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1 Introduction

One of the themes of computable model theory is concerned with the fol-
lowing two related questions. Let T be a first order consistent theory. Does
there exist a computable model of T ? If T has a computable model then
what is the computability-theoretic complexity, e.g. Turing degree, of T ?
It is well known that if T is decidable then T has a decidable model, that
is one for which the satisfaction predicate is decidable. On the other hand,
if theory T has a computable model then T is computable in 0ω. For ex-
ample, the theory of arithmetic (ω, S,+×,≤, 0) is Turing equivalent to 0ω.
We also add that there are examples of finitely axiomatizable (and hence
computably enumerable) theories which have no computable models. In this
paper, for any natural number n ≥ 1, we present examples of ℵ1–categorical
computable models as well as ℵ0–categorical computable models whose the-
ories are Turing equivalent to 0n. Moreover, the languages of these models
are finite. We now list some of the related results. In [1] Baldwin and Lach-
lan showed that all models of any ℵ1-categorical theory T can be listed into
the chain A0 � A1 � A2 � . . .Aω of elementary embeddings, where A0

is the prime model, Aω is the saturated model, and each Ai+1 is a min-
imal proper elementary extension of Ai. Let SCM(T ) be the spectrum of
computable models of T , that is SCM(T ) = {i | Ai has a computable presen-
tation }. If T is ℵ1–categorical and decidable then, as proved by Harrington
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and Khisamiev in [5] [7], all countable models of T have decidable presenta-
tions, that is SCM(T ) = ω

⋃{ω}. In [3] Goncharov showed that there ex-
ists an ℵ1-categorical theory T computable in 0′ for which SCM(T ) = {0}.
Kudeiberganov extended this result by showing that for every k ≥ 0 there ex-
ists an ℵ1-categorical T computable in 0′ such that SCM(T ) = {0, 1 . . . , k}
[10]. In [8] it is shown that there exist ℵ1-categorical theories T1 and T2

computable in 0′′ such that SCM(T1) = ω and SCM(T2) = ω
⋃{ω} \ {0}.

Thus, all the known ℵ1–categorical theories that have computable models are
computable in 0′′. In [4] the authors, for any given natural number n ≥ 1,
construct examples of ℵ1–categorical computable models whose theories are
Turing equivalent to 0n. However, those constructed models have infinite
langauges. Lerman and Schmerl in [11] give some sufficient conditions for
countably categorical arithmetic theories to have a constructive model. More
precisely, they show that if T is a countably categorical arithmetical theory
such that the set of all sentences beginning with an existential quantifier
and having n + 1 alternations of quantifiers is Σ0

n+1 for each n, then T has
a constructive model. Knight improves this result in [9] by allowing certain
uniformity and omitting the requirement that T is arithmetical. However, all
the known examples of ℵ0-categorical computable models have been known
to have low complexity, and it has not even been known whether or not
there are examples that satisfy the conditions stated in Lerman and Schmerl
theorems for sufficiently large n. In this paper we provide such examples.

We now give basic definitions. We fix a computable language L. A
structure A of this language is computable if the domain, functions, and
predicates of the structure are uniformly computable. This is equivalent to
saying that the atomic diagram of A is computable. A structure B is com-
putably presentable if it is isomorphic to a computable structure. In this
case any isomorphism from B into A is called a computable presenta-
tion of B. A complete theory T is ℵ1–categorical if all models of T of
power ℵ1 are isomorphic. Similarly, a complete theory T is ℵ0–categorical
if all countable models of T are isomorphic. A model M is ℵ1–categorical
(ℵ0-categorical) if the theory Th(M) of the model is ℵ1–categorical (ℵ0-
categorical). Typical examples of ℵ1–categorical theories are the theory of
algebraically closed fields of fixed characteristic, the theory of vector spaces
over a fixed countable field, the theory of the successor structure (ω, S).
Rational numbers with the natural ordering or random structures (see for
example [6]) are typical examples of ℵ0-categorical structures.
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Now we briefly outline the paper. In the next section, Section 2, we define
two a model–theoretic extension operators. The definition of these operators
follow the ideas of Marker’s construction from [12]. Therefore we call the
operators Marker’s ∃-extension and ∀-extension operators. In Section 3 we
prove a representation lemma about Σ0

2–subsets of natural numbers. Finally,
in the last two sections we prove the following two theorems:

Theorem 1 For any natural number n ≥ 1 there exists an ℵ1–categorical
theory T with a computable model of a finite language so that T is equivalent
to 0n. Moreover, all (countable) models of T have computable presentations
and T is strongly minimal.

