

CDMTCS
 Research
 Report
 Series

Another Example of Higher Order Randomness

Verónica Becher
Facultad de Ciencias Exactas, Universidad de Buenos Aires

Gregory Chaitin
IBM Watson Research Center, Yorktown Heights, New York

CDMTCS-187
May 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Another Example of Higher Order Randomness

Verónica Becher
Facultad de Ciencias Exactas
Universidad de Buenos Aires
vbecher@dc.uba.ar

Gregory Chaitin*
IBM Watson Research Center
Yorktown Heights, NY
chaitin@us.ibm.com

Abstract

We consider the notion of randomness relative to an oracle: a real number is random in A if and only if its initial segments are algorithmically incompressible in a self-delimiting universal machine equipped with an oracle A. We prove that the probability that a program for infinite computations outputs a cofinite set is random in the second jump of the halting problem.

1 Introduction

The theory of program size defines randomness on the basis of computability: An infinite sequence is random if and only if its initial segments have essentially the same size as the shortest (minimal length) computer programs needed to generate them [6].

The primary notion of effective computability is given by Turing machines. But when these machines are equipped with an oracle for a subset A of natural numbers, i.e., an external procedure that answers questions of the form "is n in A ", they define the notion of relative computability or Turing reducibility. A set A is computable from B (or recursive in B) if there is a Turing machine which, when equipped with an oracle for B, computes the characteristic function of A. The Turing reducibility relation induces an equivalence relation on the subsets of natural numbers, and a partial order on the equivalence classes [10].

The notion of relative computability induces a definition of relative randomness: A sequence is random in A if its initial segments can not be algorithmically compressed in a computer equipped with an oracle A. If a set A is computable from B, then randomness in B implies randomness in A. Thus, the Turing reducibility relation on oracles induces an equivalence relation on sets of sequences according to their property of relative randomness, and a partial order on these equivalence classes.

[^0]Although the definition of randomness is given for infinite sequences (over a finite alphabet), the definition immediately extends to real numbers. A specific example of a random real is Ω [6], the probability that a self-delimiting universal machine eventually halts. Ω is plainly random, or random in the empty set. The halting probability Ω^{\prime} of a self-delimiting universal machine equipped with an oracle for the halting problem is random in the first jump of the halting problem. Similarly, $\Omega^{\prime \prime}, \Omega^{\prime \prime \prime}, \ldots$, the halting probabilities of self-delimiting universal machines equipped with oracles for the respective jumps of the halting problem, are random in the respective jumps.

We are interested in examples of higher order randomness that are not defined in terms of oracles. In a recent paper [1] we proved that the probability that a program for infinite computations outputs finitely many symbols is random in the first jump of the halting problem. In this note we go one step further: we show that the probability β that a program for infinite computations outputs a cofinite set is random in the second jump of the halting problem.

We show that β is exactly as random as $\Omega^{\prime \prime}$.However, although β and $\Omega^{\prime \prime}$ are computable from Turing equivalent sets, the proof of randomness of β is not immediate from the randomness of $\Omega^{\prime \prime}$. This is because randomness is not a recursively invariant property: if two real numbers are computable from Turing equivalent sets, one may be random but the other may not [3].

The present work proves results announced by the second author in [8], and continues early work on the program size complexity in infinite computations [7, 11].

2 Preliminaries

We work with the binary alphabet $\Sigma=\{0,1\}$. As usual, we refer to a finite sequence of elements of Σ as a string, and we denote the empty string by $\lambda . \Sigma^{*}$ is the set of all strings on the Σ alphabet.

The abstract definition of a Turing machine is a partial recursive function $f: \Sigma^{*} \rightarrow$ Σ^{*}; if the machine is a equipped with an oracle A, the function is recursive in A. The domain of f is considered a family of programs and the value of $f(p)$-if there is anyis the output of the program p. As usual we write $f(p) \downarrow$ when the function is defined, and $f(p) \uparrow$ otherwise. To deal with program inputs we consider a recursive bijection $\langle.,\rangle:. \Sigma^{*} \rightarrow \Sigma^{*}$, and we use the convention $f\left(p s_{1} s_{2} \ldots s_{n}\right)=f\left(\left\langle p,\left\langle s_{1}, \ldots\left\langle s_{n-1}, s_{n}\right\rangle \ldots\right\rangle\right.\right.$. A function that can be computed by a machine equipped with an oracle A is said recursive in A, and a set that can be enumerated by a machine with an oracle A is said to be recursively enumerable in A.

In this work we are only concerned with oracles that are defined by applications of the jump operation. Assume a given effective enumeration of all finite lists of Turing machine instructions relative to an arbitrary oracle (notice that the enumeration doe not depend on the oracle). For any set A, the jump of A is $A^{\prime}=\left\{x: \varphi_{x}^{A}(x) \downarrow\right\}$, where φ_{x}^{A} is the partial function recursive in A determined by the $x+1$-th list of instructions relative to the set A. We concentrate exclusively on the jumps of the empty set. The
first is $\emptyset^{\prime}=\left\{x: \varphi_{x}^{\emptyset}(x) \downarrow\right\}$, which is recursively enumerable. The second jump is $\emptyset^{\prime \prime}$ $=\left\{x: \varphi_{x}^{\emptyset^{\prime}}(x) \downarrow\right\}$, which is recursively enumerable in \emptyset^{\prime}.

