
CDMTCS
Research
Report
Series

A Simple Example of an
ω-language Topologically
Inequivalent to a Regular One

Ludwig Staiger
Martin-Luther-Universiẗat
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Landwebers’s paper [La69] and the subsequent ones [SW74, TY83] proved a strong
relationship between acceptance conditions imposed on finite automata onω-words
and the first classes of the Borel hierarchy in the Cantor space of allω-words,(Xω ,ρ),
over a finite alphabetX. In Theorem 5 of [SW74] it is shown that anω-language
accepted by a finite automaton being simultaneously anFσ - and aG

δ
-set belongs al-

ready to the Boolean closure of the class of all open (or, equivalently, closed) subsets
of (Xω ,ρ), B(G). Thus, anω-languageF ⊆ Xω which is simultaneously anFσ - and
a G

δ
-set but not a Boolean combination of open sets cannot be accepted by a finite

automaton. For a more detailed discussion see e.g. [EH93, St97] or [Th90], for the
notation used here see [St97].

The aim of this note is to provide a simple1 example that a proposition analogous
to Theorem 5 of [SW74] is no longer true if we increase the computational power of
the accepting device slightly:
We augment the finite control by a so-called blind counter (cf. [EH93, Fi01], these
automata are also known as partially blind counter automata [Gr78]), that is, by a
counter which has no influence on the computational behavior of the automaton except

∗This paper was written during my visit to Institut für Informatik, Martin-Luther-Universiẗat Halle-
Wittenberg, 1999, supported by grant 10-KO-87 from Ministry of Education, Culture, Sports, Science
and Technology of Japan.

1The meaning of the word “simple” here is twofold: on the one hand, as explained above, the
topological complexity of our counterexample is the simplest possible one, and, on the other hand, the
accepting device has a power only slightly increasing the power of a finite automaton.
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that the automaton gets stuck when the counter is decremented below zero. Moreover
we require the counter to be one-turn, that is, once we decrease the value of the counter
we cannot increase it afterwards.

We are not going to define these one-turn blind one-counter automata in full detail,
instead we proceed with the announced example. On reading the first block ofa’s
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Figure 1:A Büchi automaton accepting theω-language of Eq. (1)

the automaton stores the block length in the counter, and after reading the firstb the
automaton switches to the cycle of statess1,s2 where the counter is decremented after
every secondb. Thus the automaton gets stuck when the inputaibw contains at least
2i + 2 bs and, consequently, if the automaton does not get stuck it will finally stay in
one of its states. (Looping betweens1 ands2 is bounded by the number of initialas.)

Thus depending on the infinite input wordξ our automaton will stay in

s=


s0, if ξ = aω

s1, if ξ = anb·ξ ′ andξ
′ contains an even number ofb’s less than 2n+1

s2, if ξ = anb·ξ ′ andξ
′ contains an odd number ofb’s less than 2n+2 .

Our acceptance condition is Büchi’s condition and the set of final states is{s2}, that
is, anω-wordξ ∈ {a,b}ω is accepted if and only if the automaton runs infinitely often
through states2 when readingξ . Thus theω-language accepted by our automaton is

F =
⋃

n∈N
anb·

⋃
i≤n

(a∗b)2i+1 ·aω . (1)

This ω-language is a countable subset of{a,b}ω , thus anFσ -set. Since it is accepted
by a deterministic automaton using Büchi acceptance it is also aG

δ
-subset of{a,b}ω

(cf. [EH93, St97]).
We are going to show that ourω-languageF cannot be represented as a Boolean

combination of open (or closed)ω-languages. Thus, according to Theorem 5 of
[SW74] (an even stronger version is Corollary 23 of [St83]), it cannot be accepted
by a finite automaton.

Assume the contrary, that is, letEi ,E
′
i be open subsets of{a,b}ω such that

F =
⋃ k

i=1
EirE′i . (2)
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Consequently, every subsetF ∩w · {a,b}ω has a similar representation

F ∩w · {a,b}ω =
⋃ k

i=1

(
Ei ∩w · {a,b}ω

)
r

(
E′i ∩w · {a,b}ω

)
. (3)

as a Boolean combination of open setsEi ∩w · {a,b}ω andE′i ∩w · {a,b}ω .

Consider theω-languagesFn := F∩anb·{a,b}ω = anb·
⋃

i≤n(a∗b)2i+1 ·aω . Every
singleω-languageFn is accepted by a finite automaton. Moreover,Fn is essentially (up
to the prefixanb and the encoding:̄1→ a and 0→ b) Wagner’sω-languagec2n−1

1 :=⋃
i<n(a∗b)2i+1 ·aω taken over the alphabet{a,b}.

It is shown in Lemma 11 of [Wa79] thatc2n+1
1 ∈ Ĉ 2n+1

1 rĈ 2n−1
1 and, consequently,

Fn ∈ Ĉ 2n−1
1 rĈ 2n−3

1 . For the definition of Wagner classes see [Wa79, p. 139] or Defi-
nition 4.1 of [St97].

At the same time Eq. (3) and the fact that theω-languagesFn are accepted by finite
automata implyFn∈ Ĉ 2k+1

1 for all n∈N, a contradiction. Thus Eqs. (3) and (2) cannot
hold true, andF is not a Boolean combination of open subsets of Cantor space(Xω ,ρ).

Finally, we present the Petri net derived from the automaton in Fig. 1 which accepts
the sameω-language. For acceptance ofω-languages by Petri nets see [HR86, Va83].
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Figure 2:A Petri net accepting F

In Fig. 2, the initial marking is represented by a black dot. We also adopt Büchi’s
acceptance condition with the set of accepting markings having at least one token in
the doubly circled place. Likewise we may adopt the co-Büchi acceptance condition
where ultimately all accepting markings have a token in the doubly circled place.
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