Theorem 2 For any natural number n ≥ 1 there exists an ℵ0–categorical
theory T with a computable model of a finite language so that T is equivalent
to 0n.

We assume that the reader is familiar with basics of model theory and
computability theory. We use some standard notions and notations, such
as < ·, · >, l, r Cantor’s pairing functions, the concept of X-computable
sets (e.g. sets computable with an oracle for X), the jump operation X ′ for
subsets X ⊂ ω. Standard references are [2] [14]. Finally, we may interchange
the words model and structure.

2 Marker’s Extensions

In [12] Marker, for any given natural n ≥ 0, constructed a totally categorical
almost strongly minimal non Σn-axiomatizable theory. The construction is
carried out for building a particular structure. In this section we adapt
Marker’s construction for general case.

Let L be a finite language containing no functional symbols, and let
A = (A, P n0

0 , . . . , P nm
m ) be a structure of language L. We assume that for

each predicate P of this structure the sets At \ P and P are both infinite,
where t is the arity of P . Take any of the predicates P of this structure
whose arity is k.

Marker’s ∃-extension of this predicate, denoted by P∃, is defined as
follows. Let X be an infinite set disjoint with A. Then P∃ is the predicate
of arity k + 1 defined by the following rules:

1. If P∃(a1, a2, . . . ,k , ak+1) then P (a1, . . . , ak) and ak+1 ∈ X.
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2. For every ak+1 ∈ X there is a unique k tuple (a1, . . . , ak) such that
P∃(a1, a2, . . . ,k , ak+1).

3. If P (a1, . . . , ak) then there is a unique a such that P∃(a1, a2, . . . ,k , a).

Marker’s ∀-extension of the predicate P , denoted by P∀, is defined as
follows. Let X be an infinite set disjoint with A. Then P∀ is the predicate
of arity k + 1 defined by the following rules:

1. If P∀(a1, a2, . . . ,k , ak+1) then a1, . . . , ak ∈ A and ak+1 ∈ X.

2. For all (a1, . . . , ak) ∈ A there is at most one ak+1 ∈ X such that
¬P∀(a1, a2, . . . ,k , ak+1).

3. If then P∀(a1, a2, . . . ,k , ak+1) for all ak+1 ∈ X then P (a1, . . . , ak).

4. For every ak+1 ∈ X there is a unique k tuple (a1, . . . , ak) such that
¬P∃(a1, a2, . . . , ak, ak+1).

We call the set X in any of the ∃ and ∀-extensions a fellow of P . Here
is our definition.

Definition 1 Let A = (A, P n0
0 , . . . , P nm

m ) be a model.

1. The model A∃ is (A, P n0+1
0 , . . . , P nm+1

m , X0, X1, . . . , Xm), where each
P ni+1
i , i = 0, . . . , m, is Marker’s ∃-extension of P ni

i so that fellows
of distinct predicates are pairwise disjoint sets.

2. Similarly, A∀ is the model (A, P n0+1
0 , . . . , P nm+1

m , X0, X1, . . . , Xm), where
each P ni+1

i , i = 0, . . . , m, is Marker’s ∀-extension of P ni
i so that fellows

of distinct predicates are pairwise disjoint sets.

The next simple but important result lists the basic properties of Marker’s
extensions.

Theorem Let A∃ and A∀ be the Marker’s extensions of the model A.
These extensions satisfy the following properties:

1. The model A is definable in each of the extensions.

2. If the theory of A is ℵ0-categorical then so is the theory of each of the
extensions.
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3. If the theory of A is ℵ1-categorical then so is the theory of each of the
extensions.

