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Abstract

We define a measure of quantum information which is based on state partitions. Properties of this measure for entangled

many-particle states are discussed.k particles specifyk “nits” in such a way thatk mutually commuting measurements of

n-ary observables are necessary to determine the information.
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As pointed out many times by Landauer and others (e.g., [1, 2]) the formal concept ofinformation is tied

to physics, at least as far as applicability is a concern. Thus it should come as no surprise that quantum me-

chanics requires fundamentally new concepts of information as compared to the ones appropriate for classical

physics. And indeed, research into quantum information and computation theory has exploded in the last

decade, bringing about a wealth of new ideas, potential applications, and formalisms.

Yet, there seems to be one issue, which, despite notable exceptions (e.g., [3, Footnote 6] and [4]), has not

yet been acknowledged widely: the principal irreducibility ofn-ary quantum information. Ann-state particle

can be prepared in a single one ofn possible states. Then, this particle carries one “nit” of information, namely

to “be in a single one fromn different states.” Subsequent measurements may confirm this statement. The most

natural code basis for such a configuration is ann-ary code, and not a binary or decimal one.

Classically, there is no preferred code basis whatsoever. Every classical state is postulated to be determined

by a point in phase space. Formally, this amounts to an infinite amount of information in whatever base, since

with probability one, all points are random; i.e., algorithmically incompressible. [5, 6]. Operationally, only

a finite amount of classical information is accessible. Yet, the particular base in which this finite amount of

classical information is represented is purely conventional.

Let us mention some notation and setup first. Consider a particle which can be observed in a single one of a

finite numbern of possible operationally distinct and comeasurable properties. The system’s state is formalized

by a self-adjoint, positive state operator of trace classρ of an n-dimensional Hilbert space. Any pure state,

whether “entangled” or not, is characterized by a onedimensional subspace, which in turn corresponds to a

onedimensional projection operatorρ2 = ρ.

Every operationally distinct property corresponds to the proposition (we shall use identical symbols to

denote logical propositions and operators)Ei , 1≤ i ≤ k that the system, when measured, has the associated

property. Propositions are formalized by projection operators, which are dichotomic observables, sinceE2
i = Ei

is only satisfied for the eigenvalues 0 and 1 [7].

Thus, any complete set ofn base vectors has a dual interpretation: either as an orthonormal set of base

states whose linear span is then-dimensional Hilbert space, or as a maximally comeasurable and operationally

distinct set of observables corresponding to propositions such as,“the physical system is in a pure state cor-

responding to the respective basis vector.”Any such proposition is operationalized by a measurement, ideally

by registering a click in a particle counter.

All bases corresponding to thek-particle case are obtained in two steps: (i) In the first step, a system of pure

basis vectors{ρ1, . . . ,ρnk} is formed by taking the tensor productsρs
i1
⊗ρs

i2
⊗ ·· ·⊗ρs

ik
, 1≤ i1, i2, . . . , ik ≤ n,

of all the single-particle projection operatorsρs
i1

, ρs
i2

. . .ρs
ik

. (ii) In the second step, this system of basis vector

undergoes a unitary transformationU(nk) represented by ank× nk-matrix. The transformed states need no

longer decompose into a product of single particle states, a property called “entanglement” by Schrödinger [8].

From this point of view, entangled state bases are unitary equivalent to nonentangled ones. As a consequence,

propositions need no longer refer to attributes or properties of single particles alone, but to joint properties of

particles [3, 9].
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In what follows, let us always consider a complete system of base statesB associated with a unique “con-

text” [10] or “communication frame”F = {F1,F2, . . . ,Fn}, which are defined as a minimal set of co-measurable

n-ary observables. Forn = 2, their explicit form has been enumerated in [9]. In this particular case, theF ’s

can be identified with certain projection operators from the set of all possible mutually orthogonal ones, whose

two eigenvalues can be identified with the two states. For three or more particles, this is no longer possible (see

below). A well-known theorem of linear algebra (e.g., [11]) states that there exists a single “context operator”

such that all theFi ∈ F are just polynomials of it. That is, a single measurement exists which determines all

the observables associated with the context at once.