The Arithmetical Hierarchy provides a classification of arithmetic relations according to their syntactical representation in First Order Logic. Σ_{n}^{0} is the class of relations definable by a formula in prenex form with recursive matrix and n quantifier alternations in the prefix, the outer quantifier being existential. Π_{n}^{0} is defined similarly, with the outer quantifier being universal. Δ_{n}^{0} is $\left(\Sigma_{n}^{0} \cap \Pi_{n}^{0}\right)$, i.e., the class of relations definable in both the n-quantifier forms. The Arithmetical Hierarchy admits also a purely recursiontheoretical definition: A relation is Δ_{n+1}^{0} if and only if it is recursive in a Σ_{n}^{0} or Π_{n}^{0} relation. A relation is Σ_{n+1}^{0} if and only if it is recursively enumerable in a Σ_{n}^{0} or Π_{n}^{0} relation. A relation is Π_{n+1}^{0} if and only if its complement is recursively enumerable in a Σ_{n}^{0} or Π_{n}^{0} relation. Thus, Δ_{1}^{0} is the class of recursive relations and Σ_{1}^{0} is the class of recursively enumerable relations. The Arithmetical Hierarchy relativizes to a given oracle A, defining the classes $\Sigma_{n}^{0, A}, \Pi_{n}^{0, A}$ and $\Delta_{n}^{0, A}$, by simply substituting "recursive" with "recursive in A ". The Arithmetical Hierarchy and the hierarchy generated by the iterated application of the jump operator are related: $\forall n \geq 0 \quad \emptyset^{(n)}$ is Σ_{n}^{0}-complete and $A \in \Delta_{n+1}^{0}$ iff A is recursive in $\emptyset^{(n)}$.
$I N$ is the set of natural numbers and $\mathcal{P}(I N)$, the parts of $I N$ and $\mathcal{P}_{\text {fin }}(I N)$ the finite parts of \mathbb{N}. For $a \in \Sigma^{*},|a|$ denotes the length of a. We write $a \preceq b$ if a is a prefix of b, and we write $a \prec b$ if a is a proper prefix of b (that is, $|a|<|b|$). We assume the recursive bijection $\operatorname{string}(i)$ as the i-th string in the length and lexicographic order over Σ^{*}.
Σ^{ω} is the set of all infinite binary sequences. For $X \subseteq \Sigma^{\omega}$ the set theoretic measure of X is denoted by $\mu(X)$ and represents the probability that any arbitrary sequence belongs to X. For $B \subseteq \Sigma^{*}, B \Sigma^{\omega}$ denotes the open subset of Σ^{ω} whose elements have an initial segment in B. For example, for a particular string $s \in \Sigma^{*}, s \Sigma^{\omega}$ is the set of all sequences starting with s, and $\mu\left(s \Sigma^{\omega}\right)=2^{-|s|}$. Infinite binary sequences can be identified with real numbers in $[0,1]$, when the sequence is taken as the binary expansion of a real number. Hence, every real in $[0,1]$ has a corresponding sequence in Σ^{ω}. Rational numbers of the form $k 2^{-i}$, for natural numbers i, k, have two corresponding sequences, one ending with infinitely many 1 's, the other with infinitely many 0 's. Since they form a set of measure 0 , this fact does not affect the considerations over probabilities that we make on this work. We refer to elements of \mathbb{R} and elements of Σ^{ω} indistinctly. We use x to denote a real number or an infinite sequence and we write x_{i} to denote the prefix of x of length i. A sequence x is computable iff there is a total recursive function $f: I N \rightarrow \Sigma$ such that $f(n)$ is the n-th symbol in the binary expansion of \mathbf{x}.

A set of strings is prefix free if and only if no proper extension of an element of the set belongs to the set. That is, $B \subseteq \Sigma^{*}$ is prefix free iff $\forall a, b \in \Sigma^{*}$ if $a \in B$ and $b \neq \lambda$ then $a b \notin B$. For example, the set $\{\lambda\}$ is prefix free and so is $\left\{0^{n} 1: n \geq 1\right\}$. Prefix free sets satisfy Kraft's inequality: If $B \subseteq \Sigma^{*}$ is prefix free, then $0 \leq \sum_{a \in B} 2^{-|a|} \leq 1$. This property allows us to conveniently express the measure of a set of all sequences extending a prefix free set: If $B \subseteq \Sigma^{*}$ is prefix free then $\mu\left(B \Sigma^{\omega}\right)=\sum_{a \in B} 2^{-|a|}$. A prefix-free set $B \subset \Sigma^{*}$ is maximal when $\forall a \notin B, B \cup\{a\}$ is not prefix free. If B is maximal prefix free then every sequence $\mathrm{x} \in \Sigma^{\omega}$ has an initial segment in B.

A set of strings is suffix closed if and only if every extension of an element of the
set also belongs to the set. That is, $B \subseteq \Sigma^{*}$ is suffix closed iff $\forall a, b \in \Sigma^{*}$ if $a \in B$ then $a b \in B$.

Remark: For every suffix-closed set B there exists a unique prefix-free set A such that $A \Sigma^{*}=B$. This prefix-free set A is the set of minimal elements of B with respect to the prefix ordering. It holds that $\mu\left(B \Sigma^{\omega}\right)=\mu\left(A \Sigma^{\omega}\right)=\sum_{a \in A} 2^{-|a|}$.

2.1 Randomness: incompressibility in self-delimiting machines

For defining random sequences as those whose initial segments are algorithmically incompressible it is required to consider self-delimiting Turing machines (see [9] for an explanatory exposition). The space of programs has to be interpretable as a probabilistic space with all program symbols uniformly distributed. This rules out having a blank marking the end of the program. Since there are no blanks in the input tape, nor any other external way of delimitation, a program must contain in itself the information to know where it ends, so the machine can realize when to finish reading the input tape; this is what self-delimiting means.

Self-delimiting Turing machines are assumed to have: a pre-given finite table that determines the computation, an input (or program) tape, a work tape and an output tape. The input tape contains a first dummy cell (to allow for no input) and then just 0 's and 1's. The input tape can only be read by the machine, while the output tape can only be written with 0's and 1's. Both tapes are infinite to the right and their heads only move in that direction. The work tape can be read, written and erased; is infinite in both directions and its head moves in both directions. Assume an effective enumeration of machines. This enumeration is possible because each machine is determined by its table of instructions, which is finite.

Self-delimiting machines can be equipped with an oracle A, adding to the previous architecture an oracle tape, infinite to the right, that can only be read by the machine. The i-th square contains 1 if $\operatorname{string}(i) \in A$, and 0 otherwise. Assume also an effective enumeration of machines equipped with an arbitrary oracle (the enumeration is independent of the oracle).

The abstract definition of a self-delimiting Turing machine (with an oracle A) is a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ partial recursive (in A), whose domain is prefix free [6]: if $f(a) \downarrow$ then $f(b) \uparrow$ for all b that are proper extensions of a.

