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Abstract

Two-phase experiments arise when the treatment effects of interest in an experiment (Phase 1)

cannot be measured directly and the material from the experiment requires further processing

(Phase 2 experiment) in order for these effects to be evaluated. Two designs are needed for these

experiments, one for each phase. Since the allocation of experimental units from the Phase 1

experiment to blocks in the Phase 2 experiment results in the block effects from the two phases

interacting with one another, the Phase 2 design must be carried out with consideration to the

Phase 1 design. Except for very small experiments, how this should be done in an optimal way

is non-trivial.

Theoretical analysis of variance (ANOVA) tables, showing the decomposition of the total

variability in the data space into its constituent components of known sources of variation, and

their corresponding degrees of freedom, are shown to play an important role in assessing the

properties of competing designs for two-phase experiments. However, generating these ANOVA

tables is a laborious manual task, even for relatively small two-phase experiments. To automate

this process, an R package called infoDecompuTE was developed and is available on the Com-

prehensive R Archive Network. All of the ANOVA tables presented throughout this thesis were

generated by infoDecompuTE.

While the theoretical ANOVA tables are an important tool in assessing the properties of com-

peting designs, the manual generation of optimal designs for two-phase experiments is non-trivial,

particularly for non-orthogonal designs. Thus, a fundamental component of this thesis is the

development of methodologies for the computer generation of designs for two-phase experiments.

A combination of theory, to derive multi-criterion objective functions, and computing, in which

a modified simulated annealing algorithm is developed, are used to identify A-optimal designs

for the Phase 2 experiment when the Phase 1 experiment is arranged in either a completely ran-

domised, a randomised complete block or a balanced incomplete block design. Optimal designs

for a range of design parameters for both the Phase 1 and Phase 2 experiments are catalogued

in the appendices of this thesis, as are summary tables of their properties.

Data simulations were carried out to explore how well the variances of treatment effects are
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estimated among competing Phase 2 designs. For this, the effective degrees of freedom (EDF)

for estimating the error variance, using Satterthwaite’s approximation, were calculated using

two methods of variance component estimation, namely taking linear combinations of expected

mean squares and restricted maximum likelihood. The two methods of variance component

estimation were found to have little effect on the EDF. However, the simulation studies were

shown to be informative with respective to preferred choice of two competing designs when the

relative magnitudes of the variance components are known.

While the motivating examples in this thesis come from proteomics experiments, which have

as their goal to link the identities and abundances of proteins in a biological sample to different

experimental conditions (treatments), the methods presented in this thesis apply more generally

across a wide range of biological, and other, experiments.
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Chapter 1

Introduction

This thesis considers the computer generation of optimal designs for two-phase experiments.

Two-phase experiments have two distinct features. The first feature is that samples of interest

cannot be directly measured from a single experiment, thus, a second experiment is required

to process samples and to obtain the measurements of the response variable(s) of interest. The

second feature is that two-phase experiments require two distinct experimental designs, one for

each phase. The first design is directly associated with the first, or Phase 1 experiment, while

the second design, which is of most interest in this thesis, is concerned with how the units from

the first phase should be allocated to the units of the second phase, or Phase 2 experiment.

This thesis comprises three components. The first component describes the method of in-

formation decomposition of the designs of single- and two-phase experiments (with automation

of the construction of theoretical ANOVA tables). The second component develops a compu-

tational approach for finding optimal designs for the Phase 2 experiment, given that the Phase

1 experiment is arranged in either a completely randomised, a randomised complete block or

a balanced incomplete block design. The last component examines two methods of estimating

variance components and how these affect the estimated effective degrees of freedom and the

implications this has in terms of how well the error variance for treatment effects is estimated

in the Phase 2 experiment.

Our motivating examples come from proteomic experiments, which are used to identify and

measure all of the protein species in a biological sample with the goal being to link changes in

their abundances to, for example, the presence or severity of conditions of disease. Proteomics

experiments are just one example of a wide range of “omics” experiments which utilise tech-

nologies to universally detect the different molecular species (e.g. gene transcripts, metabolites,

lipids, etc.) in a cell. What they all have in common is that detection and measurement of

the target species cannot be made in-vivo. Each requires a subsequent laboratory-based exper-
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iment for these measurements to be made. Thus, while the applications in this thesis focus on

proteomics experiments, the methods which are presented apply more generally to other multi-

plexing “omics” platforms, where the term multiplexing refers to the simultaneous assaying of

multiple biological samples. Moreover, these experiments are very expensive to conduct. Thus,

a carefully thought out experimental design becomes very important.

The typical work-flow of a proteomic experiment starts with experimental units - these may

be cells, tissues, bio-fluids, or entire organisms - being first perturbed by the experimental

conditions of interest, i.e. the Phase 1 experiment. Since protein abundance cannot be measured

directly from the experimental unit, the biological material must first be harvested, and the

proteins are extracted and then measured in a subsequent laboratory-based experiment, i.e. the

Phase 2 experiment. Hence, proteomics experiments necessarily have a two-phase structure.

The biological technology that will be discussed in this thesis is Multi-dimensional Protein

Identification Technology (MudPIT), which allows the researcher to identify and quantify the

entire complement of proteins in a given condition within a single biological sample. Due to

the high degree of variation that occurs between different MudPIT experiments, or runs, a

multiplexing technology is introduced that allows the simultaneous analysis of multiple samples,

i.e. multiple biological samples are assayed under homogeneous conditions. One such technology

is the isobaric Tags for Relative and Absolute Quantitation (iTRAQTM) technology (Ross et al.,

2004). Another advantage of multiplexing is that it reduces overall experimental costs. However,

complications arise in the design of the Phase 2 experiment applying the multiplexing technology,

more specifically in how samples from the Phase 1 experiment should be differentially labelled

by iTRAQTM tags within each MudPIT run of the Phase 2 experiment.

This Chapter establishes some general insights into two-phase experiments, in particular, the

multiplex experiments in proteomics. Sections 1.1 to 1.5 describe the evolution of the methods

surrounding the two-phase experiments over recent decades. Section 1.6 describes some recent

work in the design of proteomics experiments. Section 1.7 details the biological background of

the MudPIT-iTRAQTM experiments. Finally, Section 1.8 presents a brief overview of this thesis.

1.1 The introduction of the two-phase experiment

Two-phase experiments were first introduced by McIntyre (1955), who investigated the effects

of four light treatments on the synthesis of tobacco mosaic virus in tobacco leaves. The Phase 1

experiment comprised two 4 × 4 arrays consisting of four successive leaves taken at defined

positions on the stem of each of eight tobacco test plants infected by the virus. Four light
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treatments were then assigned to the plants and leaves, such that each treatment occurred only

once within each row and column in each of two 4× 4 square arrays. This assignment, as shown

in Table 1.1, is also known as the Latin square design. This Phase 1 experiment thus yielded

32 samples. However, the virus content of each leaf could not be measured directly from the

test plants used in the Phase 1 experiment. Therefore, to measure the disease severity, sap was

first expressed from the test tobacco plants and then injected into the leaves of a different set of

assay plants (Phase 2 experiment) on which lesions subsequently appeared and were counted.

Table 1.1: Design presented by McIntyre (1955) for Phase 1 experiment to study the tobacco
mosaic virus. Shown is the assignment of four light treatments (denoted by a, b, c and d) to
four leaf positions on four test plants.

Leaf Position
1 2 3 4

Test Plant 1 a b c d
Test Plant 2 b c d a
Test Plant 3 c d a b
Test Plant 4 d a b c
Test Plant 5 a b c d
Test Plant 6 b c d a
Test Plant 7 c d a b
Test Plant 8 d a b c

The Phase 2 experiment, as shown in Table 1.2, was arranged in a Graeco-Latin square

design involving 16 assay plants divided into 4 sets of 4 assay plants. Within each set of 4 assay

plants, four consecutive leaves were taken from four distinct positions on each plant. Then, the

expressed sap from the four leaves from a test plant in the first Latin square of the Phase 1

experiment was taken and injected into half-leaves in a Latin square arrangement. The process

was repeated with the sap from a plant in the second Latin square in the Phase 1 experiment.

The Latin square assignments of the sap from each pair of Phase 1 plants to a set of assay plants

at Phase 2 were such that when superimposed on one another they formed a Graeco-Latin

square. Thus, each of the 32 samples in the Phase 1 experiment was measured four times in

the Phase 2 experiment thereby giving a total of 128 measurements. This two-phase experiment

illustrates the requirement of two different experimental designs; the first design is concerned

with the allocation of light treatments to test plants, while the second design is concerned with

assigning samples (sap expressed from the leaves of the Phase 1 test plants) to the leaves of the

Phase 2 test plants in a manner that enables the differences in disease severity between light

treatments to be estimated as efficiently as possible.

Design presented by McIntyre (1955) for Phase 1 experiment to study the tobacco mosaic

virus. Shown is the assignment of four light treatments (denoted by a, b, c and d) to four leaf
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positions on four test plants.

Table 1.2: Design presented by McIntyre (1955) for Phase 2 experiment, given the Phase 1
design presented in Table 1.1, showing the assignment of leaf positions and test plants from the
Phase 1 experiment to four leaf positions on 16 assay plants at Phase 2.

Leaf Position
1 2 3 4

Assay Plant 1 11/51 12/52 13/53 14/54
Assay Plant 2 12/54 11/53 14/52 13/51
Assay Plant 3 13/52 14/51 11/51 12/53
Assay Plant 4 14/53 15/54 12/54 11/52
Assay Plant 5 21/63 24/62 23/61 22/64
Assay Plant 6 22/62 23/63 24/64 21/61
Assay Plant 7 23/64 22/61 21/62 24/63
Assay Plant 8 24/61 21/64 22/63 23/62
Assay Plant 9 31/74 32/73 33/72 34/71
Assay Plant 10 32/71 31/72 34/73 33/74
Assay Plant 11 33/73 34/74 31/71 32/72
Assay Plant 12 34/72 33/71 32/74 31/73
Assay Plant 13 41/82 44/83 43/84 44/81
Assay Plant 14 42/83 43/82 44/81 41/84
Assay Plant 15 43/81 42/84 41/83 44/82
Assay Plant 16 24/84 41/81 42/82 43/83

In McIntyre’s experiment, the sap expressed from a single leaf (from the same phase 1 test

plant) was injected into a half-leaf of each of four different Phase 2 assay plants. These four

half-leaves yield four technical replicates of the light treatment applied to the leaf in the Phase

1 experiment. Technical replication enables us to estimate the variation introduced by all of the

steps in the laboratory processes used to prepare samples for measurement. To correctly estimate

this source of variation, we need to take sub-samples (e.g. from sap expressed from the same leaf

of a Phase 1 test plant) and apply the laboratory step independently to each sub-sample. This

enables the separation of biological variation (e.g. variation between leaves from the same plant

and variation between plants) from technical variation. But, if only one measurement is made

on each sub-sample, then technical variation and measurement error are confounded with one

another. To separate technical variation and measurement error, we must also make multiple

measurements on each sub-sample. The latter is commonly known as pseudo-replication. As

McIntyre (1955) stated, technical replication is required if the Phase 2 experiment introduces

large and uncontrollable variation. For the light treatment experiment, each sample (sap from

a single leaf) from the Phase 1 experiment is assayed and measured four times in the Phase 2

experiment.

McIntyre (1955) made three observations regarding the error variance of the treatment effects
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based on the light treatment experiment. Foremost, he established that if the Phase 1 design

remains unchanged while the Phase 2 design is modified, then the error variances may differ

between the different Phase 2 designs. Second, if the design is modified to have more technical

replicates, the error variance for treatment effects can be reduced, but the time required to

complete the experiment is increased. Third, if the design is modified so that the biological

replication is eliminated, the error variance for the treatment effects increases. This is because

the error variance in this case includes the variation among the leaves from single plants from

both the Phase 1 and 2 experiments.

McIntyre (1955), as stated by Curnow (1959), performed an unweighted estimation of the

treatment MS in the Between and Within Leaves Within Assay Plants strata, as shown in the

partial theoretical ANOVA in Table 1.3. The theoretical ANOVA table contains the degrees of

freedom (DF) and expected mean squares (EMS) for each source of variation. The components

in the EMSs are: σ2
ε , which denotes the variation between half-leaves within leaves and assay

plants; σ2
∆, which denotes the variation between leaves within assay plants; σ2

L, which denotes

the variation between leaves within test plants, and θ which is the fixed effects component for

the light treatments.

Table 1.3: Partial theoretical ANOVA table by McIntyre (1955).

Source of Variation DF EMS

Treatment 3 σ2
ε + σ2

∆ + 4σ2
L + 32θ

Residual 15 σ2
ε + σ2

∆ + 4σ2
L

Curnow (1959) revisited McIntyre’s light treatment experiment and generated a new ANOVA

table showing the decomposition of the EMS corresponding to each source of variation associated

with each treatment or block factor. Table 1.4 presents only those strata in Curnow’s ANOVA

table relevant to Treatment effects, showing that the Treatment effects are estimated across both

the Between Leaves Within Assay Plants and the Within Leaves Within Assay Plants strata.

This is because some of the Treatment information is confounded with leaves within the Phase

2 Assay Plants. Thus, the Treatment EMS in the Between Leaves Within Assay Plants stratum

contains σ2
∆, whereas the Treatment EMS in the Within Leaves Within Assay Plants stratum

does not. Curnow (1959) termed the estimation of Treatment effects in the Between Leaves

Within Assay Plants stratum the sums analysis, which is equivalent to an inter -block analysis;

and the estimation of Treatment effects in the Within Leaves Within Assay Plants stratum

the differences analysis, which is equivalent to an intra-block analysis (Yates, 1936). Curnow

(1959) then showed how to combine the inter- and intra-block analyses for this experiment using
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the weights computed from the error variances from these two strata. This new ANOVA table

by Curnow (1959) provided a first step towards developing a better analytical procedure for

two-phase experiments.

Table 1.4: Partial theoretical ANOVA table by Curnow (1959).

Source of Variation DF EMS

Between Leaves in Assay Plants
Treatment 3 σ2

ε + 2σ2
∆ + 2σ2

L + 16θ
Residual 15 σ2

ε + 2σ2
∆ + 2σ2

L

Within Leaves in Assay Plants
Treatment 3 σ2

ε + 2σ2
L + 16θ

Residual 15 σ2
ε + 2σ2

L

Wood et al. (1988) demonstrated how the Treatment effects and the variances of the Treat-

ment effects can be estimated using the generalized least squares method. Their equations

contain the efficiency factor, which is the proportion of treatment information present in the

intra-block stratum. The example they presented has the Phase 1 Block effects confounded with

the Phase 2 Block effects, but they stated that the efficiency factor of the Phase 1 Block effects

to Phase 2 Block effects was not in the expression for estimating the Treatment effects; this

is because their Phase 1 experiment was arranged in a completely randomised design. Thus,

the efficiency factor associated with the Treatment effect is related to the degree to which the

Phase 1 Block effects are confounded with the Phase 2 Block effects. If the Phase 1 design has

Treatment effects confounded with the Phase 1 Block effects, arranged in a balanced incomplete

block design, then the proportion of treatment information will be further diluted. Lastly, they

also mentioned that the best Phase 2 design has the property that the treatment information in

the lowest stratum is maximised.

1.2 Analysis of variance tables based on experimental

structure

Neither McIntyre (1955) nor Curnow (1959) described how their ANOVA tables were derived.

Brien (1983) thus presented a generalised procedure for deriving the ANOVA table, showing

only the decomposition of the total DF into each source of variation, for both single- and two-

phase experiments. This derivation resulted from recognising that experimental factors formed

groups, which Brien (1983) referred to as tiers, such that factors from one tier were randomised

to factors of another. This section briefly describes the procedure presented by Brien (1983) and
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simultaneously introduces some basic terminology used in experimental design.

Brien (1983) noted that before constructing an ANOVA the overall structure of the exper-

iment must be determined. The first step is to identify treatment and block factors in the ex-

periment and the observational unit. The observational unit is the smallest measurable quantity

of experimental material (Bailey, 2008). The second step is to divide the factors into different

tiers based on the randomisation scheme. Randomisation, one of the important principles in

experimental design presented by Fisher (1935), involves the random assignment of one set of

objects to another. The main purpose of randomisation is to enable researchers to obtain a data

set with minimal systematic bias and to make the observations behave in such a way that they

are independent of one another.

A single-phase experiment, in general, has two tiers of factors. The first tier consists of

those factors that jointly identify the observational unit in the absence of randomisation. Nelder

(1965a) also referred to first tier factors as block factors. The second tier factors are those whose

factor-level combinations are directly associated with factors in the first tier via randomisation.

The second tier factors thus are what Nelder (1965b) termed treatment factors. The smallest

unit in the first tier to which a treatment can be independently assigned, is known as the

experimental unit. The third step in determining the overall structure of the experiment is

to define the relationships between the factors within each tier. Wilkinson and Rogers (1973)

developed a symbolic syntax to represent the relationships between factors within tiers, which

are commonly referred to as block and treatment structures. Brien and Payne (1999) referred

to their symbolic representations as structure formulae.

Wilkinson and Rogers’s syntax was originally developed to generate and analyse ANOVA

models in the GenStat statistical analysis program, but is now widely used in many statistical

packages. Two basic operations described by Wilkinson and Rogers (1973) are used to represent

block and treatment structures, namely crossing denoted by an asterisk, ∗, and nesting, denoted

by a slash, /. These two operators represent the type of joint effects between more than one

factor.

A two-phase experiment, in general, involves three tiers of factors, two of block factors

and one of treatment factors. Consequently, two-phase experiments are also known as multi-

tiered experiments. Tiers 1 and 2 comprise block factors from the Phase 2 and 1 experiments,

respectively. Tier 3 contains the treatment factors from the Phase 1 experiment.

The remainder of this section will illustrate the procedure of deriving the ANOVA table

using the wine-evaluation experiment described by Brien (1983), where each wine is evaluated

and presented to each taster for scoring once in each sitting. The order of wine presented is
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randomised to each taster. Further, the wines are made from a field trial to test the effects of

several viticultural treatments assigned to plots arranged in a randomised complete block design.

This experiment is then a two-phase experiment, where the Phase 1 experiment is a field trial,

consisting of p treatments assigned to b blocks each containing p plots. The Phase 2 experiment

is a wine evaluation experiment, consisting of t testers and bp sittings. The observational unit

is the sample of wine given to a taster at a particular sitting. The factor-level combinations of

Taster and Sitting factors cannot be randomised; thus, Taster and Sitting factors form the first

tier. The field Block and Plot factor combinations are randomised to Sittings within each Taster;

thus, Block and Plot factors form the second tier. Finally, levels of Treatment are randomised

to the Plots within each Block; thus, the Treatment factor forms the third tier. The structure

formulae of the Phase 2 and 1 block tiers are therefore written as

Taster/Sitting, (1.1)

Block/Plot (1.2)

and the treatment tier is simply expressed as

Treatment. (1.3)

Once the structure formula for each tier of the two-phase experiment is determined, the first

step in generating the ANOVA table is to expand each formula for each tier, the rules for which

are described by Wilkinson and Rogers (1973). Thus, block structure formulae (1.1) and (1.2)

are expanded to

Taster + Taster.Sitting (1.4)

and

Block + Block.Plot, (1.5)

respectively, where Taster.Sitting and Block.Plot are read as Between Sittings Within Tasters

and Between Plots Within Blocks, respectively.

The second step of generating the ANOVA table is to examine every pair of terms between

the two tiers of the expanded structure formula in (1.4) and (1.5) for the presence of confounding

in the design. The terms in the block structure formula in (1.4) describe the relationship between

first tier factors, which form the strata of the ANOVA table. The terms in the structure formula

in (1.5) associated with second tier block factors are inserted below the terms of the first tier,

with indentation if the two terms of different tiers are confounded. The confounding between the

terms can be elucidated using orthogonal contrasts generated from each term. The terms from
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tier 3, i.e. the treatment tier in (1.3), are grouped with those from tiers 1 or 2, with another

indentation in the event of confounding between terms from different tiers. After going through

these processes, the ANOVA table, with only the decomposition of the DF, can be derived (see

Table 1.5). The indention on the line with Treatment indicates that the effects of Treatment

are confounded with the Block.Plot effects. A more detailed description of these procedures is

available in Brien (1983).

Table 1.5: ANOVA table of the wine-evaluation experiment described by Brien (1983).

Source of Variation DF

Between Tasters t− 1
Between Sittings Within Tasters t(bp− 1)

Between Blocks b− 1
Between Plots Within Blocks b(p− 1)

Treatment p− 1
Residual (b− 1)(p− 1)

Residual (bp− 1)(t− 1)

1.3 Sweeping operations for two-phase experiments

The sweeping operations for general ANOVA were introduced by Wilkinson (1970), and Payne

and Wilkinson (1977). Every experiment generates n responses which can be viewed as a data

vector, y say, with length n in n-dimensional space (Payne and Wilkinson, 1977). The standard

sweeping operation estimates the effects of a term from the expanded structure formula, and

then subtracts these estimated effects from the current working vector, which then becomes the

working vector for the next sweep (Brien and Payne, 1999).

The Phase 1 field experiment described in Section 1.2 is used to demonstrate the sweeping

operations. The factors for this experiment consist of p treatments assigned to b blocks each

containing p plots. The expanded structure formulae of the block and treatment tiers are given

in (1.5) and (1.3), respectively. The first sweep is for the grand mean, i.e. removing the effects

of the grand mean, which is implicit in the structure formulae. This is performed using the

reanalysis sweep, which can be expressed as

I− EGPG, (1.6)

where I is the n×n identity matrix, and EG and PG denote the efficiency factor and projection
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matrix, respectively, associated with the grand mean. The projection matrix PG is defined as

K(K′K)−1K′,

where K denotes an n × n averaging matrix with all elements equal to n−1. In general, the

reanalysis sweep is used to sweep non-orthogonal terms out of the data vector. Thus, the sweep

which removes the Block effects from the data vector is given by

I− EBPB,

where EB and PB denote the efficiency factor and projection matrix, respectively, associated

with the Block term in the block structure formula.

The second type of sweep operator is the pivotal sweep which involves projecting the data

vector onto the vector subspace of the associated terms. This sweep is used to determine the

effects and the SS for terms in the second structure formula, within terms of the first structure

formula. Thus, the pivotal sweep for estimating the Treatment effect is given by

ETPT ,

where ET and PT denote the efficiency factor and projection matrix, respectively, associated

with the Treatment term in the treatment structure formula. If a given design has Treatment

effects confounded with Block effects, the sweeping sequence involves two pivotal sweeps, first

for the Block term and then for the Treatment term, i.e.

ETPTEBPB.

In general, the pivotal sweep is required for the terms in the structure formula for the first

(block) tier before performing the same sweep for the terms in the structure formula for the

second (treatment) tier that are confounded with it. Thus, the sweeping sequence to estimate

the effects of Treatment in the Between Blocks stratum for the field experiment is given by

ETPTEBPB(I− EGPG)y,

which consists of a reanalysis sweep for the grand mean in (1.6), and then two pivotal sweeps

for the Block and Treatment terms. The sweeping sequence for estimation of the other effects of

the experiment can also be derived from a combination of reanalysis and pivotal sweeps. Thus,

the ANOVA table can be constructed with the effects for each source of variation.

Brien and Payne (1999) extended the sweeping algorithm to work for two-phase experiments
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by performing additional sweeps for terms from the structure formula of the third tier. Using

the example of the two-phase wine-evaluation experiment described in Section 1.2, Treatment

effects estimated across the Between Plots Within Blocks and Between Sittings Within Tasters

strata are given by

ETPTEPPP (I− EBPB)ESPS(I− EJPJ)(I− EGPG)y,

where PP , PS and PJ denote the projection matrices associated with Plots, Sittings and Tasters,

respectively, and EP , ES and EJ denote the average efficiency factors associated with Plots,

Sittings and Tasters, respectively.

To summarise, Brien and Payne (1999) demonstrated the use of the reanalysis and pivotal

sweep operations to construct ANOVA tables. Chapter 2 further discusses this approach to

constructing the ANOVA tables.

1.4 Work by Brien and Bailey

Brien and Bailey (2006) described how randomisation can be performed for a multi-tiered ex-

periment, involving at least three tiers of factors. Thus, two-phase experiments are a special

case of multi-tiered experiments. As Brien (1983) pointed out, randomisation can affect the

structure of the experiment. In an experiment involving three tiers of factors, a randomisation

typically must be performed twice: (1) for the allocation of treatments to experimental units

in the Phase 1 experiment, and (2) for the allocation of experimental units from the Phase 1

experiment to the experimental units in the Phase 2 experiment. The randomisation procedure

for multi-tiered experiments thus is termed multiple randomisation (Brien and Bailey, 2006).

Brien and Bailey (2006) compared and contrasted six types of multiple randomisation in

three-tiered experiments. Brien and Bailey (2009, 2010) discussed the aspects of orthogonal

decomposition of the data space for multi-tiered experiments with respect to different types

of multiple randomisation. Bailey et al. (2016) further discussed estimation theory for the

randomisation-based model of multi-tiered experiments.

Different multiple randomisations can have different directions of randomisation between

tiers; Brien and Bailey (2009, 2010) showed that this can affect the ordering of orthogonal

decomposition between terms of different tiers. Additionally, knowing the initial randomisation

procedure allows researchers to recognise how terms are confounded with one another between

tiers, which can let researchers more easily determine the decomposition method required for the

experiment analysis of the data. However, identifying the types of multiple randomisation that
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fit a given multi-tiered experiment and then determining how the ordering of the decomposition

should be achieved can be laborious. Given that the structure formulae for each tier and the

design are known, a decomposition method presented in Chapter 2 can be used for all two-

phase experiments. This method does not require the identification of the type of multiple

randomisations that should be fitted. Note that the randomisation procedure should still be

applied before the experiment to minimise systematic bias and to obtain a more accurate result.

1.5 Systematic approach to design two-phase experiments

More recently, Brien et al. (2011) discussed a systematic approach to design two-phase exper-

iments. This paper only considered designs with an orthogonal structure. Some principles

described in their paper are used to develop the methods presented in Chapters 3 and 4 of this

thesis.

Brien et al. (2011) first presented a list of rules for calculating the EMS in ANOVA tables

for two-phase experiments. However, these rules can be laborious to follow for experiments

that involve numerous treatment and block factors. Chapter 2 of this thesis thus presents an

R package that automates the generation of the ANOVA tables, including the decomposition of

DF and EMS, for any single- or two-phase experiment.

Brien et al. (2011) then discussed some fundamental principles for designing two-phase ex-

periments. First, the unit of the Phase 1 experiment with the highest variation, but orthogonal

to the Treatment effects, should be confounded with that of the Phase 2 experiment containing

the highest variation. If the experimental unit in the Phase 1 experiment has large variation,

Phase 1 unit should be confounded with the Phase 2 unit with a smaller variation. This principle

attempts to minimise the error variance of the Treatment effects (Brien et al., 2011).

1.6 Experimental design for multi-plex proteomic exper-

iments

Oberg and Vitek (2009) discussed the principles of experimental design for mass spectrometry-

based proteomic experiments, including the MudPIT-iTRAQTM experiments. The goal of an

experimental design is to allocate individual samples to tags and runs in a way that avoids

systematic bias and reduces the error variance of treatment comparisons.

Oberg and Vitek (2009) recognised that each MudPIT run is a block and, thus, showed

how the treatment allocation to runs can be arranged as either a randomised complete block

12



Chapter 1. Introduction

design (RCBD), or a balanced incomplete block design (BIBD). Two additional designs were also

discussed: the reference design and loop design. The reference design is where each run contains

a reference sample for comparison, while the loop design is where the samples are allocated such

that they are cycled through the blocks systematically. The reference sample in a reference design

is not in itself of interest in the experiment, but is used as method of increasing the robustness of

the design to the loss or failure of runs. Oberg and Vitek (2009) concluded that the best designs

are those which minimise the variance of the pairwise differences between treatment means.

They found the RCBD to be the best amongst the designs they considered because it requires

fewer runs. Additionally, if a run is lost, although an entire set of biological replicates is lost,

the resultant design still retains an orthogonal structure. However, if the loss of a run occurs

in the BIBD or loop design, the resultant design may not preserve the balanced structure, i.e.

the treatment replications and within block pairwise treatment concurrences become different.

The reference design is most robust under conditions of run failure, but generally requires more

MudPIT runs than the other designs to measure the additional reference samples. Given that

the number of tags can be either four (Ross et al., 2004) or eight (Choe et al., 2007), and given

the high cost of performing the experiment in each MudPIT run, biologists are likely to utilise

all of the tags to measure protein abundances of samples.

Oberg and Mahoney (2012) recognised that the allocation of treatments to runs and tags is

a randomised block design, where the MudPIT run is the block factor. Moreover, Oberg and

Mahoney (2012) suggested that multiple MudPIT runs are required to avoid the confounding of

tag effects with treatment effects. However, Oberg and Vitek (2009), and Oberg and Mahoney

(2012) only considered the allocations of treatments to runs and tags. The allocation of any

other block factors from the Phase 1 experiment, e.g. animals or plants, is equally important

because it can also affect the error variance of treatment comparisons.

Any proteomics experiments, using MudPIT coupled with iTRAQTM to compare the pro-

teomes between different conditions, requires two phases of experimentation to generate the

protein abundance data. The first phase involves the preparation of the animal or plant models

under different treatment conditions of interest (Phase 1). Since protein abundance cannot be

measured directly from these tissue samples, a second phase of experimentation is needed. Thus,

the Phase 1 experiment provides the physical material, which is analysed in a subsequent exper-

iment using MudPIT coupled with iTRAQTM (Phase 2). This a two-phase experiment (Jarrett

and Ruggiero, 2008). It will become clear throughout this thesis that when designing such an

experiments, careful consideration must be given to sources of variation in each phase.

13
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1.7 Quantitative proteomics using MudPIT coupled with

iTRAQTM

This section we discuss in detail how the data in a MudPIT-iTRAQTM experiment are generated.

This type of proteomic study requires the use of a combination of technologies, coupled with

database searching, to identify and quantify the proteins within a target cell, tissue or biofluid.

This section aims to describe this identification and measurement process in detail, and hence

clarify the issues that are relevant when designing experiments using these technologies. Sec-

tion 1.7.1 provides a detailed introduction to proteins and some of their properties, and defines

the term ‘proteome’. Section 1.7.2 describes the process of separating a complex protein mix-

ture into smaller subunits to enable high resolution measurements of the constituent proteins

in the mixture (MudPIT). Section 1.7.3 describes a recent protein labelling technology that en-

ables the simultaneous analysis of complex multi-protein mixtures (iTRAQTM). Section 1.7.4

describes the laboratory workflow where this protein labelling technology is coupled with mass

spectrometry, and Section 1.7.5 describes the role of database searching in protein identification.

1.7.1 Proteins and the proteome

Proteins are one of the major macromolecules within a biological system that contribute to

every process in a living system and are considered the essential building blocks of life. They

are constructed from chains of amino acids derived from the genes within a cell nucleus through

a process known as transcription, where DNA is copied to messenger RNA (mRNA), followed

by translation, where mRNA is decoded into proteins (see Figure 1.1). Furthermore, a ‘pre-

mRNA’ strand may undergo alternative splicing as part of the post-transcription process, and

thus can produce multiple protein sequences. This makes the study of protein expression more

functionally relevant than mRNA transcription, also known as gene expression.

