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Abstract
We define a measure of quantum information which is based on state partitions. Properties of this measure for entar

many-particle states are discussk@articles specifk “nits” in such a way thak mutually commuting measurements of

n-ary observables are necessary to determine the information.
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As pointed out many times by Landauer and others (e.g., [1, 2]) the formal conceporohationis tied
to physics, at least as far as applicability is a concern. Thus it should come as no surprise that quantum
chanics requires fundamentally new concepts of information as compared to the ones appropriate for clas:
physics. And indeed, research into quantum information and computation theory has exploded in the
decade, bringing about a wealth of new ideas, potential applications, and formalisms.

Yet, there seems to be one issue, which, despite notable exceptions (e.g., [3, Footnote 6] and [4]), has
yet been acknowledged widely: the principal irreducibilitynefiry quantum information. An-state particle
can be prepared in a single onegossible states. Then, this particle carries one “nit” of information, namely
to “be in a single one from different states.” Subsequent measurements may confirm this statement. The m
natural code basis for such a configuration isyaary code, and not a binary or decimal one.

Classically, there is no preferred code basis whatsoever. Every classical state is postulated to be detern
by a point in phase space. Formally, this amounts to an infinite amount of information in whatever base, sil
with probability one, all points are random; i.e., algorithmically incompressible. [5, 6]. Operationally, onl
a finite amount of classical information is accessible. Yet, the particular base in which this finite amount
classical information is represented is purely conventional.

Let us mention some notation and setup first. Consider a particle which can be observed in a single one
finite numbem of possible operationally distinct and comeasurable properties. The system’s state is formaliz
by a self-adjoint, positive state operator of trace clagdg an n-dimensional Hilbert space. Any pure state,
whether “entangled” or not, is characterized by a onedimensional subspace, which in turn corresponds
onedimensional projection operawt = p.

Every operationally distinct property corresponds to the proposition (we shall use identical symbols
denote logical propositions and operatdeg) 1 < i < k that the system, when measured, has the associatec
property. Propositions are formalized by projection operators, which are dichotomic observabIeE‘,? shige
is only satisfied for the eigenvalues 0 and 1 [7].

Thus, any complete set of base vectors has a dual interpretation: either as an orthonormal set of ba
states whose linear span is tiielimensional Hilbert space, or as a maximally comeasurable and operationall
distinct set of observables corresponding to propositions sucthasphysical system is in a pure state cor-
responding to the respective basis vectéwiy such proposition is operationalized by a measurement, ideally
by registering a click in a particle counter.

All bases corresponding to theparticle case are obtained in two steps: (i) In the first step, a system of pur
basis vectorgps,...,pw} is formed by taking the tensor produ@§ @ pf @ --- @ pf, 1 <i1,iz,..., Ik <N,
of all the single-particle projection operat@s, p;) ... p; . (i) In the second step, this system of basis vector
undergoes a unitary transformatibh(n¥) represented by & x nk-matrix. The transformed states need no
longer decompose into a product of single particle states, a property called “entanglement”duirgyhr|8].
From this point of view, entangled state bases are unitary equivalent to nonentangled ones. As a consequi
propositions need no longer refer to attributes or properties of single particles alone, but to joint properties
particles [3, 9].



In what follows, let us always consider a complete system of base f#tadssociated with a unique “con-
text” [10] or “communication frame’ = {F1,F, ..., R}, which are defined as a minimal set of co-measurable
n-ary observables. Far= 2, their explicit form has been enumerated in [9]. In this particular casd; the
can be identified with certain projection operators from the set of all possible mutually orthogonal ones, whc
two eigenvalues can be identified with the two states. For three or more patrticles, this is no longer possible
below). A well-known theorem of linear algebra (e.g., [11]) states that there exists a single “context operat
such that all thd5 € ¥ are just polynomials of it. That is, a single measurement exists which determines a
the observables associated with the context at once.

For a singlen-state particle, the nit can be formalized by as a state partition which is fine grained into
elements, one state per element. That is, if the set of states is represefified byn}, then the nit is defined
by

{{1},....{n}}. 1)
Of course, any labeling would suffice, as long as the structure is preserved. It does not matter whether one
the states, for instance, “+,” “0” and “-”, or “1,” “2” and “3”, resulting in a trit represented{y-},{0},{—}}
or {{1},{2},{3}}. Thus, nits are defined modulo isomorphisms (i.e., one-to-one translations) of the sta
labels. To complete the setup of the single particle case, let us recall that any such state set would corres
to an orthonormal basis ofdimensional Hilbert space.

Before proceeding to the most general case, we shall consider the case of two particles with three state:
particle in all details. The methods developed [9] for cask érticles with two states per particle cannot be
directly adopted here, since the idempoteri€&;(= E;) of the projection operators, which maps the two states
onto the two possible eigenvaluesl@annot be generalized.

Instead we shall start by considering the optimal partitions of states and construct the appropriate Hilk
space operators from there. Assume that the first and second patrticle has three orthogonal states label
ay,b1,c1 andap, by, cp, respectively (the subscript denotes the particle numdaes; stands forla;) ® |ap) =

|lazaz)). Then nine product states can be formed and labeled from 1 to 9 in lexicographic order; i.e.,

ajap = 1,
aiby = 2,
a1 = 3,
(2)
bj_az = 4,
c1c; = 9.

