α| = k ≥ 1 having all letters equal
to α1. Let L(n) denote the number of words a ∈ A∗ such that |a| = n and a does not
contain the factor α. We need the following properties of the numbers L(n) [2]:

Lemma 1.1 We have

L(n) ≤ 8k(m− 1/mk)n

and the number of words a ∈ A∗ such that |a| = n and a does not contain a fixed factor
β = β1 . . . βk of length k over A is less than or equal to L(n).
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From [2,3] we also deduce

Lemma 1.2 If lim supn→∞ k(n)/ log n < 1/ log m, then almost all words of length n
over A contain as factors all words of length k(n) over A as n →∞.

Here the notion ”almost all” has the following meaning: If W(n, k, A) denotes the set
of words w of length n over A having the property that each word of length k over A is
a factor of w, then limn→∞ |W(n, k, A)|/mn = 1 holds. Note that in [3] it is also shown
that if limn→∞ |W(n, k, A)|/mn = 1 then lim supn→∞ k(n)/ log n ≤ 1/ log m holds.

If b is a factor of a, i.e., a = pbq occurring in position |p| = r, p = p1 . . . pr, q = q1 . . . qs

and b = b1 . . . bk (|a| = r + k + s), let
u(a, b, |p|) = {r + i− 1 : 2 ≤ i ≤ k and bibi+1 . . . bkq1 . . . qi−1 = b};
l(a, b, |p|) = {r − k + j : 1 ≤ j ≤ k − 1 and pr−k+j+1 . . . prb1 . . . bj = b}
Note that u(a, b, |p|) and l(a, b, |p|) is the set of positions of the occurrences of b in a
overlapping the occurrence of b in a with position |p| and which are greater (resp. less)
than |p|.
If u(a, b, |p|) 6= ∅ let r + i0 − 1 = max u(a, b, |p|) and denote

UW (a, b, |p|) = bi0bi0+1 . . . bkq1 . . . qi0−1

the rightmost occurrence of b in a (having position r+i0−1), that overlaps the occurrence
of b in a with position |p| = r.

The occurrences of b in a appear in blocks, which are maximal factors of a consisting
of overlapping occurrences of b in a.
A block B of occurrences of b in a (|b| = k) is a factor with a position r in a such that:
(i) B = b, u(a, B, r) = l(a, B, r) = ∅, or
(ii) |B| ≥ k + 1; the prefix γ1 of length k of B and the suffix γt(t ≥ 2) of length k of B
satisfy γ1 = γt = b, l(a, γ1, r) = u(a, γt, r+ |B|−k) = ∅; there exists a sequence of factors
of B: γ2, . . . , γt−1 having positions r2, . . . , rt−1 such that γi = b for every 2 ≤ i ≤ t − 1
and UW (a, γ1, r) = γ2; UW (a, γi, ri) = γi+1 for every 2 ≤ i ≤ t− 1.

Lemma 1.3 If a ∈ A∗ contains at least one occurrence of b ∈ A∗,then

a = A1B1A2B2 . . . AqBqAq+1, (1)

where q ≥ 1, A1, . . . , Aq+1 ∈ A∗ do not contain occurrences of b and B1, . . . , Bq are blocks
of occurrences of b in a.

Proof: Consider an occurrence of b in a having the minimum position denoted by l1 ≥ 0.
It follows that a = A1bC, where |A1| = l1 and l(a, b, l1) = ∅. If we also have u(a, b, l1) = ∅
then by denoting this occurrence by B1 we get a = A1B1C and apply the same argument
to the word C if a has at least two occurrences of b; otherwise, by denoting A2 = C we
get (1) for q = 1. If u(a, b, l1) 6= ∅ we consider UW (a, b, l1) and so on by producing a
sequence of occurrences of b in a having positions l1, . . . , lm such that UW (a, b, li) has
position li+1 for every 1 ≤ i ≤ m − 1 and u(a, b, lm) = ∅. The factor of a with position
l1 and length lm − l1 + |b| will be denoted by B1 and it follows that B1 is a block of
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occurrences of b in a satisfying (ii). We can write a = A1B1C. If the set of occurrences
of b in a coincides with the set of occurrences of b in B1, then by denoting A2 = C we
obtain (1) for q = 1. Otherwise, by applying an inductive argument to C instead of a
we get (1).

Let u be a word of length k in A∗, say u = a1 . . . ak and Ls(u, n) be the number of words
a ∈ A∗ such that |a| = n and the factor u of length k occurs exactly s times in a.
Our purpose is to evaluate the numbers Ls(u, n). This will be done in the next section.

2 Main results

Lemma 2.1 If n, k, s are positive integers, the following inequalities hold:

Ls(u, n) < (n + k)sL0(u, n) ≤ (n + k)sL(n)

Proof: The inequality L0(u, n) ≤ L(n) follows from Lemma 1.1. It remains to prove
that

Ls(u, n) < (n + k)sL0(u, n) (2)

Let a ∈ A∗ be a word such that |a| = n and the factor u of length k occurs s times in a.
Let B be the rightmost block of occurrences of u in a. Suppose that the position of B
in a is r. We shall consider two subcases: I. |B| = k and II. |B| ≥ k + 1.
I. If |B| = k, by deleting the factor B from a we get a word of length n − k with s − 1
occurrences of u.
II. If |B| ≥ k + 1, it is clear that l(a, b, r + |B| − k) 6= ∅. The suffix of length k of B is a
factor equal to u and let

h = max l(a, b, r + |B| − k)

It follows that by deleting the factor δ = ah+k+1 . . . ar+|B| from a (this factor is a suffix
of B), we get a word of length n− (r + |B| − h− k) having exactly s− 1 occurrences of
u. Since

r + |B| − 2k + 1 ≤ h ≤ r + |B| − k − 1

it follows that 1 ≤ r + |B| − h− k ≤ k − 1, hence 1 ≤ |δ| ≤ k − 1. If s = 1 we can write

L1(u, n) ≤ (n− k + 1)L0(u, n− k) ≤ nL0(u, n) < (n + k)L0(u, n)

because all words a ∈ A∗ of length n having a single occurrence of u can be generated
by inserting (in n− k + 1 ways) the factor u between consecutive letters in all words of
length n− k over A which do not contain any occurrence of u. Eventually, some words
generated in this way contain more occurrences of u and the inequality between L1(u, n)
and (n − k + 1)L0(u, n − k) may be strict for some words u. Hence (2) is proved for
s = 1.