A protein is made up of many smaller units, or peptides, that comprise subsequences of the

amino acids in the intact protein. Proteins thus are also termed polypeptides, while peptides

are produced by enzymatic digestion of a whole protein. An example of such an enzyme is

trypsin (Eidhammer et al., 2007).

The proteome is the entire complement of proteins expressed by the genome (i.e. the totality

of genetic material) in a cell, or in tissue or bio-fluid of an organism at a given time under

specific conditions (Boehm et al., 2007). The function of a protein corresponds to the timing

and location of its expression. Proteomic research thus aims to identify, localise, and quantify
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many more unknown and known proteins, and better understand their functions.

Figure 1.1: Basic biological processes of producing functional proteins from DNA.

There are many ways to study proteins. For example, physical structures of a protein can

be studied by X-ray crystallography (Blow, 2002), protein-protein interactions can be studied

using the yeast two-hybrid system (Fields and Song, 1989), and the abundance of an individual

protein under a defined condition can be studied using isotopic-labelling. The latter, referred

to as quantitative proteomics, is achieved via a process of separating a complex protein mixture

into smaller subunits to enable high resolution measurements of the constituent components of

proteins. The use of Multi-dimensional Protein Identification Technology (MudPIT) together

with isobaric Tags for Relative and Absolute Quantitation (iTRAQTM) is just one technology

used to measure protein abundance.

1.7.2 Multi-dimensional protein identification technology

Multi-dimensional Protein Identification Technology (MudPIT) is a chromatography-based method,

which uses a suite of technologies to separate a peptide mixture in order to identify and quantify

the constituent proteins in the original sample (Washburn et al., 2001). The process typically

involves the separation of the peptide mixture into three orthogonal dimensions. The first sepa-

ration of peptide species is by their charge, using strong cation exchange chromatography (SCX).

This is followed by a second separation by hydrophobicity, using reversed phase liquid chro-

matography (RPLC). The third separation is by mass, and is carried out by mass spectrometry

(MS). The combination of all three separation steps reduces the complexity of the sample and

enables high throughput protein analysis. Each MudPIT run thus comprises these three steps
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of separation.

The SCX column contains immobilised negatively charged sulfonic acids that form an ionic

interaction with the positively charged peptides. Hence, the charge separation by SCX divides a

protein digest (i.e. a mixture of peptides) into many different fractions based on the strength of

the charge interaction between the peptides and the sulfonic acids. Different peptide sequences

have different affinities for the SCX resin. This allows for complex peptide mixtures to be

fractionated by gradually increasing the concentration of a competing salt solution (for binding

to the sulfonic acid groups in a gradient) in a step-wise manner. The salt concentration ranges

between 10mM to 500mM. Hence, at each interval of salt concentration, a set of peptides is

released into the next MudPIT phase. Each of these charge intervals is termed a salt step, and

increasing the number of salt steps enables the detection of proteins with low abundance.

The set of peptides from each charge fraction is then separated by RPLC based on hy-

drophobicity. This is achieved with a separate column that contains silica beads with chains

of 18 carbon atoms attached. The peptides are loaded into the column, where they undergo

hydrophobic interactions with the carbon chains. An organic solvent is then added to the col-

umn in concentrations that increase over time, causing the peptides to emerge or elute, with

the least hydrophobic peptides eluting first. Eluted peptides are then detected using the mass

spectrometer.

The mass analysis is performed by MS, whereby each peptide’s mass-to-charge ratio (m/z)

is measured and then used to calculate its molecular mass. Peptide separation is described in

more detail in Eidhammer et al. (2007).

Tandem mass spectrometry (MS/MS), which consists of two repeated phases of MS, was used

for this study. Peptide fragmentation occurs between the two phases of MS, and identification

and quantification of the peptides and proteins is thus based on these peptide fragments. MS/MS

enables higher specificity in protein identification and enables more accurate quantification.

MudPIT has some limitations. For example, large variation in signal intensity between differ-

ent MudPIT runs can make inter-sample comparisons of peptide or protein abundance difficult.

This limitation has been resolved by iTRAQTM labelling, which enables the simultaneous anal-

ysis of up to eight distinct protein digests within a single MudPIT run. For this thesis, each

MudPIT run is referred to as a run.

1.7.3 iTRAQTM for protein quantitation

In 2004, Ross et al. introduced a peptide labelling technology, namely isobaric Tags for Relative

and Absolute Quantitation (iTRAQTM), enabling differential labelling of peptides in different
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biological samples. In its initial format, iTRAQTM comprised four isobaric tags, each consisting

of a reporter group, a balance group, and a peptide reactive group. The reactive group binds

the N-terminus at the start of each peptide, and, for those peptides contain lysine residues (i.e.

amino acid), then also on the lysine’s side chain. The four reporter groups have m/z values 114,

115, 116 and 117, with corresponding balance group values of 31, 30, 29 and 28. Each of the four

tags thus has an identical total m/z value of 145 Da, making them isobaric. This enables identical

peptide species, differentially labelled with the four tags, to be indistinguishable with respect

to the intact mass of the peptide when selected for MS/MS (Ross et al., 2004). For MS/MS,

the relative abundances are determined using the reporter ion signals at m/z values of 114, 115,

116 and 117 on the mass spectrum, i.e. the graphical representation of the peptides and peptide

fragments based on their m/z values and abundances. Mass spectra are generated for both phases

of MS/MS, i.e. for the intact peptide during the first cycle, and for the fragmented peptides

during the second fragmentation cycle. The four different labels thus allow the simultaneous

analysis of four different samples (Ross et al., 2004).
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Figure 1.2: Structure of eight-plex-iTRAQTM tags showing the reporter and balance group
masses measured using m/z (Choe et al., 2007).

Choe et al. (2007) described a new multiplexing strategy, based on the same concept as the

four-plex iTRAQTM system, allowing the simultaneous analysis of up to eight distinct protein

samples (see Figure 1.2). This scheme involves reporter ion signals located at m/z values of 113,

114, 115, 116, 117, 118, 119 and 121. No label is used for an m/z of 120 because it has the same

mass as the phenylalanine immonium ion (Pierce et al., 2008). For this thesis, each iTRAQTM
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tag is referred to as a tag.

1.7.4 MudPIT coupled with iTRAQTM: laboratory workflow

Once the target cells or tissues are harvested, each sample is independently processed, including

steps for reduction, alkylation, total protein quantification, and enzymatic digestion (usually

with trypsin) into many smaller peptide fragments (Ross et al., 2004). Since proteins exist in a

three-dimensional structure, held together by disulfide bonds, reduction breaks down these bonds

to produce a two-dimensional linear structure. The alkylation step prevents the reformation

of the disulfide bonds. A protein assay is used to measure the total protein content of each

sample after reduction and alkylation. This ensures that the total amount of protein to be

compared using iTRAQTM is approximately equal for all samples. Enzymatic digestion with

trypsin specifically cleaves the protein immediately after every lysine (K) and arginine (R) residue

(see Figure 1.3).
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Figure 1.3: The process of protein digestion by trypsin. a)Intact protein. b)Digested peptides
showing free N-termini. c)Peptides labelled with iTRAQTM tag.

The iTRAQTM labelling chemistry works by binding the tag to the free N-termini at the start

of each peptide and on the K side chain. Thus, with fully efficient enzymatic cleavage, peptides

containing one K residue are labelled twice, as the K residue’s side-chain also contains a free

N-terminus (Wiese et al., 2007). However, missed cleavages do occur, resulting in some peptides

containing more than one K residue. A consequence of this is that these additional K residues
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are also tagged resulting in a much higher reporter ion abundance due to the additional tags. For

example, if a peptide has been labelled twice, the abundance of this peptide is shown as double

the true amount in the mass spectrum. To avoid this complication, a relative quantification is

used instead of an absolute quantification. Absolute quantification is calculated as the ratio of a

target protein’s abundance to a protein of a known concentration either within the same sample,

or in a different sample in the same MudPIT run (Thelen and Peck, 2007). The sample of known

concentration is also referred as a spike-in. Relative quantification is the ratio of a particular

protein’s abundance in one sample to the same protein’s abundance in another sample, within

the same MudPIT run. Calculating the relative abundance overcomes the issue of the multiple

tags on the same peptide because they cancel through this division process.

Next, approximately equal concentrations of the differentially labelled peptide samples are

pooled and undergo the first two phases of MudPIT, i.e. separation by charge with SCX, and

separation by hydrophobicity with RPLC (see Section 1.7.2). Finally, the peptide mixture is

analysed according to molecular mass using MS/MS. There are many different types of mass spec-

trometer. An example presented here is the ElectroSpray Ionisation Quadrupole-Time-Of-Flight

tandem mass spectrometer (ESI-qTOF-MS/MS), called the QSTAR R© (Sciex) (see Figure 1.4).

Electrospray 
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mass analyser

Collision 

Cell

Parent Ions

Detector

Time-of-Flight 

mass analyser

Figure 1.4: Schematic of analysis of a protein digest in the QSTAR R© qTOF-MS/MS (Sciex,
2004).

The first step of MS/MS involves subjecting the peptide mixture to ElectroSpray Ionisation

(ESI), which transforms each peptide into a positively charged ion, thereby allowing the peptides
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to be selected, analysed and detected by the mass spectrometer. The separated peptide ions (i.e.

ionised peptides) eluting from the RPLC are sprayed continuously into the mass spectrometer

for up to 100 minutes for each salt step.
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Figure 1.5: The intensity peak resulting from the mass analysis, of a peptide species with m/z
= 1823.23. A single peak is generated for the intact peptide since the mass spectrometer cannot
distinguish between the eight samples of origin due to the isobaric tags.

MS/MS consists of two repeated phases of mass analysis and both phases use the Quadrupole-

Time-Of-Flight (qTOF) mass analyser. In the first phase, all the peptide ions are passed through

the quadrupole mass analyser, and their molecular masses are analysed by the time-of-flight

(TOF). The TOF measures the time taken for these ions to travel a known distance. From this,

each ion’s m/z and abundance is estimated and presented in a MS spectrum (see Figure 1.5). In

the second phase, the peptide ions that have the highest abundance, as detected by the MS, are

subsequently isolated by the quadrupole mass analyser. Normally up to three different peptide

ions, also known as precursor or parent ions, are selected in one cycle. Note that these selected

peptide ions for the second phase of MS are new peptide ions sprayed by the ESI, as once peptide

ions are moved into the TOF they are never recovered. Further, the rate of flow is slow enough

that software can instantly inform the quadrupole mass analyser to let a specific peptide pass

through. Each of these cycles generally takes around 5.5 seconds: one second to acquire the

first MS spectrum, then one, one-and-a-half, and two seconds to acquire the three subsequent

MS/MS spectra. Figure 1.6 illustrates how the MS and MS/MS spectra are produced under the

same time scale, where one MS spectrum will generate the three MS/MS spectra from the three

20



Chapter 1. Introduction

most abundant peptides.
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Figure 1.6: Example of MS (blue) and MS/MS (red) spectra.

After a specific precursor ion is isolated for the second phase of MS/MS, it moves into a

collision cell where it is fragmented into smaller components by collisions with an inert gas. This

process, called collision-induced dissociation (CID), cleaves the peptide bonds and the chemical

bonds with the iTRAQTM tags. This produces b-ions, y-ions and iTRAQTM reporter ions (see

Figure 1.7) (Ross et al., 2004). The molecular masses of these fragment ions are measured in

the TOF. The abundances of the iTRAQTM labels are estimated from the peaks in the 113 to

121 m/z reporter ion regions. The area under each of these peaks serves as an approximation for

the abundance of the peptide in a given sample. The rest of the peaks consist mainly of b- and

y- ions, and their m/z are used for peptide identification by comparing the molecular weights

of the experimental fragments (i.e. MS and MS/MS spectra) to theoretical fragments generated

by in-silico fragmentation of peptides in an appropriate database (see Figure 1.8).

1.7.5 Data generation from MudPIT-iTRAQTM

In every MudPIT run, the QSTAR R© machine generates a WIFF file for each salt step that is

performed. Each WIFF file contains all of the MS and MS/MS spectra from the fragmented

peptides. There are a number of software packages which are available to perform both peptide-

protein identification and the statistical analysis.

Peptide-to-protein identification involves database searching to identify the proteins that

match a given peptide from the MudPIT-iTRAQTM experimental data. Examples of such soft-
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Figure 1.8: a) MS/MS spectra showing the b- and y-ions, and b) zoom-in into 113 to 121 m/z
reporter ion region.

ware are MascotTM 2.6 (Matrix Science), SEQUEST R© (Sadygov et al., 2004), and ProteinPilotTM

5.0 (Sciex). In general, the available software employ a bottom-up approach (Nunn and Timper-

man, 2007), also known as shotgun proteomics (Nesvizhskii and Aebersold, 2005), for protein

identification and quantification. The identification method involves a series of peptide match-

ing steps. The mass spectra of the observed fragment ions that were detected in the MudPIT-

iTRAQTM analysis are compared with the mass spectra of theoretical fragment ions, also known

as theoretical spectra. These theoretical spectra are created from the in-silico tryptic digestion of
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proteins from an appropriate protein database (Sadygov et al., 2004). Then, the original intact

proteins can be identified from the matched peptides (Nesvizhskii and Aebersold, 2005).

The database should contain all of the known proteins from a chosen species together with

their sequences. Hence, choosing a comprehensive protein sequence database is essential to allow

as many peptides as possible to be matched. There are many different protein sequence databases

available. The largest and most complete database is Entrez Protein from the National Center for

Biotechnology Information (NCBI), because this database is made up of several other databases.

However, since this database is generated automatically without any manual correction, some

peptide sequences may not be determined correctly. Furthermore, this database has a high

degree of sequence redundancy and can slow down the searching process. For a higher quality

of sequence annotation, it is more appropriate to use well-curated databases such as Swiss-Prot

from the European Bioinformatics Institute (EBI), or Reference Sequence (RefSeq) from NCBI.

If the database search cannot find a match for an observed spectrum, then manual peptide

sequencing is possible using a process called de novo peptide sequencing (Colinge and Bennett,

2007). Rather than pattern matching the observed spectrum to a theoretical spectrum, de novo

peptide sequencing sequences incrementally using the m/z corresponding to the masses of amino

acid residues to build the potential sequence of the unknown peptide (Colinge and Bennett,

2007).

1.8 Overview of thesis

The primary purpose of this thesis is to develop a method for the computer generation of optimal

designs for two-phase multiplex proteomics experiments. This thesis has three parts. The first

part, presented in Chapter 2, describes the method of information decomposition of the design

in any single- and two-phase experiment, and automates the construction of theoretical ANOVA

tables. The second part is the main component of the thesis where we describe a computational

approach for finding optimal designs for Phase 2 proteomics experiments. Chapter 3 considers

the case of the Phase 1 experiment arranged in a completely randomised design and Chapter 4

considers the case of the Phase 1 experiment arranged in a randomised complete block design

(RCBD), or a balanced incomplete block design (BIBD). The third part, presented in Chapter

5, shows how to estimate the variance components and the effective degrees of freedom (EDF)

using the restricted maximum likelihood (REML). The comparison of some optimal designs

found in Chapters 3 and 4 using the EDF can help clarify the properties of different candidate

designs. Chapter 6 summarises and concludes the entire thesis. Furthermore, it presents future
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directions in the design and analysis of two-phase experiments, in particular, for quantitative

high-throughput biotechnology experiments with multiplexing technology. These technologies

are currently useful and will remain so for the next decade.
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Chapter 2

infoDecompuTE: an R package for

constructing theoretical ANOVA tables

for two-phase experiments

2.1 Introduction

A primary objective of comparative experiments is to contrast measurements made on exper-

imental units of material (e.g. humans, animals, plants, tissues, cells, etc.) in response to

interventions, or treatments, to which they are subjected. Many situations arise in practice in

which the response variable(s) of interest cannot be measured directly from the experimental

units in an experiment (Phase 1). Instead, the experimental units must be further processed

in a subsequent experiment (Phase 2) before measurements can be made. Such two-phase ex-

periments were introduced by McIntyre (1955) in the context of a study of the effects of four

light treatments on the synthesis of tobacco mosaic virus in tobacco leaves. Healthy tobacco

plants were inoculated with the virus, and then subjected to different light treatments (Phase 1

experiment). To measure the disease severity, sap was first expressed from the experimental

tobacco plants, and then injected into the leaves of specific assay plants (Phase 2 experiment)

on which lesions subsequently appeared and were counted.

Efforts have been made to develop a general theory for the design of two-phase experiments

(Brien, 1983; Wood et al., 1988; Brien and Payne, 1999; Jarrett and Ruggiero, 2008). Initial

efforts by Brien (1983) yielded a set of rules for deriving the analysis of variance (ANOVA)

tables for such designs. This resulted from recognising that experimental factors formed groups,

or tiers, such that factors from one tier were randomised to factors of another (Brien, 1983).
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Two-phase experiments generally involve three tiers of factors: two tiers of block factors

and a tier of treatment factors. Consequently, two-phase experiments fall within the class of

multi-tiered experiments (Brien, 1983). Tiers 1 and 2 comprise block factors from the Phase 2

and 1 experiments, respectively, while Tier 3 contains treatment factors from the Phase 1 ex-

periment. Design construction comprises a two-step process: (1) the allocation of treatments to

experimental units in the Phase 1 experiment, and (2) the allocation of experimental units from

the Phase 1 experiment to the experimental or observational units in the Phase 2 experiment.

Hence, randomisation generally must be performed twice; once for each allocation. Brien and

Bailey (2006) thus named the randomisation procedure for multi-tiered experiments, including

two-phase experiments, as multiple randomisation. Furthermore, Brien and Bailey (2009, 2010)

defined the connection between the type of multiple randomisation associated with an experi-

ment’s design and the decomposition of the vector space spanned by the data vector from the

experiment. In this Chapter, we refer to the process of separating the total variability in the

data vector collected from a two-phase experiment into its constituent components of known

sources of variation, and their corresponding degrees of freedom (DF), simply as information

decomposition.

Jarrett and Ruggiero (2008) conducted a detailed comparative study of the properties of two

competing designs – multiple dye-swap (MD) and alternating loop (AL) (Kerr and Churchill,

2001a,b) – for a two-colour microarray experiment at Phase 2, when the Phase 1 experiment

involved two treatments arranged in a completely randomised design (CRD) in each case. Using

information decomposition to construct the theoretical ANOVA tables of both the MD and AL

designs, they demonstrated that the final analysis depended on the designs of both the Phase 1

and 2 experiments. More specifically, while the multiple dye-swap design could be analysed

using a simple ANOVA, the alternating loop design required a more involved analysis to test for

treatment effects. This was shown to be a consequence of the sources of variation introduced

in the Phase 2 experiment interacting with those introduced at Phase 1. Thus, Jarrett and

Ruggiero (2008) illustrated the importance of considering the sources of variation introduced at

each phase when designing two-phase experiments, and showed that constructing the relevant

ANOVA tables can achieve this end.

Construction of complete theoretical ANOVA tables is a laborious manual task, even for

relatively small two-phase experiments. The availability of software to automate this task is

much needed. There are a number of software packages that address various aspects of this

task. For example, the commercial statistical software GenStat can be used to decompose known

explanatory and structural sources of variation from an experiment into their associated DF in
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an ANOVA, but only for generally balanced designs (Payne, 2003). The production of ANOVA

tables via this approach requires knowledge of pseudofactors. The AMTIER procedure in Gen-

Stat eliminates the need for pseudofactors by enabling users to specify three separate model

formulae: one for each of the block structures in the Phase 1 and 2 experiments and the other

for the treatment structure. AMTIER performs a decomposition which generates ANOVA tables

containing only the names of the sources of variation and their corresponding DF (Brien and

Payne, 2006). These tables are, therefore, of limited utility in assessing competing designs since

the Treatment and Residual expected mean squares (EMSs) that are needed for this purpose are

not generated. While the GLM procedures in JMP and SAS, and the ANOVA command in Minitab

can compute the EMSs, none of these programs offer a direct procedure to do this for two-phase

experiments. The dae R package (Brien, 2011) performs information decomposition. However,

it requires manual intervention by users to construct the projection matrices for (1) generating

the strata of the ANOVA table and (2) performing the decomposition of treatment information

across these strata. We are unaware of any existing statistical software packages that automate

all of the required tasks in a straightforward manner.

We introduce the R package infoDecompuTE which we have developed for information

Decomposition under Two-phase Experiments. infoDecompuTE quickly generates complete

theoretical ANOVA tables (i.e. both DF and EMSs) for both single- and two-phase experiments,

thereby facilitating researchers in their comparisons of the properties of competing designs.

It requires minimal intervention by the user, requiring only three pieces of information: 1) a

data frame containing the design, 2) the block structure formulae for Phase 1 and/or Phase

2 experiments, and 3) the treatment structure formula. Additionally, the ANOVA table can

be constructed by fitting contrasts which allows more flexible analysis and can provide further

insight into how the information separates across different strata.

In this Chapter, we present the theoretical concepts and methods underlying infoDecom-

puTE, as well as its use. Section 2.2 explains the information decomposition for a single-phase

experiment. Section 2.3 then generalises this to two-phase experiments, and shows how it differs

from that of a single-phase experiment. Section 2.4 gives a brief overview about the technology

uses for proteomics experiments. Section 2.5 presents an example of a two-phase experiment

with the theoretical ANOVA table. Section 2.6 then demonstrates the use of infoDecompuTE.

Finally, Section 2.7 illustrates the application of infoDecompuTE to a two-phase viticulture-

sensory evaluation experiment first described by Brien (1992).
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2.2 Information decomposition of designed experiments

An experiment’s design and the model describing the measurements that are collected from

it are intimately connected. More specifically, the model describes the block structure (i.e.

the relationships between the experimental and observational units), treatment structure (i.e.

the relationships between the treatments) and the relationships between the treatments and

experimental units. Section 2.2.1 considers a general design involving both block and treatment

factors whose relationships can be represented mathematically by a linear mixed-effects model.

This section also shows how the data vector from such an experiment is decomposed into its

constituent components based on the experiment’s block and treatment structures.

2.2.1 The linear mixed-effects model

In general, consider a designed experiment involving t = t1t2 . . . tν treatments arranged in a block

design involving b block factors, where ti denotes the number of levels of the i-th treatment factor,

Fi (i = 1, 2, . . . , ν). The block size for the j-th block factor, Bj, is denoted by mj (j = 1, 2, . . . , b).

Letting y be an n× 1 vector of responses, the linear mixed-effects model for the experiment can

be written in matrix notation as

y = 1µ+ Xα+ Zu+ ε, (2.1)

where 1 is an n × 1 vector whose elements are all unity, µ denotes the population mean, and

ε ∼ N (0, σ2In) is an n × 1 random vector of experimental errors. The matrix In denotes the

n× n identity matrix. The treatment parameter vector of length t = t1t2 . . . tv is defined as

α = (α11...11, α11...12, . . . , α11...1tv , . . . , α11...tv−1tv , . . . , αt1t2...tv−1tv)
′, (2.2)

where αf1...fv denotes the effect of treatment f1 . . . fv, (fi = 1, . . . , ti; i = 1, . . . , v). Note that

α is defined based on the ordering of the treatment combination. The binary n × t treatment

design matrix, X, defines the allocation of treatments to experimental units. Thus, the row h

and column j of X is 1 if the h-th observation corresponds to an experimental unit assigned the

j-th treatment combination, (h = 1, 2, . . . , n; j = 1, 2, . . . , t), and is zero otherwise. The m × 1

vector of block parameters

u = (u′1,u
′
2, . . . ,u

′
b)
′

where m =
∑b

j=1 mj, and where

u′j = (uj1, uj2, . . . , ujmj)
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and ujk ∼ N (0, σ2
Bj

), (j = 1, 2, . . . , b; k = 1, 2, . . . ,mj). The n ×m block design matrix, Z, in

(2.1) can be partitioned into n×mj submatrices Zj, i.e.

Z = [Z1|Z2| . . . |Zb],

where Zj has (h, k)-th element equal to 1 if the h-th observation corresponds to an experimen-

tal unit in the k-th block of Bj, and is zero otherwise, (h = 1, 2, . . . , n; j = 1, 2, . . . , b; k =

1, 2, . . . ,mj).

2.2.2 Null ANOVA using projection matrices

Once the block and treatment structures have been defined for the experiment, the first step is

to construct the ANOVA for the null experiment, i.e. the experiment ignoring treatment effects

(Nelder, 1965a). In this case, the total variability of the data is decomposed into its constituent

components based on the block structure of the experiment, yielding the null ANOVA.

Consider the vector of responses, y, in (2.1) spanning the n-dimensional Euclidean space

Rn = V0 ⊕ V1 ⊕ · · · ⊕ Vq, (2.3)

where Vl is the l-th vector subspace of Rn (i.e. Vl ⊂ Rn) and ⊕ denotes the vector space addition

operator. Thus, the information decomposition of y is achieved by projecting y from Rn space

onto each of its constituent q+1 vector subspaces. Then the l-th vector subspace, Vl, corresponds

to the l-th stratum of the ANOVA. The strata corresponding to the grand mean and intra-block

vector subspaces, denoted by V0 and Vq, respectively, are in general not displayed in the ANOVA

table.

The variance of y, in (2.1), is given by

var(y) = σ2In +
b∑

j=1

σ2
jZjZ

′
j, (2.4)

and is expressed in spectral form as

var(y) =

q∑
l=0

ξlQl, (2.5)

where ξl is a linear combination of the variance components, and Ql is an n× n orthogonal pro-

jector matrix which projects y from Rn onto Vl. The Ql matrices are constructed by expressing

y in terms of a yield identity (Nelder, 1965a), i.e. an equation defining the partitioning of the

overall variation in y in terms of a set of orthogonal components based on the experimental

design’s block structure. Consequently, the Ql matrices are symmetric, (i.e. Q′l = Ql), orthogo-
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nal, (i.e. QlQ
′
l = 0; l 6= l′), and idempotent (i.e. Q2

l = Ql) (Hadi, 1996). The remainder of this

subsection describes how the orthogonal projector matrices, Ql, are defined and connects the

block design matrices in (2.4) to the projector matrices in (2.5).

Consider a null experiment comprising m blocks of size k, i.e. each block comprises k ex-

perimental units under homogeneous condition. The linear mixed model in (2.1) simplifies to

y = 1µ+ Z1u1 + ε, (2.6)

so that

var(y) = σ2In + σ2
1Z1Z

′
1.

For this experiment, the null yield identity for observation yij from the j-th experimental unit

in the i-th block is given by

yij = ȳ.. + (ȳi. − ȳ..) + (yij − ȳi.). (2.7)

where ȳ.. denotes the grand mean, and ȳi. denotes the mean of the observations in block i,

(i = 1, . . . ,m1; j = 1, . . . , k). Writing the observation vector y, in (2.6), in lexicographical

order, i.e. y = (y′1,y
′
2, . . . ,y

′
m1

)′, where y′i = (yi1, . . . , yik), it follows that (2.7) may be written

in matrix notation as

y =
2∑
l=0

Qly, (2.8)

where Q0 = Kn is an n×n averaging matrix with all elements equal to n−1, Q1 = P1−Kn and

Q2 = In −P1, so that Q0 + Q1 + Q2 = In, and where

P1 = Z1(Z′1Z1)−1Z′1 (2.9)

is, by definition, the projection matrix of Z1. Thus, pre-multiplying y by P1 projects y onto

the column space of Z1, which is also known as pivotal sweep (Brien and Payne, 1999). Pre-

multiplying y by the orthogonal complement of P1, namely In − P1, projects y onto the space

orthogonal to that spanned by the column space of Z1, which is also known as reanalysis sweep

(Brien and Payne, 1999). Thus, the projector matrices Q0, Q1 and Q2 defined in (2.8) project y

from Rn onto the grand mean, between blocks and within blocks vector subspaces, respectively.

It follows from (2.8) and (2.9) that the total SS is given by

y′y =y′

(
2∑
l=0

Ql

)
y (2.10)

=y′Kny + y′(P1 −Kn)y + y′(In −P1)y, (2.11)
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showing its decomposition into the grand mean, between blocks and within blocks SS, respec-

tively.

Following from (2.10), it can be shown that the expected sum of squares (ESS) in the l-th

stratum of the null ANOVA is given by

E(y′Qly) = trace [Ql var(y)]

= σ2
1trace(Z′1QlZ1) + σ2trace(Ql), (2.12)

since the trace of the product of the matrices is invariant under any cyclic permutation of

them (Searle, 1982). Further, the trace(Ql) yields the total DF in the l-th stratum. It follows,

therefore, that the EMS in the l-th stratum given by

EMSl =
E(y′Qly)

trace(Ql)
. (2.13)

Thus, from (2.11) – (2.13), we can generate the theoretical null ANOVA shown in Table 2.1.

Table 2.1: Theoretical null ANOVA for an experiment with m1 blocks of size k.

Source of Variation DF SS EMS

Between Blocks m1 − 1 y′(P1 −Kn)y σ2 + kσ2
1

Within Blocks m1(k − 1) y′(In −P1)y σ2

Grand Mean 1 y′Kny

Total n y′y

2.2.3 Computing the treatment SS

In Section 2.2.2 it was shown how, by defining a null yield identity we were able to generate

orthogonal projector matrices, Ql, enabling block-information decomposition yielding the the-

oretical null ANOVA. We now consider the process of treatment-information decomposition in

an ANOVA when treatments are applied to the experimental units (Nelder, 1965b).

Consider again the null experiment described in section 2.2.2 with m blocks of size k. We

now overlay on this a two-factor factorial experiment with treatment factors, F1 and F2 at t1

and t2 levels, respectively, arranging the treatments in a randomized complete block design. We

extend the linear model defined in (2.6) to include a t× 1 vector of treatment parameters α, i.e.

y = 1µ+ Xα+ Z1u1 + ε, (2.14)

where α = (α11, . . . , α1t2 , α21, . . . αt2t2). The effect of the treatment combination having factor

F1 at level f1 and factor F2 at level f2 is denoted by αf1f2 , (f1 = 1, . . . , t1; f2 = 1, . . . , t2). The
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yield identity for treatments, ignoring blocks, for this factorial experiment is given by

αf1f2 = α.. + (αf1. − α..) + (α.f2 − α..) + (αf1f2 − αf1. − α.f2 + α..), (2.15)

where α.. denotes the overall mean, and where αf1. and α.f2 are the means averaged over the

levels of factor F1 at level f1 and Factor F2 at level f2, respectively. Thus, αf1.−α.. corresponds

to the main effect of factor F1 at level f1, α.f2 − α.. corresponds to the main effect of factor F2

at level f2, and αf1f2 + αf1. + α.f2 − α.. corresponds to the interaction effect between factors F1

and F2 at levels f1 and f2, respectively.

In matrix notation, the yield identity in (2.15) can be expressed as

α = C00α+ C10α+ C01α+ C11α

where

C00 = Kt1⊗Kt2 ,C01 = Kt1⊗ (It2−Kt2),C10 = (It1−Kt1)⊗Kt2 ,C11 = (It1−Kt1)⊗ (It2−Kt2).