Any maximal set of co-measurable 3-valued observables induces two state partitions of the set of st
S={1,2,...,9} with three partition elements with the properties that (i) the set theoretic intersection of ar
two elements of the two partitions is a single state, and (ii) the union of all these nine intersections is just

set of stateS. As can be easily checked, an example for such state partitions are

Fr = {{17273}>{47576}7{77879}} = {{al}a{bl}v{cl}}a
R = {{17477}7{27578}7{37679}} = {{aZ}a{bZ}v{CZ}}‘

3)
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Operationally, the “trit’"F; can be obtained by measuring the first particle stéfie2, 3} is associated with
statea, {4,5,6} is associated witlp;, and{4,5,6} is associated witlt;. The “trit” F, can be obtained by
measuring the state of the second particlé; 4,7} is associated with stai@, {2,5,8} is associated with
by, and{3,6,9} is associated witlt,. This amounts to the operationalization of the trits (3) as state filters.
In the above case, the filters are “local” and can be realized on single particles, one trit per particle. In-
more general case of rotated “entangled” states (cf. below), the trits (more generally, nits) become inevita
associated with joint properties of ensembles of particles. Measurement of the propo&hepsyticle is in
state{1,2,3}” and,“the particle is in state{3,6,9}" can be evaluated by taking the set theoretic intersection
of the respective sets; i.e., by the proposititthe particle is in state{1,2,3} N {3,6,9} = 3” In figure 1, the
state partitions are drawn as cells of a twodimensional square spanned by the single cells of the two three-
particles.

A Hilbert space representation of this setting can be obtained as follows. Define the st&teas e

onedimensional linear subspaces of nine-dimensional Hilbert space; e.g.,

1 = (1,0,0,0,0,0,0,0,0),
: (4)
9 = (0,0,0,0,0,0,0,0,1).

The trit operators are given by (trit operators, observables and the corresponding state partitions will be u
synonymously)

F, = diagla,a,a,b,b,b,c,c,c),

F, = diagla,b,c,ab,ca b,c),

(5)

fora,b,ce R,a#b#c+#a.
If /, =diag(d,e f,d,e f,d,e f)anda,b,c,d,e f, are six different prime numbers, then, due to the unique-

ness of prime decompositions, the two trit operators can be combined to a single “context” operator
C=F,-F = F-F, =diag(ad,ae af,bd,bebf,cd,cecf) (6)

which acts on both particles and has nine different eigenvalues. Just as for the two-particle case [9], there ¢
231 = 91 = 362880 permutations of operators which are all able to separate the nine states. They are obta
by forming a(2 x 9)-matrix whose rows are the diagonal component§andF, from Eq. (5) and permuting

all the columns. The resulting new operatb{sandF; are also trit operators.

A generalization t particles inn states per particle is straightforward. We obtairk(partitions of the
product states with (i elements per partition in such a way that (iii) every single product state is obtained b
the set theoretic intersection kbklements of all the different partitions.

Every single such partition can be interpreted as a nit. All such sets are generated by permuting the
of states, which amounts td! equivalent sets of state partitions. However, since they are mere one-to
one translations, they represent the same trits. This equivalence, however, does not concern the proper
(non)entanglement, since the permutations take entangled states into nonentangled ones. We shall gi\

example below.
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FIG. 1: Representation of state partitions as cells of a twodimensional square spanned by the single cells of the

three-state particles.

Again, the standard orthonormal basisnéfdimensional Hilbert space is identified with the set of states

S=1{1,2,.. .,nk}; I.e., (superscriptT” indicates transposition)
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)= De---o| 1),
(7)
K= (0,...,0)"=n....N=N®---@]|n).

The single-particle states are also labeled by 1 thraygimd the tensor product states are formed and orderec
lexicographically (0< 1).
The nit operators are defined via diagonal matrices which contain equal ambuhnt$ mutuallyn different

numbers such as different primegs ..., qn; i.e.,

F. = diagqs,---,01,---,0n,---,0n),
~—— ~———r

nk-1 times nk-1 times
N J/

-~

nO times
F = diaga,..-,q1,---,0n,---,0n),
—— ——
nk-2 times nk-2 times (8)

-~

nl times

F = diaga,...,0n).
nk-1times
The operators implement anary search strategy, filtering the search spacennéqual partitions of states,
such that a successive applications of all such filters renders a single state.

There exisn*! sets of nit operators, which are are obtained by formirig“a< nX)-matrix whose rows are
the diagonal components B, ..., i from Eq. (8) and permuting all the columns. The resulting new operators
Fi,...,F are also nit operators.

All partitions discussed so far are equally weighted and well balanced, as all elements of them cont
an equal number of states. In principle, one could also consider nonbalanced partitions. For example,
could take the partitiofr; = {{1},{2,3},{4,5,6,7,8,9}} instead ofF; in (3), represented the by trit diagonal

operator diagg,b,b,c,c,c,c,c,c). Yet any such attempt would result in a deviation from the optimaty
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search tactics, and in an nonoptimal measurement procedures. Another, more principal, disadvantage w
be the fact that such a state separation could not reflect the inevitality of the quantum choice.