4. If the theory of A is (almost) strongly minimal then so is the theory of
each of the extensions.

5. Any automorphism of A can be extended to automorphisms of each of
the extensions.

Proof. Part 1). Let X0, X1, . . . , Xm be all the fellows nedded to define
the predicates P n0+1

0 , . . . , P nm+1
m in any of Marker’s extensions. The predicate

&m
j=0¬Xi(x) defines the original domain of the structure A. Clearly, in the

modelA∃ the predicate P ni
i is definable by the formula ∃xP ni+1

i (x1, . . . , xni , x).
Similarly, the formula ∀xP ni+1

i (x1, . . . , xni, x) defines the predicate P ni
i in the

model A∀. Thus, Part 1) is proved.

Proofs of Parts 2), 3) and 4) follow from the fact that every element in
any of the extensions is algebraic over the original domain. Indeed, assume
that a ∈ X, and X is the fellow of a predicate P . In the ∃-extension there
exists a unique tuple (a1, . . . , ak) in the domain of A so that P∃(a1, . . . , ak, a).
Similary, in the ∀-extension there exists a unique tuple (a1, . . . , ak) in the
domain of A so that ¬P∀(a1, . . . , ak, a).

Let α : A → A be an automorphism. We want to extend α to A∃. Take
an x ∈ X, where X is the fellow of a predicate P∃. There exists a unique
tuple (a1, . . . , ak) in the domain of A so that P∃(a1, . . . , ak, x). Note that
P (α(a1), . . . , α(ak)). Therefore, by the definition of P∃ there is a unique
y ∈ X such that P∃(α(a1), . . . , α(ak), y). Set α′(x) = y. It is not hard to see
that α′ is an automorphism of A∃ that extends α. The automorphism α can
be extended to A∀ in a similar manner. The theorem is proved.

The Marker’s extensions allow us to extend the underlying structures
inductively as follows. Let A be a structure, and w be a word over the
alphabet {∃, ∀}. Define Aw by induction as follows. If w is the empty string
then Aw = A. Assume that w = w′∃ or w = w′∀ and B = Aw′. Define
Aw′∃ = B∃ and Aw′∀ = B∀. Therefore we have the following colrollary.

Corollary 1 Let A be a structure, and w be a word over the alphabet {∃, ∀}.
Each of the following is true:

1. The model A is definable in Aw.
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2. If the theory of A is ℵ0-categorical (ℵ1-categorical, (almost) strongly
minimal) then so is the theory of Aw.

3. Any automorphism of A can be extended to an automorphism of Aw.
�

Our goal in the next sections will be to show that the model A∃∀ is less
complex than the model A itself from a computability theoretic point of view.

3 On Presentations of Σ0
2-Sets

In this section we prove a computability-theoretic lemma needed for the main
result of this paper. For the lemma we define the following notion.

Definition 2 A Σ0
2–set A is one-to-one representable if for some com-

putable predicate Q ⊂ ω3 each of the following properties is true:

1. For each n ∈ ω, ∃a∀bQ(n, a, b) if and only if n ∈ A.

2. For each n ∈ ω, ∃a∀bQ(n, a, b) if and only if ∃=1a∀bQ(n, a, b)1.

3. For every b there is a unique pair < n, a > such that ¬Q(n, a, b).

4. For every pair < n, a > either ∃b¬Q(n, a, b) or ∀bQ(n, a, b).

5. For every a there exists a unique n such that ∀bQ(n, a, b).

It is not hard to see that every infinite and coinfinite computable set A
has a one-to-one representation.

For a Σ0
2–set A there is a computableH such that n ∈ A↔ ∃a∀bH(n, a, b).

In fact, there is a computable Q for which ∃a∀bH(n, a, b)↔ ∃=1a∀bQ(n, a, b).
To show this we describe the procedure which builds a predicate Pn, n ∈ ω.
To build Pn initially we set the values a0 = 0, r0 = 0, h0 = 0. At stage t
the predicate Pn will be defined on all pairs (i, j) so that j ≤ t, i ≤ rt. The
intention for at is that at will be the unique witness for n to belong to A,
that is n ∈ A if and only if ∀bPn(at, b). The intention for ht is that if n ∈ A
then ht is the minimal h ≤ t for which (∀b ≤ t)H(n, h, b).