Machines that are capable of simulating any other machine are universal. We choose a self-delimiting universal machine $U: \Sigma^{*} \rightarrow \Sigma^{*}$ (with no oracle) such that $U\left(0^{i} 1 p\right)=$ $M_{i}(p)$, where M_{i} is the i-th machine in the effective enumeration. U reads its input tape until it finds the first 1 . If it read $i 0$'s, it starts simulating the execution of M_{i}, taking the rest of the input tape as a program for M_{i}. We also fix self-delimiting universal machines $U^{\prime}: \Sigma^{*} \rightarrow \Sigma^{*}$ and $U^{\prime \prime}: \Sigma^{*} \rightarrow \Sigma^{*}$, containing oracles for the first and second jump of the halting problem respectively, such that $U^{\prime}\left(0^{i} 1 p\right)=M_{i}^{\prime}(p)$ and $U^{\prime \prime}\left(0^{i} 1 p\right)=M_{i}^{\prime \prime}(p)$, where i denotes is the index in the given enumeration.

The program size complexity [6] in a given self-delimiting machine $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a function $H_{f}: \Sigma^{*} \rightarrow \mathbb{N}$ which maps a string s to the length of the shortest programs
that output s.

$$
H_{f}(s)= \begin{cases}\min \{|p|: f(p)=s\} & \text { if } s \text { is in the range of } f . \\ \infty & \text { otherwise }\end{cases}
$$

Since the subscript f can be any machine, even one equipped with an oracle, this is a definition of program size complexity for both, effective and relative computability. The function H_{f} is not recursive. When f is a universal machine, H_{f} is total and $\exists c \forall s \quad H_{f}(s) \leq|s|+H_{f}(|s|)+c \leq|s|+2 \log |s|+c$, where log stands for base 2 logarithm. This upper bound is obtained considering a program that contains explicitly the actual string s plus a codification of the string length.

A machine f is asymptotically optimal if and only if for any machine g, there is a constant c such that for all $s, H_{f}(s) \leq H_{g}(s)+c$. For any pair of asymptotically optimal machines U_{1} and U_{2} there is a constant c such that for every string $s,\left|H_{U_{1}}(s)-H_{U_{2}}(s)\right| \leq$ c. This is known as the invariance theorem and implies that program size complexity is independent of the asymptotically optimal machine. Thus, program size complexity on asymptotically optimal machines counts as an absolute measure of complexity, up to an additive constant. The universal self-delimiting machine $U\left(0^{i} 1 p\right)=M_{i}(p), i \in \mathbb{N}$ we fixed is asymptotically optimal because $\forall M_{i} \forall s \in \Sigma^{*}, H_{U}(s) \leq H_{M_{i}}(s)+i+1$. For the same reason, U^{\prime} and $U^{\prime \prime}$ that we fixed are also asymptotically optimal.

Randomness of a sequence is defined in terms of the program-size complexity of its initial segments.

Definition 1 ([6] Random in A) Let U^{A} be a self-delimiting universal machine with oracle A. A sequence $\mathrm{x} \in \Sigma^{\omega}$ is random in A iff $\exists c \forall n \quad H_{U^{A}}\left(\mathrm{x}_{n}\right)>n-c$.

A real number in $[0,1]$ is random if its corresponding binary sequence is random. The definition is given for the alphabet $\Sigma=\{0,1\}$, but it can be shown to be invariant under any alphabet [2]. That is, the property of being random is inherent to the number and it is independent of the system in which it is represented.

A significant class of random reals was defined by Chaitin [6]:

$$
\Omega=\sum_{U(p) \downarrow} 2^{-|p|}
$$

for a self-delimiting universal machine U. Since the domain of U is prefix free, $\Omega=$ $\mu\left(\operatorname{dom}(U) \Sigma^{\omega}\right)$ is the probability that a self-delimiting universal machine U halts. Ω is computably enumerable and random $[6,5]$.

We remark that the property of being random is nor recursively equivalent in the following sense: given two Turing equivalent real numbers, one may be random but the other may not. A general result about this fact was given by Calude and Nies [3].

Proposition 2 For prefix sets $X \subseteq \Sigma^{*}$ let $r(X)=\sum_{p \in X} 2^{-|p|}$. There are recursively isomorphic sets $X, Y \subset \Sigma^{*}$ such that $r(X)$ is random but $r(Y)$ is not random.

PROOF. Let X be the $\operatorname{dom}(U)$ and $Y=\left\{0^{i-1} 1: \operatorname{string}(i) \in \operatorname{dom}(U)\right\}$. By definition, the i-th bit of $r(Y)$ is 1 iff $U(\operatorname{string}(i)) \downarrow$. Then, the first 2^{n} bits of $r(Y)$ are determined by the halting behavior of all programs of length less than n. There will be m of them, $0 \leq m<2^{n}$ that halt in U.

For any n, the first 2^{n} bits of $r(Y)$ can be dramatically compressed: there is an algorithm which given 2^{n} and m, dovetails all programs of length less than n and finds the m ones that halt and determines the first 2^{n} bits of $r(Y)$. Then, $H_{U}\left(r(Y)_{2^{n}} \leq\right.$ $\log \left(2^{n}\right)+\log (m)+c \leq 2 \log \left(2^{n}\right)+c=2 n+c$, for some constant c. Hence, $r(Y)$ is not random, while $\operatorname{dom}(U)$ and Y are recursively isomorphic and $r(\operatorname{dom}(U))=\Omega$ is random. QED

As expected, the help of oracles can contribute to have programs that are shorter in length.

Proposition 3 For any string $H_{U^{\prime \prime}} \leq H_{U^{\prime}} \leq H_{U}$ within a constant term.

