
CDMTCS
Research
Report
Series

Another Example of Higher
Order Randomness

Verónica Becher
Facultad de Ciencias Exactas, Universidad
de Buenos Aires

Gregory Chaitin
IBM Watson Research Center, Yorktown
Heights, New York

CDMTCS-187
May 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Another Example of Higher Order
Randomness

Verónica Becher Gregory Chaitin∗

Facultad de Ciencias Exactas IBM Watson Research Center
Universidad de Buenos Aires Yorktown Heights, NY

vbecher@dc.uba.ar chaitin@us.ibm.com

Abstract

We consider the notion of randomness relative to an oracle: a real number is
random in A if and only if its initial segments are algorithmically incompressible
in a self-delimiting universal machine equipped with an oracle A. We prove that
the probability that a program for infinite computations outputs a cofinite set is
random in the second jump of the halting problem.

1 Introduction

The theory of program size defines randomness on the basis of computability: An infinite
sequence is random if and only if its initial segments have essentially the same size as
the shortest (minimal length) computer programs needed to generate them [6].

The primary notion of effective computability is given by Turing machines. But
when these machines are equipped with an oracle for a subset A of natural numbers, i.e.,
an external procedure that answers questions of the form “is n in A”, they define the
notion of relative computability or Turing reducibility. A set A is computable from B
(or recursive in B) if there is a Turing machine which, when equipped with an oracle for
B, computes the characteristic function of A. The Turing reducibility relation induces
an equivalence relation on the subsets of natural numbers, and a partial order on the
equivalence classes [10].

The notion of relative computability induces a definition of relative randomness: A
sequence is random in A if its initial segments can not be algorithmically compressed
in a computer equipped with an oracle A. If a set A is computable from B, then
randomness in B implies randomness in A. Thus, the Turing reducibility relation on
oracles induces an equivalence relation on sets of sequences according to their property
of relative randomness, and a partial order on these equivalence classes.

∗Honorary co-author.

1

Although the definition of randomness is given for infinite sequences (over a finite
alphabet), the definition immediately extends to real numbers. A specific example of a
random real is Ω [6], the probability that a self-delimiting universal machine eventually
halts. Ω is plainly random, or random in the empty set. The halting probability Ω′ of
a self-delimiting universal machine equipped with an oracle for the halting problem is
random in the first jump of the halting problem. Similarly, Ω′′ , Ω′′′ ,. . . , the halting
probabilities of self-delimiting universal machines equipped with oracles for the respective
jumps of the halting problem, are random in the respective jumps.

We are interested in examples of higher order randomness that are not defined in
terms of oracles. In a recent paper [1] we proved that the probability that a program for
infinite computations outputs finitely many symbols is random in the first jump of the
halting problem. In this note we go one step further: we show that the probability β
that a program for infinite computations outputs a cofinite set is random in the second
jump of the halting problem.

We show that β is exactly as random as Ω′′.However, although β and Ω′′ are com-
putable from Turing equivalent sets, the proof of randomness of β is not immediate
from the randomness of Ω′′. This is because randomness is not a recursively invariant
property: if two real numbers are computable from Turing equivalent sets, one may be
random but the other may not [3].

The present work proves results announced by the second author in [8], and continues
early work on the program size complexity in infinite computations [7, 11].

2 Preliminaries

We work with the binary alphabet Σ = {0, 1}. As usual, we refer to a finite sequence
of elements of Σ as a string, and we denote the empty string by λ. Σ∗ is the set of all
strings on the Σ alphabet.

The abstract definition of a Turing machine is a partial recursive function f : Σ∗ →
Σ∗; if the machine is a equipped with an oracle A, the function is recursive in A. The
domain of f is considered a family of programs and the value of f(p) –if there is any–
is the output of the program p. As usual we write f(p)↓ when the function is defined,
and f(p)↑ otherwise. To deal with program inputs we consider a recursive bijection
〈. , . 〉 : Σ∗ → Σ∗, and we use the convention f(ps1s2 . . . sn) = f(〈p, 〈s1, . . . 〈sn−1, sn〉 . . .〉.
A function that can be computed by a machine equipped with an oracle A is said recursive
in A, and a set that can be enumerated by a machine with an oracle A is said to be
recursively enumerable in A.

In this work we are only concerned with oracles that are defined by applications of
the jump operation. Assume a given effective enumeration of all finite lists of Turing
machine instructions relative to an arbitrary oracle (notice that the enumeration doe
not depend on the oracle). For any set A, the jump of A is A′ = {x : ϕA

x (x)↓}, where
ϕA

x is the partial function recursive in A determined by the x + 1-th list of instructions
relative to the set A. We concentrate exclusively on the jumps of the empty set. The

2

first is ∅′ = {x : ϕ∅
x(x)↓}, which is recursively enumerable. The second jump is ∅′′

= {x : ϕ∅′
x (x)↓}, which is recursively enumerable in ∅′.