Stage t + 1. Compute H(n, i, j) for all i, j ≤ t + 1. If (∀i ≤ t + 1)(∃j ≤
t + 1)¬H(n, i, j) then set rt+1 = rt + 1, ht+1 and at+1 be undefined, and

1∃=1xP (x) means that there is a unique x satisfying P
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make Pn(i, j) false on all (i, j), with i ≤ rt+1, j ≤ t+ 1, at which Pn has not
been defined. If ht is undefined and ∀j ≤ t+ 1H(n, t+ 1, j) is true then set
ht+1 = t+1, rt+1 = rt+1, and at+1 = rt+1. Make Pn(at+1, j) to be true for all
j ≤ t+1, and make Pn(i, j) false on all (i, j), with i ≤ rt+1, j ≤ t+1, at which
Pn has not been defined. If ht is defined and ∀j ≤ t+1H(n, ht, j) is true then
set ht+1 = ht, at+1 = at, and rt+1 = rt + 1, and make Pn(at+1, j) to be true
for all j ≤ t+ 1, and make Pn(i, j) false on all (i, j), with i ≤ rt+1, j ≤ t+ 1,
at which Pn has not been defined.

Now define the predicate Q as follows: (n, a, b) ∈ Q if and only if Pn(i, j).
The construction above guarantees that the predicate Q is desired.

Now we prove the following lemma which gives a sufficient condition for
Σ0

2-sets to have one to one representations.

Lemma 1 Let A be a coinfinite Σ0
2–set that possesses an infinite computable

subset S such that A\S is infinite. Then A has a one-to-one representation.

Proof. As noted above there is computable set H such that n ∈ A
iff ∃=1a∀bH(n, a, b). Define the predicate H1: H1(n, a, b) if and only if
a =< n, x > &H(n, x, b). It is easy to check that the formulas ∃a∀bH(n, a, b)
and ∃a∀bH1(n, a, b) are equivalent. Moreover, for every a there exists at most
one n such that ∀bH1(n, a, b). Let H2 be defined as follows: ¬H2(n, a, b) if
and only if b =< n, a, x > &¬H1(n, a, x) & (∀z < x)H1(n, a, z). It is not
hard to see that the predicate H2 satisfies the following properties:

1. The formulas ∃a∀bH1(n, a, b) and ∃a∀bH2(n, a, b) are equivalent.

2. The formulas ∀bH1(n, a, b) and ∀bH2(n, a, b) are equivalent.

3. For every pair n, a there exists at most one b such that ¬H2(n, a, b).

4. For every a there exists at most one n such that ∀bH2(n, a, b).

5. For every b there exists at most one pair (n, a) such that ¬H2(n, a, b).

Thus, we may assume that H satisfies the properties 3) − 5) above. Now,
using the predicate H, we build the desired predicate Q.

At stage t the predicate Qt will be defined on [0, t]× [0, r2(t)]× [0, r3(t)],
where the functions r2(t), r3(t) are given effectively at stage t. The predicate
Qt will satisfy the following properties denoted by P :
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P1: For all n ≤ t, a ≤ r2(t) either Qt(n, a, b) holds true for all b ≤ r3(t) or
∃=1b ≤ r3(t)¬Qt(n, a, b).

P2: If a ≤ r2(t) is a (Q, t)-witness for n ≤ t, that is ∀b ≤ r2(t)Qt(n, a, b)
then it is a unique (Q, t)-witness for n.

P3: No two (Q, t)-witnesses (which may be for distinct n1 and n2) coincide.

P4: For each b ≤ r3(t) there is a unique pair (n, a) such that ¬Qt(n, a, b).

Let H0 ⊂ H1 ⊂ . . . be an approximation of H so that H =
⋃
tHt, where

Ht = H
⋂

[0, t] × [0, t] × [0, bt] and bt is the minimal b ≥ t such that each of
the following is true:

1. If a ≤ t is a (H, t)-witness for n ≤ t, that is ∀b ≤ tH(n, a, b) then it
is a unique (H, t)-witness for n.

2. No two (H, t)-witnesses (which may be for distinct n1 and n2) coincide.

3. For all n, a ≤ t either (∀b ≤ t)H(n, a, b) or (∃=1j ≤ b)¬H(n, a, b).

Note that bt is correctly defined. If for an n ≤ t there is an (H, t)-witness for
n then we denote the witness by h(n, t).