PROOF. We prove $H_{U^{\prime}} \leq H_{U}$. The other is exactly alike. There is a machine M_{i}^{\prime} equipped with an oracle for the halting problem which ignores its oracle and behaves exactly as U. Then for every $p \in \Sigma^{*}, U(p)=U^{\prime}\left(0^{i} 1 p\right)$. Thus, if $H_{U}(s)$ is the length of the minimal size program that produces s in U, there is a program of length $H_{U}(s)+i+1$ which produces s in U^{\prime}. Take the constant term equal to $i+1$. QED

The inequalities of Proposition 3 can be strict, as exemplified by sufficiently large initial segments of Ω. On the one hand Ω is random in the empty set, so $\exists c \forall n H_{U}\left(\Omega_{n}\right)>$ $n-c$. On the other hand, Ω is computable from \emptyset^{\prime}. In general, the initial segments of computable sequences have very low program size complexity: If x is computable from A (or recursive in A), $\exists c \forall i \quad H_{U^{A}}\left(\mathrm{x}_{i}\right) \leq H_{U^{A}}(i)+c$, for a self-delimiting universal machine U^{A} with oracle A. Thus, $\exists d \forall n H_{U^{\prime}}\left(\Omega_{n}\right) \leq H_{U^{\prime}}(n)+d \leq 2 \log n+d$. For every n sufficiently greater than $c+d, H_{U^{\prime}}\left(\Omega_{n}\right)<H_{U}\left(\Omega_{n}\right)$.

3 Random in the second jump of the halting problem

3.1 Machines for infinite computations

Turing's original definition of the "automatic machine" in his fundamental paper in 1936 [12], is indeed a machine that performs unending or infinite computations. Turing defines a number to be computable if its decimal expansion can be written down by an automatic machine.

Infinite computations do not reach a final state because for every reached combination of a symbol in the input tape, a symbol in the work tape and a state label there is always an entry in the machine table. However, with respect to the output, an infinite computation may either produce just finite or infinitely many symbols.

An infinite computation is the limit of executing a program for an unlimited number of steps. We consider a machine f that runs a program p for t steps and halts. If the number of steps t are insufficient for the machine to read all of p, we require $f(p, t)$ to be undefined. We want $f(p, t) \downarrow$ only if the head of the input tape reaches the last symbol of p in at most t steps. We interpret the output of a computation as a set of natural numbers. n is in the output set iff 0 is written by the machine on the output tape followed by exactly $n 1$ s, followed by another 0 .

Definition 4 (Self-delimiting step machine) Let $f: \Sigma^{*} \times I N \rightarrow \mathcal{P}_{f i n}(I N)$ be a partial recursive function such that
initialized: $\quad f(\lambda, 0) \downarrow$
continuously defined: If $f(p, n) \downarrow$ then $\forall s \prec p \exists m<n$ such that $f(s, m) \downarrow$. If $f(p, n) \downarrow$ then $\forall m<n \exists s \preceq p$ such that $f(s, m) \downarrow$.
self-delimiting: If $f(p, n) \downarrow$ then $\forall a \neq \lambda, f(p a, n) \uparrow$.
recursive domain: There is a total recursive function $\operatorname{def}_{f}: \Sigma^{*} \times I N \rightarrow\{0,1\}$ such that $\operatorname{def}_{f}(p, n)=1$ iff $f(p, n) \downarrow$.
monotone: If $m<n, s \preceq p, f(s, m) \downarrow$ and $f(p, n) \downarrow$ then $f(s, m) \subseteq f(p, n)$.

The function f induces a definition for infinite computations. In principle programs are finite objects, just strings. However, we will also face unending computations which are determined by possibly infinitely many bits of the input tape. We define f^{∞} for this general case, as a function from sequences to sets of natural numbers:

Definition 5 (Machine for infinite computation) Let $\mathrm{x}_{i_{t}}$ be the unique prefix of $\mathrm{x} \in$ Σ^{ω} such that $f\left(\mathrm{x}_{i_{t}}, t\right) \downarrow$ if such prefix exists, and let $f^{\infty}: \Sigma^{\omega} \rightarrow \mathcal{P}(I N)$ be

$$
f^{\infty}(\mathrm{x})= \begin{cases}\bigcup_{t \geq 0} f\left(\mathrm{x}_{i_{t}}, t\right) & \text { If } \forall t \exists i_{t} \quad f\left(\mathrm{x}_{i_{t}}, t\right) \downarrow \\ \uparrow & \text { otherwise. }\end{cases}
$$

The result of computing x for infinitely many steps is the limit of running the initial segments of x for t steps, for t going to infinity. If defined, $f^{\infty}(\mathrm{x})$ may be either a finite or an infinite set.

We fix $U^{\infty}: \Sigma^{\omega} \rightarrow \mathcal{P}(\mathbb{N})$ and $U^{\prime \infty}: \Sigma^{\omega} \rightarrow \mathcal{P}(\mathbb{I N})$ universal machines for infinite computations, where $U^{\prime \infty}$ is equipped with an oracle for the halting problem in U. As usual, $U^{\infty}\left(0^{i} 1 \mathrm{x}\right)=M_{i}^{\infty}(\mathrm{x})$ and $U^{\prime \infty}\left(0^{i} 1 \mathrm{x}\right)=M_{i}^{\prime \infty}(\mathrm{x})$ for given enumerations $M_{1}^{\infty}, M_{2}^{\infty}$, M_{3}^{∞}, \ldots and $M_{1}^{\prime \infty}, M_{2}^{\prime \infty}, M_{3}^{\prime \infty}, \ldots$.

3.2 The probability of programs for cofinite sets

We define β as the probability that an arbitrary string $p \in \Sigma^{*}$ determines a cofinite output:

$$
\begin{gathered}
P_{\text {cofinite }}=\left\{p \in \Sigma^{*}: \exists m \forall n>m \forall \mathbf{x} \in \Sigma^{\omega} \quad n \in U^{\infty}(p \mathbf{x})\right\} \\
\beta=\mu\left(P_{\text {cofinite }} \Sigma^{\omega}\right)
\end{gathered}
$$

We will show that the initial segments of β are incompressible even if we count with an oracle for the second jump of the halting problem. To prove it we use two correspondence results:
(a) between all the programs that halt in $U^{\prime \prime}$ and a subset of the programs that output a finite set in $U^{\prime \infty}$. And,
(b) between all the programs that output a finite set in $U^{\prime \infty}$ and a subset of programs that output a cofinite set in U^{∞}.