The matrix Cx is the treatment projection matrix for a generalised interaction x = x1x2, where

xi = 1 if factor Fi is present in the interaction and zero otherwise, given by

Cx1x2 = Cx1 ⊗Cx2

where

Cxi =

Iti −Kti , if xi = 1

Kti , if xi = 0

. (2.16)

More generally, it can be shown that for a v-factor experiment with treatment factor Fi at

ti levels, (i = 1, . . . , v), the vector of treatment parameters is given by

α =
∑
x

Cxα (2.17)

where

Cx = Cx1 ⊗Cx2 ⊗ · · · ⊗Cxv ,

is the treatment projection matrix for a generalised interaction x = x1x2 . . . xv and where

Cxi is given by (2.16). The generalised interaction is denoted by F x = F x1
1 F x2

2 . . . F xv
v (x =

x1x2 . . . xv; xi = 1, 2; i = 1, 2, . . . , v) (John and Williams, 1995).

The next step is to estimate the treatment main and interaction effects in α from the reduced

normal equations, which are derived by: (1) minimizing the error sum of squares ε′ε in (2.6)

with respect to the vector of treatment parameters, α, and (2) eliminating from the resultant
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normal equations the mean and block parameters (John and Williams, 1995). Now consider

the least squares estimator of α decomposed in stratum l, denoted by α̂l, the reduced normal

equations corresponding to the l-th stratum of the ANOVA are given by

Alα̂l = ql, (2.18)

where

Al = LxQlL
′
x and (2.19)

ql = LxQly, (2.20)

are the symmetrical treatment information matrix and the vector of the adjusted treatment

totals, respectively. The matrix Lx = CxX
′ is to simplify the notation in (2.19) and (2.20).

A solution to the normal equations, obtained by substituting (2.19) and (2.20) into (2.18)

and solving for α̂l yields the vector of estimated treatment effects

α̂l = A−l ql = (LxQlL
′
x)
−LxQly, (2.21)

where A−l is a generalised inverse of Al satisfying AlA
−
l Al = Al. Thus, the treatment SS

corresponding to the generalised interaction F x in the l-th stratum is given by

q′lA
−
l ql = y′Qx(l)y. (2.22)

where Qx(l) = QlL
′
xA
−
l LxQl and denotes the projection matrix which projects y onto the

treatment vector subspace spanned by F x in the l-th stratum. The treatment ESS is then

given by

E(y′Qx(l)y) = trace[Qx(l) var(y)] +α′

(∑
x

LxQx(l)L
′
x

)
α, (2.23)

where trace[Qx(l) var(y)] contains the coefficients of the variance components, denoted by σ2,

and α′
(∑

x LxQx(l)L
′
x

)
α contains the fixed effects components, denoted by θ2, of the ESS in

the lth stratum.

The quadratic form α′
(∑

x LxQx(l)L
′
x

)
α in (2.23) can be re-written as

α′

(∑
x

LxQx(l)L
′
x

)
α =

tx−1∑
g=1

λg(p
′
gα)2,

where λg and pg denote the g-th eigenvalue and eigenvector of the information matrix in stratum

l, denoted by LxQx(l)Lx, (g = 1, 2, . . . , tx− 1). Thus, p′gα is also known as g-th basic treatment

contrast, which provides an orthogonal decomposition of the tx−1 DF for treatment effects into
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single degree of freedom components (John and Williams, 1995). The fixed effects components

of the EMS can then be expressed as

α′LxQx(l)L
′
xα

tx − 1
=

∑tx−1
g=1 λg(p

′
gα)2

tx − 1
= θx

∑tx−1
g=1 λg

tx − 1
, (2.24)

where θx =
∑tx−1

g=1

(p′gα)2

tx − 1
, which denotes the fixed effect parameter for the generalised interac-

tion F x.

If treatment allocation is balanced, i.e. the treatment is equally replicated, the eigenvalues

should be identical, i.e. all λg = λ, then from (2.24)

θx

∑tx−1
g=1 λg

tx − 1
= λθx. (2.25)

Thus, the eigenvalue is the same as the coefficient of the fixed effect parameter θx.

The proportion of treatment information across different strata can be quantified using the

efficiency factor (Yates, 1936). The canonical efficiency factors, denoted by eg for the g-th basic

treatment contrast, are calculated by dividing the eigenvalue by the treatment replication, r, i.e.

eg =
λg
r
. (2.26)

If every estimable treatment contrast is fully efficient, then the canonical efficiency factors all

equal one; hence, the eigenvalue and the coefficient of θx must be the same as the treatment

replication.

If the treatment allocation is not balanced, then the eigenvalues are not identical; so each

coefficient needs to be presented separately for the fixed effect parameter of each basic treatment

contrast, i.e.

λ1θx(1) + λ2θx(2)+, . . . ,+λtx−1θx(tx−1).

Thus, the canonical efficiency factors are obtained as the eigenvalues of the information matrix

for a block design with unequally replicated treatments, i.e.

r−δ/2LxQx(l)L
′
xr
−δ/2 (2.27)

where r−δ/2 is a diagonal matrix with i-th diagonal element equal to r
1/2
i and ri is the replication

of i-th treatment combination in α (John and Williams, 1995). Since the canonical efficiency

factors are not identical, the proportion of treatment information for the intra-block analysis

can be computed, namely the average efficiency factor (Yates, 1936). The average proportion

of the treatment information associated with generalised interaction F x in stratum l, denoted
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by Ex, is given by

Ex =
tx − 1∑tx−1
g=1 e−1

g

, (2.28)

which is the harmonic mean of the canonical efficiency factors (John and Williams, 1995).

2.2.4 Computing the residual SS

The residual SS in stratum l, denote by RSSl, is computed by subtracting the sum over all the

SS of all generalised interactions F x, denote by y′
(∑

x Qx(l)

)
y, from the total SS, denote by

y′Qly, i.e.

RSSl = y′Qly − y′
(∑

x

Qx(l)

)
y = y′

(
Ql −

∑
x

Qx(l)

)
y. (2.29)

In summary, this section described the information decomposition of a single-phase experi-

ment that involved basic decomposition steps: adjusting for the grand mean, defining the strata

based on the block structures and computing treatment SS based on the treatment structure

within each defined strata. The next section extends the decomposition method to the two-phase

experiment.

2.3 Information decomposition for two-phase experiments

Information decomposition of two-phase experiments involves an additional decomposition step,

namely that of the block information from the Phase 2 experiment. Recall that in a single-phase

experiment, the block-information decomposition process begins with the construction of the

null ANOVA (see Section 2.2). In a single-phase experiment, this is straightforward as there is

a single tier for block factors. In a two-phase experiment, however, there are two tiers of block

factors, and the decomposition begins with the strata corresponding to the block structure in the

Phase 2 experiment, followed by the decomposition into the strata corresponding to the Phase

1 experiment block structure.

The allocation of experimental units from the Phase 1 experiment to blocks in the Phase 2

experiment often results in the block effects from the two phases interacting with one another

in such a way that they are non-orthogonal. When this happens, the Phase 1 experiment’s

block information is dispersed across multiple strata of the ANOVA arising from the Phase 2

experiment’s strata (Wood et al., 1988), just as treatment effects in a balanced incomplete

block design (BIBD) are dispersed across strata in a single-phase experiment. Consequently,

the procedure for the Phase 1 block-information decomposition follows the method described in

Section 2.2.3 by regarding the Phase 1 block factors just as we would treatment factors.
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2.3.1 The linear mixed-effects model

Consider a two-phase experiment involving t = t1t2...tν treatments arranged in a block design

with overall block size of m = m1m2 . . .mb for the Phase 1 experiment, where ti denotes the

number of levels of the i-th treatment factor, Fi, and mj is the block size for the j-th Phase 1

block factor, Bj (i = 1, . . . , ν; j = 1, . . . , b). Furthermore, the experimental units of the Phase 1

experiment are further arranged in another block design involving p block factors in the Phase 2

experiment. The block size of the k-th Phase 2 block factor, Hr is denoted by sr (r = 1, . . . , p).

The linear mixed-effects model for a two-phase experiment can be expressed in matrix notation

as

y = 1µ+ Xα+ Z∗u∗ + Wv + ε, (2.30)

where the vector of fixed treatment effects parameters, α, and its corresponding treatment design

matrix, X, are defined as in (2.1). Since the Phase 1 block factors are regarded as treatment

factors, the m = m1m2 . . .mb Phase 1 block parameter u∗ is defined with the same structure as

the treatment effects parameters, α, in (2.2), i.e.

u∗ = (u11...11, u11...12, . . . , u11...1mj , . . . , u11...mb−1mb , . . . , um1m2...mb−1mb)
′, (2.31)

where uB1B2...Bb ∼ N(0, σ2
B1B2...Bb

) denotes the random effect of block Bb within the combination

of blocks B1B2 . . . Bb−1 in the Phase 1 experiment. The Phase 1 block parameter u∗ is defined

based on the ordering of the combination of all block factors in the Phase 1 experiment, which is

associated with the effects of plots within all the blocks of the Phase 1 experiments. In addition,

the structure of the Phase 1 block design matrix, Z∗, is a binary n ×m matrix describing the

allocation of the Phase 1 experimental units, which is also defined differently to the block design

matrix as in (2.1). The new layout of the information from the Phase 2 experiment consists of

m× 1 vector of Phase 2 block parameters

v = (v′1,v
′
2, . . . ,v

′
p)
′

where s =
∑p

r=1 sr, and where

v′r = (vr1, vr2, . . . , vrsr)

and vro ∼ N (0, σ2
Hr

), (r = 1, 2, . . . , p; o = 1, 2, . . . , sr). The n × s block design matrix, W, in

(2.1) can be partitioned into n× sr sub-matrices Wr, i.e.

W = [W1|W2| . . . |Wp],
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where Wr has (h, o)-th element equals to 1 if the h-th observation corresponds to an experi-

mental unit in the o-th block of Hj, and is zero otherwise, (h = 1, 2, . . . , n; r = 1, 2, . . . , p; o =

1, 2, . . . , sk). Table 2.2 shows the notations of design matrices and parameters of the treatment

and block factors between the single-phase and two-phase experiments.

Table 2.2: Notations of the treatment and block factors between single and two-phase experi-
ments.

Factors Single-phase Two-phase

Treatment Notation Fi Fi
Index i = 1, 2, . . . , ν i = 1, 2, . . . , ν
Length t = t1t2 . . . tv t = t1t2 . . . tv
Parameters α = (α11...1, . . . , αt1t2...tv)

′ α = (α11...1, . . . , αt1t2...tv)
′

Design matrices X X
(Phase 1) Block Notation Bj Bj

Index j = 1, 2, . . . , b j = 1, 2, . . . , b

Length
∑b

j=1 mj m = m1m2 . . .mb

Parameters u = (u′1,u
′
2, . . . ,u

′
b)
′ u∗ = (u11...1, . . . , um1m2...mb)

′

u′j = (uj1, uj2, . . . , ujmj)
′

Design matrices Z = [Z1|Z2| . . . |Zb] Z∗

Phase 2 Block Notation Hr

Index r = 1, 2, . . . , p
Length

∑p
r=1 sr

Parameters v = (v′1,v
′
2, . . . ,v

′
p)
′

v′r = (vr1, vr2, . . . , vrsr)
Design matrices W = [W1|W2| . . . |Wp]

2.3.2 Null ANOVA of Phase 2 block structure

The null ANOVA resulting from the decomposition of the Phase 2 block information is computed

exactly as per Section 2.2.2. The first step is to construct a list of n × n orthogonal projector

matrices which project y onto each stratum, based on the Phase 2 block structure, where the

orthogonal projector matrix for l-th stratum is denoted by Ql.

2.3.3 Null ANOVA of Phase 1 block structure

Once the orthogonal projector matrices for each stratum are defined based on the Phase 2 block

structure, the next step is to construct the ANOVA of the null experiment by decomposing the

Phase 1 block information within the l-th stratum. Consider a Phase 1 experiment arranged in

a randomised complete block design with m1 blocks of size m2, where the m1m2 × 1 vector u∗
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corresponds to the random effects of plots within blocks as

(u11, u12, . . . , um1m2)
′. (2.32)

where um1m2 denotes the effect from plot B2 within block B1, (mj = 1, . . . , sj; j = 1, 2). The

yield identity of uh1h2 can be written as,

um1m2 = u.. + (um1. − u..) + (um1m2 − um1.), (2.33)

where u.. denotes the mean overall the observations from all plots in all blocks, um1.−u.. denotes

the effect from block B1 at level m1, and um1m2 − um1. denotes the effect from plot B2 at level

m2 within block B1 at level m1.

In matrix notation, the yield identity in (2.33) can be expressed as

u∗ = C00u
∗ + C10u

∗ + C21u
∗

where

C00 = Kb1 ⊗Kb2 ,C10 = (Ib1 −Kb1)⊗Kb2 ,C21 = Ib1 ⊗ (Ib2 −Kb2).

The matrix Cz is the block projection matrix for a generalised interaction z = z1z2, given by

Cz = Cz1 ⊗Cz2

where

Czj =


Kmj , if zj = 0

Imj −Kmj , if zj = 1

Imj , if zj = 2.

(2.34)

More generally, for a Phase 1 experiment with b block factors with Bj at mj levels, (j =

1, . . . , b), the vector of Phase 1 block parameters then is given by

u∗ =
∑
z

Czu
∗ (2.35)

where

Cz = Cz1 ⊗Cz2 ⊗ · · · ⊗Czb =
b⊗

j=1

Czb

is the block projection matrix for a generalised interaction z = (z1z2 . . . zb) and where Czi is

given by (2.34).

The procedure for the Phase 1 block-information decomposition follows the method described

in Section 2.2.3 by regarding the Phase 1 block factors just as we would treatment factors. Given
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that û∗l denotes the least square estimator of u∗ in the l-th stratum from the Phase 2 experiment,

reduced normal equations for the decomposition the Phase 1 block structure in the l-th stratum

of the ANOVA is given by

Alû
∗
l = ql, (2.36)

where

Al = LzQlL
′
z, (2.37)

ql = LzQly, (2.38)

are the symmetrical Phase 1 block information matrix and vector of adjusted Phase 1 block

totals, respectively. The matrix Lz = CzZ
′ is again used to simplify the notation.

Substituting (2.37) and (2.38) into (2.36), solving for ûl yields the vectors of estimated block

effects

û∗l = A−l ql.

Thus, the Phase 1 block SS for Bj in the l-th stratum of the Phase 2 experiment is given by

q′lA
−
l ql = y′QlL

′
zA
−
l LzQly. (2.39)

The residual Phase 1 block SS in the l-th stratum is then derived by subtraction which gives

RSSl = y′Ql

(
I−

∑
z

L′zA
−
l Lz

)
Qly.

In general, suppose the matrix Cz in matrix Lz represents the Phase 1 block projection

matrix for the j-th Phase 1 block factor in l-th stratum of a two-phase experiment, then the

orthogonal projector that projects the data vector, y, onto the vector subspace j of the Phase 1

experiment within the vector subspace l of the Phase 2 experiment is given by

Qj(l) = QlL
′
zA
−
l LzQl.

This orthogonal projector Qj(l) can then be used to compute the Treatment SS in the following

subsection.

2.3.4 Computing the treatment SS

The information decomposition of the treatment structure for the two-phase experiment is com-

puted exactly as per Section 2.2.3, apart from replacing the orthogonal projector matrix from

Ql by Qj(l). This is because the overall treatment information is now decomposed in the j-th
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stratum of the Phase 1 experiment within the l-th stratum of the Phase 2 experiment in the

ANOVA.

This section summarised the information decomposition method for the two-phase experi-

ments. The main difference from the single-phase experiments is the additional decomposition

procedure of the Phase 1 block factors to the Phase 2 block factors. Furthermore, since the

Phase 1 block factor/s can be confounded with multiple Phase 2 block factors, this additional

decomposition procedure must be performed in the same way as the decomposition of the treat-

ment information to block structure for the single-phase experiment. The vector of the block

parameters and design matrix of the linear model for the Phase 1 experiment, thus are defined

in the same way as the treatment parameters and design matrix of the linear model for the

single-phase experiment.

2.4 Application to quantitative proteomics experiments

Quantitative proteomics uses analytical chemistry techniques to quantify the abundances of the

complement of proteins in a biological sample at a cross-section of space and time. Many quanti-

tative proteomics experiments have as their primary objective the identification of proteins that

are differentially abundant between different experimental conditions or treatments. Such stud-

ies are intrinsically two-phase because protein identification and abundance cannot be measured

directly from the experimental units to which the treatments are applied (Phase 1); rather,

measurements are made in a subsequent laboratory-based experiment (Phase 2) which itself

introduces additional sources of variation to those from the earlier phase.

Once the target cells or tissues are harvested, each sample is independently processed, includ-

ing steps for reduction, alkylation, total protein quantification and enzymatic digestion (usually

with trypsin) into many smaller peptide fragments (Ross et al., 2004). The peptide fragments are

then separated using the different properties (Washburn et al., 2001). The first separation is by

charge, using strong cation exchange chromatography (SCX), followed by hydrophobicity, using

reversed phase liquid chromatography (RPLC). The third dimension of separation is by mass and

is carried out by mass spectrometry (MS). These series of separations, namely Multi-dimensional

Protein Identification Technology (MudPIT), reduces sample complexity and allow more accu-

rate measurement of protein abundance. Hence, each MudPIT run is comprised of these three

steps of separation. Since the measurement of abundances was performed on peptides, the cor-

responding proteins need to be identified using an appropriate bioinformatics software search

engine searched from protein database. Examples of such software are MascotTM 2.6 (Matrix
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Science), SEQUEST R© (Sadygov et al., 2004) and ProteinPilotTM 5.0 (Sciex).

However, comparison of protein abundances between samples is difficult due to the variability

between different MudPIT experiments. This limitation has been resolved by the introduction

of isobaric Tags for Relative and Absolute Quantitation (iTRAQTM). The iTRAQTM labelling

chemistry works by binding the tags to each peptide which enables the simultaneous analysis of

up to eight distinct samples within a single MudPIT experiment (Ross et al., 2004; Choe et al.,

2007).

2.5 Example of two-phase proteomics experiment

This section presents an example of a two-phase proteomics experiment when the Phase 1 ex-

periment consists of eight animals randomly assigned to one of two groups in which four are

injected with saline (Healthy) and the remaining four are injected with a disease-inducing drug

(Disease). The Phase 2 experiment consists of four MudPIT runs and four iTRAQTM tags (i.e.

four differentially labelled proteomic samples per run). The main objective of this experiment is

to compare the protein abundances between healthy and diseased animals. Additionally, we will

also show how the theoretical ANOVA tables are derived for the Phase 1 and 2 experiments.

2.5.1 Phase 1 experiment

The Phase 1 experiment is arranged in a completely randomised design (CRD) with eight an-

imals, where four animals are randomly assigned to each of the healthy and diseased groups

as shown in Table 2.3. The four animals in each treatment group are used to assess biological

variation and are known as biological replicates. Thus, the Phase 1 experiment consists of a

block structure of just Animal factor and a treatment structure of Disease status factor.

Table 2.3: Design of Phase 1 experiment showing the assignment of the eight animals, labelled
A - H, to disease status’ group.

Healthy A C E G
Diseased B D F H

Let yij denote the log abundance of a given protein in animal j under disease status i. Then,

the linear model of the Phase 1 design is given by

yij = µ+ τi + aj, (2.40)

where µ denotes the grand mean, τi denotes the fixed effect of disease status i, and aj ∼ N (0, σ2
a)
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denotes the random effect of animal j, (i = healthy, diseased; j = A,. . . , H ). Since the treatments

are directly applied to the animals and no measurements are made in the Phase 1 experiment,

there is no measurement error in the Phase 1 linear model (2.40).

Table 2.4: Theoretical ANOVA showing the decomposition of DF and EMS associated with
each source of variation.

Source of Variation DF EMS

Between Animals
Disease status 1 σ2

a + 4θτ
Residual 6 σ2

a

Total 7

Using the information decomposition method described in Section 2.2, the theoretical ANOVA

table for the Phase 1 experiment can be generated as shown in Table 2.4. The theoretical ANOVA

table contains the DF and EMS of each source of variation. Since no measurements were made

in the Phase 1 experiment, the Between Animals stratum has captured the overall analysis. The

DF associated with the Between Animals stratum is seven, because there is a total of eight

animals. The Between Animals stratum is decomposed to 1 and 6 DF for the EMS of Disease

status and Residual, respectively. Furthermore, the Disease status EMS is σ2
a + 4θτ , where σ2

a

denotes the variation between animals and θτ is the fixed effects component for Disease status.

The coefficient of θτ is four, because each Disease status is replicated four times. Finally, the

Residual EMS consists of only the variation between animals, denoted by σ2
a.

2.5.2 Phase 2 experiment

In practice, protein abundances cannot be measured directly from the animals and so Table 2.4

cannot be used to test for the Disease status effects. Obtaining measurements of protein abun-

dances requires tissue to be harvested from the target organ in each animal. Each tissue sample

requires laboratory processing for the proteins to be extracted and for their subsequent pro-

teomic analysis in the Phase 2 MudPIT-iTRAQTM experiment. The aim is to assign samples

in such a way that both Disease status and Animal effects are orthogonal to MudPIT Run and

iTRAQTM Tag effects, which allows us to estimate Disease status effects in the Phase 2 experi-

ment as precisely as we did in the Phase 1 experiment. Thus, the Phase 2 experiment consists of

Phase 2 block structure of MudPIT Run factor, Phase 1 block structure of Animal factor, and

treatment structure of Tag and Disease status factors.

Given there are eight animals from the Phase 1 experiment, two tissue samples are harvested

from the target organ of each animal and independently processed in the laboratory. These

42



Chapter 2. infoDecompuTE: an R package for constructing theoretical ANOVA tables for
two-phase experiments

two tissue samples are referred to as technical replicates, because we have shown the technical

variation is largely due to series of the laboratory processes which includes pipetting error,

differences in digestion efficiency and recovery of proteins during database searching (Chang,

2008). There is thus a total of 16 samples to be measured in the Phase 2 MudPIT-iTRAQTM

experiment.

If a four-plex labelling system is used, then four runs are required. However, since the run

size is four, it is not possible to allocate samples from each of the eight animals into a single run.

The next best option is to divide the runs into two pairs: runs 1 and 2 in the first and runs 3 and

4 in the second. Then the samples from all eight animals can be allocated to each of these two

pairs of runs. The next step is to assign the Disease status groups. Since there are two Disease

status groups, the four runs and four tags arrangement is split into four 2-by-2 arrays and the

disease status groups are then assigned to each array with the Latin square arrangement. The

16 samples from 8 animals are labelled A - H, with Animals A, C, E and G assigned to the

Healthy group and B, D, F and H assigned to the Diseased group. This allocation of animals to

runs and tags for the Phase 2 design is shown in Table 2.5.

Table 2.5: Design of Phase 2 experiment showing allocation of sub-samples from animals and
disease statues to runs and tags. The letters denote the animal IDs.

Tag
Run 114 115 116 117

1 A:Healthy B:Diseased C:Healthy D:Diseased
2 F:Diseased E:Healthy H:Diseased G:Healthy
3 C:Healthy D:Diseased A:Healthy B:Diseased
4 H:Diseased G:Healthy F:Diseased E:Healthy

Let yijkls denote the log abundance of one given protein in sub-sample s from animal j under

disease status i and measured from the l-th MudPIT run with iTRAQTM tag k. Note that the

MudPIT-iTRAQTM experiment measures the protein abundance values of all the proteins in the

collected sample. The subscript and superscript indices of the observation, yijkls, correspond to

the indices from the Phase 2 and Phase 1 experiments, respectively. The linear model of the

Phase 2 experiment is then given by

yijkls = µ+ τi + aj + γk + rl + εijkls, (2.41)

where rl ∼ N (0, σ2
r) denotes the random effects from MudPIT run l, γk denotes the fixed effects of

tag k, εijkls ∼ N (0, σ2) denotes the effects from sub-sample s in animal j from run l under disease

status j and tag k, (k = 114, . . . , 117, l = 1, . . . , 4, s = 1, 2). Additionally, εijkls corresponds to

the experimental error, because the sample is the smallest unit of the Phase 2 experiment. The
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remaining terms are defined as in (2.40). Furthermore, the Disease status and Tag effects are

assumed not to interact.

Using the information decomposition method described in Section 2.3, the theoretical ANOVA

table of the Phase 2 experiment can be generated and is shown in Table 2.6. Since there are 16

observations, there are total of 15 DF to be decomposed. These 15 DF are broken down into 3

and 12 DF for the Between and Within Runs strata, respectively. The Between Runs stratum is

further separated into 1 and 2 DF corresponding to the Between Animals and Residual (Within

Animals Between Runs) strata, respectively. The Within Runs stratum is decomposed into two

sets of 4 DF for the Between Animals and Between Samples Within Animals strata, respectively.

The Between Animals Within Runs stratum is further decomposed to the EMS of the Disease

status (1 DF), Tag (1 DF) and Residual (4 DF). Notably, all of the Disease status effect is

estimated in the Between Animals Within Runs stratum. Finally, the Between Sample Within

Animals Within Runs stratum is decomposed to the EMS of Tag (2 DF) and Residual (4 DF).

Comparing this ANOVA table (see Table 2.6) to that of the Phase 1 experiment (see Ta-

ble 2.4), the animals originally have 7 DF; however, 1 DF is now in the Between Runs stratum

and another 1 DF is confounded with Tag effects. A valid F-test for the Disease status effect

can still be conducted for the Between Animals Within Runs stratum, but the DF associated

with the Residual EMS is reduced from 6 DF to 4 DF, leading to a reduction in the precision in

which the Disease status effects are estimated.

Table 2.6: Phase 2 ANOVA of design in Table 2.5 with the coefficients of variance components
of EMS.

Source of Variation DF EMS

Between Runs
Between Animals 1 σ2 + 2σ2

a + 4σ2
r

Residual 2 σ2 + 4σ2
r

Within runs
Between Animals

Tag 1 σ2 + 2σ2
a + 4θγ

Disease status 1 σ2 + 2σ2
a + 8θτ

Residual 4 σ2 + 2σ2
a

Between Samples Within Animals
Tag 2 σ2 + 4θγ
Residual 4 σ2

Total 15
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2.6 An R package: InfoDecompuTE

InfoDecompuTE is written in the R programming language (R Core Team, 2017). It auto-

mates the information decomposition procedures described in Sections 2.2 and 2.3, producing

theoretical ANOVA tables such those shown in Tables 2.4 and 2.6. InfoDecompuTE comprises

a suite of functions (see Appendix A), that performs different stages of the information de-

composition and which are used by the two primary functions: named summaryAovOnePhase

and summaryAovTwoPhase, to generate the theoretical ANOVA tables for single-and two-phase

experiments. The remainder of this Chapter considers these two main functions.

2.6.1 Installation instructions

InfoDecompuTE requires at least version 3.3.0 of the R statistical programming environment

which is available from the Comprehensive R Archive Network at http://CRAN.R-project.

org/ (R Core Team, 2017). The system requirements for this package depend on the size of

the experimental design, for example, number of blocks and block sizes, number of treatment

factors and number of replicates of each treatment. This is because the number of factors and

observations is directly related to the dimensions of the matrices which can affect the speed of

computation.

Providing that the user has an internet connection, infoDecompuTE can be installed and

initiated by typing the following two commands in a new R session:

> install.packages("infoDecompuTE")
> library("infoDecompuTE")

The package can also be downloaded from http://cran.r-project.org/web/packages/infoDecompuTE/

index.html.

2.6.2 Functions

This section explains the arguments for the two main functions in the infoDecompuTE package.

These two functions and their arguments are:

summaryAovOnePhase(design.df, blk.str, trt.str, var.comp = NA,
trt.contr = NA, table.legend = FALSE,
response = NA, latex = FALSE, fixed.names = NA,
decimal = FALSE, digits = 2, list.sep = TRUE)

summaryAovTwoPhase(design.df, blk.str1, blk.str2, trt.str, var.comp = NA,
blk.contr = NA, trt.contr = NA, table.legend = FALSE,
response = NA, latex = FALSE, fixed.names = NA,
decimal = FALSE, digits = 2, list.sep = TRUE)
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where the description of each argument is shown in Table 2.7. The rest of this section first

shows how to generate the theoretical ANOVA tables from the two-phase experiment example

described in Section 2.5 and then explains the usage of each argument which provides additional

functionalities.

Table 2.7: Description of summaryAovOnePhase and summaryAovTwoPhase functions’ argu-
ments.

Argument Description

design.df data frame containing the experimental design.
blk.str structure formula for the block factors.
blk.str1 structure formula for the block factors of Phase 1 experiment.
blk.str2 structure formula for the block factors of Phase 2 experiment.
trt.str structure formula for the treatment factors.
var.comp specifies the variance components to be shown in the ANOVA table.
trt.contr list of treatment contrast vectors.
table.legend legend for the names of variance components for large designs.
response experimental data of the experiment.
latex allows output of the Latex script to Latex table.
fixed.names symbols for the fixed effects in the Latex outputs.
decimal allows display of the coefficients as decimals.
digits number of decimal places.
list.sep shows the efficiency factors and coefficients of the fixed effects together.

2.6.3 Phase 1 experiment

We first show how to use the summaryAovOnePhase function which generates the theoretical

ANOVA table of the Phase 1 experiment. The first argument of the function, design.df,

consists of the experimental design in a data frame format. The class of each vector in the

data frame should be a factor. Variable names must not contain any punctuation characters or

symbols such as parentheses. The Phase 1 design in Table 2.3 can be presented as a data frame

shown below,

> design1

Ani Trt
1 A healthy
2 B diseased
3 C healthy
4 D diseased
5 E diseased
6 F healthy
7 G diseased
8 H healthy

where Ani denotes animal ID and Trt denotes disease status.
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The blk.str and trt.str in summaryAovOnePhase allow the user to input the block and

treatment structures, respectively, using Wilkinson and Rogers’ syntax (Wilkinson and Rogers,

1973). The user can also refer to the documentation file for R’s formula function for further in-

formation on structure formulae. For the Phase 1 experiment (Section 2.5.1), the block structure

formula is Ani, whereas the treatment structure formula contains a single term for the disease

status, Trt. The output from summaryAovOnePhase is

> summaryAovOnePhase(design1, blk.str = "Ani", trt.str = "Trt")

$ANOVA
DF Ani

Between Ani
Trt 1 1
Residual 6 1

$Fixed
$Fixed$Coef

Trt
Between Ani

Trt 4

$Fixed$EF
eff.Trt

Between Ani
Trt 1

where each part has the decomposition of the sources of variation. The first sub-table, denoted

by ANOVA, is the random effects table which lists the DF associated with each source of variation.

The EMSs are split between the two sub-tables with the first sub-table giving coefficients of the

variance components for each source of variation. The second sub-table, denoted by Fixed,

is further split into two sub-tables where the first sub-table, denoted by Coef, containing the

coefficients for the fixed effects part of the EMS, and the second sub-table, denoted by EF,

contains the average efficiency factors for each fixed effect.