Without loss of generality, we assume that H(0, 0, 0) is true. In the
construction, at Stage t, we use functions r2(t), r3(t), h(n, t) and a(n, t).
The function r2(t) and r3(t) tell us that the second and the third coordinates
of Qt do not exceed r2(t) and r3(t), respectively; h(n, t) is the (H, t)-witness
for n, and a(n, t) is a (Q, t) witness for n if they exist. The construction
guarantees that h(n, t) exists if and only if a(n, t) exists. Initially, we set
r(0) = 0, h(0, 0) = 0, and a(0, 0) = 0. Some of the numbers a ≤ r2(t) will be
marked by

�

s, where s ∈ S. This will mean that the construction guarantees
that a is a Q-witness for s, that is ∀bQ(s, a, b).

We now describe stage t of the construction. We assume that Qt−1 has
been constructed so that all properties P1 through P4 hold. In addition, we
assume that each n ≤ r2(t − 1) either is a (Q, t − 1)-witness of the form
a(n, t− 1) (for some n ≤ t) or has been marked by a

�

s for some s ∈ S.

Stage t. If t ∈ S and some a ≤ r2(t− 1) is marked with
�

t then make a
a (Q, t)-witness for s, set r2(t) = r2(t− 1), r3(t) = r3(t− 1) + t, extend Qt−1

to Qt in the [0, t]× [0, r2(t)]× [0, r3(t)] keeping all the (Q, t− 1)-witnesses as
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(Q, t)-witnesses so that Qt satisfies all properties P1 through P4
2. Otherwise,

proceed as follows.

Compute Ht. Let i1, . . . , ik ≤ t be in increasing order such that h(ij, t)
is defined and h(ij, t) 6= h(ij, t − 1), j = 1, . . . , k. Note that h(ij, t − 1)
could be undefined. Also note that k ≤ 2. Take the least unused numbers
s1 and s2 ∈ S, mark each a(ij, t − 1) with

�

sj , make sure that a(ij, t − 1)
is a (Q, t′)-witness for sj at all stages t′ ≥ sj, j = 1, . . . , k. Further, take
numbers n1 = r2(t − 1) + 1, . . . , nk = r2(t − 1) + k, set a(ij, t) = nj for
j = 1, . . . , k, r2(t) = nk, r3(t) = r3(t − 1) + (k + 1)t, and extend Qt−1 to
Qt in the [0, t]× [0, r2(t)]× [0, r3(t)] making each a(ij, t) a (Q, t)-witness for
ij, keeping all the other (Q, t − 1)-witnesses as (Q, t)-witnesses so that Qt

satisfies all properties P1 through P4. Note that P4 can be satisfied as seen
from the definition of r3(t).

Suppose that the sequence i1, . . . , ik ≤ t stipulated above does not exist.
Take the first unused s ∈ S and mark t with

�

s. Make sure that t is a
(Q, t′)-witness for s at all stages t′ ≥ s. Set r2(t) = r2(t − 1) + 1, and
r3(t) = r3(t−1)+2t+1, and extend Qt−1 to Qt in the [0, t]×[0, r2(t)]×[0, r3(t)]
keeping all the (Q, t− 1)-witnesses as (Q, t)-witnesses so that Qt satisfies all
properties P1 through P4. This ends Stage t.

Set Q =
⋃
tQt. Now it is not hard to see that Q is a one to one representa-

tion of A. Indeed, note that at every stage t, each a ≤ r2(t) is either marked
by

�

s or of the form a(n, t). If a is marked with
�

s then ∀bQ(s, a, b) because
a is a (Q, t′)-witness for s at each stage t′ ≥ s. Assume that a is not marked
with

�

s, s ∈ S. Consider stage a. There is an n such that a = a(n, a). Then
for all t ≥ a we have a(n, t) = a(n, a). Therefore ∀bQ(n, a, b). Thus, each
a ∈ ω is a Q-witness for some n ∈ A. All the other desired properties of Q
follow from the fact that Qt satisfies properties P1 through P4 at each stage
t. The lemma is proved.