Motivated by different purposes, the left to right side of (a) and (b) were proved by Chaitin in [7] (as Theorems 14 and 16). We prove here the full correspondences using simulation in the limit technique, also used in [7], that tells how to perform a simulation of a computation relative to an oracle, in a machine for infinite computations that lacks the oracle. The problem is how to answer to the questions to the lacking oracle. The technique requires that the oracle be recursively enumerable in the machine performing the simulation. The simulated program is run in increasing number of steps, using a fake oracle: at step t a question to the oracle is answered "no" unless the question is found to be true in at most t steps. As the number of steps t goes to infinity any finite set of questions will eventually be answered correctly by the fake oracle. This is guaranteed by Shoenfield's Limit Lemma [10]: a set A is in Δ_{2}^{0} of the Arithmetical Hierarchy if and only if its characteristic function is the limit of a recursive function g, i.e., $c_{A}(x)=\lim _{t \rightarrow \infty} g(x, t)$. In the limit, one jump of the halting problem is obtained.

For (b) we have to simulate \emptyset^{\prime}, which is in Δ_{2}^{0}, so it is the limit of a recursive function. And for (a) we have to simulate $\emptyset^{\prime \prime}$, which is in $\Delta_{2}^{0, \emptyset^{\prime}}$; thus, it is the limit of a function recursive in \emptyset^{\prime}.

A critical feature of the simulation in the limit of self-delimiting machines is the so called harmless overshoot [7]. Consider a simulation of a program p with oracle instructions. Although in the limit the fake oracle realizes its mistakes and provides the correct answers, the simulation may already have read beyond the program p. This happens because the domain of the machine being simulated is not recursively enumerable so the simulation may not know where the program p ends until it has the correct oracle answers. In the meantime, the machine performing the simulation may have read extra symbols from the input tape, while its head can not move backwards. However, the actual value of the extra bits is irrelevant because once the simulation reaches the correct oracle answers it will know where p actually ends. A simulation of a program that halts will have at most finitely many symbols of harmless overshoot.

Lemma 6 (adapted from [1]) $\exists \% \in \Sigma^{*}$ with the following property:

1) If $U^{\prime}(p)$ halts then $\forall \mathrm{x} U^{\infty}(\% p \mathrm{x})$ is finite.
2) If $U^{\prime}(p)$ halts then $\exists m \forall \mathrm{x} \forall t \exists i \leq m u\left(\% p \mathrm{x}_{i}, t\right) \downarrow$ (finite harmless overshoot).
3) If $U^{\infty}(\% p \mathbf{x})$ is finite then $\exists s \in \Sigma^{*}$ such that $s \preceq p \mathbf{x}$ and $U^{\prime}(s)$ halts.

PROOF. \% contains instructions for U^{∞} to perform the simulation in the limit of the program for U^{\prime} that comes afterwards in the input tape. The following algorithm does that task:
$\mathrm{t}:=1$
maximum: $=0$ (number of simulated instructions of U^{\prime} when it halts)
do forever

Simulate U^{\prime} for at most t instructions. For each question to the oracle of whether $U(q)$ halts, simulate $U(q)$ and take as an answer whether it halts in less than t steps.

If U^{\prime} did not halt, then print t on the output tape. Else, let c be the actual number of instructions of U^{\prime} that have been simulated (the simulation for $U(q)$ is not charged). If c exceeds the maximum number of simulated instructions for all previous values of t, then update the maximum to c and print c on the output tape. Otherwise nothing is printed on the output tape.
$\mathrm{t}:=\mathrm{t}+1$
end do
Let us verify that \% has the desired property. Assume \mathbf{x} be any sequence after p on the input tape.

To see that 1) and 2) hold, suppose $U^{\prime}(p)$ halts. Then p halts in finitely many steps and it asks only finitely many oracle questions. Let Q be the set of programs for U that are consulted to the oracle. Every $q \in Q$ such that $U(q) \downarrow$, does so in some finite number of steps. Let M be the maximum number of steps required to halt by the programs of Q that indeed halt. For values of t less than M, the simulation of some oracle questions will be wrong, but for every value of $t \geq M$, they will be correct. If $U^{\prime}(p)$ halts in N steps, then when t exceeds the maximum between M and N, the simulation at step t will find out that p halts. For larger values of t the maximum number of executed steps will stabilize in N and there will be no more symbols printed on the output tape.

Since the simulation finds out that $U^{\prime}(p)$ halts in at $\operatorname{most} \max (M, N)$ steps, the amount of bits read from the input tape after $\%$ will never exceed $\max (M, N)$. Hence, $\forall t \exists!i \leq \max (M, N)$ such that $u\left(\%(p \mathbf{x})_{i}\right) \downarrow$ (finite harmless overshoot). Consequently, $\forall n>\max (M, N) \forall t \exists!i<\max (M, N)$ such that $u\left(\% p \mathbf{x}_{i}, t\right) \downarrow$ and $n \notin u\left(\%(p \mathbf{x})_{i}, t\right)$. Thus, $U^{\infty}(\% p \mathbf{x})$ is finite.
3) Suppose now that $\exists m \forall n>m n \notin U^{\infty}(\% p \mathbf{x})$. Then, during the simulation only finitely many numbers are printed. Say the last number printed is N. We have to show
that for some $s \preceq p \mathbf{x}, U^{\prime}(s)$ halts. Suppose not. Then, in particular, the execution of U^{\prime} does not halt in less than $N+1$ steps. In such $N+1$ steps only a finite number of oracle questions can be asked, over a finitely many programs. Following the same reasoning as before, there is a maximum number of steps M that lead to the correct answer for all the programs $q \in Q$ that halt in U. Therefore, in the maximum step between M and $N+1$, the simulation should find out exactly what U^{\prime} does in the first $N+1$ instructions, which we assumed does not halt. Then, the number $N+1$ is printed in the output tape, contradicting that the maximum number printed was N. Hence, for some $s \preceq p \mathrm{x},|s| \leq N$, it must be $U^{\prime}(s)$ halts. QED

Considering $U^{\prime \prime}$ and its simulation on $U^{\prime \infty}$, the relativization of this lemma proves the correspondence (a). Now we turn to the correspondence (b), between all programs for $U^{\prime \infty}$ that output a finite set and a subset of programs for U^{∞} that output a cofinite set. Again we have to consider the harmless overshoot, which in this case might be infinite. For example, let the following instructions be part of a program for $U^{\prime \infty}$:

```
do forever
    if (O(U(factorial i)\uparrow)) then read i bits from the input tape
    i:= i+1
end do
```

When these instructions are run on $U^{\prime \infty}$, no symbols from the input tape are read because the oracle 0 knows that U (factorial i) halts. Instead, the simulation running on U^{∞} will read infinitely many symbols, because infinitely many times the fake oracle will be wrong. However, at any step of the simulation there will be only finitely many extra bits read from the input tape.