2.6.4 Phase 2 experiment

The function summaryAovTwoPhase is used to generate the theoretical ANOVA for two-phase

experiments. The data frame of the Phase 2 design in Table 2.5 is shown below

> design2

Run Ani Sam Tag Trt
1 1 A 1 114 healthy
2 1 B 1 115 diseased
3 1 C 1 116 healthy
4 1 D 1 117 diseased
5 2 E 1 114 diseased
6 2 F 1 115 healthy
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7 2 G 1 116 diseased
8 2 H 1 117 healthy
9 3 C 2 114 healthy
10 3 D 2 115 diseased
11 3 A 2 116 healthy
12 3 B 2 117 diseased
13 4 G 2 114 diseased
14 4 H 2 115 healthy
15 4 E 2 116 diseased
16 4 F 2 117 healthy

where Run denotes MudPIT runs, Sam denotes sub-samples and Tag denotes iTRAQTM tags.

Recall the two-phase experiment from Section 2.5.2. The Phase 1 block structure consists of

Animals and the Phase 2 block structure is MudPIT run. The Phase 1 and 2 block structures

are represented by the arguments blk.str1 and blk.str2, and their structure formulae are

Ani and Run, respectively. The treatment structure is defined in the argument trt.str. Since

Disease status and Tag effects do not interact, the structure formula is Tag + Trt.

The output from summaryAovTwoPhase of the two-phase experiment in Section 2.5.2 is

> summaryAovTwoPhase(design2, blk.str1 = "Ani", blk.str2 = "Run",
+ trt.str = "Tag + Trt")

$ANOVA
DF e Ani Run

Between Run
Between Ani 1 1 2 4
Within Ani 2 1 0 4

Within Run
Between Ani

Tag 1 1 2 0
Trt 1 1 2 0
Residual 4 1 2 0

Within Ani
Tag 2 1 0 0
Residual 4 1 0 0

$Fixed
$Fixed$Coef

Tag Trt
Between Run

Between Ani
Within Ani

Within Run
Between Ani

Tag 4
Trt 8

Within Ani
Tag 4

$Fixed$EF
eff.Tag eff.Trt

Between Run
Between Ani
Within Ani

Within Run
Between Ani

Tag 1
Trt 1
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Within Ani
Tag 1

where the layout of this output is the same as that of the output from the summaryAovOnePhase

function. The only main difference is the column e, of sub-table ANOVA, which denotes the

variance component of experimental error.

2.6.5 Crossed or nested

Constructing these ANOVA tables requires first expanding each structure formula; R has pro-

vided a terms function to perform this task. However, when the structure formula comprises

two or more terms, these factors may be nested, e.g. Animal/Sample, then the output from the

terms gives

[1] "Animal" "Animal:Sample"

where Animal denote the effects of different animals and Animal:Sample denotes the effects of

different samples within animals. If the sample is assumed to be crossed with the animals, then

the output from the terms function gives

[1] "Animal" "Sample" "Animal:Sample"

where Animal and Sample denote the effects of different animals and samples, respectively.

However, Animal:Sample is identical to the previous output, but denotes the interaction ef-

fect between the animals and samples. Thus, it can become difficult to interpret whether the

Animal:Sample means crossed or nested in the final ANOVA table for complex single or two-

phase experiment. To overcome this confusion, we re-express the interaction effect of Between

Animals and Samples by Animal*Sample and the effects of Between Samples Within Animals

by Animal(Sample).

This additional functionality can be useful for the user to examine complex structure formulae

such as ((A/B)*C)/D, where the terms function will generate

[1] "A" "A:B" "C" "A:C" "A:B:C" "A:B:C:D

whereas, the function in infoDecompuTE generates

[1] "A" "A(B)" "C" "A*C" "A(B)*C" "A.B.C(D)"

whereby the user can easily identify that the relationship between A and B is nested and that

between A and C is crossed. In addition, the A(B)*C denotes the effect of Between B Within A

crossed with C, and A.B.C(D) denotes the effect of Between D Within A, B and C.
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2.6.6 Artificial strata or pseudo-factors

In the two-phase proteomics experiment described in Section 2.5, the four runs can be viewed

as two sets of two runs, namely Runs 1 and 3, and Runs 2 and 4. Samples of the same four

animals can be assigned to each of these two sets of runs. The Set of Runs factor does not

have its own random effects, as this artificial construct can partition the sources of variation to

allow us to examine the ANOVA table more easily. Since the construct is artificial, there are no

variance components associated with it. The var.comp argument, of summaryAovOnePhase and

summaryAovTwoPhase functions, can be used to hide the variance components of the artificial

construct. The new block factor, Set, is included in the block tier and the block structure formula

to enable the additional decomposition of the artificial strata. The first and second Run sets are

denoted by 1 and 2, respectively. This new vector of animal set, denoted by Set, is given by

> Set

[1] 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
Levels: 1 2

The Phase 2 block structure is then written as Set/Run, which means MudPIT runs are

nested within sets of runs. Since the Set of Runs factor is an artificial construct, it contributes

no additional variation and, therefore, does not have variance components associated with it. By

default, infoDecompuTE associates variance components with each block factor. A mechanism

is needed whereby actual random effect terms can have their variance components explicitly

specified. The var.comp argument is supplied with a vector of character strings containing the

names of the variance components which should be retained and appear as column names in

the ANOVA table. This argument can also be used to define the order in which the variance

components appear in the output table, i.e.

> summaryAovTwoPhase(design2, blk.str1 = "Ani", blk.str2 = "Set/Run",
+ trt.str = "Tag + Trt", var.comp = c("Ani", "Set(Run)")

$ANOVA
DF e Ani Set(Run)

Between Set
Between Ani 1 1 2 4

Between Set(Run) 2 1 0 4
Within Set.Run

Between Ani
Tag 1 1 2 0
Trt 1 1 2 0
Residual 4 1 2 0

Within Ani
Tag 2 1 0 0
Residual 4 1 0 0

Note Within Set.Run denotes Within Sets and Runs.
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2.6.7 Manually defined contrasts

There can be situations when the researcher needs to split up the information further by re-

expressing the treatment factor in terms of a set of 1 DF mutually orthogonal contrasts. In

Table 2.6, the 3 DF associated with Tags are split across two strata, namely Between Animals

Within Runs and Within Animals Within Runs, and this approach allows us to quickly identify

which contrast is confounded with which stratum. The example here illustrates the treatment

contrasts, where four iTRAQTM tags can be represented by three orthogonal contrasts from a

classical 2k design, as shown below

> Tag = list(Tag1 = Tag1, Tag2 = Tag2, Tag3 = Tag3)
> Tag

$Tag1
[1] 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

$Tag2
[1] 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

$Tag3
[1] 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

Note it is important that each contrast is uniquely named so that where its information lies is

easily identifiable in the ANOVA table. The argument table.legend allows the use of letters to

represent column names, and then inserts a legend at the bottom of the table. In this example,

argument table.legend of function summaryAovTwoPhase is set to TRUE, because once the

treatment contrasts are fitted separately, the larger number of columns in the table of fixed

components make the table difficult to read. The output is shown as follows,

> summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
+ trt.str = "Tag + Trt",
+ trt.contr = list(Tag = Tag,
+ Trt = Trt), table.legend = TRUE)

$ANOVA
$ANOVA$VC

DF a b c
Between Run

Between Ani 1 1 2 4
Between Ani(Sam) 2 1 0 4

Within Run
Between Ani

Tag.Tag2 1 1 2 0
Trt 1 1 2 0
Residual 4 1 2 0

Between Ani(Sam)
Tag.Tag1 1 1 0 0
Tag.Tag3 1 1 0 0
Residual 4 1 0 0

$ANOVA$Legend
[1] "a = Ani(Sam)" "b = Ani" "c = Run"
$Fixed
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$Fixed$Coef
a b c d

Between Run
Between Ani
Between Ani(Sam)

Within Run
Between Ani

Tag.Tag2 4
Trt 8

Between Ani(Sam)
Tag.Tag1 4
Tag.Tag3 4

$Fixed$Legend.Coef
[1] "a = Tag.Tag1" "b = Tag.Tag2" "c = Tag.Tag3" "d = Trt"
$Fixed$EF

a b c d
Between Run

Between Ani
Between Ani(Sam)

Within Run
Between Ani

Tag.Tag2 1
Trt 1

Between Ani(Sam)
Tag.Tag1 1
Tag.Tag3 1

$Fixed$Legend.EF
[1] "a = eff.Tag.Tag1" "b = eff.Tag.Tag2" "c = eff.Tag.Tag3" "d = eff.Trt"

Having broken down the tag contrasts, the random effects table shows that the Tag2 contrast

is estimated in the Between Animals Within Runs stratum, and Tag1 and Tag3 contrasts are

estimated in the Between Samples Within Animals Within Runs stratum. By breaking the

Treatment effects into multiple orthogonal contrasts, it is possible to more closely examine how

these contrasts contribute to each source of variation.

2.6.8 Mean squares computation

The summary.aov function in R can only compute the mean squares (MS) of single-phase ex-

periments using experimental data. For two-phase experiments, the researcher can input their

experimental data in the response argument to obtain the MS for each source of variation.

When this argument is used, an additional column of MS will appear in the last column of the

random effect table shown as,

> summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
+ trt.str = "Tag + Trt", response = rnorm(16))$ANOVA
$

DF Ani(Sam) Ani Run MS
Between Run

Between Ani 1 1 2 4 6.175
Between Ani(Sam) 2 1 0 4 0.667
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Within Run
Between Ani

Tag 1 1 2 0 0.025
Trt 1 1 2 0 1.733
Residual 4 1 2 0 1.086

Between Ani(Sam)
Tag 2 1 0 0 3.287
Residual 4 1 0 0 0.445

2.6.9 Latex output

The output from R is not always easy to read on the screen. The argument latex allows the

user to transform R output into LATEX script. Using the example from Section 2.5.2, the latex

argument of the summaryAovTwoPhase function is set to TRUE, i.e.

> summaryAovTwoPhase(design, blk.str1 = "Ani", blk.str2 = "Run",
+ trt.str = "Tag + Trt", latex = TRUE, fixed.names = c("\\gamma", "\\tau") )

Table 2.8 shows the ANOVA table which results from the compilation of the LATEX script, that

can be generated by the summaryAovOnePhase and summaryAovTwoPhase functions. Two LATEX

packages bm and booktabs are required to compile the LATEX script.

Table 2.8: Theoretical ANOVA table.

Source of Variation DF EMS Eγ Eτ

Between Run
Between Ani 1 σ2 + 2σ2

a + 4σ2
r

Between Ani(Sam) 2 σ2 + 4σ2
r

Within Run
Between Ani

Tag 1 σ2 + 2σ2
a + 4θγ 1

Trt 1 σ2 + 2σ2
a + 8θτ 1

Residual 4 σ2 + 2σ2
a

Between Ani(Sam)
Tag 2 σ2 + 4θγ 1
Residual 4 σ2

Production of the LATEX script requires Greek letters to define the fixed effects, i.e. θγ and

θτ . Since different experiments can have different sets of Greek letters, users can choose their

own sets of Greek letters to be displayed using the argument fixed.names. The subscripts of

Between Runs and Between Animals variance components, σ2
r and σ2

a, come from the lower case

of the first letter of the factor names in the design of the data frame and the Phase 1 and 2 block

structure formulae in blk.str1 and blk.str2, respectively. If the user needs to use a different

subscript, then they can change the first letter of the factor names both in the design of the

data frame and the block structure formulae. Note that this table not only contains the DF and
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EMS, but also the average efficiency factors for all the treatment effects in the last two columns.

Further modification of this table may still be required, such as adjusting the names in the

sources of variation, e.g. from Between Ani to Between Animals and from Between Ani(Sam)

to Between Samples Within Animals. Nonetheless, this additional functionality allows rapid

generation of the theoretical ANOVA table from the LATEX scripts.

2.6.10 Shiny application

Not all researchers can apply this R package, especially for those who have no statistical back-

ground, Hence, a Shiny application has been developed for more friendly use. Shiny is an R

package which allows the construction of interactive web applications straight from R. This

interactive web application can be deployed onto the web with its own URL, so the user

can visit the application and not need to worry about installing the R program and cod-

ing. The Shiny application of this package is being hosted at the following link: https:

//kcha193.shinyapps.io/infoDecompuTE_Shiny/. One limitation of web applications is the

requirement of a stable internet connection.

There are three type of outputs that can be generated from this Shiny application: 1) output

from the R console as a text file, 2) latex code as a text file, and 3) latex compiled portable

document format (pdf) file.

2.7 Two-phase viticultural experiment using InfoDecom-

puTE

This section is to demonstrate the degree of complexity in a two-phase experiment which In-

foDecompuTE can deal with by generating the theoretical ANOVA table for the viticultural

experiment described by Brien (1992) and Brien and Payne (1999). The Phase 1 field trial

involved a viticultural experiment comparing four different types of trellising and two pruning

methods. The Phase 2 experiment involved the evaluation of the wines made from the produce

of the viticultural experiment.

The Phase 1 viticultural experiment was arranged into two adjacent Youden square designs,

each with three rows and four column blocks. The four trellising methods were assigned to

the row blocks as a randomised complete block design and to the column blocks as a BIBD.

Furthermore, each main plot was halved, and one of two different pruning methods was randomly

assigned to each half-plot.
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The Phase 2 experiment consisted of six judges evaluating the wines made from the grapes

grown in the viticultural experiment. The wines were evaluated on two separate occasions,

with wines made from grapes grown within the same square at Phase 1 being evaluated on the

same occasion at Phase 2. Each occasion was divided into three intervals, with four sittings per

interval. At each sitting, each judge was presented with four glasses of wine, two replicate wines

from each half-plot within a main plot. Brien and Payne (1999) referred to these glasses as the

positions. The two-phase experiment yielded a total of 576 measurements.

The block structure formulae of Phase 2 and 1 experiments are

((Occasions/Intervals/Sittings) ∗ Judges)/Positions and (2.42)

(Rows ∗ (Squares/Columns))/Halfplots, respectively. (2.43)

The treatment structure formula is

Trellis ∗Method. (2.44)

The block structure (2.42) indicates that Sittings are nested within Intervals which are nested

within Occasions. However, since all Judges were present at every Sitting, Judges is crossed

with Sittings within Intervals within Occasions. Finally, Positions are nested within Judges and

Sittings because each Judge evaluated four glasses of wine at each Sitting. The block structure

in (2.43) for the Phase 1 experiment indicates that the main plots, to which Trellising methods

are assigned, are defined as Rows crossed with Columns nested within Squares, with Half-plots

being nested within main plots. The treatment structure defined in (2.44) is a 2 × 2 factorial

experiment, and thus the Trellising and pruning Methods are crossed.

The structure formulae in (2.42), (2.43) and (2.44) are input into the function summaryAovTwoPhase.

The block and treatment factor names are replaced by their first three characters, so the table

can be fitted on the page. The output can be shown as follows:

> summaryAovTwoPhase(designPhase2, blk.str1 = "(Row*(Squ/Col))/Hal",
+ blk.str2 = "((Oc/In/St)*Ju)/Pos",
+ trt.str = "Tre*Met", decimal = TRUE,
+ digits = 2, table.legend = TRUE)

Note: Complete confounding between Squ and Occ!
$ANOVA
$ANOVA$VC

DF a b c d e f g h i j k l m n
Between Occ

Between SquCCW 1 12 24 96 72 288 0 1 4 16 48 0 24 96 288
Between Occ(Int) 4 0 0 0 0 0 0 1 4 16 0 0 24 96 0
Between Occ.Int(Sit)

Between SquCCW(Col)
Tre 3 4 8 0 24 0 0 1 4 0 0 0 24 0 0
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Residual 3 4 8 0 24 0 0 1 4 0 0 0 24 0 0
Within Row.SquCCW.Col.Hal 12 0 0 0 0 0 0 1 4 0 0 0 24 0 0

Between Jud 5 0 0 0 0 0 0 1 4 16 48 96 0 0 0
Between Occ*Jud 5 0 0 0 0 0 0 1 4 16 48 0 0 0 0
Between Occ(Int)*Jud

Between Row 2 12 24 96 0 0 192 1 4 16 0 0 0 0 0
Between Row*SquCCW 2 12 24 96 0 0 0 1 4 16 0 0 0 0 0
Within Row.SquCCW.Col.Hal 16 0 0 0 0 0 0 1 4 16 0 0 0 0 0

Between Occ.Int(Sit)*Jud
Between SquCCW(Col)

Tre 3 8 16 0 48 0 0 1 4 0 0 0 0 0 0
Residual 3 8 16 0 48 0 0 1 4 0 0 0 0 0 0

Between Row*SquCCW(Col)
Tre 3 12 24 0 0 0 0 1 4 0 0 0 0 0 0
Residual 9 12 24 0 0 0 0 1 4 0 0 0 0 0 0

Within Row.SquCCW.Col.Hal 72 0 0 0 0 0 0 1 4 0 0 0 0 0 0
Between Occ.Int.Sit.Jud(Pos)

Between Row.SquCCW.Col(Hal)
Met 1 12 0 0 0 0 0 1 0 0 0 0 0 0 0
Tre*Met 3 12 0 0 0 0 0 1 0 0 0 0 0 0 0
Residual 20 12 0 0 0 0 0 1 0 0 0 0 0 0 0

Within Row.SquCCW.Col.Hal 408 0 0 0 0 0 0 1 0 0 0 0 0 0 0

$ANOVA$Legend
[1] "a = Row.SquCCW.Col(Hal)" "b = Row*SquCCW(Col)" "c = Row*SquCCW"
[4] "d = SquCCW(Col)" "e = SquCCW" "f = Row"
[7] "g = Occ.Int.Sit.Jud(Pos)" "h = Occ.Int(Sit)*Jud" "i = Occ(Int)*Jud"

[10] "j = Occ*Jud" "k = Jud" "l = Occ.Int(Sit)"
[13] "m = Occ(Int)" "n = Occ"

$Fixed
$Fixed$Coef

a b c
Between Occ

Between SquCCW
Between Occ(Int)
Between Occ.Int(Sit)

Between SquCCW(Col)
Tre 5.33

Within Row.SquCCW.Col.Hal
Between Jud
Between Occ*Jud
Between Occ(Int)*Jud

Between Row
Between Row*SquCCW
Within Row.SquCCW.Col.Hal

Between Occ.Int(Sit)*Jud
Between SquCCW(Col)

Tre 10.67
Between Row*SquCCW(Col)

Tre 128
Within Row.SquCCW.Col.Hal

Between Occ.Int.Sit.Jud(Pos)
Between Row.SquCCW.Col(Hal)

Met 288
Tre*Met 72

Within Row.SquCCW.Col.Hal

$Fixed$Legend.Coef
[1] "a = Tre" "b = Met" "c = Tre*Met"

$Fixed$EF
a b c
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Between Occ
Between SquCCW

Between Occ(Int)
Between Occ.Int(Sit)

Between SquCCW(Col)
Tre 0.04

Within Row.SquCCW.Col.Hal
Between Jud
Between Occ*Jud
Between Occ(Int)*Jud

Between Row
Between Row*SquCCW
Within Row.SquCCW.Col.Hal

Between Occ.Int(Sit)*Jud
Between SquCCW(Col)

Tre 0.07
Between Row*SquCCW(Col)

Tre 0.89
Within Row.SquCCW.Col.Hal

Between Occ.Int.Sit.Jud(Pos)
Between Row.SquCCW.Col(Hal)

Met 1
Tre*Met 1

Within Row.SquCCW.Col.Hal

$Fixed$Legend.EF
[1] "a = eff.Tre" "b = eff.Met" "c = eff.Tre*Met"

The above output takes about a minute to generate using eight-gigabytes of RAM with a Quad

Core 2.5GHz machine running R 3.3.3 and Microsoft Windows 7.

There are several additional features that can be observed from this new output table. Firstly,

recall that wines made from grapes grown within the same square in the Phase 1 experiment

were evaluated on the same occasion in the Phase 2 experiment. Thus, Square and Occasion are

completely confounded with each other. The function is capable of detecting such confounding

and alerts the user to its presence by printing the warning

Note: Complete confounding between Squ and Occ!

in the first row of output. Further, the decimal argument allows the user to choose between

displaying the coefficients in the VC and fixed tables, and the efficiency factors in the EF table,

as proper fractions (decimal = FALSE default) or in decimal format (decimal = TRUE). Lastly,

the digits argument is used to specify the number of decimal places to be printed when users

set decimal to TRUE.

2.8 Conclusion

InfoDecompuTE, a freely available R package, allows researchers to study any complex single- or

two-phase experimental design by generating the theoretical ANOVA table with the coefficients
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of variance components of the EMS, as shown in Section 2.7. This package allows researchers

to study how the data vector space spanned by the data vector is decomposed across different

strata and sources of variation.

This package can also analyse designs with treatment or block factors that are non-orthogonal

to multiple block factors, and can produce average efficiency factors, as shown in Section 2.7.

The researcher thus can identify how much treatment information remains when conducting

the test for the Treatment effects. Additionally, users can fit each block or treatment contrast

separately, allowing more flexible analysis, and can further clarify how the block or treatment

information is split across different strata.

However, this package has its limitations. Currently it can only analyse single- and two-phase

experiments. If another phase was added, it would increase the computation time from n2 to

n3. This is due to an additional for-loop being required to define the block structure of the

additional phase. The best solution would be to re-implement the matrix calculation in another

programming language such as C to accelerate the computation.

Additionally, users need some understanding of how to build the model using the structure

formulae as described by Wilkinson and Rogers (1973) for block and treatment structures of the

two-phase experiments. Nonetheless, infoDecompuTE gives statistical researchers an additional

tool to help them better understand experimental designs and construct better experiments.
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Chapter 3

Optimal designs for two-phase

experiments when the Phase 1

experiment is arranged in a completely

randomised design

3.1 Introduction

This Chapter discusses the search for optimal designs for Phase 2 proteomics experiments, when

the Phase 1 experiment is a completely randomised design (CRD), while the Phase 2 experiment

employs a multiplexing technique such as iTRAQTM. The optimal design of experiments is a

branch of experimental design theory. The aim of optimal design is to plan an experiment to

assign treatments to experimental units in such a way that we maximise the amount of treatment

information in the intra-block stratum. Given a set of design parameters there are potentially

many designs that could be generated. A set of designs all with the same design parameter is

termed a set of competing designs. The aim is to find the best design on some chosen optimality

criterion.

When the Phase 1 experiment is arranged in a CRD, the treatments are randomly allocated

to each experimental unit of the experiment. Since animals are used as examples in this Chapter,

the experimental units are animals. The biological material harvested from each Phase 1 exper-

imental unit is divided into multiple aliquots, namely technical replicates, which will undergo

MudPIT analysis in the Phase 2 experiment. Thus, the Phase 1 experimental units form blocks

in the Phase 2 experiment. The Phase 2 experiment involves a second block factor, namely Mud-
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PIT runs, with a Phase 2 treatment factor, namely iTRAQTM tags, in which multiple biological

samples from the Phase 1 experiment are analysed under homogeneous conditions.

Determining whether a treatment arrangement of experimental units is optimal is based on

the definition of the optimality criterion. Numerous optimality criteria have been presented in

the literature (Goos, 2012). Many of them belong to the class of alphabetic optimality criteria.

This Chapter considers A- and MS-optimality criteria. If the harmonic mean of the canonical

efficiency factors, or the average efficiency factor, of a design is the largest compared to the other

competing designs, then the design is said to be A-optimal. The MS-optimality criterion is a

two-stage criterion where (1) a class of designs has the highest mean of the efficiency factors,

and (2) within this class, the design having the lowest spread of the efficiency factors is said to

be the MS-optimal design.

Once a specific optimality criterion is chosen, an objective function can be derived. The

objective function is a mathematical expression describing the relationship between variables

that correspond to the competing designs. Thus, it plays an important role in helping us to

locate the optimal design. A well-chosen objective function have a maximum or minimum value,

as we optimise the objective function will result an optimal input design. The main goal of this

Chapter is to derive an objective function specifically for the finding the optimal design of Phase

2 experiments.

The method of finding optimal designs for different design classes (such as block, row-column

and αn designs) has previously been discussed (Whitaker et al., 1990; Williams and John, 1996;

John et al., 2002). The method aims to find the design with the most treatment information in

the intra-block stratum among the set of competing designs. Finding the optimal design of the

Phase 2 experiment requires us to also choose the best allocation of the experimental units from

the Phase 1 experiment to the experimental units of the Phase 2 experiment. This is because any

confounding of the block effects of the Phase 1 experiment with the block effects of the Phase

2 experiments will impact the estimation of the treatment effects and the number of Residual

DF needed to estimate their variance, and hence the validity of performing statistical test in the

ANOVA table. Given that a suitable optimality criterion has not been defined, the method of

finding such optimal designs of Phase 2 experiments has yet to be described.

This Chapter discusses the search for optimal designs using the two-phase proteomics ex-

periment, when the Phase 1 experiment is arranged in a CRD, while the Phase 2 experiment

uses a multiplexing technique such as iTRAQTM. This Chapter is laid out as follows: Sec-

tions 3.2 and 3.3 describe the linear models of the Phase 1 experiment arranged in a CRD and

Phase 2 MudPIT-iTRAQTM experiments and the information matrix, respectively. The the-
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oretical ANOVA tables of the Phase 1 and 2 experiments are described in Section 3.4. The

optimality criteria and construction of the objective function is presented in Sections 3.5 and

3.6. Section 3.7 discusses how the initial designs are generated. Sections 3.8 and 3.9 describe

the simulated annealing algorithm (SA) and nested SA algorithm used to search for optimal

designs. Section 3.10 discusses improvements that we have made to the nested SA algorithm to

find optimal designs of Phase 2 experiments when the Phase 1 experiment is laid out as CRD.

Section 3.11 and 3.12 set forth two examples to illustrate the objective function and the SA

algorithm. Section 3.13 summarises the properties of the optimal design that are found using

the method described. Section 3.14 briefly demonstrates how to modify the objective function

in situations when the Phase 1 experiment is a 2×2 factorial experiment. The infoDecom-

puTE package, introduced in Chapter 2, is employed consistently to construct the theoretical

ANOVA tables using the treatment average efficiency factor to compare the competing designs.

Even though we have used four- and eight-plex labelling systems as the motivating example, the

method is more general and can be applied all two-phase designs when the Phase 1 experiment

is arranged in a CRD.

3.2 Design parameters and model

This section defines the linear models of the Phase 1 and 2 proteomics experiments described

in this Chapter. This experiment is a generalised version of the one in Section 2.5 with some

adjustments that allow us to better describe the experimental design structure and mathematical

derivation of the information matrix.

3.2.1 Linear models

The Phase 1 experiment is arranged in a CRD which consists of ν = 2 treatments assigned to

na = 4 experimental units. Note that we will refer to animals as experimental units for the

remainder of this Chapter. Let yij denote the abundance of a given protein from animal j under

treatment i. The linear model of this Phase 1 experiment can be written as

yij = µ+ τi + aj, (3.1)

where µ denotes the overall mean log protein abundance across all samples, τi denotes the fixed

effect of treatment i, and aj ∼ N (0, σ2
a) denotes the random effect from animals j, (i = 1, 2;

j = 1, . . . , 4). Note that this model in (3.1) is a generalised version of the linear model in (2.40).

The Phase 2 experiment is arranged in blocks, where the numbers of MudPIT run, nr = 2,
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and iTRAQTM tags, nγ = 4, correspond to the numbers of blocks and block size, respectively.

Each sample of the Phase 1 experiment is further split into ns sub-samples (technical replicates)

for estimating measurement errors in the Phase 2 experiment. Hence, there are a total of

n = nans = nrnγ = 8 sub-samples to be analysed in the Phase 2 proteomics experiment. Now

let yijkls denote the abundance of the same protein as in (3.1) from sub-sample s of treatment i

assigned to animal j which is then differentially labelled by tag k and analysed in run l. The

linear model of the Phase 2 experiment can be written as

yijkls = µ+ τi + aj + γk + rl + εijkls, (3.2)

where γk denotes the fixed effect of tag k, rl ∼ N (0, σ2
r) represents the random effect of run l,

and εijkls ∼ N (0, σ2) denotes the experimental error, (k = 1, . . . , 4; l = 1, . . . , 2; s = 1, . . . , 2).

3.2.2 Linear models in matrix notation

Based on the definition in Section 2.3.1, model (3.2) is then expressed as

y = 1µ+ Xα+ Zu+ Wv + ε, (3.3)

where 1 is an n × 1 vector whose elements are all unity, µ denotes the grand mean, and ε ∼
N (0, σ2In) is an n× 1 random vector of experimental errors. The matrix In denotes the n× n
identity matrix. The treatment parameter vector of length νnγ is defined as

α = (α11, α12, . . . , α1nγ , α21, . . . , ανnγ )
′, (3.4)

where αik denotes the effect of treatment i and tag k, (i = 1, . . . , v; k = 1 . . . nγ). The n × νnγ
treatment design matrix, X, in (3.3) is a binary matrix indicating the allocation of treatments to

the experimental units. The Phase 1 block design matrix is denoted by Z = Za which is a n×νrb
design matrix of animals. The Phase 1 block parameter is denoted by u = (a11, a12, . . . aνrb).

The Phase 2 block design matrix is denoted by W = Wr which is a n × nr design matrix of

runs. The Phase 2 block parameter is denoted by v = (m1, . . .mnr).

For the purposes of finding optimal designs for Phase 2 experiments, the linear model in

matrix notation in (3.3) needs to be reformulated. This is because the main consideration is in

the how the sub-samples from treatments assigned to each animal in the Phase 1 experiment are

labelled by which tag and measure in which run of the Phase 2 experiment. Hence, during the

search for the optimal design, the design matrices of Phase 2 Run and Tag factors stay the same,

and the goal is to find the optimal design based on the design matrices of Phase 1 Treatment and
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Animal factors. Furthermore, the Tag effects belong to the Phase 2 experiment and the effects

of treatment and tag are assumed not to interact. Thus, the overall treatment design matrix is

split into treatment and tag design matrices, denoted by Xτ and Xγ, respectively. The model

in (3.3) can be rewritten as

y = 1µ+ Xτατ + Zau+ Xγαγ + Wrv + ε, (3.5)

where ατ and αγ are the vectors of treatment and tag parameters

ατ = (τ1, . . . τν)
′ and αγ = (γ1, . . . γnγ )

′,

respectively.

3.3 Information matrix for the objective function

The information matrix is essential for evaluating the objective function. This section shows how

the animal and treatment information matrices are defined for two-phase MudPIT-iTRAQTM

experiments.

In finding the optimal design for a MudPIT-iTRAQTM experiment, we need to consider the

variation between runs and differences between tags which are introduced from the Phase 2

experiment. The best allocation of the sub-samples from treatments assigned to each animal,

which are then labelled by a tag and measured in a run, occurs when the confounding of the

Phase 1 Animal and Treatment effects with the Phase 2 Run and Tag effects is minimised. We

define an orthogonal projection matrix which projects y onto the Within Runs and Tags vector

subspace as

Qrγ = (I−Pr)(I−Pγ) (3.6)

where Pr = Wr(W
′
rWr)

−1W′
r denotes the projection matrix which projects y onto the Between

Runs vector subspace, and Pγ = Xγ(X
′
γXγ)

−1X′γ denotes the projection matrix which projects

y onto the Between Tags vector subspace. Note that Tag effects should still be fitted as fixed

effects when constructing the ANOVA table.