The Arithmetical Hierarchy provides a classification of arithmetic relations according
to their syntactical representation in First Order Logic. Σ0

n is the class of relations
definable by a formula in prenex form with recursive matrix and n quantifier alternations
in the prefix, the outer quantifier being existential. Π0

n is defined similarly, with the
outer quantifier being universal. ∆0

n is (Σ0
n ∩ Π0

n), i.e., the class of relations definable in
both the n-quantifier forms. The Arithmetical Hierarchy admits also a purely recursion-
theoretical definition: A relation is ∆0

n+1 if and only if it is recursive in a Σ0
n or Π0

n

relation. A relation is Σ0
n+1 if and only if it is recursively enumerable in a Σ0

n or Π0
n

relation. A relation is Π0
n+1 if and only if its complement is recursively enumerable in

a Σ0
n or Π0

n relation. Thus, ∆0
1 is the class of recursive relations and Σ0

1 is the class
of recursively enumerable relations. The Arithmetical Hierarchy relativizes to a given
oracle A, defining the classes Σ0,A

n , Π0,A
n and ∆0,A

n , by simply substituting “recursive”
with “recursive in A”. The Arithmetical Hierarchy and the hierarchy generated by the
iterated application of the jump operator are related: ∀n ≥ 0 ∅(n) is Σ0

n-complete and
A ∈ ∆0

n+1 iff A is recursive in ∅(n).

IN is the set of natural numbers and P(IN), the parts of IN and Pfin(IN) the finite
parts of IN . For a ∈ Σ∗, |a| denotes the length of a. We write a � b if a is a prefix of b,
and we write a ≺ b if a is a proper prefix of b (that is, |a| < |b|). We assume the recursive
bijection string(i) as the i-th string in the length and lexicographic order over Σ∗.

Σω is the set of all infinite binary sequences. For X ⊆ Σω the set theoretic measure of
X is denoted by µ(X) and represents the probability that any arbitrary sequence belongs
to X. For B ⊆ Σ∗, BΣω denotes the open subset of Σω whose elements have an initial
segment in B. For example, for a particular string s ∈ Σ∗, sΣω is the set of all sequences
starting with s, and µ(sΣω) = 2−|s|. Infinite binary sequences can be identified with real
numbers in [0, 1], when the sequence is taken as the binary expansion of a real number.
Hence, every real in [0, 1] has a corresponding sequence in Σω. Rational numbers of the
form k2−i, for natural numbers i, k, have two corresponding sequences, one ending with
infinitely many 1’s, the other with infinitely many 0’s. Since they form a set of measure
0, this fact does not affect the considerations over probabilities that we make on this
work. We refer to elements of IR and elements of Σω indistinctly. We use x to denote a
real number or an infinite sequence and we write xi to denote the prefix of x of length i.
A sequence x is computable iff there is a total recursive function f : IN → Σ such that
f(n) is the n-th symbol in the binary expansion of x.

A set of strings is prefix free if and only if no proper extension of an element of the
set belongs to the set. That is, B ⊆ Σ∗ is prefix free iff ∀a, b ∈ Σ∗ if a ∈ B and b 6= λ
then ab 6∈ B. For example, the set {λ} is prefix free and so is {0n1 : n ≥ 1}. Prefix free
sets satisfy Kraft’s inequality: If B ⊆ Σ∗ is prefix free, then 0 ≤ ∑

a∈B 2−|a| ≤ 1. This
property allows us to conveniently express the measure of a set of all sequences extending
a prefix free set: If B ⊆ Σ∗ is prefix free then µ(BΣω) =

∑
a∈B 2−|a|. A prefix-free set

B ⊂ Σ∗ is maximal when ∀a 6∈ B, B ∪ {a} is not prefix free. If B is maximal prefix free
then every sequence x ∈ Σω has an initial segment in B.

A set of strings is suffix closed if and only if every extension of an element of the

3

set also belongs to the set. That is, B ⊆ Σ∗ is suffix closed iff ∀a, b ∈ Σ∗ if a ∈ B then
ab ∈ B.

Remark: For every suffix-closed set B there exists a unique prefix-free set A such that
AΣ∗ = B. This prefix-free set A is the set of minimal elements of B with respect to the
prefix ordering. It holds that µ(BΣω) = µ(AΣω) =

∑
a∈A 2−|a|.

2.1 Randomness: incompressibility in self-delimiting machines

For defining random sequences as those whose initial segments are algorithmically in-
compressible it is required to consider self-delimiting Turing machines (see [9] for an
explanatory exposition). The space of programs has to be interpretable as a probabilis-
tic space with all program symbols uniformly distributed. This rules out having a blank
marking the end of the program. Since there are no blanks in the input tape, nor any
other external way of delimitation, a program must contain in itself the information to
know where it ends, so the machine can realize when to finish reading the input tape;
this is what self-delimiting means.