Lemma $7 \exists \# \in \Sigma^{*}$ with the following property:

$$
\forall \mathrm{x} \in \Sigma^{\omega} \quad\left(U^{\prime \infty}(\mathrm{x}) \text { is finite iff } U^{\infty}(\# \mathrm{x}) \text { is cofinite }\right) .
$$

PROOF. \# contains instructions for U^{∞} to perform the simulation in the limit of the program for $U^{\prime \infty}$ that comes afterwards in the input tape. The following algorithm does that task. The algorithm maintains a set HOLES of pairs (y, t), meaning that since step t, the element y is believed to belong to the output of $U^{\prime \infty}(\mathrm{x})$. If at some subsequent step t^{\prime} the element y is no longer believed in the output of $U^{\prime \infty}(\mathrm{x})$ (this happens when the fake oracle changes at step t^{\prime} some of the responses it gave at previous steps), the algorithm removes the pair (y, t) from HOLES.
$t:=1$
do forever

Simulate $U^{\prime \infty}$ for t steps. For each question to the oracle of whether $U(q)$ halts, simulate $U(q)$ and take as an answer whether it halts in less than t steps. Let Y_{t} be the output set obtained by simulating the computation of t steps of $U^{\infty}(\mathrm{x})$.

$$
Y_{t}:=u\left(\# \mathrm{x}_{i}, t\right)
$$

For each $y \in Y_{t}$ such that $(y,$.$) is not in HOLES$
(y is a new element encountered at this step t)

$$
\begin{aligned}
& H O L E S:=H O L E S \cup\{(y, t)\} \\
& t:=t+1 \text { (skip as many values of } t \text { as the number of new elements) }
\end{aligned}
$$

For each $\left(z, t_{z}\right) \in$ HOLES such that z is not in Y_{t}
(z was mistakenly believed to be in the output of $U^{\prime \infty}(\mathrm{x})$).

$$
H O L E S:=H O L E S \backslash\left\{\left(z, t_{z}\right)\right\}
$$

print t_{z} (fix the hole witnessed by z)
print t
$t:=t+1$
end do
Let us verify that \# has the desired property. Let x be any sequence after \# on the input tape.
\Rightarrow. Suppose $U^{\prime \infty}(\mathrm{x})$ is a finite set. Then there is a step t_{0}, since which $U^{\prime \infty}$ outputs no new elements (only repeated elements or no elements at all). In such t_{0} steps only finitely many oracle questions Q can be performed. Every $q \in Q$ such that $U(q)$ halts, it does so in some finite number of steps. Let m_{Q} be the maximum number of steps required to halt by the halting programs in Q. For values of t less than m_{Q}, the simulation of some oracle questions will be wrong, but for every value of $t \geq m_{Q}$, they will be correct. Then for $m=\max \left(t_{0}, m_{Q}\right)$ the simulation will have found out all the elements in $U^{\prime \infty}(\mathrm{x})$ and the output of the simulation will contain at least as many holes as the number of elements in $U^{\prime \infty}(\mathrm{x})$. Namely, $\forall t \geq m Y_{t} \supseteq U^{\prime \infty}(\mathrm{x})$. And for each $y \notin U^{\prime \infty}(\mathrm{x})$, for infinitely many values of $t, y \notin Y_{t}$. Hence, any missing number greater than m, sooner or later will be printed (i.e, all incorrect holes sooner or later will be fixed). Hence $U^{\prime \infty}(\mathrm{x})$ is cofinite.
\Leftarrow. Each element $y \in U^{\prime \infty}(\mathrm{x})$ is obtained after finitely computation steps of $U^{\prime \infty}$, say t_{y}, which involve just finitely many oracle questions Q_{y}. The simulation on U^{∞} using the fake oracle finds the right oracle answers in m_{y} steps. Then, each element $y \in U^{\prime \infty}$ is found by the simulation no later than step $\max \left(t_{y}, m_{y}\right)$, and for every step $t \geq \max \left(t_{y}, m_{y}\right) y \in Y_{t}$. Therefore, a pair $\left(y, T_{y}\right)$-for some value $T_{y} \leq \max \left(t_{y}, m_{y}\right)-$ will remain forever in HOLES, and the value T_{y} will remain forever missing in the output. Hence, if $U^{\prime \infty}(\mathrm{x})$ is infinite, $U^{\infty}(\# \mathrm{x})$ is coinfinite. QED

Concatenating Lemmas 6 and 7 we obtain:

Proposition 8

1. $\forall p \in \Sigma^{*}$ (if $U^{\prime \prime}(p)$ halts then $\# \% p \in P_{\text {cofinite }}$).
2. $\forall p \in \Sigma^{*}$ (if $\# \% p \in P_{\text {cofinite }}$ then $\exists S \subseteq \Sigma^{*}$ finite and prefix-free such that $\forall a \in \Sigma^{*} \exists s \in S$ ($s \preceq p a$ or $\left.p a \preceq s\right)$ and $U^{\prime \prime}(s)$ halts $)$.