The matrix Qrγ in (3.6), an orthogonal projection matrix, must be symmetric. To show this

property, we first expand the matrix Qrγ in (3.6) as

Qrγ = (I−Pr)(I−Pγ) = I−Pr −Pγ + PrPγ (3.7)

where matrices I, Pr and Pγ are symmetric. To show PrPγ in (3.7) is also symmetric, we
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will expand matrices Pr and Pγ separately. The projection matrix which projects y onto the

Between Runs vector subspace is

Pr = Wr(W
′
rWr)

−1W′
r

where Wr is the design matrix for Run factor of the Phase 2 experiment and can be expressed

as

Wr = 1nγ ⊗ Inr .

Thus, the projection matrix for Between Runs can be re-written as

Pr =
1

nγ
1nγ1

′
nγ ⊗ Inr .

The projection matrix which projects y onto the Between Tags vector subspace is

Pγ = Xγ(X
′
γXγ)

−1Xγ

where Xγ is design matrix for Tag factor of the Phase 2 experiment and can be expressed as

Xγ = Inγ ⊗ 1nr

Thus, projection matrix for Between Tags can be re-written as

Pγ =
1

nr
Inγ ⊗ 1nr1

′
nr .

Then, PrPγ in (3.7) becomes

PrPγ =
1

nrnγ
1nγ1

′
nγ ⊗ 1nr1

′
nr

=
1

n
1nγnr1

′
nγnr

=
1

n
1n1

′
n

= Kn.

(3.8)

Thus, PrPγ is also symmetric because it is an averaging matrix.

The animal information matrix in the Within Runs and Tags vector subspace, denoted by

Aa, can be written as

Aa = Z′aQrγZa (3.9)

where Za denotes the Phase 2 design matrix of Phase 1 Animal factor (experimental units).

The treatment information matrix in the Within Runs and Tags vector subspace, denoted
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by Aτ , is defined in the same way as the animal information matrix, which is given by

Aτ = X′τQrγXτ , (3.10)

where Xτ denotes the Phase 2 treatment design matrix.

3.4 An illustrative example

This illustrative example is based on the linear models defined in Section 3.2. This section uses

the most trivial case to show the theoretical ANOVA tables of the Phase 1 experiment, Phase 2

ignoring Phase 1 experiment, and the optimal design of the Phase 2 experiment.

Consider a two-phase experiment when the Phase 1 experiment involves ν = 2 treatments

(labelled by lower case letters, i.e. a and b), assigned to na = 4 animals (labelled by upper case

letters, i.e. A to D). The treatments are arranged so that Treatment a is assigned to Animals

A and C, and Treatment b is assigned to Animals B and D. The theoretical ANOVA table of

these two experiments can then be generated using the R package infoDecompuTE, as shown

in Table 3.1a. The content of these theoretical ANOVA tables has been previously described in

Section 2.5, which shows that 3 DF associated with the Animal effects can be partitioned into

1 DF of Treatment effects and 2 DF of Residual EMS.

The Phase 2 ignoring Phase 1 experiment consists of nr = 2 runs with samples from each

run labelled by nγ = 4 tags. The theoretical ANOVA table of the Phase 2 experiment ignoring

the Phase 1 experiment is shown in Table 3.1b. This theoretical ANOVA table shows the total

of 7 DF is separated into 1 DF associated with the Between Runs stratum and 6 DF with the

Within Runs stratum. These 6 DF of the Within Runs stratum are further partitioned into 3

DF of Tag effects and 3 DF of Residual EMS.

Table 3.1: Theoretical ANOVA of (a) the Phase 1 experiment with ν = 2 treatments assigned
to na = 4 animals arranged in a CRD and (b) the Phase 2 experiment ignoring Phase 1 with
nr = 4 runs and nγ = 4 tags.

(a)

Source of Variation DF EMS Eτ

Between Animals
Treatments 1 σ2

a + 2θτ 1
Residual 2 σ2

a

(b)

Source of Variation DF EMS Eγ

Between Runs 1 σ2 + 4σ2
r

Within Runs
Tag 3 σ2 + 2θγ 1
Residual 3 σ2

The optimal design for the Phase 2 experiment, given the Phase 1 experiment is arranged
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in a CRD, is presented in Tables 3.2. Each of four samples from each animal are split into

ns = 2 sub-samples, thus there is a total of eight sub-samples to be measured in the Phase

2 experiment. Each run comprises sub-samples from all four animals, so that the effects of

runs are orthogonal to the effects of animals. However, since sub-samples from Animals A and

B are differentially labelled with Tags 114 and 115, and sub-samples from Animals C and D

are differentially labelled with Tags 116 and 117, the Tag effects are partially confounded with

Animal effects. Since each treatment is assigned twice in each run and differentially labelled

once with each tag, Treatment effects are orthogonal to both Run and Tag effects.

Table 3.2: Design of Phase 2 proteomics experiment showing allocation of sub-samples from
animals and disease statues to runs and tags, when the Phase 1 experiment consisting of ν = 2
treatments assigned to each of na = 4 animals, ns = 2 sub-samples are then taken from each
animal and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 2 runs
and nγ = 4 tags. Upper case letters denote animal IDs, while the lower case letters denote the
treatments.

Tag
Run 114 115 116 117

1 Aa Bb Ca Db
2 Bb Aa Db Ca

The theoretical ANOVA for the optimal design of the Phase 2 proteomics experiment is

shown in Table 3.3. As expected, the theoretical ANOVA shows that all 3 DF associated with

the Between Animal stratum are in the Within Runs stratum. Residual DF in the Between

Animals Within Runs stratum is reduced from 2 DF to 1 DF, because 1 of the 3 DF associated

with Tag effects is in the Between Animals stratum. There is only 1 DF left to estimate variance

of the Treatment effects, so the estimation will not be as precise as compared to the Phase

1 experiment. However, the amount of treatment information is preserved from the Phase 1

experiment, because the treatment average efficiency factor, Eτ , is 100% in the Within Runs

stratum. Furthermore, there is a valid F-test for the Treatment effects in the Between Animals

Within Runs stratum, because the variance components of Treatment EMS and Residual EMS

are identical. Thus, the design for the Phase 2 experiment shown in Table 3.2 is optimal in this

case. The orthogonal projection matrix of the Within Runs and Tags vector subspace, animal

information and treatment information matrices in the Within Runs and Tags vector subspace

of this design are presented in Appendix C.
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Table 3.3: Theoretical ANOVA of the Phase 2 experiment in Table 3.2.

Source of Variation DF EMS Eγ Eτ

Between Runs 1 σ2 + 4σ2
r

Between Animals
Tag 1 σ2 + 2σ2

a + 2θγ 1
Treatment 1 σ2 + 2σ2

a + 4θτ 1
Residual 1 σ2 + 2σ2

a

Within Animals
Tag 2 σ2 + 2θγ 1
Residual 1 σ2

3.5 Optimality criteria

A specific optimality criterion is used to construct the objective function and search for the

optimal design. The value from the objective function design at the i-th iteration is denoted by

O(Di), where Di is the design at i-th iteration during the search. Different optimality criteria

may result in designs with different properties. This section explains the A- and MS-optimality

criteria.

3.5.1 A-optimality

The A-optimal design has the highest average efficiency factor among the competing designs

(John and Williams, 1995). The efficiency factors provide a measure of the amount of treatment

information obtained from intra-block analysis and thus can be useful in comparing different

competing designs. In order to understand the basis of the A-optimal design, we need to show

how the average efficiency factor is defined using pair-wise treatment contrasts.

The variance of the pairwise treatment comparison, τj − τj′ , can be expressed as

var(τ̂j − τ̂j′) = (ωjj + ωj′j′ − 2ωjj′)σ
2 (j 6= j′),

where ωjj′ is the (jj′)-th element in Moore-Penrose generalised inverse of the treatment infor-

mation matrix, denoted by A+, and σ2 denotes the variance components associated with the

measurement error of the experiment.

If all the treatment information can be estimated in the intra-block analysis, i.e. orthogonal

block design, the variance of any pairwise treatment comparison is

(1/r + 1/r − 0)σ2 = 2σ2/r,

where the term r is the treatment replication.

67



Chapter 3. Optimal designs for two-phase experiments when the Phase 1 experiment is
arranged in a completely randomised design

For a non-orthogonal block design, the efficiency factor for treatment contrast τj− τj′ is then

defined to be

eij =
2σ2/r

var(τ̂j − τ̂j′)
. (3.11)

The variance of the set of all pairwise differences can be re-written as

var(τ̂j − τ̂j′) = var(c′τ̂ ) = c′jj′A
+cjj′σ

2 = (σ2/r)
ν−1∑
j=1

e−1
i (cjj′pi)

2

where cjj′ denotes a vector of length ν with j-th element equal to 1, the j′-th element equal

to −1, and the remaining ν − 2 elements equal to zero. The average efficiency factor over all

pairwise comparisons, denoted by E, can be defined as 2σ2/r divided by the average variance of

all estimated pairwise comparisons, i.e.

E =
2σ2/r

var(τ̂i − τ̂j)/[ν(ν − 1)]

=
2σ2/r

(σ2/r[ν(ν − 1)])
∑ν−1

i=1 e
−1
i (c′jj′pi)

2

=
2σ2/r

(2σ2/r)
∑ν−1

i=1 e
−1
i /(ν − 1)

=
ν − 1∑ν−1
i=1 e

−1
i

, (3.12)

namely the harmonic mean of the pairwise efficiency factors, where pi denote the orthogonal

eigenvector of i-th treatment pairwise comparisons.

Since the treatment information matrix is symmetric, it has a complete set of orthogo-

nal eigenvectors. These orthogonal eigenvectors, denoted by p1,p2, . . . ,pν−1, can be used as

treatment contrasts to compute the average efficiency factor (John and Williams, 1995). Let

λ1, λ2, . . . , λν−1 denote the eigenvalues of the treatment information matrix, then the canonical

form of A+ can be written in spectral form, i.e.

A+ =
ν−1∑
i=1

λ−1
i pip

′
i. (3.13)

The variance of the treatment contrast, p′iτ̂ , is given by

var(p′iτ̂ ) = p′iA
+piσ

2 =
σ2

λi
.

Thus, the variance of the Treatment effect is still σ2/r for an orthogonal block design.

For a non-orthogonal block design, the efficiency factor is

ei =
σ2/r

var(p′iτ̂ )
=

σ2/r

σ2/λi
=
λi
r
, (i = 1, . . . , ν − 1),
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namely the canonical efficiency factors of the i-th basic contrast, denoted by p′iτ (James and

Wilkinson, 1971). Following (3.12), the average efficiency factor is then given by the harmonic

mean of the canonical efficiency factors.

The objective function for finding the A-optimal design is the computation of the average

efficiency factor associated with the Animal effects, i.e.

Ea =
na − 1∑na−1
i=1 e−1

i

, (3.14)

where ei denotes the canonical efficiency factor computed from the animal information matrix

defined in (3.9).

3.5.2 MS-optimality

The MS-optimality criterion, introduced by Shah (1960) and Eccleston and Hedayat (1974),

is a two-step criterion, i.e. an M-step and an S-step. The M-step involves finding the designs

which maximise the trace of the information matrix, where the trace of the information matrix

is the sum of the eigenvalues. From the set of designs found in the M-step, the S-step identifies

the design that minimises the trace of the square of the information matrix. Thus, the S-

step attempts to find the design where the spread of the canonical efficiency factors is the

smallest. The resultant design is said to be variance-balanced in the sense that the variances of

all estimated pairwise treatment differences are the same. MS-optimal designs can be found using

two separate objective functions, one for the M-step and another for the S-step. Alternatively,

these two objective functions can be combined into a single objective function (Williams and

John, 1996).

The information matrix associated with the Animal effects, Aa = Z′aQrγZa, can be re-written

as

Aa = ns

[
I−K−

(
NarN

′
ar

nsnγ
+

NaγN
′
aγ

nsnr
− 2K

)]
, (3.15)

where Nam = Z′aWr and Naγ = Z′aXγ denotes the na × nr animal incidence matrices with runs

and tags, respectively. Since the number of sub-samples from each animal, ns, identity matrix,

I, and averaging matrix, K, are always the same, the equation (3.15) is equivalent to that given

by Williams and John (1996) as

S =
NamN′am
nsnγ

+
NaγN

′
aγ

nsnr
− 2K.
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MS-optimal designs can then be found by minimising the following objective function

O(Di) = tr(S) + tr(S2), (3.16)

where minimising tr(S) and tr(S2) is the same as the M-step and S-step, respectively, (Williams

and John, 1996).

3.6 An objective function for identifying optimal designs

for the Phase 2 experiment

Once the optimality criterion is chosen, the objective function is derived from this optimality

criterion. An objective function is a mathematical expression that generates a value used to

compare competing designs. Having observed the example in Section 3.4, a well-chosen objective

function have a maximum or minimum value given an input design with predefined properties

that deem as optimal. Here, an optimal design is defined as one in which:

• The animal information is maximised in the Within Runs stratum.

• The treatment information is maximised in the Between Animals Within Runs stratum.

• DF of the Treatment effects must still be intact in the Between Animals Within Runs

stratum.

These three properties form the three criteria of the objective function, that is a compound-

criterion objective function which maximises both the animal and treatment information in the

Between Animal Within Runs stratum of the analysis for the Phase 2 experiment.

The first step is to decide this objective function is to be constructed on the basis of MS-

or A-optimality criterion, we have discussed these two optimality criteria in Section 3.5. Once

we have decided which optimality criterion to apply in the objective function, we will then

further improve this objective function by adding additional components. Three different design

examples were used in this section, because each design example contains properties which we can

use to demonstrate the improvement on every additional component to the objective function.

The aim is to come out with an objective function that can obtain designs which satisfy all

three properties described above, namely the optimal design of the Phase 2 experiment given

the Phase 1 experiment is arranging in a CRD.
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3.6.1 Maximising the animal information

The first step in constructing the objective function is to maximise the animal information in the

Within Runs stratum. Specifically, the first step is to compare the MS- and A-optimal designs.

These two optimality criteria and the objective function were described in Section 3.5.

The MS- and A-optimal designs are compared using a two-phase experiment with Phase 1

experiment involving ν = 2 treatments assigned to na = 6 animals. Samples of each animal are

further split into ns = 2 sub-samples which are then differentially labelled by nγ = 4 tags and

analysed in nr = 3 runs. In the Phase 1 experiment, Treatment a is assigned to Animals A,

C and E and Treatment b is assigned to Animals B, D and F. The ANOVA for this Phase 1

experiment is presented in Table 3.4, and shows there is a total of 5 DF partitioned into 1 DF for

estimating Treatment effects and 4 DF for the Residual EMS. The aim is to find an allocation of

differentially labelled samples to runs which maximises the amount of animal information within

runs.

Table 3.4: Theoretical ANOVA of the Phase 1 experiment with ν = 2 treatments assigned to
na = 6 animals.

Source of Variation DF EMS Eτ

Between Animals
Treatments 1 σ2

a + 3θτ 1
Residual 4 σ2

a

Two allocations of sub-samples from animals and treatments labelled by tags and measured

in runs are compared based on the MS- and A-optimality criteria. Using the objective function

based on MS-optimality criterion, given in (3.16), the optimal allocation of sub-samples from

animals and treatments labelled by tags and measured in runs is shown in Table 3.5. The

Animal effects are confounded with Run effects, because each run comprises sub-samples from

different combinations of animals. The Animals effects are also confounded with Tag effects for

the same reason. The sub-samples from treatments labelled by tags and measured in runs are

also non-orthogonal, because each run and tag comprised sub-samples of different combinations

of the treatment groups.

Based on the MS-optimal design of the Phase 2 experiment, the theoretical ANOVA in

Table 3.6 shows the total of 11 DF is first partitioned into 2 DF of Between Runs and 9 DF of

Within Runs strata. Since the Treatment and Animal effects are confounded with Run effects,

some Treatment and Animal effects can be estimated in the Between Runs stratum. In the

Between Animals Within Runs stratum, there is 1 Residual DF compared to the 4 DF from the
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Table 3.5: The MS-optimal design for the Phase 2 experiment showing assignment of animals
and treatments to runs and tags, when the Phase 1 experiment consisting of ν = 2 treatments
assigned to na = 6 animals, ns = 2 sub-samples are then taken from each animal and analysed
in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 3 runs and nγ = 4 tags. Upper
case letters denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Ea Db Ca Aa
2 Bb Ea Aa Fb
3 Ca Fb Db Bb

Phase 1 experiment. This is due to the confounding of animal effects with the tag effects; thus,

the tag EMS used up 3 DF. Moreover, there is no valid F-test for the treatment effects, because

the coefficients of the variance components in the Between Animals Within Runs stratum are

not the same. Five canonical efficiency factors for Animal effects in the Within Runs stratum

are 1, 1, 1, 0.75 and 0.75, which means 2 of 5 DF for animals have only 0.25 of the information in

the Between Runs stratum. Hence, the variance is not balanced in the Between Animals Within

Runs stratum. In addition, there is no valid F-test for comparing between the treatment groups,

because the coefficients of the variance component in the Treatment EMS and Residual EMS are

not the same. The animal information matrix used to compute the canonical efficiency factors

and average efficiency factor of this MS-optimal design is presented in Appendix D.

Table 3.6: Theoretical ANOVA of the MS-optimal design for the Phase 2 experiment in Ta-
ble 3.5.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatments 1 σ2 + 0.5σ2
a + 4σ2

r + θτ 0.17
Residual 1 σ2 + 0.5σ2

a + 4σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 1.8σ2
a + 1.1θγ + 1.8θτ 0.36 0.29

Treatments 1 σ2 + 1.7σ2
a + 3.3θτ 0.54

Residual 1 σ2 + 1.9σ2
a

Within Animals
Tag 3 σ2 + 1.9θγ 0.63
Residual 1 σ2

Using the objective function for the A-optimality criterion in 3.14, the optimal allocation of

sub-samples from animals and treatments labelled by tags and measured in runs is shown in

Table 3.7. Notice that Run 1 comprised sub-samples from Animals C and F, while Runs 2 and 3

comprised sub-samples from Animals A, B, D and E. Tags 114 and 117 label sub-samples from
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Animals C, D and E, and Tags 115 and 116 label sub-samples from Animals A, B and F. The

Treatment effects are orthogonal to Run effects, because each run comprises sub-samples from

two of each treatment. However, the Treatment effects are still confounded with Tags effects,

because the allocation of treatments as tags has the same structure to the optimal design based

on the MS-optimality criterion.

Table 3.7: The A-optimal design for the Phase 2 experiment showing assignment of animals
and treatments to runs and tags, when the Phase 1 experiment consisting of ν = 2 treatments
assigned to assigned to na = 6 animals, ns = 2 sub-samples are then taken from each animal
and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 3 runs and nγ = 4
tags. Upper case letters denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Ca Fb Fb Ca
2 Ea Aa Bb Db
3 Db Bb Aa Ea

The theoretical ANOVA of the A-optimal design is presented in Table 3.8, which again shows

a total of 11 DF that are first partitioned into 2 DF for the Between Runs stratum and 9 DF

for the Within Runs stratum. However, this optimal design only has Animal effects confounded

with Run effects, so the Treatment effects can be fully estimated in the Within Run stratum.

Notice that there are 2 Residual DF in the Between Animals Within Runs stratum, which

means this design can estimate the variances of the Treatment effects more precisely than the

optimal design found using the objective function based on MS-optimality. A valid F-test for the

Treatment effects can also be performed, because both the Treatment and Residual EMS in the

Between Animals Within Runs stratum contain identical coefficients of the variance components.

Therefore, the A-optimal design has been shown to be preferable to the MS-optimal design in

terms of the allocation of animals to runs and tags. The animal information matrix used to

compute the canonical efficiency factors and average efficiency factor of this A-optimal design is

presented in Appendix D.

3.6.2 Maximising the treatment information

The objective function based only on the average efficiency factor from the animal information,

while optimising the allocation of sub-samples from treatments to runs and tags, does not take

into account treatment information. The reason for using Ea is that the treatments are assigned

to animals in Phase 1, so some treatment information is carried with samples which are differ-

entially labelled and assigned to runs in the Phase 2 experiment. However, on its own, this does
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Table 3.8: Theoretical ANOVA of the A-optimal design for the Phase 2 experiment in Table 3.7.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 4σ2
r

Residual 1 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 3θγ + 0.67θτ 1 0.11

Treatments 1 σ2 + 2σ2
a + 5.3θτ 0.89

Residual 2 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 3θγ 1
Residual 3 σ2

not directly result in the optimal allocation of sub-samples from treatments labelled by tags and

analysed in runs, so treatment average efficiency factor, denoted by Eτ , is added to the objective

function. The Eτ is included in the objective function using the weighted average of the average

efficiency factors for animals, denoted by wa, and for treatments, denote by wτ , i.e.

O(Di) = waEa + wτEτ , (3.17)

where wa + wτ = 1.

This subsection compares optimal designs found using an objective function with two different

weighting schemes. The first scheme equally weights the average efficiency factors, i.e. wa = wτ =

0.5. The second scheme gives greater weight to Ea, with wa = 0.75 and wτ = 0.25. To illustrate

how these two weighting schemes behave in terms of the optimal designs they generate, consider

a two-phase experiment when there are still ν = 2 treatments assigned to na = 4 animals

in the Phase 1 experiment. The design of this Phase 1 experiment consists of Treatment a

assigned to Animals A and C, and Treatment b assigned to Animals B and D. The theoretical

ANOVA of the Phase 1 experiment shows that all of the treatment information is in the Between

Animals stratum (in Table 3.9). Each sample from the Phase 1 experiment is split into ns = 3

sub-samples, and assigned to nr = 3 runs and nγ = 4 tags of the Phase 2 experiment.

Table 3.9: Theoretical ANOVA table for the Phase 1 experiment with ν = 2 treatments
assigned to na = 4 animals.

Source of Variation DF EMS Eτ

Between Animals
Treatment 1 σ2

a + 2θτ 1
Residual 2 σ2

a
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Table 3.10 shows the optimal design found by using the objective function which equally

weights for average efficiency factors Ea and Eτ . While the resulting design is satisfactory in the

sense that Animal effects are orthogonal to Run effects, i.e. all runs contain a sample from each

animal. However, the allocation of tag labelling to samples is not entirely satisfactory because

each tag labels a sample come from a different set of animals. Thus, in this design, the Animal

effects are confounded with Tag effects. The arrangement of tag labelling on the sub-sample of

animals is a balanced incomplete block design.

Table 3.10: Optimal design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags based on the objective function with equal weights for Ea and Eτ ,
when the Phase 1 experiment consists of ν = 2 treatments assigned to na = 4 animals, ns = 3
sub-samples are then taken from each animal and analysed in the Phase 2 MudPIT-iTRAQTM

experiment comprising nr = 3 runs and nγ = 4 tags. Upper case letters denote animal IDs,
while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Bb Aa Ca Db
2 Ca Db Aa Bb
3 Aa Bb Db Ca

The theoretical ANOVA for the design from Table 3.10, given in Table 3.11, shows the

total of 11 DF partitioned to 2 DF and 9 DF from Between Runs and Within Runs strata,

respectively. Since the Animal and Treatment effects are orthogonal to Run effects, all the

animal and treatment information is in the Within Runs stratum. However, it appears all 3

DF with Tag effects are confounded with the 3 DF from the Between Animals Within Runs

stratum. Since the Treatment effects are estimated in the Between Animals stratum, the Tag

effects are also confounded with Treatment effects. Thus, Treatment effects are not estimable

in this design. The animal and treatment information matrices used to compute the average

efficiency factor for objective function is presented in Appendix E.

Table 3.11: Theoretical ANOVA for the Phase 2 experiment in Table 3.10, where Ea and Eτ
share the same weight in the objective function.

Source of Variation DF EMS Eγ Eτ

Between Runs 2 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 3σ2
a + 0.3θγ + 6θτ 0.11 1

Within Animals
Tag 3 σ2 + 2.7θγ 0.89
Residual 3 σ2
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Table 3.12 shows the optimal design found using the objective function with weights wa =

0.75 and wτ = 0.25. As per the previous scheme, each run comprises a sub-sample from each

of the four animals and thus two of each treatment group. The unequal weighting scheme,

however, partitions the tag labelling into two parts: each sub-sample from Animals A, B and

C is differentially labelled with Tags 114, 115 and 116, while all sub-samples from Animal D

are differentially labelled with Tag 117. Thus, the contrast Tags (114, 115, 117) versus Tag 116

is confounded with the contrasts Animals (A, B, C ) versus Animal D, i.e. showing that 1 DF

associated with Animal effects is confounded with 1 DF associated with Tag effects. Further, note

that the tag labelling of sub-samples from treatment also has the same structure of partitioning,

when Tag 116 only labels the sub-sample for Treatment b. Thus, the Treatment effects are also

confounded with the Tag effects.

Table 3.12: Optimal design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags based on the objective function with wa = 0.75 and wτ = 0.25
for Ea and Eτ , when the Phase 1 experiment consists of ν = 2 treatments assigned to na = 4
animals, ns = 3 sub-samples are then taken from each animal and analysed in the Phase 2
MudPIT-iTRAQTM experiment comprising nr = 3 runs and nγ = 4 tags. Upper case letters
denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Ca Aa Db Bb
2 Aa Bb Db Ca
3 Bb Ca Db Aa

The theoretical ANOVA from the design in Table 3.12, given in Table 3.13, again shows the

total of 11 DF partitioned to 2 DF and 9 DF from Between Runs and Within Runs strata,

respectively, with all animal and treatment information being estimated in the Within Runs

stratum. In the Between Animals Within Runs stratum, there is only 1 DF associated with

the Tag effects, due to the confounding of the contrast Tags (114, 115, 117) versus Tag 116

with the contrasts Animals (A, B, C ) versus Animal D. The Tag effects are still not orthogonal

to treatment effects, because 0.33 of the treatment information is confounded with Tag effects,

which means there is still 0.67 of pure treatment effects that can be estimated in the Between

Animals Within Runs stratum. Finally, a valid F-test for the treatment effects can also be

conducted. Therefore, this example shows that the objective function needs to have greater

weight to Ea, and we have chosen wa = 0.75 and wτ = 0.25. The current objective function is

O(Di) = 0.75Ea + 0.25Eτ . (3.18)

The animal and treatment information matrices used to compute the average efficiency factor
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for objective function is presented in Appendix E.

Table 3.13: Theoretical ANOVA for the Phase 2 experiment in Table 3.12 where wa = 0.75
and wτ = 0.25 for Ea and Eτ in the objective function.

Source of Variation DF EMS Eγ Eτ

Between Runs 2 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 3σ2
a + 3θγ + 2θτ 1 0.33

Treatments 1 σ2 + 3σ2
a + 4θτ 0.67

Residual 1 σ2 + 3σ2
a

Within Animals
Tag 2 σ2 + 3θγ 1
Residual 4 σ2

The weights wa = 0.75 and wτ = 0.25 was chosen as these weights works well for all cases

where the Phase 1 experiment was arrange in a CRD. From all optimal designs found, the Ea

always equal to 1, as these optimal design have the same coefficients of the variance components

in the Between Animals Within Runs stratum, thus we can then use this design to perform

F-test between the treatment groups as well as estimating the variances of treatment effects.

Thus, the weight for Ea must be higher than the weight for Eτ in the objective function. In

addition, there are only two components, i.e. animal and treatment, needed to be considered in

this objective function, thus it is relatively straightforward to find a set of weights works well for

these cases. In the next chapter, we will show a different way to optimise the objective function

with multiple-criteria, where the we will not need to find a set of weights that works well in all

cases.

3.6.3 Maximising intact Treatment DF

The final desirable property we want to incorporate in the objective function is to keep the

total DF associated with treatments as intact as possible. This issue can arise when there is

complete confounding of DF associated with Treatment effects with DF associated with either the

Between Runs stratum or DF associated with Tag effects, which results in some DF associated

with Treatment effects that cannot be estimated in the Between Animals Within Runs stratum.

This subsection is a continuation of derivation of the objective function. So far in this section,

we have put together an objective function in (3.18), which first targets designs that maximise

the amount of animal information, Ea, in the Within Runs stratum, and then maximise the

amount of treatment information, Eτ , in the Between Animals Within Runs stratum. Finally,
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to ensure all of the treatment contrasts are, as much as possible, estimated in the Between

Animals Within Runs stratum, we add a final component to the objective function, namely the

ratio of DF associated with Treatment effects between the Phase 1 and Phase 2 experiments,

denoted by
ν2

ν1

, where ν1 and ν2 denote the DF associated with Treatment effects in the Phase 1

and Phase 2 experiments, respectively. The DF associated with Treatment effects in the Phase

1 experiment provides an upper bound, and main purpose of this component is to find a design

which allocates treatments in such a way that ν2/ν1 = 1. Thus, the objective function in (3.18)

can be extended to

O(Di) = waEa + wτEτ + wν
ν2

ν1

. (3.19)

where wν denotes the weight of the proportion of treatment DF in Phase 1 and 2 experiments.

The objective function in (3.19) can be viewed as having two parts: the animal component

(waEa) and the treatment component (wτEτ + wν
ν2
ν1

). The objective function in (3.19) is first

re-written as

O(Di) = 0.75Ea + 0.25

(
wτEτ + wν

ν2

ν1

)
,

where the weighting for the animal component is maintained as 0.75 of the objective function in

(3.18); the weighting for the treatment component and treatment DF proportion is then 0.25.

As the number of treatments increase in the experiment, the chance of all contrasts (or DF)

associated with the Treatment effects being estimated in the Between Animals Within Runs

stratum decreases. Since wτ + wν = 1, we choose weights of wτ = 1/ν and wν = (ν − 1)/ν,

which suggests as the number of treatments increases, we give greater weight to the part of the

objective function that keeps all Treatment DF intact, so the estimation of the effects is more

efficient. The objective function then becomes

O(Di) = 0.75Ea + 0.25

(
1

ν
Eτ +

ν − 1

ν

ν2

ν1

)
.

Since the Phase 1 experiment is arranged as a CRD, ν1 is the upper bound of the DF associated

with the Treatment effects and thus is always the same as ν − 1, and the objective function

becomes

O(Di) = 0.75Ea + 0.25

(
Eτ + ν2

ν

)
. (3.20)

To show this objective function allows us to find optimal designs, we consider a two-phase

experiment where the Phase 1 experiment involves ν = 3 treatments assigned to na = 6 animals.

The design of the Phase 1 experiment comprises Treatment a assigned to Animals A and D,

Treatment b assigned to Animals B and E, and Treatment c assigned to Animals C and F.

The Phase 1 theoretical ANOVA, see Table 3.14, shows there are now 2 DF associated with the
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Treatment effects.

Table 3.14: Theoretical ANOVA for the Phase 1 experiment with ν = 3 treatments assigned
to na = 6 animals.

Source of Variation DF EMS Eτ

Between Animals
Treatment 2 σ2

a + 2θτ 1
Residual 3 σ2

a

The samples from the Phase 1 experiment are further split into ns = 2 sub-samples, and

each of these 12 sub-samples is measured in the nr = 3 runs of four-plex experiments. The

aims of the optimal design of the Phase 2 experiment are to maximise the animal and treatment

information, and preserve 2 DF associated with Treatment effects in the Between Animals Within

Runs stratum.