Self-delimiting Turing machines are assumed to have: a pre-given finite table that
determines the computation, an input (or program) tape, a work tape and an output
tape. The input tape contains a first dummy cell (to allow for no input) and then just
0’s and 1’s. The input tape can only be read by the machine, while the output tape can
only be written with 0’s and 1’s. Both tapes are infinite to the right and their heads
only move in that direction. The work tape can be read, written and erased; is infinite in
both directions and its head moves in both directions. Assume an effective enumeration
of machines. This enumeration is possible because each machine is determined by its
table of instructions, which is finite.

Self-delimiting machines can be equipped with an oracle A, adding to the previous
architecture an oracle tape, infinite to the right, that can only be read by the machine.
The i-th square contains 1 if string(i) ∈ A, and 0 otherwise. Assume also an effective
enumeration of machines equipped with an arbitrary oracle (the enumeration is indepen-
dent of the oracle).

The abstract definition of a self-delimiting Turing machine (with an oracle A) is a
function f : Σ∗ → Σ∗ partial recursive (in A), whose domain is prefix free [6]: if f(a)↓
then f(b)↑ for all b that are proper extensions of a.

Machines that are capable of simulating any other machine are universal. We choose
a self-delimiting universal machine U : Σ∗ → Σ∗ (with no oracle) such that U(0i1p) =
Mi(p), where Mi is the i-th machine in the effective enumeration. U reads its input tape
until it finds the first 1. If it read i 0’s, it starts simulating the execution of Mi, taking the
rest of the input tape as a program for Mi. We also fix self-delimiting universal machines
U ′ : Σ∗ → Σ∗ and U ′′ : Σ∗ → Σ∗, containing oracles for the first and second jump of the
halting problem respectively, such that U ′(0i1p) = M ′

i(p) and U ′′(0i1p) = M ′′
i (p), where

i denotes is the index in the given enumeration.

The program size complexity [6] in a given self-delimiting machine f : Σ∗ → Σ∗ is a
function Hf : Σ∗ → IN which maps a string s to the length of the shortest programs

4

that output s.

Hf (s) =

{
min{|p| : f(p) = s} if s is in the range of f .
∞ otherwise

Since the subscript f can be any machine, even one equipped with an oracle, this is
a definition of program size complexity for both, effective and relative computability.
The function Hf is not recursive. When f is a universal machine, Hf is total and
∃c∀s Hf (s) ≤ |s| + Hf (|s|) + c ≤ |s| + 2 log|s| + c, where log stands for base 2
logarithm. This upper bound is obtained considering a program that contains explicitly
the actual string s plus a codification of the string length.

A machine f is asymptotically optimal if and only if for any machine g, there is a
constant c such that for all s, Hf (s) ≤ Hg(s)+ c. For any pair of asymptotically optimal
machines U1 and U2 there is a constant c such that for every string s, |HU1(s)−HU2(s)| ≤
c. This is known as the invariance theorem and implies that program size complexity
is independent of the asymptotically optimal machine. Thus, program size complexity
on asymptotically optimal machines counts as an absolute measure of complexity, up to
an additive constant. The universal self-delimiting machine U(0i1p) = Mi(p), i ∈ IN we
fixed is asymptotically optimal because ∀Mi∀s ∈ Σ∗, HU(s) ≤ HMi

(s) + i + 1. For the
same reason, U ′ and U ′′ that we fixed are also asymptotically optimal.

Randomness of a sequence is defined in terms of the program-size complexity of its
initial segments.

Definition 1 ([6] Random in A) Let UA be a self-delimiting universal machine with
oracle A. A sequence x ∈ Σω is random in A iff ∃c ∀n HUA(xn) > n− c.

A real number in [0, 1] is random if its corresponding binary sequence is random. The
definition is given for the alphabet Σ = {0, 1}, but it can be shown to be invariant under
any alphabet [2]. That is, the property of being random is inherent to the number and
it is independent of the system in which it is represented.

A significant class of random reals was defined by Chaitin [6]:

Ω =
∑

U(p)↓
2−|p|

for a self-delimiting universal machine U . Since the domain of U is prefix free, Ω =
µ(dom(U)Σω) is the probability that a self-delimiting universal machine U halts. Ω is
computably enumerable and random [6, 5].

We remark that the property of being random is nor recursively equivalent in the
following sense: given two Turing equivalent real numbers, one may be random but the
other may not. A general result about this fact was given by Calude and Nies [3].

Proposition 2 For prefix sets X ⊆ Σ∗ let r(X) =
∑

p∈X 2−|p|. There are recursively
isomorphic sets X, Y ⊂ Σ∗ such that r(X) is random but r(Y) is not random.