PROOF. 1) Suppose $U^{\prime \prime}(p)$ halts. By relativizing Lemma 6, we obtain $\forall \mathrm{x} \in \Sigma^{\omega}$ $U^{\prime \infty}(\% p \mathbf{x})$ is finite and $\exists m \forall \mathrm{x} \forall t \exists i \leq m u^{\prime}\left(\% p \mathbf{x}_{i}, t\right) \downarrow$ (finite harmless overshoot). Thus, for each x there is a step t_{x} at which all different elements of $U^{\prime \infty}(\% p \mathrm{x})$ have been output: $\exists m \forall \mathrm{x} \exists t_{x} \exists i \leq m$ such that $u^{\prime}\left(\% \mathrm{x}_{i}, t\right)=U^{\prime \infty}(\% p \mathrm{x})$. Hence, necessarily, $\left\{U^{\prime \infty}(\% p \mathrm{x}): \mathrm{x} \in \Sigma^{\omega}\right\}$ is finite and $\left\{t_{x}: \forall t \geq t_{x} \exists i \leq m u^{\prime}\left(\% p \mathrm{x}_{i}, t\right)=U^{\prime \infty}(\% p \mathrm{x})\right\}$ is also finite.

By the proof of Lemma 7, for each x the simulation on U^{∞} discovers the last element of $U^{\prime \infty}(\% p \mathbf{x})$ by step $\max \left(t_{x}, Q_{x}\right)$. So, every value greater than $\max \left(t_{x}, Q_{x}\right)$ will be printed. Since $\left\{\max \left(t_{x}, Q_{x}\right): \mathrm{x} \in \Sigma^{\omega}\right\}$ is finite, it has a maximum element $M=$ $\max \bigcup\left\{\max \left(t_{x}, Q_{x}\right): \mathrm{x} \in \Sigma^{\omega}\right\}$. So, $\forall n>M \forall \mathrm{x} n \in U^{\infty}(\# \% p \mathrm{x})$.
2) Assume $\% \# p \in P_{\text {cofinite }}$, and let M be such that $\forall n>M \forall \mathrm{x} n \in U^{\infty}(\# \% p \mathrm{x})$. By the proof of Lemma 7, we know that $U^{\infty}(\# \% p \mathrm{x})$ performs the simulation in the limit of $U^{\prime \infty}(\% p \mathbf{x})$. The missing values in the output of U^{∞} are the step numbers at which new elements have been found. Thus, all definitive holes in the output of U^{∞} have been produced at some step $\leq M$. Consequently, all the elements of $U^{\prime \infty}(\% p \mathbf{x})$ have been found by the simulation on U^{∞} by step M, after having read at most M symbols after \# from the input tape. So, $\forall \mathrm{x} U^{\prime \infty}(\% p \mathrm{x})$ is finite. Now by Lemma 6 , for each $\mathrm{x} \in \Sigma^{\omega} \exists s$ such that ($s \preceq p \mathbf{x}$) and $U^{\prime \prime}(s)$ halts. By König's lemma there exists a finite set $S \subseteq \Sigma^{*}$ such that $\forall \mathrm{x} \in \Sigma^{\omega} \exists s \in S, s \preceq p \mathrm{x}$ and $U^{\prime \prime}(s)$ halts. Since machine $U^{\prime \prime}$ is self-delimiting, the set S is prefix free. QED

To prove the main result of the paper we use that $P_{\text {cofinite }}$ is recursively enumerable in the second jump of the halting problem:

Proposition $9 P_{\text {cofinite }}$ is Σ_{3}^{0} in the Arithmetical Hierarchy.
PROOF. Let $u: \Sigma^{*} \times I N \rightarrow \mathcal{P}(I N)$ be the partial recursive function that induces U^{∞} and $d e f_{u}$ the total recursive function that decides the domain of u.
$p \in P_{\text {cofinite }}$ iff $\exists m \forall n>m \forall \mathbf{x} \in \Sigma^{\omega} \forall t \exists i \quad\left(d e f_{u}\left((p \mathbf{x})_{i}, t\right)=1 \wedge n \in u\left((p \mathbf{x})_{i}, t\right)\right.$, iff
$\exists m \forall n>m \forall t \forall s \in \Sigma^{*} \exists s_{t} \in \Sigma^{*}\left(\left(s_{t} \preceq p s \vee p s \preceq s_{t}\right)\right) \wedge d e f_{u}\left(s_{t}, t\right)=1 \wedge n \in u\left(s_{t}, t\right)$.
Since this is a $\exists \forall \exists$ formula, the set $P_{\text {cofinite }}$ is Σ_{3}^{0}.QED
Clearly $P_{\text {cofinite }}$ is suffix closed, since for each $p \in P_{\text {cofinite }}, \forall a \in \Sigma^{*}, p a \in P_{\text {cofinite }}$. The prefix free counterpart of $P_{\text {cofinite }}$ is the set of minimal elements in the \preceq order: $P F_{\text {cofinite }}=\left\{p \in P_{\text {cofinite }}: \forall q \prec p, q \notin P_{\text {cofinite }}\right\}$. We now show that

$$
\beta=\mu\left(P_{\text {cofinite }} \Sigma^{\omega}\right)=\mu\left(P F_{\text {cofinite }} \Sigma^{\omega}\right)=\sum_{p \in P F_{\text {cofinite }}} 2^{-|p|}
$$

is random in the second jump of the halting problem.

Theorem 10β is random in $\emptyset^{\prime \prime}: \exists c \forall n \quad H_{U^{\prime \prime}}\left(\beta_{n}\right)>n-c$.

PROOF. Consider the following algorithm for $U^{\prime \prime}$ that receives as input a minimal size program for $U^{\prime \prime}$ that outputs β_{n} :

Compute β_{n}.
By Proposition 9 there is function g recursive in $\emptyset^{\prime \prime}$ whose range is $P_{\text {cofinite }}$. Enumerate enough programs $g(1), g(2), \ldots$ until we have a prefix free set $X=$ $\{g(1), \ldots, g(m)\}$, such that $\beta_{n}<\sum_{x \in X} 2^{-|x|}$.