Table 3.15 shows the optimal design for the Phase 2 experiment found by using the objective

function defined in (3.18). Three groups can be observed in the allocation of animals to runs,

where Run 1 contains the sub-samples from Animals B and D, Run 2 contains sub-samples from

Animals C and F, and Run 3 contains sub-samples from Animals A and E. In addition, two

groups can be observed with respect to the tags when sub-samples from Animals A, B and C

are differentially labelled by Tags 114 and 115 while the sub-samples from Animals D, E and F

are differentially labelled by Tags 116 and 117. Thus, Animal effects are confounded with both

Run and Tag effects. The treatment allocation to runs and tags is unsatisfactory. Although

three sub-samples from each treatment group are differentially labelled with the four different

tags, thereby yielding orthogonal Treatment and Tag effects, the Treatment effects, which are of

greatest interest to researchers, are confounded with runs since Runs 1 and 3 contain Treatments

a and b, and Run 2 contains Treatment c.

Table 3.15: Optimal design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags without the maximised DF associated with the Treatment effects,
when the Phase 1 experiment consists of ν = 3 treatments assigned to na = 6 animals, ns = 2
sub-samples are then taken from each animal and analysed in the Phase 2 MudPIT-iTRAQTM

experiment comprising nr = 3 runs and nγ = 4 tags. Upper case letters denote animal IDs,
while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Bb Bb Da Da
2 Cc Cc Fc Fc
3 Aa Aa Eb Eb

The theoretical ANOVA for the design in Table 3.15 is shown in Table 3.16. The total of 11
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DF is first separated into 2 DF in Between Runs and with 9 DF in Within Runs strata. The 2

DF associated with the Between Runs stratum are further partitioned to 1 DF associated with

Treatment effects with 100% of treatment information. This 1 Treatment DF in the Between

Animals Between Runs stratum is confounding the treatment contrast of Treatments a and b

versus Treatment c with Run effects. Thus, the estimation of Treatment effects in this stratum

will not be very precise, because the run-to-run variation tends to be large. The other 1 DF

associated with the Treatment effects in the Between Animals Within Runs stratum and the

estimation of the Treatment effects in this stratum will not include the differences between

Treatments a and c versus Treatment b. The treatment information matrix of this design

used to compute the canonical efficiency factors and average efficiency factor is presented in

Appendix F.

Table 3.16: Theoretical ANOVA for the Phase 2 experiment in Table 3.15 without maximiza-
tion of the DF associated with the Treatment effects.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatment 1 σ2 + 2σ2
a + 4σ2

r + 4θτ 1
Residual 1 σ2 + 2σ2

a + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 3θγ 1

Treatment 1 σ2 + 2σ2
a + 4θτ 1

Residual 1 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 3θγ 1
Residual 4 σ2

Table 3.17 shows the optimal design for the Phase 2 experiment based on the three-criterion

objective function defined in (3.20). Two groups can be observed in the allocation of animals to

runs, when Run 1 contains the sub-samples from Animals C and D, and Runs 2 and 3 contain

the sub-samples from Animals A, B, E and F. There are also groups of animals assigned to tags

in the same way as the allocation in Table 3.15. The allocation of sub-samples from animals

differentially labelled by tags are also in two groups, where Tags 114 and 115 label sub-samples

from Animal A - C, while Tags 116 and 117 label sub-samples from Animal D - F. The effects

of Animals are still confounded with both Run and Tag effects for the new design. For the

treatment allocation to runs and tags (see Table 3.15), there are no runs that contains one of

each treatment, but each of the four tags does have each of the three treatments. Hence, while

the Treatment effects are still confounded with the Run effects, they are orthogonal to the Tag
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effects.

Table 3.17: Optimal design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags with the maximization of the DF associated with the Treatment
effects, when the Phase 1 experiment consists of ν = 3 treatments assigned to na = 6 animals,
ns = 2 sub-samples are then taken from each animal and analysed in the Phase 2 MudPIT-
iTRAQTM experiment comprising nr = 3 runs and nγ = 4 tags. Upper case letters denote
animal IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Cc Cc Da Da
2 Bb Aa Eb Fc
3 Aa Bb Fc Eb

The theoretical ANOVA of the new design in Table 3.15 shows that both of the 2 DF asso-

ciated with the Treatment effects are in the Between Animals Within Runs stratum. However,

there is still 1 DF associated with the Treatment effects with 0.25 of the treatment information

in the Between Animals Between Runs stratum. The 2 DF associated with the Treatment effects

in the Between Animals Within Runs stratum have the canonical efficiency factors of 1 and 0.75,

so that Eτ = 0.857. The treatment contrasts that are fully estimated in the Between Animals

Within Runs stratum is for Treatment a versus b, while we only obtain 0.75 of the information

from the second contrast of Treatments a and b versus Treatment c. Since the 2 DF for the

Treatment effects can be estimated in the Within Runs stratum, the estimation of Treatment

effects is more precise than the design with 1 DF associated with Treatment effects. Note that

there are valid F-tests for both design, but that in the previous design of this subsection one of

the treatment contrasts is likely to be estimated very poorly due to the high run-to-run variation.

The treatment information matrix of this design used to compute the canonical efficiency factors

and average efficiency factor is presented in Appendix F.

The allocation of treatments to runs and tags in Table 3.17 is connected, because we cannot

split runs or tags into groups in such a way that the treatment in any one group of runs or tags

is distinct from the treatment in the other groups of runs or tags. Having a connected design is

important, because every treatment contrast is estimable from comparing within runs and not

confounded with any one of the tag contrasts. Thus, all the DF associated with the Treatment

effects are preserved for estimation and performing the F-test.
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Table 3.18: Theoretical ANOVA for the Phase 2 experiment in Table 3.17 with maximization
of the DF associated with the Treatment effects.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatment 1 σ2 + 2σ2
a + 4σ2

r + θτ 0.250
Residual 1 σ2 + 4σ2

r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 3θγ 1

Treatment 2 σ2 + 2σ2
a + 3.43θτ 0.857

Residual 1 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 3θγ 1
Residual 3 σ2

3.7 Construction of the initial design

The optimal designs found in Section 3.6 were generated using random initial designs, i.e. the

animal were randomly assigned to the runs and tags for the initial Phase 2 design. Additionally,

the search method used involved swapping random pairs of observational units of the Phase

2 experiments until the objective function value was maximised. However, as the size of the

experiment increases, so too does the search space, and, thus, the computational effort needed

to find the optimal design. One way to speed up the search time is to start with an initial

design having properties that are close to those we anticipate the optimal designs will have, i.e.

near-optimal initial designs.

The optimal design resulting from the objective function in (3.20) showed a pattern in the

allocation of Animal samples to runs and tags that was common across a range of designs

we explored with this objective function. Based on this pattern, we can provide a systematic

approach to generate a near-optimal initial designs. Table 3.19 shows allocations of sub-samples

of animals to runs and tags, where rows correspond to runs and columns to tags. We have

presented generic patterns in the allocation of these samples for three cases, when each case

consists of four animals in the Phase 1 experiment and then where the number of runs is equal

to the number of sub-samples from each animal in the Phase 2 experiment, i.e. nr = ns = 2, 3

and 4. The design in Table 3.19 (a) shows the allocation of animals is split into two arrays each

comprising two runs and two tags, and then sub-samples from each of one pair of animals are

arranged in a Latin square design in the first array, and the remaining sub-samples from the

second pair of animals are similarly arranged in a Latin square design in the second array. In
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Table 3.19 (b), the three runs by four tags design is partitioned into one array comprised of

three runs and three tags, and sub-samples from all 3 animals arranged in a Latin square. The

remaining three sub-samples from Animal D are assigned to the three runs by one tag array.

The design in Table 3.19 (c) shows the four runs and four tags are partitioned into four 2-run-

and-2-tag arrays. The sub-samples from the first pair of animals are arranged in a Latin square

design in the two arrays of the first two runs and first two tags, and the last two runs and last

two tags. The sub-samples from the second pair of animals are also arranged in a Latin square

design in the two arrays of first two runs and last two tags, and the last two runs and first two

tags.

Table 3.19: Experiments involving 4 animals in the Phase 1 experiment and (a) two runs and
two technical replicates (b) 3 runs and 3 technical replicates and (c) 4 runs and 4 technical
replicates in the Phase 2 proteomics experiment using the four-plex iTRAQTM labelling system.

(a)

A B C D
B A D C

(b)

A B C D
B C A D
C A B D

(c)

A B C D
B A D C
C D A B
D C B A

Using the patterns of animal allocation to runs and tags as described in Table 3.19, treat-

ment allocation also needs to be considered when setting up the initial design, with the aim of

minimising the confounding Animals and Treatment effects within Run and Tag effects. Con-

sider a Phase 1 experiment that consists of ν = 4 treatments assigned to na = 8 animals, when

Treatment a is assigned to Animals A and E, Treatment b is assigned to Animals B and F,

Treatment c is assigned to Animals C and G, and Treatment d is assigned to Animals D and H.

Each sample is then further split into ns = 2 sub-samples, and is to be measured in the Phase

2 MudPIT-iTRAQTM experiment of nr = 4 runs and nγ = 4 tags.

Two possible initial designs are presented in Tables 3.20 and 3.21. The initial design in

Table 3.21 appears to be better than the one in Table 3.20, because in the design in Table 3.20

the sub-samples from Treatments a and b are only labelled by Tags 114 and 115 and sub-samples

from Treatments c and d are only labelled by Tags 116 and 117. Thus, the Treatment effects

are confounded with the Tag effects in the initial design shown in Table 3.20, while in the design

shown in Table 3.21, sub-samples each of four treatments are labelled by all four tags and four

runs, so that the Treatment effects are orthogonal to both Run and Tag effects.

If we examine the allocation of treatments in Tables 3.20 and 3.21 more closely, we can see

that sub-samples from each treatment group are labelled twice by each tag in the design of

Table 3.20, while sub-samples from each treatment group are labelled once in each tag in the
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better design of Table 3.21. Based on this structure, we come up with a systematic approach

for constructing an initial design for the Phase 2 experiment on the assignment of animals and

treatments to runs and tags: the same treatment groups cannot be allocated to the same runs and

tags more than ν/nγ and ν/nr times, respectively, while the same animals cannot be allocated

to the same runs and tags more than na/nγ and na/nr times, respectively.

Table 3.20: Initial design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags, when the Phase 1 experiment consists of ν = 4 treatments assigned
to na = 8 animals, ns = 2 sub-samples are then taken from each animal and analysed in the
Phase 2 MudPIT-iTRAQTM experiment comprising nr = 4 runs and nγ = 4 tags. Upper case
letters denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 Aa Bb Cc Dd
2 Bb Aa Dd Cc
3 Ea Fb Gc Hd
4 Fb Ea Hd Gc

Table 3.21: Different initial design with the same design parameters as Table 3.20.

Tag
Run 114 115 116 117

1 Aa Bb Cc Dd
2 Bb Aa Dd Cc
3 Gc Hd Ea Fb
4 Hd Gc Fb Ea

3.8 Simulated annealing

Simulated annealing (SA) algorithm is a well-known heuristic method for finding the variables

that maximise or minimise a numerical value obtained from an objective function with a suitable

optimality criterion (Kirkpatrick et al., 1983). SA algorithm is thus important for continuously

comparing the numerical values generated from the objective function of competing designs.

Search algorithms have been introduced to resolve the problem of design optimization in a large

search space. This Chapter considers the simulated annealing (SA) algorithm, which is inspired

by the heating and cooling of metal to alter its physical properties (Kirkpatrick et al., 1983).

This section describes SA algorithm in detail and how we use it to find the optimal design of

Phase 2 experiment.

SA algorithm was inspired by the effects temperature changes have on metal: as the temper-

ature cools down, the physical properties of the metal become fixed and cannot be changed. In
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SA, a ’temperature’ parameter is initially set to high and gradually decreases as the algorithm

runs. At high temperatures the algorithm has a higher probability of accepts solutions that are

worse than the current solution, thereby avoiding the situation of being stuck at local optima.

This probability is also known as, acceptance probability. As the temperature decreases, the ac-

ceptance probability drops, so does the chance of accepting worse solutions; thus, the algorithm

will gradually close in on a globally optimum solution. This temperature change is what makes

SA algorithm effective in finding an optimal solution across a large search space.

3.8.1 Acceptance probability

Acceptance probability is the probability of accepting a current design during the searching

procedure. Consider a new design, D1, which can be generated by swapping any two animal IDs

from the initial design, D0. A single swap is considered as one iteration. The current design at

the i-th iteration is denoted by Di and the previous design at the (i− 1)-th iteration is denoted

by Di−1. Whenever the current design is better than the previous one, i.e.

O(Di) > O(Di−1),

where O(Di) denotes the value of the objective function for the design at the i-th iteration, the

swap is accepted and in the next iteration the swapping process is carried out on the accepted

design. Worse designs may also be accepted, with acceptance probability of the current design,

Di, given by

P (Di, Di−1, ti) = exp

[
O(Di)−O(Di−1)

ti

]
, (3.21)

where ti denotes the annealing temperature at the i-th iteration, with higher temperatures

allowing the algorithm to more frequently accept worse designs than the current solution. This

probability is then compared to a randomly generated value between zero and one, and if it is

lower than the random number, the current design is rejected and the previous design is retained

for the next iteration. If the acceptance probability exceeds the random number, the current

design is accepted for the next iteration, Since the algorithm sometimes accepts worse designs,

the best overall design found so far is also stored. The overall best design is returned at the end

of the search.

3.8.2 Initial and final temperatures

Temperature plays an important role in determining the acceptance probability as shown in

(3.21), a poorly defined temperature will decrease the efficiency of using the SA algorithm. We
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can show that the SA algorithm’s temperature is directly related to the difference between the

values of the objective function for the previous and current designs. If at the i-th iteration, this

difference equals the negative value of the temperature, i.e.

O(Di)−O(Di−1) = −ti,

then the acceptance probability given by

exp

[
O(Di)−O(Di−1)

ti

]
= exp

(−ti
ti

)
= exp (−1) = 0.3679.

There still exists a 0.3679 probability that Di will be accepted during the search. Thus, the

temperature can be determined based on the range of values calculated for the objective function

from a set of designs (Whitaker et al., 1990).

Whitaker et al. (1990) described a procedure for determining the initial and final temperatures

for the SA algorithm. Their method is to first generate a set of random designs and calculate

values from the objective function. The initial temperature is then determined from the range of

these values, i.e. the difference between the largest and smallest values. The final temperature

is calculated as the difference between the largest and second largest values. Finally, the design

with the highest value from the objective function is used as the initial design for SA.

3.9 Nested simulated annealing

John and Whitaker (1993) mentioned that the convergence of the SA algorithm can be very slow

and the design found far from optimal. They describe a method of separating the entire process

of SA algorithm into 10 levels, with each level performed one after the other. The process of

how the temperature is rapidly reducing in one level after another is called accelerated cooling

and applying SA algorithm is called nested simulated annealing.

The nested SA algorithm starts a random walk across a search space with a high temperature

to diversify the search in order to escape local optima. The accelerated cooling allows the search

to intensify as it becomes more local. As the random walk gradually becomes more confined,

following the contours of the search space, the chance of accepting worse designs decreases. The

nested SA algorithm for finding a good design requires quickly reducing the temperature across

all levels sequentially while still carrying out SA algorithm at each temperature level. Let t(l)(i)

denote the temperature at i-th iteration of level l, then the initial temperature at level l is

denoted by t(l)(0), which we have shown in Section 3.8.2. The initial temperature at the next
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level is then given by

t(l+1)(0) =
t(l)(0)

c
, (3.22)

where c denotes the factor by which the temperature is reduced from one temperature level to

the next. Whitaker et al. (1990) set the value of c between 4 and 10, to achieve substantial

temperature reductions.

Since the overall initial and final temperatures have been calculated as described in Sec-

tion 3.8.2, we apply this overall initial temperature as the initial temperature of the second

level, denoted by t(2)(0), and the overall final temperature as the initial temperature of the final

level, denoted by t(10)(0). We can then calculate c in (3.22) as

c = exp

[
log(t(2)(0)/t(10)(0))

10− 2

]
.

Note the nested SA algorithm process only applies from level 2 to 10, because the first level is

to compute the overall initial and final temperatures.

3.10 Modified simulated annealing

While the nested SA algorithm approach described in Section 3.9 works well, i.e. identifies

designs with good properties, it is still slow. This section describes two further improvements in

the swapping procedures of the nested SA algorithm.

3.10.1 Swapping method for two or more technical replicates

The current swapping method is applied to any two random observational units of the Phase

1 experiment in the allocation to runs and tags of the Phase 2 experiment. However, the

initial design proposed in Section 3.7 for two or more technical replicates may not improve the

design when swapping just two animal IDs, because the structure of the initial design is close

to the optimal design. Hence, the swapping method is adjusted by swapping any two random

sets of animal IDs of identical technical replicates, i.e. the experimental units of the Phase 1

experiment. The purpose of this adjustment is to preserve the structure of the initial design,

defined in Section 3.7, while generating a new candidate design for comparison.

3.10.2 Three-stage swapping method

The swapping method of SA algorithm can be improved further still by using a three-stage

swapping method, in which single large search space is divided into three smaller ones. Williams
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and John (1996) describe the use of a swapping procedure employed in two stages in order to

identify optimal row-column designs. For the MudPIT-iTRAQTM experiment, the runs and tags

are considered to be the rows and columns, respectively. The first stage is to apply swapping

of animals and treatments within the runs and find the optimal design using the nested SA

algorithm, followed by the second stage involving the swapping of animals and treatments within

the same tags and finding the optimal design again using the nested SA algorithm.

This two-stage procedure increases coverage of finding the design with better properties than

those found by using the single-step swapping procedure. However, it is clear that a two-stage

procedure still has limited coverage of the search space. For example, a better design may be

identified from a single swap of animals and treatments that do not belong to the same runs

and tags, instead of performing two swaps of animals and treatments first within runs and then

within tags. Thus, an additional swapping procedure was trialled, namely swapping the sub-

samples of animals and treatments that do not belong to the same runs and tags, which proved

to yield better coverage than both the one- and two-stage procedures. The differences between

the procedures used in the three swapping steps mean that their corresponding search spaces

are also different, and each thereby requires separate computation of its first-level starting and

final temperatures. From level 2 onwards, the best design found from the one stage is used as

the initial design of the next stage within each level of SA. The best design found after the final

nested annealing level is considered as the overall optimal design.

3.11 An illustrative example using the four-plex iTRAQTM

system

This section shows the optimal design when the Phase 2 experiment uses the four-plex iTRAQTM

system with the objective function defined in (3.20), and the modified nested SA algorithm

describe in Section 3.10. Consider a Phase 1 experiment consisting of ν = 6 treatments assigned

to na = 18 animals. The theoretical ANOVA of the Phase 1 experiment shows that all treatment

information is in the Between Animals stratum (see Table 3.22). There are 5 DF associated with

the Treatment effects, and so 12 DF remain associated with the Residual EMS in the Between

Animals stratum. The aim is to find a design for the Phase 2 experiment that preserves, as

much as possible, the amount of treatment information and the DF associated with Residual

EMS from the Phase 1 experiment.

In the Phase 2 proteomics experiment, ns = 2 sub-samples are taken from each sample of the
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Table 3.22: Theoretical ANOVA for the Phase 1 experiment with ν = 6 treatments assigned
to na = 18 animals.

Source of Variation DF EMS Eτ

Between Animals
Treatment 5 σ2

a + 6θτ 1
Residual 12 σ2

a

Phase 1 experiment, and these sub-samples are measured in the MudPIT-iTRAQTM experiment

comprising nr = 9 runs and nγ = 4 tags. Using the objective function defined in (3.20) and the

modified SA algorithm described in Section 3.10, the optimal design is given in Table 3.23. The

final value of the objective function is 0.9932. This final design, given in Table 3.23, consists of

eight 2-run-and-2-tag arrays from Run 1 to 8 and Tags 114 to 117, where each array has a Latin

square arrangement for the animals and treatments. In addition, the samples from the last pair

of animals with the treatment, i.e. Animals J and Q and Treatments d and e, are assigned to

Run 9. This structure has been described under the method for constructing an initial design

in Section 3.7.

Table 3.23: Optimal design for Phase 2 experiment showing the allocation of sub-samples from
treatments assigned to animals based on objective function value of 0.9932, when the Phase 1
experiment consists of ν = 6 treatments assigned to na = 18 animals, ns = 2 sub-samples
are then taken from each animals and measured in the Phase 2 MudPIT-iTRAQTM experiment
comprising nr = 9 runs and nγ = 4 tags. Upper case letters denote animal IDs, while the lower
case letters denote the treatments.

Tag
Run 114 115 116 117

1 Rf Pd Oc Aa
2 Pd Rf Aa Oc
3 Ic Ke Bb Ma
4 Ke Ic Ma Bb
5 Hb Cc Ee Ff
6 Cc Hb Ff Ee
7 Ga Na Lf Dd
8 Nb Ga Dd Lf
9 Jd Jd Qe Qe

Table 3.24 shows the theoretical ANOVA for this optimal design. The total of 35 DF is

separated into 8 DF from Between Runs stratum and 27 DF from Within Runs stratum. The

average efficiency factor for Treatment effects Eτ = 0.8370 is computed from the five treatment

canonical efficiency factors of 11/12, 11/12, 8/9, 3/4 and 3/4 for each of the canonical treatment

contrasts in the Between Animals Within Runs stratum. Thus, the allocation of sub-samples

from treatment to runs is not balanced, because the canonical efficiency factors are not identical.
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However, most of the treatment information is in the targeted stratum of Between Animals

Within Runs. Additionally, the Residual DF decreases from 12 DF to 7 DF. The 5 DF associated

with Animal effects are lost due to the 4 DF now being in the Between Runs stratum, and 1

DF is confounded with the Tag effects. However, a valid F-test for detecting the treatment

differences is still available in the Between Animals Within Runs stratum.

Table 3.24: Theoretical ANOVA from the optimal design for Phase 2 experiment in Table 3.23
based on objective function value of 0.9932.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatment 4 σ2 + 2σ2
a + 4σ2

r + 0.75θτ 0.125
Residual 4 σ2 + 4σ2

r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 9θγ + 0.67θτ 1 0.111

Treatment 5 σ2 + 2σ2
a + 5.02θτ 0.837

Residual 7 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 9θγ 1
Residual 12 σ2

3.12 An illustrative example using the eight-plex iTRAQTM

system

This section shows how the objective function defined in (3.20) and the modified nested SA

algorithm described in Section 3.10 can also look for the optimal design when the Phase 2

experiment uses the eight-plex iTRAQTM system. This section will also compare the theoretical

ANOVA of the Phase 2 experiment of the initial design and the optimal design.

Consider a Phase 1 experiment that consists of ν = 8 treatments assigned to na = 16 animals.

The theoretical ANOVA for the Phase 1 experiment, in Table 3.25, shows the total of 15 DF is

separated to 7 DF associated with the Treatment effects and 8 DF for Residual EMS.

Since each sample from the Phase 1 experiment is split into ns = 2 sub-samples, there are a

total of 32 sub-samples that can be measured with four runs of the eight-flex MudPIT-iTRAQTM

experiment. Table 3.26 shows the allocation of sub-samples of animals and treatments differ-

entially labelled by tags and measured in runs in the initial design using the method described

in Section 3.7. This initial design consists of eight 2-run-and-2-tag arrays, which has a Latin
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Table 3.25: Theoretical ANOVA for a Phase 1 experiment with ν = 8 treatments assigned to
na = 16 animals.

Source of Variation DF EMS Eτ

Between Animals
Treatment 7 σ2

a + 2θτ 1
Residual 8 σ2

a

square arrangement of animals and treatments to runs and tags.

Table 3.26: Initial design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags, when the Phase 1 experiment consists of ν = 8 treatments assigned
to na = 16 animals, ns = 2 sub-samples are then taken from each animal and analysed in the
Phase 2 MudPIT-iTRAQTM experiment comprising nr = 4 runs and nγ = 8 tags. Upper case
letters denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 113 114 115 116 117 118 119 121

1 Aa Bb Cc Dd Ee Ff Gg Hh
2 Bb Aa Dd Cc Ff Ee Hh Gg
3 Kc Ld Ia Jb Og Ph Me Nf
4 Ld Kc Jb Ia Ph Og Nf Me

The theoretical ANOVA of the initial design shows there is 100% of the treatment information

in the Between Animals Within Runs stratum (see Table 3.27). However, this is based on 6

DF compared to 7 DF in Table 3.25. For the analysis of the initial design, one of the 7 DF

associated with the Treatment effects is completely confounded with the Tag effects. Therefore,

the allocation of treatment to tags is considered as disconnected, because one treatment contrast

cannot be estimated.

Table 3.27: Theoretical ANOVA of the initial design for the Phase 2 experiment in Table 3.26.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 8σ2
r

Residual 2 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 4θγ + 4θτ 1 1

Treatment 6 σ2 + 2σ2
a + 4θτ 1

Residual 5 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

Using the objective function defined in (3.20) and the modified nested SA algorithm describe
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in Section 3.10, the optimal design is found and presented in Table 3.28. This optimal design

still preserved the structure of the initial design in Table 3.26 with the eight 2- run-and-2-tag

arrays.

Table 3.28: Optimal design for the Phase 2 experiment showing assignment of animals and
treatments to runs and tags, when the Phase 1 experiment consists of ν = 8 treatments assigned
to na = 16 animals, ns = 2 sub-samples are then taken from each animal and analysed in the
Phase 2 MudPIT-iTRAQTM experiment comprising nr = 4 runs and nγ = 8 tags. Upper case
letters denote animal IDs, while the lower case letters denote the treatments.

Tag
Run 113 114 115 116 117 118 119 121

1 Og Kc Jb Ph Ia Ld Nf Me
2 Kc Og Ph Jb Ld Ia Me Nf
3 Hh Ff Cc Aa Ee Gg Bb Dd
4 Ff Hh Aa Cc Gg Ee Dd Bb

Table 3.29 shows the theoretical ANOVA of the optimal design where all 7 DF associated with

the Treatment effects are in the Between Animals Within Runs stratum. Thus, all treatment

contrasts can be estimated in the stratum with minimum error. However, the DF associated

with the Residual EMS of the Between Animals Within Runs stratum are reduced to 4 (from 5

of the initial design). The Eτ is also reduced to 0.8077, which is computed from seven canonical

efficiency factors of 1, 1, 1, 0.75, 0.75 and 0.5.

Table 3.29: Theoretical ANOVA of the optimal design for the Phase 2 experiment in Table 3.28.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 8σ2
r

Residual 2 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 4θγ + 1.2θτ 1 0.3

Treatment 7 σ2 + 2σ2
a + 3.23θτ 0.8077

Residual 4 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

Comparing the amount of treatment information between these two designs, the initial design

provides 100% of the treatment information for the 6 DF associated with the Treatment effects,

while the optimal design provides 7 DF associated with the Treatment effects. Out of these

7 DF, only 4 DF contain 100% of the treatment information, and the remaining 1 and 2 DF

consist of 50% and 75%of the treatment information, respectively.
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The next step is to further examine how the treatment groups compare, by extracting a set

of basic contrasts which are the eigenvectors of the information matrix. For the initial design, a

matrix of six basic contrasts, denoted by T1 - T6, where columns correspond to 6 DF associated

with the Treatment effects and rows correspond to Treatments a to h can be expressed as



T1 T2 T3 T4 T5 T6

a 0.0000 0.0000 0.0000 0.8660 0.0000 0.0000

b 0.0000 −0.2677 0.0000 −0.2887 0.0000 0.7714

c 0.0000 −0.5342 0.0000 −0.2887 0.0000 −0.6175

d 0.0000 0.8019 0.0000 −0.2887 0.0000 −0.1538

−−− −−− −−− −−− −−− −−−
e 0.0000 0.0000 0.8660 0.0000 0.0000 0.0000

f −0.2677 0.0000 −0.2887 0.0000 0.7714 0.0000

g −0.5342 0.0000 −0.2887 0.0000 −0.6175 0.0000

h 0.8019 0.0000 −0.2887 0.0000 −0.1538 0.0000



.

Note that all six contrasts have 100% of the treatment information. The treatment comparisons

show two distinct groups of Treatments a, b, c and d, and Treatments e, f and g. This is because

the comparison between these two groups of treatments is completely confounded with the Tag

effects. For the optimal design, a matrix of seven basic contrasts, denoted by T1 - T7, – where

columns corresponds to 7 DF associated with the Treatment effects and rows corresponds to

Treatments a to h – can be expressed as



T1 T2 T3 T4 T5 T6 T7

a 0.0000 0.0000 0.0000 0.6124 0.0000 0.7071 0.0000

b −0.3800 0.4095 0.1460 −0.2041 0.7071 0.0000 0.0000

c 0.4712 0.2285 −0.5559 −0.2041 0.0000 0.0000 0.5000

d 0.6420 0.0420 0.4116 −0.2041 0.0000 0.0000 −0.5000

e −0.2621 −0.4514 −0.5575 −0.2041 0.0000 0.0000 −0.5000

f 0.0000 0.0000 0.0000 0.6124 0.0000 −0.7071 0.0000

g −0.3800 0.4095 0.1460 −0.2041 −0.7071 0.0000 0.0000

h −0.0913 −0.6379 0.4100 −0.2041 0.0000 0.0000 0.5000



.

The first four contrasts contain 100% of the treatment information, while Contrasts T5 and T6

contain 75% of the treatment information, and Contrast T7 has 50% of the treatment informa-

tion. However, no distinct groups of treatments can be identified from these basic contrasts.
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Hence, this optimal design appears to be better, because the treatment allocation to runs and

tags is connected, and all the treatment contrast are compared in the Between Animals Within

Runs stratum.

3.13 Optimal designs for experiments involving two to

eight treatments and two technical replicates

A table of optimal designs for a range of design parameters has been generated using the objective

function described in (3.19) and the simulated annealing algorithm described in Section 3.10.

This set of optimal designs is for experiments with ν = 2, . . . , 8 treatments, na = νrb animals,

ns = 2 sub-samples, nγ = 4, 8 tags, and nr = n/nγ runs, where rb denotes the number of

biological replicates and n denotes total number of sub-samples, (rb = 2, . . . , 8). This set of

optimal designs is presented in Appendix G. If a biologist has an experiment with a specific

set of design parameters, they can use the given design for their experiment. A set of tables,

summarising the properties of each optimal design of the Phase 2 experiment, is presented in

Appendix H. This section discusses the properties of the optimal designs found.