5

PROOF. Let X be the dom(U) and Y = {0i−11 : string(i) ∈ dom(U)}. By definition,
the i-th bit of r(Y) is 1 iff U(string(i))↓. Then, the first 2n bits of r(Y) are determined
by the halting behavior of all programs of length less than n. There will be m of them,
0 ≤ m < 2n that halt in U .

For any n, the first 2n bits of r(Y) can be dramatically compressed: there is an
algorithm which given 2n and m, dovetails all programs of length less than n and finds
the m ones that halt and determines the first 2n bits of r(Y). Then, HU(r(Y)2n ≤
log(2n) + log(m) + c ≤ 2 log(2n) + c = 2n + c, for some constant c. Hence, r(Y) is not
random, while dom(U) and Y are recursively isomorphic and r(dom(U)) = Ω is random.
qed

As expected, the help of oracles can contribute to have programs that are shorter in
length.

Proposition 3 For any string HU ′′ ≤ HU ′ ≤ HU within a constant term.

PROOF. We prove HU ′ ≤ HU . The other is exactly alike. There is a machine M ′
i

equipped with an oracle for the halting problem which ignores its oracle and behaves
exactly as U . Then for every p ∈ Σ∗, U(p) = U ′(0i1p). Thus, if HU(s) is the length of
the minimal size program that produces s in U , there is a program of length HU(s)+i+1
which produces s in U ′. Take the constant term equal to i + 1. qed

The inequalities of Proposition 3 can be strict, as exemplified by sufficiently large initial
segments of Ω. On the one hand Ω is random in the empty set, so ∃c∀nHU(Ωn) >
n − c. On the other hand, Ω is computable from ∅′. In general, the initial segments
of computable sequences have very low program size complexity: If x is computable
from A (or recursive in A), ∃c∀i HUA(xi) ≤ HUA(i) + c, for a self-delimiting universal
machine UA with oracle A. Thus, ∃d∀n HU ′(Ωn) ≤ HU ′(n) + d ≤ 2log n + d. For every
n sufficiently greater than c + d, HU ′(Ωn) < HU(Ωn).

3 Random in the second jump of the halting prob-

lem

3.1 Machines for infinite computations

Turing’s original definition of the “automatic machine” in his fundamental paper in 1936
[12], is indeed a machine that performs unending or infinite computations. Turing defines
a number to be computable if its decimal expansion can be written down by an automatic
machine.

Infinite computations do not reach a final state because for every reached combination
of a symbol in the input tape, a symbol in the work tape and a state label there is
always an entry in the machine table. However, with respect to the output, an infinite
computation may either produce just finite or infinitely many symbols.

6

An infinite computation is the limit of executing a program for an unlimited number
of steps. We consider a machine f that runs a program p for t steps and halts. If the
number of steps t are insufficient for the machine to read all of p, we require f(p, t)
to be undefined. We want f(p, t)↓ only if the head of the input tape reaches the last
symbol of p in at most t steps. We interpret the output of a computation as a set of
natural numbers. n is in the output set iff 0 is written by the machine on the output
tape followed by exactly n 1s, followed by another 0.

Definition 4 (Self-delimiting step machine) Let f : Σ∗ × IN → Pfin(IN) be a
partial recursive function such that

initialized: f(λ, 0) ↓

continuously defined: If f(p, n)↓ then ∀s ≺ p ∃m < n such that f(s, m)↓.
If f(p, n)↓ then ∀m < n ∃s � p such that f(s, m)↓.

self-delimiting: If f(p, n)↓ then ∀a 6= λ, f(pa, n)↑.

recursive domain: There is a total recursive function deff : Σ∗ × IN → {0, 1}
such that deff (p, n) = 1 iff f(p, n)↓.

monotone: If m < n, s � p, f(s, m)↓ and f(p, n)↓ then
f(s, m) ⊆ f(p, n).

The function f induces a definition for infinite computations. In principle programs are
finite objects, just strings. However, we will also face unending computations which are
determined by possibly infinitely many bits of the input tape. We define f∞ for this
general case, as a function from sequences to sets of natural numbers:

Definition 5 (Machine for infinite computation) Let xit be the unique prefix of x ∈
Σω such that f(xit , t)↓ if such prefix exists, and let f∞ : Σω → P(IN) be

f∞(x) =

{ ⋃
t≥0 f(xit , t) If ∀t ∃it f(xit , t)↓.

↑ otherwise.

The result of computing x for infinitely many steps is the limit of running the initial
segments of x for t steps, for t going to infinity. If defined, f∞(x) may be either a finite
or an infinite set.