Output z the first string that does not belong to $\left\{U^{\prime \prime}(p): \# \% p \in X\right\}$ and halt.
We give bounds for $H_{U^{\prime \prime}}(z)$. On the one hand, by the universality of $U^{\prime \prime}$, there exists a minimal size program p such that $U^{\prime \prime}(p)=z$. But $\# \% p \notin X$ and, by Proposition8, $\forall \mathrm{x} \in \Sigma^{\omega} U^{\infty}(\# \% p \mathrm{x})$ is cofinite. So, $\# \% p$ contributes to β with $2^{-|\# \% p|}$.

$$
\beta_{n}+2^{-|\# \% p|}<\sum_{x \in X} 2^{-|x|}+2^{-|\# \% p|}<\beta
$$

Using that $\beta \leq \beta_{n}+2^{-n}$ we obtain

$$
\beta_{n}+2^{-|\# \% p|}<\sum_{x \in X} 2^{-|x|}+2^{-|\# \% p|}<\beta \leq \beta_{n}+2^{-n}
$$

Therefore, $2^{-|\# \% p|}<2^{-n}$. Thus, $n<|\# \% p|$ and $n-|\# \%|<|p|=H_{U^{\prime \prime}}(z)$.
On the other hand, z is the output of the algorithm above, so there is a constant q such that $H_{U^{\prime \prime}}(z) \leq H_{U^{\prime \prime}}\left(\beta_{n}\right)+q$. Hence, $n-|\# \%|<H_{U^{\prime \prime}}(z) \leq H_{U^{\prime \prime}}\left(\beta_{n}\right)+q$. So, $H_{U^{\prime \prime}}\left(\beta_{n}\right)>n-q-|\# \%|$. Putting $c=q+|\# \%|$ the theorem is proved. QED

Proposition 11β is exactly as random as $\Omega^{\prime \prime}: \exists c \forall n\left|H_{U^{\prime \prime}}\left(\Omega_{n}^{\prime \prime}\right)-H_{U^{\prime \prime}}\left(\beta_{n}\right)\right| \leq c$.

PROOF. As in the proof of Theorem 10, assume given a minimal size program for $U^{\prime \prime}$ for β_{n}. Compute β_{n} and enumerate enough programs of $P_{\text {cofinite }}$ until we have a prefix free set $X=\{g(1), \ldots, g(m)\}$ such that $\beta_{n}<\sum_{x \in X} 2^{-|x|}$. By Proposition 8 , $\Omega_{n-|\# \%|}^{\prime \prime}=\sum_{\# \% p \in X} 2^{-|p|}$. Thus, $H_{U^{\prime \prime}}\left(\Omega_{n}^{\prime \prime}\right) \leq H_{U^{\prime \prime}}\left(\beta_{n}\right)+|\# \%|+$ constant .

Assume given a minimal size program for $U^{\prime \prime}$ for $\Omega_{n}^{\prime \prime}$. Compute $\Omega_{n}^{\prime \prime}$ and enumerate $\operatorname{dom}\left(U^{\prime \prime}\right)$ until $X=\{g(1), \ldots g(m)\}$ such that $\Omega_{n}^{\prime \prime}<\sum_{x \in X} 2^{-|x|}$. By Proposition 9, there is an algorithm for $U^{\prime \prime}$ that does the following: "if $p \in P_{\text {cofinite }}$ then halt else loop forever". So, $\exists @ \in \Sigma^{*}$ such that $\forall \mathrm{x} \Sigma^{\omega} U^{\infty}(p \mathbf{x})$ is cofinite iff $U^{\prime \prime}(@ p)$ halts. Then, $\beta_{n-|@|}=\sum_{@ p \in X} 2^{-|p|}$. Thus, $H_{U^{\prime \prime}}\left(\beta_{n}\right) \leq H_{U^{\prime \prime}}\left(\Omega_{n}\right)+|@|+$ constant. QED

We conclude that β is random in $\emptyset^{\prime \prime}$, hence, also random in \emptyset^{\prime}, and $\emptyset . \beta$ and $\Omega^{\prime \prime}$ are equally random, while β is more random than Ω^{\prime}, and more random than the probability α that a program for infinite computations outputs finitely many symbols. This is because both, Ω^{\prime} and α, are computable from $\emptyset^{\prime \prime}$, hence not random in $\emptyset^{\prime \prime}$. And of course, β is not random in $\emptyset^{\prime \prime \prime}$ because it is computable from $\emptyset^{\prime \prime \prime}$.

The definitions and techniques used in this paper seem to be appropriate to generalize the results for significant classes of real numbers that are random in any jump of the halting problem.

Acknowledgements: We thank Serge Grigorieff and Denis Hirschfeldt for their valuable comments.

References

[1] V. Becher, S. Daicz, and G. Chaitin. A highly random number. In C. S. Calude, M. J. Dineen, and S. Sburlan, editors, Combinatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics and Theoretical Computer Science Conference (DMTCS'01), pages 55-68. Springer-Verlag London, 2001. Submitted to journal publication.
[2] C. Calude. Information and Randomness. An Algorithmic Perspective. SpringerVerlag, Berlin, 1994.
[3] C. S. Calude, A. Nies. Chaitin Ω numbers and strong reducibilities, J. UCS 3 (1997), 1161-1166.
[4] A. Kučera, T. A. Slaman. Randomness and recursive enumerability, SIAM J. Comput., 31, 1 (2001), 199-211.
[5] C. Calude. A characterization of c.e. random reals. Theoretical Computer Science. In press.
[6] G. J. Chaitin. A theory of program size formally identical to information theory. J. ACM, 22:329-340, 1975.
[7] G. J. Chaitin. Algorithmic entropy of sets. Computers 83 Mathematics with Applications, 2:233-245, 1976.
[8] G. J. Chaitin. Exploring Randomness. Springer-Verlag, London, 2001.
[9] M. Ferbus-Zanda and S. Grigorieff. Is randomness "native" to Computer Science?. Logic in Computer Science Column. Bulletin of EATCS, vol 74. pp78-118, 2001.
[10] P.G. Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, Vol. 1, 1989.
[11] R. M. Solovay. On random r.e. sets. In A. I. Arruda, N. C. A. da Costa, and R. Chuaqui, editors, Non-Classical Logics, Model Theory and Computability, pages 283-307. North-Holland Publishing Company, 1977.
[12] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2nd series, 42:230-265, 1936.

[^0]: *Honorary co-author.