The general layout of each design is in the form of a two-way table comprising n/nγ rows

and nγ columns, where nγ can be four for the four-plex experiment or eight for the eight-plex

experiment. We assume that one sub-sample is differentially labelled exactly once with one tag

and analysed in only one run. As previously discussed, iTRAQTM is available in four-plex or

eight-plex reagent kits. So, it is possible to analyse as few as two and up to eight differentially

labelled proteomics samples per MudPIT run. Generally, however, because the cost of these kits

is substantially more than the cost of obtaining biological samples, biologists will run experiments

utilising each kit in its entirety. For this reason, here we consider only Phase 2 experiments with

runs of size 4 and 8; although, the methods presented in this Chapter may also be used to

generate optimal designs for runs of size 2 through 8. It follows from this assumption that the

four-plex experiment can only measure samples from the Phase 1 experiment where the number of

animals (experimental units) is even, without leaving any reagent unused. For example, consider

an experiment with na = 9 animals, and taking two sub-samples from each animal yielding a total

of n = 18 sub-samples. If a four-plex iTRAQTM reagent kit is used for the Phase 2 proteomics

experiment, five runs will be required to measure all 18 sub-samples. This means that two

reagents across the requisite five kits will remain unused and potentially be wasted. There

are other possible ways to use these two remaining reagents by taking additional sub-samples
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from two animal-treatment group combinations of the Phase 1 experiment. Alternatively, two

additional animals, each treated with one each of the three treatments at Phase 1, could be used

without taking technical replicates in the Phase 2 experiment. These are interesting possibilities,

but are beyond the scope of this thesis.

As for the eight-plex experiment, the Phase 2 experiment can only measure samples from

the Phase 1 experiment where the number of animals (experimental units) is divisible by four.

If we again consider the same experiment with na = 9 animals and ns technical replicates, the

18 sub-samples from the Phase 1 experiment can be measured by three runs of the eight-plex

experiment with six iTRAQTM reagents unused. Therefore, the number of animals (experimental

units) from the Phase 1 experiment, assuming the biologists will utilise all iTRAQTM reagents,

can influence the choice between the four-plex and eight-plex experiments.

3.13.1 Phase 1 Animal (Experimental unit) effects

The Between Animals Within Runs stratum is an important stratum to examine, because treat-

ments are assigned to animals (experimental units) in the Phase 1 experiment, i.e. the animals

are the experimental units. Thus, maximising the animal information for the Phase 2 experiment

will allow us to have more precise estimation of the Treatment effects.

As the number of animals becomes larger than the number of tags used in the Phase 2

experiment, Animal effects will become confounded with Run effects. This means that some DF

associated with the Between Animals stratum will be in the Between Runs stratum. Thus, as the

number of animals used increases, there will be more DF associated with Animal effects in the

Between Runs stratum. However, since the weight given to the animal average efficiency factor

(Ea) in the objective function in (3.20) is high, the Ea of all the identified optimal designs equal

1. Thus, every DF associated with the Animal effect that is still in the Within Runs stratum

contains 100% of the animal information. This means the variances are balanced in the Between

Animals Within Runs stratum, and allows us to have precise estimation of the Treatment effects

and with a valid F-test.

In the four-plex experiment, there are 3 DF associated with Tag effects. Due to the structure

of the initial design described in Section 3.7, these 3 DF are always split between two strata, with

1 DF going into the Between Animals Within Runs stratum and 2 DF going into the Within

Animals Within Runs stratum. Using the example in Section 3.11, sub-samples from one half

of the animals are labelled by the first two tags, and sub-samples from the other half of the

animals are labelled by the last two tags. Thus, one basic contrast associated with Tag effects

will always be confounded with Animal effects in the Phase 2 experiments using the four-plex
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labelling system. In Phase 2 proteomics experiments using the eight-plex labelling system, there

are 7 DF associated with Tag effects. Again, due to the structure of the initial design described

in Section 3.7, these 7 DF are always split between two strata: with 3 DF going into the Between

Animals Within Runs stratum and 4 DF going into the Within Animals Within Runs stratum.

Using the example in Section 3.12, we can see that two tags always label eight sub-samples from

four of 12 animals, i.e. Tags 113 and 114 label the sub-samples from Animals F, H, K and O,

and so on. We can see that the animals are evenly split into four groups, when sub-samples from

each group of animals are labelled by two of eight tags of the experiments. Thus, three basic

contrasts associated with Tag effects are always confounded with Animal effects in the Phase 2

experiments using the eight-plex labelling system.

Consider the tables of properties of each optimal design of the Phase 2 experiment in Ap-

pendix H. We can see that, given that the same Phase 1 experiment is used, if the Phase 1

experiment consists of fewer than 16 animals (experimental units), the optimal design for the

four-plex system has higher Residual DF in the Between Animals Within Runs stratum than

for the eight-plex system. Furthermore, given the same Phase 1 experiment is used, if the Phase

1 experiment consists of more than 24 animals (experimental units), the optimal design of the

eight-plex system has higher Residual DF in the Between Animals Within Runs stratum than

the four-plex system. Therefore, for the Phase 1 experiment with low numbers of animals (exper-

imental units), it is preferable to use the four-plex system instead of the eight-plex system, due

to the two extra DF available in the Between Animals Within Runs stratum. However, when

more Phase 1 animals (experimental units) are used, the degrees of confounded between the

Animal effects and Run effects increases in the Phase 2 experiment. Thus, it becomes preferable

to use the eight-plex system over the four-plex system.

3.13.2 Treatment effects

Confounding of Treatment effects with either Tag or Run effects, or both, can occur in optimal

designs found using the objective function and the modified nested SA algorithm. Optimal

designs that are found such that Treatment effects have some degree of confounding with Tag

effects have a pattern of the number of runs not being divisible by the number of treatments.

Such cases can be seen in the optimal designs found in Section 3.12 and 3.11. Optimal designs

that are found such that Treatment effects have some degree of confounding with Run effects

have a pattern of the number of tags not being divisible by the number of treatments. Such a

case can be seen in the optimal design found in Section 3.11.

Optimal designs found in Section 3.11 and 3.12 also demonstrate examples when the allo-
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cations of sub-samples from treatments to tags and runs can be unbalanced. Thus, for these

optimal designs, the treatment canonical efficiency factors are not identical, and thus some treat-

ment contrasts contain more treatment information than other treatment contrasts. Thus, it is

important to study how the comparison is made from the basic treatment contrasts. Appendix H

lists both the canonical and average efficiency factors of the treatment effects for every optimal

design.

Consider the tables of properties of each optimal design of the Phase 2 experiment in Ap-

pendix H, we can see that, in general, optimal designs from the eight-plex system have higher

treatment average efficiency factors than the four-plex system. There are some exceptions when

Phase 1 experiment consists of ν = 2 and ν = 4 treatments, these optimal designs are more

preferred for the four-plex system than the eight-plex system, due to the confounding between

the Treatment and Tag effects.

3.14 Extension to more than one treatment factor in the

Phase 1 experiment

In practice, biologists tend to be interested in more than one treatment factor in their proteomics

experiments. For example, interest may lie in whether proteins are differentially abundant

between healthy and diseased (disease status) animals when they are on normal versus high fat

diets. This experiment is also known as a 2×2 factorial experiment. The methods described

earlier in this Chapter for finding the optimal design can be extended to when the Phase 1

experiment has a factorial treatment structure. This section shows how to modify these methods

to search for an optimal designs for the Phase 2 proteomics experiment featuring a 2×2 factorial

Phase 1 experiment.

The main adjustments in extending the methods described for single-factor experiments

involve the modification of the objective function to take account of the factorial treatment

structure. Since the Phase 1 experiment involves additional treatment factors, the information

matrix associated with each of the treatment factors needs to be defined. These information

matrices are essential in calculating the treatment average efficiency factors for the objective

function. The main focus of this section thus is on the generation of these new treatment

information matrices.
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3.14.1 Model and design parameters

Consider the Phase 1 experiment with “diseased and healthy” disease statuses and “normal and

high fat” diet types which are randomly assigned to na animals; thus, there are a total of na = 4rb

animals from the Phase 1 experiment. Let yihj denote the abundance level of protein from animal

j under disease status i and diet type h. The linear model for the Phase 1 experiment can be

written as

yihj = µ+ τi + ρh + (τρ)ih + aihj, (3.23)

where µ denotes the grand mean of all observations, and τi, ρh and (τρ)ih represent the fixed

effects of disease status i, diet type j and interaction, respectively. The aihj ∼ N(0, σ2
a) denotes

the random effect from animal ihj, (i = diseased, health; h = normal, high fat; j = 1, . . . , rb).

Each sample from the Phase 1 experiment is further split into ns sub-samples, where each

sub-sample is to be differentially labelled by nγ tags, and analysed in the Phase 2 MudPIT-

iTRAQTM experiment. Now let yihjkls denote the abundance level of the same protein as in (3.23)

from sub-sample s of animal j under disease status i and diet type h, which is then differentially

labelled by tag k and analysed in run l. The linear model of the Phase 2 experiment can be

written as

yihjkls = µ+ τi + ρh + (τρ)ih + aihj + γk + rl + εihjkls (3.24)

where γk denotes the fixed effect of tag k, rl ∼ N(0, σ2
r) denotes the run effect, and εihjkls denotes

the experimental error, (k = 1 . . . nγ;l = 1 . . . nr; s = 1, . . . , ns ).

The model in (3.24) can then be rewritten as matrix notation as

y = 1µ+ Xτρατρ + Zau+ Xγαγ + Wrv + ε, (3.25)

where ατρ and αγ are the vectors Phase 1 treatment and tag fixed effects parameters, respec-

tively. The vector αδρ can be expressed as

(τdiseased : ρnormal, τdiseased : ρhighfat, τhealthy : ρnormal, τhealthy : ρhighfat). (3.26)

The matrices Xτρ and Xγ denote n×4 and n×nγ treatment and tag design matrices, respectively.

The treatment parameter ατρ can also be written in matrix notation as

ατρ = C00ατρ + C10ατρ + C01ατρ + C11ατρ (3.27)

where C00 = K4 is an averaging matrix. The remaining matrices C10 = (I2 − K2) ⊗ K4,

C01 = K2 ⊗ (I2 −K2) and C11 = (I2 −K2) ⊗ (I2 −K2) are the treatment projection matrices

for Disease status effects, Diet effects and Interaction effects. These projection matrices, C10,
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C01 and C11, are then used to partition the overall treatment information matrix into three

information matrices for each of the treatment effects.

3.14.2 Information matrix

The information matrix associated with the Animal effects, Aa, for computing the average

efficiency factors remains the same as in (3.9), i.e.

Aa = Z′aQrγZa.

Using the treatment projection matrices defined in (3.27), we can partition the overall treat-

ment information matrix X′τρQrγXτρ for each of three treatment effects, namely, Disease status,

Diet, and Interaction effects as

Aδ = C10X
′
τρQrγXτρC10, (3.28)

Aρ = C01X
′
τρQrγXτρC01, (3.29)

Aδρ = C11X
′
τρQrγXτρC11. (3.30)

3.14.3 Objective function

The average efficiency factors for the Disease status, Diet and Interaction effects associated with

the Between Animals Within Runs stratum can be calculated from the harmonic mean of the

canonical efficiency factors. These canonical efficiency factors are derived using the eigenvalue

decomposition of the information matrices defined in (3.28), (3.29) and (3.30). Additionally, the

DF associated with each of these treatment effects are maximised in the objective function.

The objective function can then be constructed based on the importance of each treatment

effect. If all treatment effects are equally important, the same weights can be assigned to each

treatment average efficiency factor. The weights of all treatment components are thus identical,

whereas the weights for the Disease status, Diet and Interaction effects are each set at 1/3. The

objective function can then be expressed as

3
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)]
, (3.31)

where Eτ , Eρ and Eτρ, and ντ , νρ and ντρ are the average efficiency factors and DF associated

with Disease status, Diet, and Interaction effects in the Between Animals Within Runs stratum,

respectively. Therefore, with some slight modifications in the objective function presented in

(3.31), the optimal design of Phase 2 experiments can be identified when the Phase 1 experiment
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is a factorial experiment.

3.15 Summary

This Chapter describes a computational approach for finding optimal designs for Phase 2 pro-

teomics experiments using MudPIT-iTRAQTM technologies when the Phase 1 experiment is

arranged in a CRD. A three-criterion objective function is derived for generating the optimal

design with three properties: 1) animal information is maximised in the Within Runs stratum,

2) treatment information is maximised in the Between Animals Within Runs stratum, and 3)

DF of the Treatment effects must still be intact in the Between Animals Within Runs stratum.

Using this objective function, a catalogue of designs is generated for different combinations of

design parameters.

The modified SA algorithm presented in Section 3.10 is able to optimise the objective function

and obtain the optimal design. The modified SA algorithm consists of two further improvements

in the swapping procedures of the nested SA algorithm in Section 3.9. The first improvement

is to apply the swapping method to only the two experimental units of the Phase 1 experiment

instead of the observational units. The purpose of this improvement is to preserve the structure

of the initial design, as defined in Section 3.7. The second improvement is the three-stage

swapping procedure, which divides a single large search space into three smaller search spaces:

this involves swapping the experiment units of animals and treatments: 1) within the same runs,

2) within the same tags, and 3) not within the same runs and tags.

Furthermore, researchers may carry out experiments in which the Phase 1 experiment is

arranged in blocks, for example, plants can be arranged into different trays where each tray is

referred to as a block. Thus, in the next Chapter we consider precisely this situation, and develop

an objective function and further modify the SA algorithm described in this Chapter to enable

the search for and identification of optimal designs.
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Chapter 4

Optimal designs for two-phase

experiments when the Phase 1

experiment is arranged in blocks

4.1 Introduction

This Chapter further develops the method for finding optimal designs of Phase 2 proteomics

experiments using multiplexing technology. While Chapter 3 presented a methodology used to

search for optimal designs when the Phase 1 experiment is arranged in a completely randomised

design (CRD), this Chapter considers Phase 1 experiments arranged in a randomised complete

block design (RCBD) or a balanced incomplete block design (BIBD).

When the Phase 1 experiment is arranged in blocks, then the block structure consists of

factors of Block and Plot. The treatments are randomly allocated to plots within each block,

thus the plot is the experimental unit. The biological material harvested from each Phase 1

experimental unit is also divided into multiple aliquots, namely technical replicates, which will

undergo MudPIT analysis in the Phase 2 experiment. Even though the additional Phase 1 Block

factor is not the experimental unit, we still need to consider how the allocation of the Phase 1

Block factor can affects the method in searching for the optimal design.

A weak or diseased animal, such as one that is debilitated by diabetes, is never housed with

a healthy animal because its physical safety may be compromised. Furthermore, separation

of sick and healthy animals reduces the risk of infection of the healthy animal. Therefore, for

ethical reasons in any biological experiment, researchers would never assign different treatments

to different animals within the same block. Hence, an experiment on plants is used, instead of
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animals, as an example that is described throughout this Chapter. In the plant example, the

Phase 1 experiment is arranged in blocks by trays of plants where each plant can be treated

by a different type of fungicide. Thus, each tray is referred to as a block, and each plant in a

tray is referred to as a plot or an experimental unit. Sub-samples extracted and processed from

each plant of the Phase 1 experiment are to be used to examine their protein content using the

MudPIT-iTRAQTM experiment in Phase 2 experiments.

In this Chapter, Section 4.2 introduces an small experiment on plants with the design and

theoretical ANOVA tables. Section 4.3 describes the linear models of the Phase 1 and 2 ex-

periments. Section 4.4 defines the information matrix needed to derive the objective functions

discussed in Section 4.5. Section 4.6 describes the construction of the initial design considering

the additional block component. Section 4.7 discusses minor changes to the nested simulated

annealing (SA) algorithm. Section 4.8 describes an example of finding optimal designs with six

treatments. Section 4.9 summarises the properties of the optimal designs found. Section 4.11

describes the situation when the Phase 1 experiment is arranged in a BIBD and presents an-

other summary of the properties of optimal designs found. The infoDecompuTE package,

introduced in Chapter 2, is used consistently throughout to construct the theoretical ANOVA

tables for comparing the competing designs. Even though we have used four- and eight-plex

labelling systems as the motivating example, the methods are more general and can be applied

all two-phase designs when the Phase 1 experiment is arranged in a RCBD or a BIBD.

4.2 An illustrative example

We first set the scene with a two-phase proteomics experiment on plants. The Phase 1 experiment

comprises ν = 2 treatments (labelled by lower case letter, i.e. a and b) on plants grown in a

controlled environmental cabinet. This controlled environment consists of nb = 2 trays (labelled

by numbers, i.e. 1 and 2) when each tray can accommodate two plants, hence there are a total of

np = 4 plants (labelled by upper cases letters, i.e. A, B, C and D). Let yijh denote the abundance

of a given protein from plant h under treatment i in tray j, then the linear model of the Phase

1 experiment can be written as

yijh = µ+ τi + bj + ph, (4.1)

where µ denotes the grand mean of protein abundance from all observations, τi denotes the fixed

effects of treatment i, bj ∼ N (0, σ2
b ) denotes the random effects from tray j, and ph ∼ N (0, σ2

p)

denotes the random effects from plant h in tray j (i = a, b;j = 1, 2; h = A, . . .D).
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The layout of the Phase 1 experimental design is presented in Table 4.1, which shows that

Tray 1 contains Plants A and B, respectively, whereas Tray 2 contains Plants C and D assigned

by Treatment a and b, respectively. Treatment a is assigned to Plants A and C, and Treatment b

is assigned to Plants B and D. This arrangement is a RCBD, because all treatments are applied

to each plant (plot) within a tray (block).

Table 4.1: Experimental design of Phase 1 plant experiment with ν = 2 treatments (labelled a
and b) assigned to np = 4 plants (labelled A to D) in nb = 2 trays (labelled 1 and 2).

Tray 1 Aa Bb
Tray 2 Ca Db

The theoretical ANOVA of this Phase 1 experiment consists of Between Trays and Between

Plants Within Trays strata (see Table 4.2). The total of 3 DF is partitioned into 1 DF for

the Between Trays stratum and 2 DF for the Between Plants Within Trays stratum. Since

the experimental unit is the plant, the Treatment effects are estimated in the Between Plants

Within Trays stratum with 1 DF. This theoretical ANOVA also contains the variance components

for between plants and between trays denoted σ2
p and σ2

b , respectively, with the fixed effects

component denoted by θτ . Finally, the treatment average efficiency factor, Eτ shows that all

the treatment information can be estimated with the highest precision in the Between Plants

Within Trays stratum. Therefore, the optimal design for Phase 2 experiment should be arranged

with iTRAQTM labelling of sub-samples and their assignment to MudPIT runs, such that it

retain all the DF associated with the Treatment effects and the Residual EMS of the Between

Plants Within Trays stratum in the Within Runs stratum, as well as maximising the treatment

information able to be estimated in the Within Runs stratum.

Table 4.2: Theoretical ANOVA for the Phase 1 experiment in Table 4.1 with ν = 2 treatments
assigned to np = 4 plants in nb = 2 trays.

Source of Variation DF EMS Eτ

Between Trays 1 σ2
p + 4σ2

b

Between Plants Within Trays
Treatment 1 σ2

p + 4θτ 1
Residual 1 σ2

p

Suppose that we randomly select ns = 2 sub-samples from each plant of the Phase 1 ex-

periment and analyse all the proteins within these sub-samples using the MudPIT-iTRAQTM

technology for the Phase 2 experiment. Since there are a total of npns = 8 sub-samples from the

Phase 1 experiment, if the reagent kit of nγ = 4 iTRAQTM tags is used, then nr = 2 MudPIT

runs is needed to analyse all eight sub-samples. Now let yijhkls denote the log-protein abundance
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level of the same protein in (4.1) from sub-sample s of plant h in tray j under treatment i and

analysed in run l with tag k, the linear model of this Phase 2 experiment can then be written

as

yijhkls = µ+ τi + bj + ph + γk + rl + εijhkls (4.2)

where γk denotes the fixed effects of tag k, rl ∼ N (0, σ2
r) denotes the random run effects, and

εijhkls ∼ N (0, σ2) denotes the experimental error, (k = 1 . . . nγ;l = 1 . . . nr; s = 1, . . . , ns ).

Table 4.3 shows one way to allocate eight sub-samples from each plant assigned by treatment

in each tray of the Phase 1 experiment to be differentially labelled by iTRAQTM tags and

MudPIT runs. We can observe that Tags 114 and 115 label sub-samples from Tray 2 and Tags

116 and 117 label sub-samples from Tray 2; thus, 1 DF associated with Tag effects is confounded

with the Tray effects. This 1 DF of Tag effects is associated with Tag contrast of Tags 114 and

115 versus Tags 116 and 117. However, each run contains each of two trays, so the Tray effects

are orthogonal to Run effects. The allocation of the plants and treatments follows a 2-by-2 Latin

square arrangement in a two 2-run-and-2-tag arrays. Hence, the Plant and Treatment effects

are orthogonal to Run and Tag effects.

Table 4.3: Optimal design for the Phase 2 experiment showing assignment of trays, plants and
treatments to runs and tags, when the Phase 1 experiment consists of ν = 2 treatments assigned
to each of np = 4 plants in nb = 2 trays, and ns = 2 sub-samples are then taken from each plant
and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 2 runs and nγ = 4
tags. Numbers denote trays, upper case letters denote plant IDs, while the lower case letters
denote the treatments.

Tag
Run 114 115 116 117

1 1Bb 1Aa 2Ca 2Db
2 1Aa 1Bb 2Db 2Ca

The theoretical ANOVA of the Phase 2 experiment is shown in Table 4.4. The total of 7

DF is partitioned into 1 DF for Between Runs stratum and 6 DF for the Within Runs stratum.

Since this Between Runs stratum only contains the variance components of measurement error

(σ2) and between runs (σ2
r), the Phase 2 design in Table 4.3 has preserved all the Phase 1

information in the Within Runs stratum. The Within Runs stratum (6 DF) is further separated

into Between Trays (1 DF), Between Plants Within Trays (2 DF), and Within Plants and Within

Trays (3 DF) strata. The 1 DF of the Between Trays stratum is completely confounded with

1 DF associated with the Tag effects, but that does not affect how we estimate the Treatment

effects as it is estimated in the Between Plants Within Trays stratum. The Residual DF in

the Between Plants Within Trays stratum remains 1 DF, and is unchanged from the Phase 1
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experiment. Further, all treatment information is preserved from the Phase 1 experiment, with

a valid F-test because the coefficients of σ2 and σ2
p are identical in the Between Plants Within

Trays stratum. Therefore, this Phase 2 design can be considered as the optimal design for this

case.

Table 4.4: Theoretical ANOVA table for the Phase 2 experiment in Table 4.3.

Source of Variation DF EMS Eγ Eτ

Between Runs 1 σ2 + 4σ2
r

Between Trays
Tag 1 σ2 + 2σ2

p + 4σ2
b + 2θγ 1

Between Plants Within Trays
Treatment 1 σ2 + 2σ2

p + 4θτ 1
Residual 1 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 2θγ 1
Residual 1 σ2

4.3 Design parameters and model

For any two-phase experiment when the Phase 1 is arranged in a RCBD, we need to consider

the block to which each experimental unit is allocated, and how the treatments are applied

to each unit in the Phase 1 experiment. More generally, the Phase 1 experiment comprises ν

treatments applied to np plots in each of nb blocks. Each sample from the Phase 1 experiment

is then split into ns sub-samples and analysed in the Phase 2 experiment with nr MudPIT

runs, when each sub-sample is differentially labelled by nγ iTRAQTM tags. Let y be a vector of

npnbns = nrnγ = n responses, the model (4.2) can then be expressed in matrix notation as

y = 1µ+ Xτατ + Xγαγ + Zu+ Wv + ε, (4.3)

where 1 is also an n × 1 vector for which all elements are unity, and ε is an n × 1 vector

of measurement error terms. The vectors of treatment and tag parameters are ατ and αγ,

respectively, and can be further expressed as

ατ = (τ1, . . . τν),αγ = (γ1, . . . γnγ ).

Matrices Xτ and Xγ are n × ν and n × nγ design matrices of treatment and tag, respectively.

Furthermore, the vector of the Phase 1 block parameter, u, is the combination of block and plot,

which is given by the allocation of plots in blocks. For the example in Section 4.2, when Tray 1
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contains Plants A and B and Tray 2 contains Plants C and D, the Phase 1 block parameter is

defined as

u = (b1 : pA, b1 : pB, b2 : pC , b2 : pD).

In general, the Phase 1 block parameter, u, has a length of np, when the Phase 1 experiment

is arranged in a RCBD. Thus, the Phase 1 block design matrix is denoted by Z, which is an

n× np design matrix of block-plot combinations based on the Phase 1 block parameter. Lastly,

the Phase 2 block design matrix is denoted by W = Wr, which is an n × nr design matrix of

runs. The Phase 2 block parameter is denoted by v = (r1, . . . rnr).

4.4 Defining the information matrix

This section shows how to define the information matrices for evaluating the objective function.

There are two information matrices of interest: plots within blocks and the treatment information

matrices. The construction of these two information matrices is less straightforward compared

to the Phase 1 experiments arranged in a CRD. This is because the block structure for the CRD

includes only the Phase 1 experimental units, whereas for the RCBD it includes a Phase 1 Block

factor with the Phase 1 experiment units (or the Phase 1 Plot factor).

Decomposition of the Phase 1 block structure is performed after the strata of the Phase

2 block structure are defined. Thus, the Phase 1 block design matrix, Z, and the projection

matrices for each factor in the Phase 1 block structure need to be computed. The Phase 1 block

parameter u in (4.3) can also be written in matrix notation as

u = C00u+ C01u+ C21u

where C00 = Knb ⊗Knk is the averaging matrix, where nk denotes block size and is given by

nk = np/nb. The remaining matrices C10 = (Inb −Knb)⊗Knk and C21 = Inb ⊗ (Ink −Knk) are

the projection matrices for Block and Plot Within Blocks effects.

The goal is to find the best allocation of the sub-samples from Phase 1 experimental unit

assigned by treatment to be differentially labelled by a tag and analysed in a run of the Phase 2

experiment. This occurs when the confounding of the Phase 1 Plot Within Blocks and Treatment

effects with the Phase 2 Run and Tag effects is minimised. To achieve this, we again use the

orthogonal projection matrix which projects y onto Within Runs and Tags vector subspace,

Qrγ = (I−Pr)(I−Pγ), as defined in (3.6) of Chapter 3.

Considering the estimation of Phase 1 Block effects in the Within Runs and Tags stratum,
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the reduced normal equations for the ub can then be defined as

ub = A−b qb,

where

Ab = LbQrγL
′
b,

qb = LbQrγy,

where Lb = C01Z
′, Ab denotes the information matrix of block, vector qb denotes the adjusted

Phase 1 Block total, and Qrγ denotes the orthogonal projection matrix that projects y onto

Within Runs and Tags vector subspace. Thus, the orthogonal projection matrix that projects y

onto Between Blocks Within Runs and Tags vector subspace, denoted by Qb, is

Qb = QrγL
′
bA
−
b LbQrγ.

The Phase 1 Block information is then swept by deriving the orthogonal projection matrix

that projects y onto Within Blocks Within Runs and Tags vector subspace, i.e. (I−Qb). Thus,

the information matrix for the Plots Within Blocks effects, denoted by Ap, can be expressed as

Ap = L′p(I−Qb)Lp, (4.4)

where Lp = C21Z
′.

Since the Treatment effects are to be maximised in the Between Plots Within Blocks Within

Runs and Tags vector subspace, the treatment information matrix can be expressed as

Aτ = X′τQpXτ , (4.5)

where Qp is the projection matrix that projects y onto Between Plots Within Blocks in the

Within Runs and Tags vector subspace and is given by

Qp = (I−Qb)L
′
pA
−
p Lp(I−Qb).

4.5 An objective function for identifying optimal designs

for the Phase 2 experiment

The next step is to derive the objective function for finding the optimal design of the Phase

2 experiment. The objective function used to find optimal designs for a Phase 2 multi-plexing
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proteomics experiment when the biological material was derived from a Phase 1 experiment is

arranged in a CRD is given as a single equation in (3.20). For the Phase 1 experiment arranged

in a RCBD, the objective function is re-written as

0.75Ep + 0.25

(
Eτ + ν2

ν

)
(4.6)

where Ep and Eτ are the Phase 1 plot and treatment average efficiency factors in the Within

Blocks Within Runs and Tags vector subspace. The optimisation procedure for the objective

function uses the modified nested SA algorithm described in Section (3.10).

4.5.1 Illustrative example applying the old objective function

This section first uses the same objective function as in Chapter 3 on the plant example to

search for the optimal design of Phase 2 experiment. For this example, the Phase 1 experiment

consists of ν = 3 treatments assigned to np = 6 plants in nb = 2 trays. The layout of the Phase 1

experimental design is presented in Table 4.5. Tray 1 contains Plants A to F, and Tray 2 contains

Plants G to L. In addition, Treatment a is assigned to Plants A, D, G and J, Treatment b is

assigned to Plants B, E, H and K, and Treatment c is assigned to Plants C, F, I and L.

Table 4.5: Phase 1 experimental design showing the assignment of treatments and plants to
trays, with ν = 3 treatments assigned to np = 12 plants in nb = 2 trays.

Tray 1
Aa Bb Cc
Da Eb Fc

Tray 2
Ga Hb Ic
Ja Kb Lc

The Phase 1 theoretical ANOVA (see Table 4.6), shows that the total of 11 DF is separated

into 1 DF for the Between Trays stratum and 10 DF for the Between Plants Within Trays

stratum. The Between Plants Within Trays stratum is further partitioned into 2 DF associated

with Treatment effects and 8 Residual DF for estimating the variances of Treatment effects.

Table 4.6: Theoretical ANOVA of the Phase 1 experiment in Table 4.5.

Source of Variation DF EMS Eτ

Between Trays 1 σ2
p + 6σ2

b

Between Plants Within Trays
Treatment 2 σ2

p + 4θτ 1
Residual 8 σ2

p

The next step is first to split ns = 2 sub-samples from each plant of the Phase 1 experiment,

and each sub-sample is then further processed for the Phase 2 proteomics experiment. Since

108



Chapter 4. Optimal designs for two-phase experiments when the Phase 1 experiment is
arranged in blocks

Table 4.7: Theoretical ANOVA for the Phase 2 experiment in Table 4.14b.

Source of Variation DF EMS Eγ
Between Runs 5 σ2 + 4σ2

r

Within Runs
Tag 3 σ2 + 6θγ 1
Residual 15 σ2

there are npns = 24 sub-samples from the Phase 1 experiment, the Phase 2 experiment uses

nr = 6 runs when each sub-sample is differentially labelled with each of nγ = 4 tags.

Using the objective function in (3.20), we can find one allocation of sub-samples from treat-

ments, plants and trays differentially labelled by tags and analysed in runs, which is given in

Table 4.8. The effects of trays is orthogonal to both the effects of runs and tags because the

sub-samples from Tray 1 and 2 are equally replicated in each run and tag. The Plant effects are

confounded with Tag effects, because Plant C is only labelled by Tag 114 and 115, and Plant

F is only labelled by Tag 116 and 117. The Plant effects are also confounded with Run effects,

because different pairs of runs comprise different combinations of plants. However, since each tag

labels sub-sample which are assigned by two of three treatments groups, the Treatment effects

are orthogonal to the Tag effects. On the other hand, the effects of treatment are confounded

with Run effects, as different pairs of runs comprise sub-samples from different combinations of

treatments.