We fix U∞ : Σω → P(IN) and U ′∞ : Σω → P(IN) universal machines for infinite
computations, where U ′∞ is equipped with an oracle for the halting problem in U . As
usual, U∞(0i1x) = M∞

i (x) and U ′∞(0i1x) = M ′∞
i (x) for given enumerations M∞

1 , M∞
2 ,

M∞
3 , . . . and M ′∞

1 , M ′∞
2 , M ′∞

3 ,

7

3.2 The probability of programs for cofinite sets

We define β as the probability that an arbitrary string p ∈ Σ∗ determines a cofinite
output:

Pcofinite = {p ∈ Σ∗ : ∃m ∀n>m ∀x∈Σω n ∈ U∞(px)}

β = µ(PcofiniteΣ
ω)

We will show that the initial segments of β are incompressible even if we count with an
oracle for the second jump of the halting problem. To prove it we use two correspondence
results:

(a) between all the programs that halt in U ′′ and a subset of the programs that output
a finite set in U ′∞. And,

(b) between all the programs that output a finite set in U ′∞ and a subset of programs
that output a cofinite set in U∞.

Motivated by different purposes, the left to right side of (a) and (b) were proved by
Chaitin in [7] (as Theorems 14 and 16). We prove here the full correspondences using
simulation in the limit technique, also used in [7], that tells how to perform a simulation
of a computation relative to an oracle, in a machine for infinite computations that lacks
the oracle. The problem is how to answer to the questions to the lacking oracle. The
technique requires that the oracle be recursively enumerable in the machine performing
the simulation. The simulated program is run in increasing number of steps, using a
fake oracle: at step t a question to the oracle is answered “no” unless the question is
found to be true in at most t steps. As the number of steps t goes to infinity any
finite set of questions will eventually be answered correctly by the fake oracle. This
is guaranteed by Shoenfield’s Limit Lemma [10]: a set A is in ∆0

2 of the Arithmetical
Hierarchy if and only if its characteristic function is the limit of a recursive function g,
i.e., cA(x) = limt→∞g(x, t). In the limit, one jump of the halting problem is obtained.

For (b) we have to simulate ∅′, which is in ∆0
2, so it is the limit of a recursive function.

And for (a) we have to simulate ∅′′, which is in ∆0,∅′

2 ; thus, it is the limit of a function
recursive in ∅′.

A critical feature of the simulation in the limit of self-delimiting machines is the so
called harmless overshoot [7]. Consider a simulation of a program p with oracle instruc-
tions. Although in the limit the fake oracle realizes its mistakes and provides the correct
answers, the simulation may already have read beyond the program p. This happens
because the domain of the machine being simulated is not recursively enumerable so
the simulation may not know where the program p ends until it has the correct oracle
answers. In the meantime, the machine performing the simulation may have read extra
symbols from the input tape, while its head can not move backwards. However, the ac-
tual value of the extra bits is irrelevant because once the simulation reaches the correct
oracle answers it will know where p actually ends. A simulation of a program that halts
will have at most finitely many symbols of harmless overshoot.

8

Lemma 6 (adapted from [1]) ∃%∈Σ∗ with the following property:

1) If U ′(p) halts then ∀x U∞(%px) is finite.

2) If U ′(p) halts then ∃m ∀x ∀t ∃i ≤ m u(%pxi, t) ↓ (finite harmless overshoot).

3) If U∞(%px) is finite then ∃s ∈ Σ∗ such that s � px and U ′(s) halts.

PROOF. % contains instructions for U∞ to perform the simulation in the limit of the
program for U ′ that comes afterwards in the input tape. The following algorithm does
that task:

t:=1
maximum:=0 (number of simulated instructions of U ′ when it halts)
do forever

Simulate U ′ for at most t instructions. For each question to the oracle of whether
U(q) halts, simulate U(q) and take as an answer whether it halts in less than t
steps.

If U ′ did not halt, then print t on the output tape. Else, let c be the actual
number of instructions of U ′ that have been simulated (the simulation for U(q) is
not charged). If c exceeds the maximum number of simulated instructions for all
previous values of t, then update the maximum to c and print c on the output
tape. Otherwise nothing is printed on the output tape.

t:=t+1

end do

Let us verify that % has the desired property. Assume x be any sequence after p on the
input tape.

To see that 1) and 2) hold, suppose U ′(p) halts. Then p halts in finitely many steps
and it asks only finitely many oracle questions. Let Q be the set of programs for U that
are consulted to the oracle. Every q ∈ Q such that U(q)↓, does so in some finite number
of steps. Let M be the maximum number of steps required to halt by the programs of
Q that indeed halt. For values of t less than M , the simulation of some oracle questions
will be wrong, but for every value of t ≥ M , they will be correct. If U ′(p) halts in N
steps, then when t exceeds the maximum between M and N , the simulation at step t
will find out that p halts. For larger values of t the maximum number of executed steps
will stabilize in N and there will be no more symbols printed on the output tape.