Clearly the definition of one to one presentations of Σ0
2-sets can be rela-

tivised with respect to any oracle X. The relativised version of the lemma
above is the following corollary which will be used in the next section. We
state it as a relativised representation lemma

Lemma 2 Let A be a coinfinite Σ0,X
2 –set that possesses an infinite X-computable

subset S such that A \ S is infinite. Then there exists an X-computable set
Q ⊂ ω3 such that Q is a one-to-one representation of A.

�

2Note that property P4 can be satisfied which is seen from the definition of r3(t).
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4 ℵ1-categorical computable models

The main result in this section is the following theorem.

Theorem 1 For any natural number n ≥ 1 there exists an ℵ1–categorical
theory T with a computable model of a finite language so that T is equivalent
to 0n. Moreover, all (countable) models of T have computable presentations
and T is strongly minimal.

Proof. Let X be a Σn+1-set containing neither 0 nor 1. Consider the
structure M = (M,P ), where P is a binary predicate symbol, for which the
following properties hold true:

1. The predicate P is antireflexive, that is ¬P (x, x) for all x.

2. P (x, y) if and only if P (y, x).

3. For each n there exists a P -cylce of length n if and only if n ∈ X.

4. For each n ∈ X there exists exactly one P -cycle of length n.

5. Each element x ∈M belongs to a P -cycle.

It is not hard to check that the following properties of the structure M =
(M,P ) hold true:

1. The theory T of the structure is ℵ1-categorical.

2. The structure M has a presentation A = (ω, P ) such that in the pre-
sentation P is computable in 0n.

Using Lemma 2 and Corollary 1 one can construct the sequence {Ai}i≤n
of models so that:

1. A0 is A

2. The structure Ai, where 1 ≤ i ≤ n, is obtained by first applying
Marker’s ∀-extension, followed by Marker’s ∃-extension to the structure
Ai−1.

3. The model Ai is 0n−i-computable.
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Indeed, Corollary 1 tell us that each of the models in the sequence {Ai}i≤n,
in particular the model An, is ℵ1-categorical. The relativised representation
Lemma 2 guarantees that Ai is 0n−i-computable. In particular, An is com-
putable. Note that the original predicate P is definable in the model An.
Therefore, the statement that there is a P -cycle of length t can be expressed
in the theory T of the model An. It is not hard to deduce that T is equivalent
to 0n. The theorem is proved.

5 ℵ0-categorical computable models

In this section we prove the following theorem.

Theorem 2 For any natural number n ≥ 1 there exists an ℵ0–categorical
theory T with a computable model of a finite language so that T is equivalent
to 0n.

Proof. Let Y be an infinite subset of ω. We first show how to code this
set into an ℵ0-categorical theory TY so that Y and TY have the same Turing
degree. It will then follow that TY has a model which is Y -computable.

We basically repeat Peretyat’kin’s construction from [13]. The language
of TY consists of one binary predicate R. For each n ∈ ω, consider the cycle
Cn = ({0, 1, . . . , n + 1}, R) of length n+ 3, where R(x, y) is true if and only
if {x, y} = {i, i+ 1} or {x, y} = {0, n+ 2}. Clearly R is an antireflexive and
a symmetric relation on Cn.

Now consider the class KY that consists of all finite graphs G (e.g. finite
structures of the language) such that no cycle Cn with n 6∈ Y is embedded
into G. It is clear that m ∈ Y if and only if Cm ∈ KY .

Lemma 3 The class KY has the amalgamation property. In other words, if
A,B1,B2 are in KY and e : A → B1, f : A → B2 are embeddings then there
are C in K and embeddings g : B1 → C and h : B2 → C such that ge = hf .