For a singlen-state particle, the nit can be formalized by as a state partition which is fine grained inton

elements, one state per element. That is, if the set of states is represented by{1, . . . ,n}, then the nit is defined

by

{{1}, . . . ,{n}}. (1)

Of course, any labeling would suffice, as long as the structure is preserved. It does not matter whether one calls

the states, for instance, “+,” “0” and “-”, or “1,” “2” and “3”, resulting in a trit represented by{{+},{0},{−}}

or {{1},{2},{3}}. Thus, nits are defined modulo isomorphisms (i.e., one-to-one translations) of the state

labels. To complete the setup of the single particle case, let us recall that any such state set would correspond

to an orthonormal basis ofn-dimensional Hilbert space.

Before proceeding to the most general case, we shall consider the case of two particles with three states per

particle in all details. The methods developed [9] for case ofk particles with two states per particle cannot be

directly adopted here, since the idempotence (EiEi = Ei) of the projection operators, which maps the two states

onto the two possible eigenvalues 0,1 cannot be generalized.

Instead we shall start by considering the optimal partitions of states and construct the appropriate Hilbert

space operators from there. Assume that the first and second particle has three orthogonal states labeled by

a1,b1,c1 anda2,b2,c2, respectively (the subscript denotes the particle number;a1a2 stands for|a1〉⊗ |a2〉 =

|a1a2〉). Then nine product states can be formed and labeled from 1 to 9 in lexicographic order; i.e.,

a1a2 ≡ 1,

a1b2 ≡ 2,

a1c2 ≡ 3,

b1a2 ≡ 4,
...

c1c2 ≡ 9.

(2)

Any maximal set of co-measurable 3-valued observables induces two state partitions of the set of states

S= {1,2, . . . ,9} with three partition elements with the properties that (i) the set theoretic intersection of any

two elements of the two partitions is a single state, and (ii) the union of all these nine intersections is just the

set of stateS. As can be easily checked, an example for such state partitions are

F1 = {{1,2,3},{4,5,6},{7,8,9}} ≡ {{a1},{b1},{c1}},

F2 = {{1,4,7},{2,5,8},{3,6,9}} ≡ {{a2},{b2},{c2}}.
(3)
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Operationally, the “trit”F1 can be obtained by measuring the first particle state:{1,2,3} is associated with

statea1, {4,5,6} is associated withb1, and{4,5,6} is associated withc1. The “trit” F2 can be obtained by

measuring the state of the second particle:{1,4,7} is associated with statea2, {2,5,8} is associated with

b2, and{3,6,9} is associated withc2. This amounts to the operationalization of the trits (3) as state filters.

In the above case, the filters are “local” and can be realized on single particles, one trit per particle. In the

more general case of rotated “entangled” states (cf. below), the trits (more generally, nits) become inevitably

associated with joint properties of ensembles of particles. Measurement of the propositions,“the particle is in

state{1,2,3}” and,“the particle is in state{3,6,9}” can be evaluated by taking the set theoretic intersection

of the respective sets; i.e., by the proposition,“the particle is in state{1,2,3}∩{3,6,9}= 3.” In figure 1, the

state partitions are drawn as cells of a twodimensional square spanned by the single cells of the two three-state

particles.

A Hilbert space representation of this setting can be obtained as follows. Define the states inS to be

onedimensional linear subspaces of nine-dimensional Hilbert space; e.g.,

1 ≡ (1,0,0,0,0,0,0,0,0),
...

9 ≡ (0,0,0,0,0,0,0,0,1).

(4)

The trit operators are given by (trit operators, observables and the corresponding state partitions will be used

synonymously)

F1 = diag(a,a,a,b,b,b,c,c,c),

F2 = diag(a,b,c,a,b,c,a,b,c),
(5)

for a,b,c∈ R, a 6= b 6= c 6= a.

If F2 = diag(d,e, f ,d,e, f ,d,e, f ) anda,b,c,d,e, f , are six different prime numbers, then, due to the unique-

ness of prime decompositions, the two trit operators can be combined to a single “context” operator

C = F1 ·F2 = F2 ·F1 = diag(ad,ae,a f,bd,be,b f,cd,ce,c f) (6)

which acts on both particles and has nine different eigenvalues. Just as for the two-particle case [9], there exist

23! = 9! = 362880 permutations of operators which are all able to separate the nine states. They are obtained

by forming a(2×9)-matrix whose rows are the diagonal components ofF1 andF2 from Eq. (5) and permuting

all the columns. The resulting new operatorsF ′
1 andF ′

2 are also trit operators.