Since the simulation finds out that U ′(p) halts in at most max(M, N) steps, the
amount of bits read from the input tape after % will never exceed max(M, N). Hence,
∀t ∃! i ≤ max(M, N) such that u(%(px)i)↓ (finite harmless overshoot). Consequently,
∀n > max(M, N)∀t∃!i < max(M, N) such that u(%pxi, t) ↓ and n 6∈ u(%(px)i, t). Thus,
U∞(%px) is finite.

3) Suppose now that ∃m ∀n>m n 6∈ U∞(%px). Then, during the simulation only
finitely many numbers are printed. Say the last number printed is N . We have to show

9

that for some s � px, U ′(s) halts. Suppose not. Then, in particular, the execution of
U ′ does not halt in less than N + 1 steps. In such N + 1 steps only a finite number
of oracle questions can be asked, over a finitely many programs. Following the same
reasoning as before, there is a maximum number of steps M that lead to the correct
answer for all the programs q ∈ Q that halt in U . Therefore, in the maximum step
between M and N + 1, the simulation should find out exactly what U ′ does in the first
N +1 instructions, which we assumed does not halt. Then, the number N +1 is printed
in the output tape, contradicting that the maximum number printed was N . Hence, for
some s � px, |s| ≤ N , it must be U ′(s) halts. qed

Considering U ′′ and its simulation on U ′∞, the relativization of this lemma proves
the correspondence (a). Now we turn to the correspondence (b), between all programs
for U ′∞ that output a finite set and a subset of programs for U∞ that output a cofinite
set. Again we have to consider the harmless overshoot, which in this case might be
infinite. For example, let the following instructions be part of a program for U ′∞:

do forever

if (O(U(factorial i)↑)) then read i bits from the input tape

...

i:= i+1

end do

When these instructions are run on U ′∞, no symbols from the input tape are read because
the oracle O knows that U(factorial i) halts. Instead, the simulation running on U∞

will read infinitely many symbols, because infinitely many times the fake oracle will be
wrong. However, at any step of the simulation there will be only finitely many extra bits
read from the input tape.

Lemma 7 ∃# ∈ Σ∗ with the following property:

∀x ∈ Σω (U ′∞(x) is finite iff U∞(#x) is cofinite).

PROOF. # contains instructions for U∞ to perform the simulation in the limit of the
program for U ′∞ that comes afterwards in the input tape. The following algorithm does
that task. The algorithm maintains a set HOLES of pairs (y, t), meaning that since step
t, the element y is believed to belong to the output of U ′∞(x). If at some subsequent
step t′ the element y is no longer believed in the output of U ′∞(x) (this happens when
the fake oracle changes at step t′ some of the responses it gave at previous steps), the
algorithm removes the pair (y, t) from HOLES.

t := 1
do forever

10

Simulate U ′∞ for t steps. For each question to the oracle of whether U(q) halts,
simulate U(q) and take as an answer whether it halts in less than t steps. Let Yt

be the output set obtained by simulating the computation of t steps of U∞(x).

Yt := u(#xi, t)

For each y ∈ Yt such that (y, .) is not in HOLES
(y is a new element encountered at this step t)

HOLES := HOLES ∪ {(y, t)}
t := t + 1 (skip as many values of t as the number of new elements)

For each (z, tz) ∈ HOLES such that z is not in Yt

(z was mistakenly believed to be in the output of U ′∞(x)).

HOLES := HOLES \ {(z, tz)}
print tz (fix the hole witnessed by z)

print t

t := t + 1

end do

Let us verify that # has the desired property. Let x be any sequence after # on the
input tape.

⇒. Suppose U ′∞(x) is a finite set. Then there is a step t0, since which U ′∞ outputs no
new elements (only repeated elements or no elements at all). In such t0 steps only finitely
many oracle questions Q can be performed. Every q ∈ Q such that U(q) halts, it does
so in some finite number of steps. Let mQ be the maximum number of steps required to
halt by the halting programs in Q. For values of t less than mQ, the simulation of some
oracle questions will be wrong, but for every value of t ≥ mQ, they will be correct. Then
for m= max(t0,mQ) the simulation will have found out all the elements in U ′∞(x) and the
output of the simulation will contain at least as many holes as the number of elements
in U ′∞(x). Namely, ∀t ≥ m Yt ⊇ U ′∞(x). And for each y 6∈ U ′∞(x), for infinitely many
values of t, y 6∈ Yt. Hence, any missing number greater than m, sooner or later will be
printed (i.e, all incorrect holes sooner or later will be fixed). Hence U ′∞(x) is cofinite.