Proof. We may assume that A ⊂ B1
⋂
B2 and that A is a subgraph

of both B1 and B2. We define C as follows. The domain of C is the set
C = B1

⋃
B2. The relation R on C is defined by taking the union of the sets

R1, R2 (that is, the relations in B1 and B2, respectively) and {(a, b) | a ∈
B1 \ A, b ∈ B2 \ A}. Thus, for example, if b ∈ B2 \ A and a ∈ B1 \ A then
R(b, a) does not hold. Now if Cn is embedded into C then clearly, because R
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is antisymmetric on any pair (a, b) with a ∈ B1 \ A, b ∈ B2 \ A, the cycle Cn
is embedded into either B1 or B2. Hence, n 6∈ Y . We conclude that C ∈ KY .
The lemma is proved.

The class KY has the hereditary property, that is, if A ∈ KY and B is
a substructure of A then B ∈ KY . The class KY has the joint embedding
property, that is, for all A and B in KY there exists C ∈ KY such that A
and B are embedded into C. Hence, as shown in [6], the class KY has ultra-
homogeneous structure AY whose theory TY is ℵ0-categorical. The theory
of the structure is Turing equivalent to Y . We, however, for completeness of
the proof, explicitly write down the theory TY and build the structure A of
the theory.

Here are the axioms of TY . First of all, we postulate antireflexiveness ofR.
Secondly, for each finite B 6∈ KY , we postulate that B can not be embedded
into models of TY . This corresponds to a listing an infinitely many universally
quantifired sentences. Finally, the next list of axioms gurantees the following.
For each A,B ∈ KY and an embedding f : A → B there are an extension A′
of A and an isomorphic mapping f ′ : A′ → B that extends f . Thus, the list
of the axioms is, in fact, a list of ∀∃–formulas.

For any A ∈ KY , by applying the lemma above sufficiently many times,
we can find A? that satisfies the following property. For all B, C ∈ KY and
f such that f is an embedding of B into A, B is a substructure of C, and
card(C) = card(B) + 1 there is an embedding of g : C → A? that extends
f . Note that given A the model A? can be constructed effectively with an
oracle for Y .

Now we construct a model A of the theory TY as follows. Let A0 be a
model from KY . Consider the chain

A0 ⊂ A1 ⊂ A2 . . .

of models from KA such that An+1 is obtained from An by applying the
procedure above, that is An+1 = A?n. Let A be the union of this chain. It is
not hard to see that A is a model of TY .

Let now A and B be two countable models of TY . Consider the set of
all finite partial isomorphisms between these models A and B. Using the
axioms of TY and Ehrenfeucht-Fräisse back-and-forth games, one can now
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show that these two models are in fact isomorphic. Therefore the theory TY
is ℵ0-categorical3.

To show that Y and TY have the same Turing degree it suffices to note
that for all n ∈ ω, n ∈ Y if and only if the cycle Cn is embeddable into a
model of TY , that is the sentence saying that there is a cycle of length n
belongs to TY .

Now to finish the proof of the theorem, assume that Y = 0n. Then the
theory TY has a model A = (ω,R) computable in 0n. From Lemma 2 and
Corollary 1 we can construct the sequence {Ai}i≤n of models so that:

1. A0 is A

2. The structure Ai, where 1 ≤ i ≤ n, is obtained by first applying
Marker’s∃-extension and then Marker’s ∀-extension to the structure
Ai−1.

3. The structure Ai is 0n−i-computable.

Indeed, Corollary 1 tells us that each of the structures in the sequence
{Ai}i≤n, in particular the structure An, is ℵ0-categorical. The relativized
representation Lemma 2 guarntees that Ai is 0n−i-computable. In particu-
lar, An is computable. Note that the original predicate R is definable in the
model An. Therefore, the statement that there is a R-cycle of length n can
be expressed in the theory T of the model An. Therefore, it can be checked
that T is equivalent to 0n. The theorem is proved.

6 Future Work

The following questions still need to be answered. Does there exist a com-
putable ℵ1-categorical model whose theory is equivalent to 0ω? Does there
exist a computable ℵ0-categorical model whose theory is equivalent to 0ω?
We suspect that the techniques developed in this paper could be used to
answer both of these questions positively.

3It is also not hard to see that TY admits quantifier elimination
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