The most important feature of entangled states is that the nits, or propositions corresporiglirgdano
longer single-particle properties, but in general depend on the joint properties of kip#racles. Formally,
this feature of entanglement is reflected in the isometric (unitary) transformation of the standard state b:
(7), such that this unitary transformation leads outside the domain of single particle unitary transformatio
One could define a measure of entanglement by considering the sum total of all parameter differences fron
nearest nonentangled states. This amounts to a nontrivial group theoretic question [12]. In terms of partitior
different approach is possible. Entanglement occurs for diagonal or antidiagonal arrangements of states w
do not add up to completed blocks.

Take, for example, the state partition scheme of Fig. 1, which results in nonentangled states and s
measurements. A modified, entangled scheme can be established by just grouping the states into diagone

counterdiagonal groups as drawn in Fig. 2. The corresponding trits are

Fr = {{1,5,9},{2,6,7},{3,4,8}},

()
R = {{1,6,8}.{2,4,9},{3,57}}.

We can now introduce new:23 basis vectors grouped into the two baggs b/, ¢ } and{a,,b,,c,} by

&) = %(\alaﬁ +[b1bg) +]c1C2)),
b)) = %(|alb2> +|b1C2) + |c1a2)),
) = J5(|aace) + braz) + |cibz)), (10)
|85) = %(\alaﬁ +[b1C2) +[c1b2)),
b5) = \/%ﬂalbz) + |b1ag) +[c1c2)),
&) = J5(lanca) +[bibo) +[craz)).

The new orthonormal basis states are “entangled” with respect to the old baséseamdrsa Their tensor
products generate a complete set of basis states in a new nine-dimensional Hilbert space. In terms of the
basis states, the trits can be writtenFas= {{a} },{b}},{c}}} andF = {{&,},{b,},{c,}}. The associated
bases will be callediagonal basesNote that the permutation which produces the entangled case (9) the none!
tangled (3) oneis+1,2—9,3—5,4—-6,5—-2,6—-7,7—8,8—4,9—3,0r(1)(2,9,3,5)(4,6,7,8)

in cycle form.

A generalization to diagonal bases associated with an arbitrary number of nits is straightforward. We ci
jecture that the basis generated by the diagonal bases are “maximally entangled” with respect to group theo
measures of entanglement.

If Hilbert space is taken for granted as a valid formalization of quantum mechanics, then Gleason'’s theor
[13] and many later results [14—-17], most notably the theorems by Bell [18, 19], Kochen & Specker [20], al
Greenberger, Horne & Zeilinger [21] state the impossibility of (noncontextual) value definiteness. That |

there does not seem to exist elements of reality to every conceivable observable but a single (complete) or
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FIG. 2: Entangled schemes through diagonalization and counterdiagonalization of the states.

One possible consequence (among many others, not necessarily compatible ones) of this fact may b
assumption that a quantum statekotstate particles carries jushits, and no more information. It should be
stressed that, from this point of view, all other conceivable information relating to counterfactual elements
physical reality corresponding to state bases different from the encoded one are nonexistent. The measure
outcomes in such improper communication frames are randomized (maybe because the measurement app
serves as an randomizing interface to the proper communication frame, maybe because the information ca
be interpreted correctly). If interrogated “correctly” (i.e., in the proper communication frame), it will pass o
this information unambiguously. In such a frame, but only in this particular one, this information is pseud
classical and therefore can also be copied or “cloned.” Such a point of view is suggested, to some exte
by Peres’ statement that “unperformed experiments have no results” [22], and is compatible to Zeilinge
foundational principle for quantum mechanics [3] stating this most elementary quantum system represents
the truth value of one proposition”

The quantum logical description allows for two possible representations. (i) Every single pdttigjen-
erates a subalgebra of the Boolean algebra of states. All the subalgebras correspondikgéotitiens and
their can then be pasted together to form a nonboolean lattice. (ii) All partitions can be used to generate
context operator (cf. above) which generates the finest partition. Every element of the latter partition can tl
be identified with the atoms of a Boolean subalgebra.

Every such system can be modeled by a finite automaton partition logic [23—27] or a generalized urn mo
[28—30]. All filters combined render a Boolean algeb?'évﬂith nk atoms.

As regards the binary codes and their relation-ery ones, by a well known theorem for unitary operators
[31], any quantum measurement of ldary system can be decomposed into binary measurements. Also, |
is possible to group thke possible outcomes into binary filters of ever finer resolution; calling the successiwv
outcomes of these filter process the “binary code.” Yet, all these attempts result in codes with undesire
features. Unitary decompositions in general yield noncomeasurable observables and thus to nonoperatior
ability. Filters are inefficient, and so may be binary codes [32].

So far, the main emphasis in the area of quantum computation has been in the area of binary deci:
problems. It is suggested that these investigations should be exteridadytdecision problems (e.qg., [33, pp.

332-340]), for which quantum information theory seems to be extraordinarily well equipped.
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