A generalization tok particles inn states per particle is straightforward. We obtain (i)k partitions of the

product states with (ii)n elements per partition in such a way that (iii) every single product state is obtained by

the set theoretic intersection ofk elements of all the different partitions.

Every single such partition can be interpreted as a nit. All such sets are generated by permuting the set

of states, which amounts tonk! equivalent sets of state partitions. However, since they are mere one-to-

one translations, they represent the same trits. This equivalence, however, does not concern the property of

(non)entanglement, since the permutations take entangled states into nonentangled ones. We shall give an

example below.
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FIG. 1: Representation of state partitions as cells of a twodimensional square spanned by the single cells of the two

three-state particles.

Again, the standard orthonormal basis ofnk-dimensional Hilbert space is identified with the set of states

S= {1,2, . . . ,nk}; i.e., (superscript “T” indicates transposition)

1 ≡ (1, . . . ,0)T ≡| 1, . . . ,1〉=| 1〉⊗ · · ·⊗ | 1〉,
...

nk ≡ (0, . . . ,1)T ≡| n, . . . ,n〉=| n〉⊗ · · ·⊗ | n〉.

(7)

The single-particle states are also labeled by 1 throughn, and the tensor product states are formed and ordered

lexicographically (0< 1).

The nit operators are defined via diagonal matrices which contain equal amountsnk−1 of mutuallyndifferent

numbers such as different primesq1, . . . ,qn; i.e.,

F1 = diag(q1, . . . ,q1︸ ︷︷ ︸
nk−1 times

, . . . ,qn, . . . ,qn︸ ︷︷ ︸
nk−1 times︸ ︷︷ ︸

n0 times

),

F2 = diag(q1, . . . ,q1︸ ︷︷ ︸
nk−2 times

, . . . ,qn, . . . ,qn︸ ︷︷ ︸
nk−2 times︸ ︷︷ ︸

n1 times

),

...

Fk = diag(q1, . . . ,qn︸ ︷︷ ︸
nk−1 times

).

(8)

The operators implement ann-ary search strategy, filtering the search space inton equal partitions of states,

such that a successive applications of all such filters renders a single state.

There existnk! sets of nit operators, which are are obtained by forming a(nk×nk)-matrix whose rows are

the diagonal components ofF1, . . . ,Fk from Eq. (8) and permuting all the columns. The resulting new operators

F ′
1, . . . ,F

′
k are also nit operators.

All partitions discussed so far are equally weighted and well balanced, as all elements of them contain

an equal number of states. In principle, one could also consider nonbalanced partitions. For example, one

could take the partitionF1 = {{1},{2,3},{4,5,6,7,8,9}} instead ofF1 in (3), represented the by trit diagonal

operator diag(a,b,b,c,c,c,c,c,c). Yet any such attempt would result in a deviation from the optimaln-ary
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search tactics, and in an nonoptimal measurement procedures. Another, more principal, disadvantage would

be the fact that such a state separation could not reflect the inevitablen-arity of the quantum choice.

The most important feature of entangled states is that the nits, or propositions corresponding toFi , are no

longer single-particle properties, but in general depend on the joint properties of all thek particles. Formally,

this feature of entanglement is reflected in the isometric (unitary) transformation of the standard state basis

(7), such that this unitary transformation leads outside the domain of single particle unitary transformations.

One could define a measure of entanglement by considering the sum total of all parameter differences from the

nearest nonentangled states. This amounts to a nontrivial group theoretic question [12]. In terms of partitions, a

different approach is possible. Entanglement occurs for diagonal or antidiagonal arrangements of states which

do not add up to completed blocks.