⇐. Each element y ∈ U ′∞(x) is obtained after finitely computation steps of U ′∞,
say ty, which involve just finitely many oracle questions Qy. The simulation on U∞

using the fake oracle finds the right oracle answers in my steps. Then, each element
y ∈ U ′∞ is found by the simulation no later than step max(ty, my), and for every step
t ≥ max(ty, my) y ∈ Yt. Therefore, a pair (y, Ty) —for some value Ty ≤ max(ty, my)–
will remain forever in HOLES, and the value Ty will remain forever missing in the output.
Hence, if U ′∞(x) is infinite, U∞(#x) is coinfinite. qed

Concatenating Lemmas 6 and 7 we obtain:

Proposition 8

11

1. ∀p∈Σ∗ (if U ′′(p) halts then #%p ∈ Pcofinite).

2. ∀p∈Σ∗ (if #%p ∈ Pcofinite then ∃S⊆Σ∗ finite and prefix-free such that
∀a∈Σ∗∃s∈S (s�pa or pa�s) and U ′′(s) halts).

PROOF. 1) Suppose U ′′(p) halts. By relativizing Lemma 6, we obtain ∀x ∈ Σω

U ′∞(%px) is finite and ∃m ∀x ∀t ∃i ≤ m u′(%pxi, t) ↓ (finite harmless overshoot).
Thus, for each x there is a step tx at which all different elements of U ′∞(%px) have
been output: ∃m ∀x ∃tx∃i ≤ m such that u′(%pxi, t) = U ′∞(%px). Hence, necessarily,
{U ′∞(%px) : x ∈ Σω} is finite and {tx : ∀t ≥ tx∃i ≤ m u′(%pxi, t) = U ′∞(%px)} is also
finite.

By the proof of Lemma 7, for each x the simulation on U∞ discovers the last element
of U ′∞(%px) by step max(tx, Qx). So, every value greater than max(tx, Qx) will be
printed. Since {max(tx, Qx) : x ∈ Σω} is finite, it has a maximum element M =
max

⋃{max(tx, Qx) : x ∈ Σω}. So, ∀n > M ∀x n ∈ U∞(#%px).

2) Assume %#p ∈ Pcofinite, and let M be such that ∀n > M ∀x n∈U∞(#%px). By
the proof of Lemma 7, we know that U∞(#%px) performs the simulation in the limit
of U ′∞(%px). The missing values in the output of U∞ are the step numbers at which
new elements have been found. Thus, all definitive holes in the output of U∞ have been
produced at some step ≤ M . Consequently, all the elements of U ′∞(%px) have been
found by the simulation on U∞ by step M , after having read at most M symbols after
from the input tape. So, ∀x U ′∞(%px) is finite. Now by Lemma 6, for each x ∈ Σω ∃s
such that (s � px) and U ′′(s) halts. By König’s lemma there exists a finite set S ⊆ Σ∗

such that ∀x ∈ Σω ∃s ∈ S, s � px and U ′′(s) halts. Since machine U ′′ is self-delimiting,
the set S is prefix free. qed

To prove the main result of the paper we use that Pcofinite is recursively enumerable
in the second jump of the halting problem:

Proposition 9 Pcofinite is Σ0
3 in the Arithmetical Hierarchy.

PROOF. Let u : Σ∗ × IN → P(IN) be the partial recursive function that induces U∞

and defu the total recursive function that decides the domain of u.

p ∈ Pcofinite iff ∃m ∀n > m ∀x ∈ Σω ∀t ∃i (defu((px)i, t) = 1 ∧ n ∈ u((px)i, t), iff

∃m ∀n > m ∀t ∀s∈Σ∗ ∃st∈Σ∗((st�ps ∨ ps�st)) ∧ defu(st, t) = 1 ∧ n ∈ u(st, t).

Since this is a ∃ ∀ ∃ formula, the set Pcofinite is Σ0
3.qed

Clearly Pcofinite is suffix closed, since for each p ∈ Pcofinite, ∀a ∈ Σ∗, pa ∈ Pcofinite.
The prefix free counterpart of Pcofinite is the set of minimal elements in the � order:
PFcofinite = {p ∈ Pcofinite : ∀q ≺ p, q 6∈ Pcofinite}. We now show that

β = µ(PcofiniteΣ
ω) = µ(PFcofiniteΣ

ω) =
∑

p∈PFcofinite

2−|p|

12

is random in the second jump of the halting problem.

Theorem 10 β is random in ∅′′: ∃c∀n HU ′′(βn) > n− c.

PROOF. Consider the following algorithm for U ′′ that receives as input a minimal size
program for U ′′ that outputs βn:

Compute βn.

By Proposition 9 there is function g recursive in ∅′′ whose range is Pcofinite.
Enumerate enough programs g(1), g(2), . . . until we have a prefix free set X =
{g(1), . . . , g(m)}, such that βn <

∑
x∈X 2−|x|.

Output z the first string that does not belong to {U ′′(p) : #%p ∈ X} and halt.