Now let s ≥ 2. If the word c = c1 . . . cn−k ∈ A∗ contains s − 1 occurrences of
u = a1 . . . ak, let U be a block of occurrences of u in c with position r such that r is
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maximum. It follows that the number of letters cr+|U |, cr+|U |+1, . . . , cn−k occurring in c
at the right of B is less than or equal to n− k − (k + s− 2) = n− 2k − s + 2. Equality
holds if and only if a1 = a2 = . . . = ak and B is the unique block of occurrences of u in
c, of length k + s− 2, which is a prefix of c, i.e., r = 0.
Hence the number of ways of inserting the factor u of length k between consecutive
letters at the right of the block B is at most equal to n − 2k − s + 3. In this way we
produce at most (n− 2k − s + 3)Ls−1(u, n− k) words of length n and this set of words
contains (strictly for some words u) the set X of words a ∈ A∗ of length n containing
the factor u s times and having the property that the block B of occurrences of u with
maximum position has |B| = k. If this block B with maximum position has its length
|B| ≥ k + 1, we have seen that there exists a suffix δ of B such that 1 ≤ |δ| ≤ k− 1 and
by deleting δ from a, a word of length n − δ with s − 1 occurrences of u is produced.
Because the suffix of length k of B is a word equal to u, it follows that the set Y of all
words a ∈ A∗ of length |a| = n containing s occurrences of u, with the property that the
block B of occurrences of u with maximum position has |B| ≥ k + 1, can be generated
by the following procedure:
For i = 1, . . . , k−1, consider the set of words in A∗ of length n−i having s−1 occurrences
of u. For each such word one inserts the factor ak−i+1ak−i+2 . . . ak at the right of the
block of occurrences of u with the maximum position. In this way one generates at most

Ls−1(u, n− 1) + Ls−1(u, n− 2) + . . . + Ls−1(u, n− k + 1)

words. Of course, this set of words may contain some words which do not belong to Y .
It follows that for s ≥ 2 we have: Ls(u, n) = |X ∪ Y | =
|X|+ |Y | ≤ (n− 2k− s+3)Ls−1(u, n−k)+

∑k−1
i=1 Ls−1(u, n− i) ≤ nLs−1(u, n−k)+ (k−

1)Ls−1(u, n − 1) < (n + k)Ls−1(u, n). Since L1(u, n) < (n + k)L0(u, n) and Ls(u, n) <
(n + k)Ls−1(u, n) for every s ≥ 2, (2) is proved.

This inequality can be used to estimate the number of words a ∈ A∗ with |a| = n which
contain at most s− 1 occurrences of u = a1 . . . ak.
Let W(n, k, s, A) denote the set of words w of length n over the alphabet A with m
letters, having the property that each word of length k(n) over A has at least s(n)
occurrences in w.

Theorem 2.2 If the following two conditions are fulfilled:
(i) lim supn→∞ k(n)/ log n < 1/ log m;
(ii) limn→∞ log s(n)/ log n = 0,
then limn→∞ |W(n, k, s, A)|/mn = 1, i.e., almost all words of length n over A belong to
W(n, k, s, A).

Proof: For every i ≥ 0 let Li
u be the set of words of length n over A having ex-

actly i occurrences of the word u = a1a2 . . . ak. It follows that |Li
u| = Li(u, n) and

|W(n, k, s, A)| = |W(n, k, A)| − |⋃s−1
i=1

⋃
u=a1...ak

Li
u|.

By Lemmas 1.1 and 2.1 we deduce
|⋃s−1

i=1

⋃
u=a1...ak

Li
u| ≤ ∑s−1

i=1

∑
u=a1...ak

Li(u, n) ≤ mk ∑s−1
i=1 Li(u, n) ≤ mk ∑s−1

i=1 (n +
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k)iL(n) < mk(n + k)sL(n).
Since L(n) ≤ 8k(m− 1/mk)n it follows that limn→∞mk(n + k)sL(n)/mn = limn→∞(n +
k)sL(n)/mn−k = limn→∞ nsL(n)(1 + o(1))/mn−k, and
limn→∞ nsk(m− 1/mk)n/mn−k = elimn→∞ g(n), where

g(n) = −n/mk+1 + k ln m + s ln n + ln k < −n/mk+1 + s ln n + 2k ln m

Because (i) and (ii) hold, it follows that log n/mk+1 = log n(1− (k + 1) log m/
log n) → ∞ as n → ∞ because lim infn→∞(1 − k log m/ log n) = 1 −
lim supn→∞ k log m/ log n > 0; also
log kmk+1/n = log k +(k +1) log m− log n → −∞ and log mk+1s ln n/n = − log n(1−
log s/ log n− (k + 1) log m/ log n− log ln n/ log n) → −∞ as n →∞.
Consequently,
limn→∞ g(n) = −∞, which implies limn→∞(n + k)sL(n)/mn−k = e−∞ = 0.

Note that (ii) is verified if we take s(n) = C log n, for any absolute constant C > 0.

Note

The paper will appear in Theoret. Comput. Sci.
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