Take, for example, the state partition scheme of Fig. 1, which results in nonentangled states and state

measurements. A modified, entangled scheme can be established by just grouping the states into diagonal and

counterdiagonal groups as drawn in Fig. 2. The corresponding trits are

F1 = {{1,5,9},{2,6,7},{3,4,8}},

F2 = {{1,6,8},{2,4,9},{3,5,7}}.
(9)

We can now introduce new 2×3 basis vectors grouped into the two bases{a′1,b′1,c′1} and{a′2,b′2,c′2} by

|a′1〉 = 1√
3
(|a1a2〉+ |b1b2〉+ |c1c2〉),

|b′1〉 = 1√
3
(|a1b2〉+ |b1c2〉+ |c1a2〉),

|c′1〉 = 1√
3
(|a1c2〉+ |b1a2〉+ |c1b2〉),

|a′2〉 = 1√
3
(|a1a2〉+ |b1c2〉+ |c1b2〉),

|b′2〉 = 1√
3
(|a1b2〉+ |b1a2〉+ |c1c2〉),

|c′2〉 = 1√
3
(|a1c2〉+ |b1b2〉+ |c1a2〉).

(10)

The new orthonormal basis states are “entangled” with respect to the old bases andvice versa. Their tensor

products generate a complete set of basis states in a new nine-dimensional Hilbert space. In terms of the new

basis states, the trits can be written asF1 ≡ {{a′1},{b′1},{c′1}} andF2 ≡ {{a′2},{b′2},{c′2}}. The associated

bases will be calleddiagonal bases. Note that the permutation which produces the entangled case (9) the nonen-

tangled (3) one is 1→ 1, 2→ 9, 3→ 5, 4→ 6, 5→ 2, 6→ 7, 7→ 8, 8→ 4, 9→ 3, or(1)(2,9,3,5)(4,6,7,8)

in cycle form.

A generalization to diagonal bases associated with an arbitrary number of nits is straightforward. We con-

jecture that the basis generated by the diagonal bases are “maximally entangled” with respect to group theoretic

measures of entanglement.

If Hilbert space is taken for granted as a valid formalization of quantum mechanics, then Gleason’s theorem

[13] and many later results [14–17], most notably the theorems by Bell [18, 19], Kochen & Specker [20], and

Greenberger, Horne & Zeilinger [21] state the impossibility of (noncontextual) value definiteness. That is,

there does not seem to exist elements of reality to every conceivable observable but a single (complete) one.
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FIG. 2: Entangled schemes through diagonalization and counterdiagonalization of the states.

One possible consequence (among many others, not necessarily compatible ones) of this fact may be the

assumption that a quantum state ofk n-state particles carries justk nits, and no more information. It should be

stressed that, from this point of view, all other conceivable information relating to counterfactual elements of

physical reality corresponding to state bases different from the encoded one are nonexistent. The measurement

outcomes in such improper communication frames are randomized (maybe because the measurement apparatus

serves as an randomizing interface to the proper communication frame, maybe because the information cannot

be interpreted correctly). If interrogated “correctly” (i.e., in the proper communication frame), it will pass on

this information unambiguously. In such a frame, but only in this particular one, this information is pseudo-

classical and therefore can also be copied or “cloned.” Such a point of view is suggested, to some extend,

by Peres’ statement that “unperformed experiments have no results” [22], and is compatible to Zeilinger’s

foundational principle for quantum mechanics [3] stating that“the most elementary quantum system represents

the truth value of one proposition.”

The quantum logical description allows for two possible representations. (i) Every single partitionFi gen-

erates a subalgebra of the Boolean algebra of states. All the subalgebras corresponding to thek partitions and

their can then be pasted together to form a nonboolean lattice. (ii) All partitions can be used to generate the

context operator (cf. above) which generates the finest partition. Every element of the latter partition can then

be identified with the atoms of a Boolean subalgebra.

Every such system can be modeled by a finite automaton partition logic [23–27] or a generalized urn model

[28–30]. All filters combined render a Boolean algebra 2nk
with nk atoms.

As regards the binary codes and their relation ton-ary ones, by a well known theorem for unitary operators

[31], any quantum measurement of ank-ary system can be decomposed into binary measurements. Also, it

is possible to group thek possible outcomes into binary filters of ever finer resolution; calling the successive

outcomes of these filter process the “binary code.” Yet, all these attempts result in codes with undesirable

features. Unitary decompositions in general yield noncomeasurable observables and thus to nonoperationaliz-

ability. Filters are inefficient, and so may be binary codes [32].

So far, the main emphasis in the area of quantum computation has been in the area of binary decision

problems. It is suggested that these investigations should be extended tok-ary decision problems (e.g., [33, pp.

332-340]), for which quantum information theory seems to be extraordinarily well equipped.
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