We give bounds for HU ′′(z). On the one hand, by the universality of U ′′, there exists
a minimal size program p such that U ′′(p) = z. But #%p 6∈ X and, by Proposition8,
∀x ∈ Σω U∞(#%px) is cofinite. So, #%p contributes to β with 2−|#%p|.

βn + 2−|#%p| <
∑
x∈X

2−|x| + 2−|#%p| < β

Using that β ≤ βn + 2−n we obtain

βn + 2−|#%p| <
∑
x∈X

2−|x| + 2−|#%p| < β ≤ βn + 2−n

Therefore, 2−|#%p| < 2−n. Thus, n < |#%p| and n− |#%| < |p| = HU ′′(z).

On the other hand, z is the output of the algorithm above, so there is a constant
q such that HU ′′(z) ≤ HU ′′(βn) + q. Hence, n − |#%| < HU ′′(z) ≤ HU ′′(βn) + q. So,
HU ′′(βn) > n− q − |#%|. Putting c = q + |#%| the theorem is proved. qed

Proposition 11 β is exactly as random as Ω′′: ∃c∀n |HU ′′(Ω′′
n)−HU ′′(βn)| ≤ c.

PROOF. As in the proof of Theorem 10, assume given a minimal size program for
U ′′ for βn. Compute βn and enumerate enough programs of Pcofinite until we have a
prefix free set X = {g(1), . . . , g(m)} such that βn <

∑
x∈X 2−|x|. By Proposition 8,

Ω′′
n−|#%| =

∑
#%p∈X 2−|p|. Thus, HU ′′(Ω′′

n) ≤ HU ′′(βn) + |#%|+ constant.

Assume given a minimal size program for U ′′ for Ω′′
n. Compute Ω′′

n and enumerate
dom(U ′′) until X = {g(1), . . . g(m)} such that Ω′′

n <
∑

x∈X 2−|x|. By Proposition 9,
there is an algorithm for U ′′ that does the following: “if p ∈ Pcofinite then halt else
loop forever”. So, ∃@ ∈ Σ∗ such that ∀xΣω U∞(px) is cofinite iff U ′′(@p) halts. Then,
βn−|@| =

∑
@p∈X 2−|p|. Thus, HU ′′(βn) ≤ HU ′′(Ωn) + |@|+ constant. qed

13

We conclude that β is random in ∅′′, hence, also random in ∅′, and ∅. β and Ω′′ are
equally random, while β is more random than Ω′, and more random than the probability
α that a program for infinite computations outputs finitely many symbols. This is
because both, Ω′ and α, are computable from ∅′′, hence not random in ∅′′. And of
course, β is not random in ∅′′′ because it is computable from ∅′′′.

The definitions and techniques used in this paper seem to be appropriate to generalize
the results for significant classes of real numbers that are random in any jump of the
halting problem.

Acknowledgements: We thank Serge Grigorieff and Denis Hirschfeldt for their valuable
comments.

References

[1] V. Becher, S. Daicz, and G. Chaitin. A highly random number. In C. S. Calude,
M. J. Dineen, and S. Sburlan, editors, Combinatorics, Computability and Logic:
Proceedings of the Third Discrete Mathematics and Theoretical Computer Science
Conference (DMTCS’01), pages 55–68. Springer-Verlag London, 2001. Submitted
to journal publication.

[2] C. Calude. Information and Randomness. An Algorithmic Perspective. Springer-
Verlag, Berlin, 1994.

[3] C. S. Calude, A. Nies. Chaitin Ω numbers and strong reducibilities, J. UCS 3
(1997), 1161-1166.

[4] A. Kučera, T. A. Slaman. Randomness and recursive enumerability, SIAM J.
Comput., 31, 1 (2001), 199-211.

[5] C. Calude. A characterization of c.e. random reals. Theoretical Computer Science.
In press.

[6] G. J. Chaitin. A theory of program size formally identical to information theory. J.
ACM, 22:329–340, 1975.

[7] G. J. Chaitin. Algorithmic entropy of sets. Computers & Mathematics with Appli-
cations, 2:233–245, 1976.

[8] G. J. Chaitin. Exploring Randomness. Springer-Verlag, London, 2001.

[9] M. Ferbus-Zanda and S. Grigorieff. Is randomness “native” to Computer Science?.
Logic in Computer Science Column. Bulletin of EATCS, vol 74. pp78-118, 2001.

[10] P.G. Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, Vol. 1,
1989.

14

[11] R. M. Solovay. On random r.e. sets. In A. I. Arruda, N. C. A. da Costa, and
R. Chuaqui, editors, Non-Classical Logics, Model Theory and Computability, pages
283–307. North-Holland Publishing Company, 1977.

[12] A. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2nd series, 42:230–265, 1936.

15