Table 4.8: Optimal design for the Phase 2 experiment showing assignment of trays, plants and
treatments to runs and tags based on objective function (4.6), when the Phase 1 experiment
consists of ν = 3 treatments assigned to each of np = 12 plants in nb = 2 trays, ns = 2
sub-samples are then taken from each plant and analysed in the Phase 2 MudPIT-iTRAQTM

experiment comprising nr = 6 runs and nγ = 4 tags. Numbers denote trays, upper case letters
denote plant IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 2Ic 1Aa 2Ga 1Eb
2 1Aa 2Ic 1Eb 2Ga
3 1Cc 2Hb 2Ja 1Fc
4 2Hb 1Cc 1Fc 2Ja
5 2Kb 1Da 2Lc 1Bb
6 1Da 2Kb 1Bb 2Lc

The theoretical ANOVA (see Table 4.9) shows the total of 23 DF is separated into 5 DF in

the Between Runs stratum and 18 DF in the Within Runs stratum. There are 2 DF associated

with Treatment effects with 0.0625 of the treatment information able to be estimated in the

Between Runs stratum. The Within Runs stratum (18 DF) is further separated into Between
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Trays (1 DF), Between Plants Within Trays (8 DF) and Within Plants Within Trays (9 DF)

strata. The estimation of the Treatment effects is from the Between Plants Within Trays Within

Runs stratum, based on 0.9375 of treatment information. In addition, the Residual DF of the

Between Plants Within Trays Within Runs stratum is reduced to 5 DF from 8 DF of Phase

1 experiment. Thus, the design in Table 4.8 is very close to being as precise as the Phase 1

experiment in Table 4.5 with two minor deficiencies: lost of 0.0625 of the treatment information

and 3 Residual DF that were from the Phase 1 experiment as shown in the theoretical ANOVA

in Table 4.6. This means that the objective function in (3.20) of Chapter 3 is already effective,

however, we believe that we can obtain an even better design with a different objective function.

Table 4.9: Theoretical ANOVA table of the Phase 2 experiment in Table 4.8 from objective
function (4.6).

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Plants Within Trays

Treatment 2 σ2 + 2σ2
p + 4σ2

r + 0.5θτ 0.0625
Residual 3 σ2 + 4σ2

r

Within Runs
Between Trays 1 σ2 + 2σ2

p + 12σ2
b

Between Plants Within Trays
Tag 1 σ2 + 2σ2

p + 6θγ 1
Treatment 2 σ2 + 2σ2

p + 7.5θτ 0.9375
Residual 5 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 6θγ 1
Residual 7 σ2

4.5.2 New Objective function and optimisation procedure

This newly developed objective function consists of four criteria:

1. The Phase 1 Plots average efficiency factor in the Within Blocks Within Runs and Tags

vector subspace, denoted by Ep, must be 1. This allows us to obtain designs where the

variances are balanced in the Between Plots Within Blocks Within Runs stratum, hence

allowing a valid F-test to be performed. The Phase 1 Plots average efficiency factor is

computed from the information matrix of the Plots Within Blocks Within Runs and Tags

vector subspace in (4.4).

2. The DF associated with Treatment effects in the Between Plots Within Blocks Within

Runs stratum must be intact. This allows us to obtain designs where the treatment
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allocation is always connected to the runs and tags, so every pairwise treatment comparison

is estimable in the Between Plots Within Blocks Within Runs stratum. The DF associated

with treatment effects is computed from the trace of the treatment information matrix for

the Plots Within Blocks Within Runs and Tags vector subspace defined in (4.5).

3. The Residual DF in the Between Plots Within Blocks Within Runs stratum is maximised.

This allows us to obtain designs with higher precision in estimating the variances of the

Treatment effects. These Residual DF are computed from the trace of the information

matrix for the Plots Within Blocks Within Runs and Tags vector subspace, defined in

(4.4), minus the trace of the treatment information matrix for the Plots Within Blocks

Within Runs and Tags vector subspace, defined in (4.5), i.e. trace(Ap)− trace(Aτ ).

4. The treatment average efficiency factor in the Between Plots Within Blocks Within Runs

and Tags vector subspace, denoted by Eτ , is maximised. This is computed from the treat-

ment information matrix of Plots Within Blocks Within Runs and Tags vector subspace

(4.5).

Note that only the third component is newly introduced compared to the objective function

given in (4.6).

The next issue is to decide how to optimise this four-criterion objective function all at the

same time. After trying different combinations of weights, we decided to use a more robust

method to optimise this new objective function. The new method to optimise this four-criterion

objective function consists of three incremental steps. The first step is to locate designs which

satisfy the first two components of the objective function, i.e. Ep must be 1, and the DF associated

with treatment effects in the Between Plots Within Blocks Within Runs stratum must be intact.

Then from among the designs located in the first step, the second step uses the modified nested

SA algorithm to find optimal designs based on the third component of the objective function, i.e.

where the Residual DF in the Between Plots Within Blocks Within Runs stratum is maximised.

Finally, from among the designs found in the second step, the third step is to find the optimal

design where the fourth component of the objective function is satisfied, i.e. the treatment

average efficiency factor in the Between Plots Within Blocks Within Runs and Tags vector

subspace is maximised. Note that the last two steps in optimising the objective function are

inspired by the method for finding the MS-optimal design. We construct the objective function

in this manner to avoid the need to determine the weights of the four components in the objective

function. However, this method suffers the drawback of requiring that the nested SA algorithm

be performed twice in order to optimise two different objective functions.
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4.5.3 Illustrative example applying new objective function

Returning to the plant example, this optimisation procedure with the newly developed four-

criterion objective function, found a different allocation of sub-samples from treatments, plants

and trays differentially labelled by tags and analysed in runs, which is given in Table 4.10. One

noticeable difference of this design compared to the design in Table 4.8 is that the tray effects

are completely confounded with tag effects, as Tags 114 and 115 only label the sub-samples from

Tray 1 and Tags 116 and 117 only label the sub-samples from Tray 2.

Table 4.10: Optimal design for the Phase 2 experiment showing assignment of trays, plants and
treatments to runs and tags based new objective function, when the Phase 1 experiment consists
of ν = 3 treatments assigned to each of np = 12 plants in nb = 2 trays, ns = 2 sub-samples
are then taken from each plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment
comprising nr = 6 runs and nγ = 4 tags. Numbers denote trays, upper case letters denote plant
IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 1Aa 1Bb 2Lc 2Hb
2 1Bb 1Aa 2Hb 2Lc
3 1Cc 1Da 2Ga 2Kb
4 1Da 1Cc 2Kb 2Ga
5 1Eb 1Fc 2Ic 2Ja
6 1Fc 1Eb 2Ja 2Ic

The theoretical ANOVA of the optimal design from the new objective function is shown in

Table 4.11. Comparing this theoretical ANOVA to the one in Table 4.9, there is still 0.0625 of

the treatment information estimated in the Between Runs stratum. What makes this design

better is that there is 1 DF associated with the Tag effects in the Between Trays stratum, which

allows us to have 6 Residual DF in the Between Plants Within Trays Within Runs stratum.

Thus, here the Residual DF is one higher than that from the design found using the objective

function of the previous Chapter, offering us better precision in estimating the Treatment effects.

We are able to generate this design due to having the third component of the objective function,

which maximises the Residual DF in the Between Plants Within Trays Within Runs stratum.

4.6 Construction of the initial design

Section 4.5 shows that the newly developed objective function is better than the objective

function from Chapter 3 in searching for the optimal design of the Phase 2 experiment when the

Phase 1 experiment is arranged in a RCBD. Although the estimation of the Treatment effects

occurs in the Between Plots Within Blocks Within Runs stratum, from observing the design in
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Table 4.11: Theoretical ANOVA of the Phase 2 experiment in Table 4.10 from the new objective
function described in Section 4.5.2.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Plants Within Trays

Treatment 2 σ2 + 2σ2
p + 4σ2

r + 0.5θτ 0.0625
Residual 3 σ2 + 4σ2

r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 12σ2

b + 6θγ 1

Between Plants Within Trays
Treatment 2 σ2 + 2σ2

p + 7.5θτ 0.9375
Residual 6 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 6θγ 1
Residual 7 σ2

Table 4.10, we need to take extra caution in how the Block factor of the Phase 1 experiment

is allocated for the Phase 2 experiment. This is because having a design when Phase 1 Block

effects are confounded with Tag effects can increase the Residual DF in the Between Plots

Within Blocks Within Runs stratum, which in turn can increase the precision of estimation for

Treatment effects in the Between Plots Within Blocks Within Runs stratum.

Consider the plant example in Section 4.5 where the Phase 1 experiment consists of ν = 3

treatments assigned to np = 12 plants within each of nb = 2 trays from Phase 1 and then each

plant is split into ns = 2 sub-samples differentially labelled by nγ = 4 tags and analysed in

nr = 6 runs of the Phase 2 experiment. The optimal design of this Phase 2 experiment shows

Tags 114 and 115 label sub-samples from Tray 1, and Tags 116 and 117 label sub-samples from

Tray 2. Thus, if an initial allocation already has this structure between trays and tags, then we

will be able to locate the optimal design quickly. An example of the initial allocation is shown in

Table 4.12, where we already have the allocation that Tags 114 and 115 label sub-samples from

Tray 1, and Tags 116 and 117 label sub-samples from Tray 2. We call this the initial design as

Tray (Phase 1 Block) effects are intentionally confounded with the Tag effects.

However, the initial design, where Tray effects are intentionally confounded with Tag effects,

does not always generate a design with higher Residual DF in the Between Plots Within Blocks

Within Runs stratum. This section shows two different examples of initial designs that perform

better where (1) Tray effects are intentionally confounded with Run effects, as well as a situation

where (2) both types of initial designs are equally effective.

Note that since the number of tags of MudPIT-iTRAQTM experiments of four or eight are
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Table 4.12: Initial design for the Phase 2 experiment showing assignment of trays, plants and
treatments to runs and tags with Tray effects are intentionally confounded with the Tag effects,
when the Phase 1 experiment consists of ν = 3 treatments assigned to each of np = 12 plants in
each of nb = 2 trays, ns = 2 sub-samples are then taken from each plant and analysed in the Phase
2 MudPIT-iTRAQTM experiment comprising nr = 6 runs and nγ = 4 tags. Numbers denote
trays, upper case letters denote plant IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 1Aa 1Bb 2Ga 2Hb
2 1Bb 1Aa 2Hb 2Ga
3 1Cc 1Cc 2Ic 2Ja
4 1Da 1Da 2Ja 2Ic
5 1Eb 1Fc 2Kb 2Lc
6 1Fc 1Eb 2Lc 2Kb

considered, we can only allocate sub-samples where the number of trays is even. Therefore, for

odd numbers of trays, the initial design will be constructed without considering the confounding

between the Tray effects with the Run or Tag effects.

4.6.1 An initial design where the Tray effects are intentionally con-

founded with Run effects (better than confounded with Tag

effects)

This example shows an exception to the rule that an initial design where the Tray effects are

intentionally confounded with Run effects can generate a better design than the initial design

when the Tray effects are confounded with Tag effects. This example considers the Phase 1

experiment involving ν = 4 treatments assigned to each of np = 16 plants in nb = 4 trays. The

layout of the design for the Phase 1 experiment consists of Plants A to D in Tray 1, Plants E

to H in Tray 2, Plants I to L in Tray 3, and Plants M to P in Tray 4. Furthermore, Treatment

a assigned to Plants A, E, I and M, Treatment b assigned to Plants B, F, J and N, Treatment

c assigned to Plants C, G, K and O, and Treatment d is assigned to Plants D, H, L and P.

The theoretical ANOVA of the Phase 1 experiment is presented in Table 4.13, which shows the

total of 15 DF is separated into 3 DF for Between Trays stratum and 12 DF for Between Plants

Within Trays stratum. Since there are 3 DF associated with the Treatment effects, there are 9

Residual DF in the Between Plants Within Trays stratum.

The next step is to obtain ns = 2 sub-samples from each plant and to make measurements

in the Phase 2 proteomics experiment using nr = 8 runs and nγ = 4 tags. We first use the

initial design where Tray effects are intentionally confounded with Tag effects. This first initial

114



Chapter 4. Optimal designs for two-phase experiments when the Phase 1 experiment is
arranged in blocks

Table 4.13: Theoretical ANOVA table of Phase 1 experiment with ν = 4 treatments assigned
to each of np = 16 plants in nb = 4 trays.

Source of Variation DF EMS Eτ

Between Trays 3 σ2 + 2σ2
p + 8σ2

b

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 8θτ 1
Residual 9 σ2 + 2σ2

p

allocation of the sub-samples from trays, plants and treatments to runs and tags is shown in

Table 4.14a, when Tags 114 and 115 label sub-samples from Trays 1 and 2, while Tags 116 and

117 label sub-samples from Trays 3 and 4. Notice that in this design, the Tray effects are also

confounded with the Run effects as Runs 1 to 4 contain sub-samples from Trays 1 and 3, and

Runs 5 to 8 contain sub-samples from Trays 2 and 4. The optimal design found is presented in

Table 4.14b, as the assignment of sub-samples from trays to runs and tags is still the same as

the initial design in Table 4.14a.

Table 4.14: Initial and final optimal designs for the Phase 2 experiment showing assignment of
trays, plants and treatments to runs and tags with the Tray effects are intentionally confounded
with the Tag effects, when the Phase 1 experiment consisting of ν = 4 treatments assigned to
each of np = 16 plants in nb = 4 trays, ns = 2 sub-samples are then taken from each plant and
analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 8 runs and nγ = 4
tags. Numbers denote trays, upper case letters denote plant IDs, while the lower case letters
denote the treatments.

(a) The initial allocation.

Tag
Run 114 115 116 117

1 1Aa 1Bb 3Ia 3Jb
2 1Bb 1Aa 3Jb 3Ia
3 1Cc 1Dd 3Kc 3Ld
4 1Dd 1Cc 3Ld 3Kc
5 2Ea 2Fb 4Ma 4Nb
6 2Fb 2Ea 4Nb 4Ma
7 2Gc 2Hd 4Oc 4Pd
8 2Hd 2Gc 4Pd 4Oc

(b) The final optimal design from
using the initial design in Ta-
ble 4.14a.

Tag
Run 114 115 116 117

1 1Aa 1Bb 3Kc 3Ld
2 1Bb 1Aa 3Ld 3Kc
3 1Cc 1Dd 3Jb 3Ia
4 1Dd 1Cc 3Ia 3Jb
5 2Ea 2Hd 4Oc 4Nb
6 2Hd 2Ea 4Nb 4Oc
7 2Gc 2Fb 4Ma 4Pd
8 2Fb 2Gc 4Pd 4Ma

The theoretical ANOVA of the optimal design in Table 4.14b is shown in Table 4.15. The

total of 23 DF are separated into 7 DF and 16 DF for the Between Runs and Within Runs

strata, respectively. In the Between Runs stratum, there are 1 DF associated with Between

Trays stratum and 2 DF associated with Between Plants Within Trays stratum. Due to the

confounding of Tray effects with Tag effects, there is 1 DF associated with the Tag effects in
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the Between Trays Within Runs stratum. In the Between Plants Within Trays Within Runs

stratum, there are 7 Residual DF, which has been reduced from 9 Residual DF of the Phase

1 experiment in Table 4.13. In addition, the Treatment effects can be estimated with 100% of

the treatment information with a valid F-test in the Between Plants Within Trays Within Runs

stratum using the design in Table 4.14b.

Table 4.15: Theoretical ANOVA for the Phase 2 experiment in Table 4.14b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 1 σ2 + 2σ2

p + 8σ2
b + 4σ2

r

Between Plants Within Trays 2 σ2 + 2σ2
p + 4σ2

r

Residual 4 σ2 + 4σ2
r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 8σ2

b + 8θγ 1
Residual 1 σ2 + 2σ2

p + 8σ2
b

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 8θτ 1
Residual 7 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 8θγ 1
Residual 10 σ2

Now consider a different initial design in which Tray effects are intentionally confounded with

the Run effects. An example of this type of initial design is presented in Table 4.16a, in which

Runs 1 and 2 contain sub-samples from Tray 1, Runs 3 and 4 contain sub-samples of Tray 2,

Runs 5 and 6 contain sub-samples of Tray 3 and Runs 7 and 8 contain sub-samples of Tray 4.

Note that the Tray effects are orthogonal to Tag effects, because each tag labels sub-samples

from two of all four trays. The optimal design found is presented in Table 4.16b, which shows

the assignment of sub-samples from trays to runs and tags remains the same.

The theoretical ANOVA (in Table 4.17) again shows a total of 23 DF are separated into

7 DF and 16 DF of Between Runs and Within Runs strata, respectively. For this case, all

3 DF associated with the Between Trays stratum are in the Between Runs stratum, due to

the confounding between the Tray effects and Run effects. Thus, the Tray effects can not

be estimated in the Within Runs stratum. In the Between Plants Within Trays Within Runs

stratum, there is 1 DF associated with Tag effects, but there are still 8 Residual DF that remain,

which is also reduced from 9 Residual DF in the Phase 1 experiment. Finally, the Treatment

effects can be estimated with 100% of the treatment information, and there is a valid F-test in

the Between Plants Within Trays Within Runs stratum using the design in Table 4.16b.
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Table 4.16: Initial and final optimal designs for the Phase 2 experiment showing assignment of
trays, plants and treatments to runs and tags with the Tray effects are intentionally confounded
with the Run effects, when the Phase 1 experiment consisting of ν = 4 treatments assigned to
each of np = 4 plants in each of nb = 4 trays, ns = 2 sub-samples are then taken from each
plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 8 runs and
nγ = 4 tags. Numbers denote trays, upper case letters denote plant IDs, while the lower case
letters denote the treatments.

(a) The initial allocation.

Tag
Run 114 115 116 117

1 1Aa 1Bb 1Cc 1Dd
2 1Bb 1Aa 1Dd 1Cc
3 2Ea 2Fb 2Gc 2Hd
4 2Fb 2Ea 2Hd 2Gc
5 3Ic 3Jd 3Ka 3Lb
6 3Jd 3Ic 3Lb 3Ka
7 4Mc 4Nd 4Oa 4Pb
8 4Nd 4Mc 4Pb 4Oa

(b) The final optimal design from
using the initial design in Ta-
ble 4.16a.

Tag
Run 114 115 116 117

1 1Cc 1Dd 1Bb 1Aa
2 1Dd 1Cc 1Aa 1Bb
3 2Hd 2Fb 2Ea 2Gc
4 2Fb 2Hd 2Gc 2Ea
5 3Ia 3Jb 3Kc 3Ld
6 3Jb 3Ia 3Ld 3Kc
7 4Oc 4Ma 4Pd 4Nb
8 4Ma 4Oc 4Nb 4Pd

We now compare these two ANOVAs in Tables 4.15 and 4.17 which use two different initial

designs from Tables 4.14a and 4.16a, respectively. Despite both designs yielded ANOVA which

100% of treatment information with a valid F-test, the initial design in Table 4.16a, in which

Tray effects are intentionally confounded with the Run effects, is better, because there is 1

more Residual DF in the Between Plants Within Trays Within Runs stratum for estimating the

variances of Treatment effects. However, the 2 DF of the Between Plants Within Trays Between

Runs stratum shown in Tables 4.15 from the initial design in Table 4.14a can be recovered to

obtain a F-test that effectively has higher Residual DF, if the Between Runs variances is lower

than the Between Plants variances. This issue will be covered in Chapter 5.

4.6.2 Performance remains unchanged whether Tray effects are con-

founded with Tag or Run effects

There can also be a situation where the optimal design found has the same precision to that

from either type of initial design. One such case involves ν = 4 treatments assigned to np = 8

plants in nb = 2 trays for the Phase 1 experiment. For the layout of the Phase 1 design, Tray

1 contains Plants A to D, and Tray 2 contains Plants E to H. Furthermore, Treatment a is

assigned to Plants A and E, Treatment b is assigned to Plants B and F, Treatment c is assigned

to Plants C and G, and Treatment d is assigned to Plants D and H. The theoretical ANOVA
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Table 4.17: Theoretical ANOVA for the Phase 2 experiment in Table 4.16b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 3 σ2 + 2σ2

p + 8σ2
b + 4σ2

r

Residual 4 σ2 + 4σ2
r

Within Runs
Between Plants Within Trays

Tag 1 σ2 + 2σ2
p + 8θγ 1

Treatment 3 σ2 + 2σ2
p + 8θτ 1

Residual 8 σ2 + 2σ2
p

Within Plants Within Trays
Tag 2 σ2 + 8θγ 1
Residual 10 σ2

of the Phase 1 experiment is presented in Table 4.18, which shows that the total of 7 DF is

separated into 1 DF for the Between Trays stratum and 6 DF for the Between Plants Within

Trays stratum. Since there are 3 DF associated with the Treatment effects, there are 3 Residual

DF in the Between Plants Within Trays stratum.

Table 4.18: Theoretical ANOVA of the Phase 1 experiment with ν = 4 treatments assigned to
np = 4 plants in each of nb = 2 trays.

Source of Variation DF EMS Eτ

Between Trays 1 σ2 + 2σ2
p + 8σ2

b

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 4θτ 1
Residual 3 σ2 + 2σ2

p

In the Phase 2 proteomics experiment, ns = 2 sub-samples from each plant of the Phase 1

experiment are analysed using nγ = 4 tags with nr = 4 runs. Table 4.19 shows the initial design

where Tray effects are intentionally confounded with Tag effects, as Tags 114 and 115 labels

sub-samples from Tray 1 and Tags 116 and 117 labels sub-samples from Tray 2. Run effects are

orthogonal to Tray effects as each run contains sub-samples from two of each of both trays. The

design in Table 4.19 is also the optimal design for this case.

The theoretical ANOVA in Table 4.20 shows that the total of 15 DF is separated into 3 DF

for the Between Runs stratum and 12 DF for the Within Runs stratum. In the Between Runs

stratum, there is 1 DF associated with the Between Plants Within Trays stratum. As for the

Within Runs stratum, there is 1 DF associated with Tag effects in the Between Trays stratum

due to the confounding between the Tray effects with Tag effects. In the Between Plants Within

Trays Within Runs stratum, there is 2 Residual DF which is reduced from 3 Residual DF of the
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Table 4.19: Initial and final optimal design for the Phase 2 experiment showing assignment of
trays, plants and treatments to runs and tags with the Tray effects are intentionally confounded
with the Tag effects, when the Phase 1 experiment consists of ν = 4 treatments assigned to
np = 8 plants in nb = 2 trays, ns = 2 sub-samples are then taken from each plant and analysed
in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 4 runs and nγ = 4 tags. Num-
bers denote trays, upper case letters denote plant IDs, while the lower case letters denote the
treatments.

Tag
Run 114 115 116 117

1 1Aa 1Bb 2Hd 2Gc
2 1Bb 1Aa 2Gc 2Hd
3 1Cc 1Dd 2Fb 2Ea
4 1Dd 1Cc 2Ea 2Fb

Phase 1 experiment, as shown in Table 4.18. Further, there is still a valid F-test given from this

design with 100% of the treatment information available.

Table 4.20: Theoretical ANOVA for the Phase 2 experiment in Table 4.19.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Plants Within Trays 1 σ2 + 2σ2

p + 4σ2
r

Residual 2 σ2 + 4σ2
r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 8σ2

b + 4θγ 1

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 4θτ 1
Residual 2 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 4θγ 1
Residual 4 σ2

Another initial allocation is presented in Table 4.21 where Tray effects are intentionally

confounded with Run effects. Runs 1 and 2 contain sub-samples from Tray 1, and Runs 3 and

4 contain sub-samples from Tray 2. Tag effects are orthogonal to Tray effects as each tag labels

sub-samples from two of each of two trays. The design in Table 4.21 is also the optimal design

for this case.

The theoretical ANOVA (in Table 4.22) again shows the total of 15 DF are separated into 3

DF for Between Runs stratum and 12 DF for Within Runs stratum. There is 1 DF associated

with the Between Trays stratum in the Between Runs stratum due to the confounding between

the Run effects with Tray effects. In the Between Plants Within Trays Within Runs stratum,

1 DF and 3 DF are associated with the Tag effects and Treatment effects, respectively. Thus,
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Table 4.21: Initial and final optimal design for the Phase 2 experiment showing assignment
of trays, plants and treatments to runs and tags with the Tray effects intentionally confounded
with the Run effects, where the Phase 1 experiment consists of ν = 4 treatments assigned to
np = 8 plants in nb = 2 trays, ns = 2 sub-samples are then taken from each plant and analysed
in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 4 runs and nγ = 4 tags.

Tag
Run 114 115 116 117

1 1Aa 1Bb 1Cc 1Dd
2 1Bb 1Aa 1Dd 1Cc
3 2Gc 2Hd 2Ea 2Fb
4 2Hd 2Gc 2Fb 2Ea

there are still 2 Residual DF given from this optimal design. Therefore, this situation provides an

example where either type of initial design can generate optimal designs with identical precision.

Table 4.22: Theoretical ANOVA for the Phase 2 experiment in Table 4.21.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 1 σ2 + 2σ2

p + 8σ2
b + 4σ2

r

Residual 2 σ2 + 4σ2
r

Within Runs
Between Plants Within Trays

Tag 1 σ2 + 2σ2
p + 4θγ 1

Treatment 3 σ2 + 2σ2
p + 4θτ 1

Residual 2 σ2 + 2σ2
p

Within Plants Within Trays
Tag 2 σ2 + 4θγ 1
Residual 4 σ2

In summary, this section has shown that an initial design in which Phase 1 Tray (Block)

effects are intentionally confounded with Run or Tag effects can affect the Residual DF of the

ANOVA for estimating the variance of the Treatment effects. Specifically, in the initial design

where Tray effects are confounded with Tag effects, the DF associated with the Tag effects can

be pushed from the Between Plants Within Trays Within Runs stratum into the Between Trays

Within Runs stratum. Consequently, the Residual DF in the Between Plants Within Trays

Within Runs stratum increase, which also increases the precision in estimating the Treatment

effects. Thus, an initial design where Tray effects are confounded with Tag effects should be

used in most cases. However, some exceptions do exist, as shown in the Section 4.6.1, where

the initial design, in which Phase 1 Block effects are intentionally confounded with Run effects

generates an optimal design with higher Residual DF. Therefore, we suggest testing both types

of initial designs, and comparing the optimal designs that they yield.
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4.7 Modified simulated annealing for searching for the

optimal design

The modified nested simulated annealing (SA) algorithm, as described in Chapter 3, can still be

used to find optimal designs of the Phase 2 experiment when the Phase 1 experiment is arranged

in a RCBD. The only consideration is when the initial design is constructed with Block effects

of the Phase 1 experiment being intentionally confounded with Run or Tag effects (as discussed

in Section 4.6). The three-stage swapping procedure becomes a single-stage swapping procedure

to preserve the structure of the initial design between the Phase 1 Block factors and the Phase

2 Run and Tag factors.

Table 4.23: Illustrate the swapping between Tray 1 of Plant A under Treatment a and Tray 1
of Plant E under Treatment b to preserve the assignments of the sub-samples between trays and
tags on the initial design for the Phase 2 experiment in Table 4.12, where the Tray effects are
intentionally confounded with the Tag effects. Numbers denote trays, upper case letters denote
plant IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 1Aa 1Bb 2Ga 2Hb
2 1Bb 1Aa 2Hb 2Ga
3 1Cc 1Cc 2Ic 2Ja
4 1Da 1Da 2Ja 2Ic
5 1Eb 1Fc 2Kb 2Lc
6 1Fc 1Eb 2Lc 2Kb

Consider a two-phase experiment where the Phase 1 experiment consisting of ν = 3 treat-

ments assigned to each of np = 12 plants in each of nb = 2 trays, ns = 2 sub-samples are then

taken from each plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising

nr = 6 runs and nγ = 4 tags, the initial design of the Phase 2 experiment is shown in Table 4.12.

Table 4.23 demonstrates one possible swap between Plant A in Tray 1 with Plant E in Tray

1, which still results in a design when Tags 114 and 115 label sub-samples from Trays 1, and

Tags 116 and 117 label sub-samples from Trays 2. Thus, the single-stage swapping is to be used

instead of three-stage swapping, i.e. swapping of the sub-samples with the same labels for case

of the initial design when the Tray effects are intentionally confounded with Tag effects.

4.8 An illustrative example with six treatments

This section presents an example of finding the optimal design using the objective function

described in Sections 4.5. Consider the Phase 1 experiment arranged in a RCBD, where each
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of nb = 3 trays contains np = 18 plants with ν = 6 different treatments assigned. The layout of

the Phase 1 experiment consists of Tray 1 containing Plants A to F, Tray 2 containing Plants

G to L and Tray 3 containing Plants M to R. Furthermore, Treatment a is assigned to Plants

A, G and M, Treatment b is assigned to Plants B, H and N, Treatment c is assigned to Plants

C, I and O, Treatment d is assigned to Plants D, J and P, Treatment e is assigned to Plants

E, K and Q, and Treatment f is assigned to Plants F, L and R. The theoretical ANOVA of the

Phase 1 experiment (in Table 4.24) shows that a total of 17 DF are separated into 2 DF for the

Between Trays stratum and 15 DF for the Between Plants Within Trays stratum. Since there

are 5 DF associated with Treatment effects, there are still 10 Residual DF in the Between Plants

Within Trays stratum.

Table 4.24: Theoretical ANOVA table of Phase 1 experiment with ν = 6 treatments assigned
to np = 18 plants in nb = 3 trays.

Source of Variation DF EMS Eτ

Between Trays 2 σ2
p + 6σ2

b

Between Plants Within Trays
Treatment 5 σ2

p + 3θτ 1
Residual 10 σ2

p

Since the number of trays is not even, we cannot consider the initial design such that the

Tray effects are intentionally confounded with Tag effects. Using the objective function and

SA algorithm mentioned in Sections 4.5 and 4.7, respectively, an allocation of the sub-samples

from trays, plants and treatments to runs and tags is shown in Table 4.25. Tray effects are

confounded with run effects, because Runs 3, 4, 5, 6, 7 and 8 contain sub-samples from Trays

2 and 3, whereas Runs 1, 2 and 9 contain sub-samples from only Tray 1. There appears to be

some confounding between the Plant and Treatment effects with both Run and Tag effects, as

different runs and tags contain different combinations of plants and treatments.

The theoretical ANOVA of the Phase 2 experiment is presented in Table 4.26. A total of

35 DF are separated to 8 DF for Between Runs stratum and 27 DF for Within Runs stratum.

In the Between Runs stratum, there are 1 DF for the Between Trays stratum and 3 DF for the

Between Plants Within Trays stratum. The 3 DF associated with the Between Plants Within

Trays Between Runs stratum are confounded with the 3 DF associated with Treatment effects

based on 0.1667 of treatment information. In the Within Runs stratum, there are 1 DF associated

with the Between Trays stratum, 12 DF with the Between Plants Within Trays stratum, and

14 DF with the Within Plants Within Trays stratum. Since there is 1 DF associated with Tag

effects and 5 DF associated with the Treatment effects in the Between Plants Within Runs
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Table 4.25: Optimal design for the Phase 2 experiment showing assignment of trays, plants and
treatments to runs and tags with the Tray effects intentionally confounded with the Tag effects,
when the Phase 1 experiment consists of ν = 6 treatments assigned to each of np = 18 plants in
each of nb = 3 trays, ns = 2 sub-samples are then taken from each plant and analysed in the Phase
2 MudPIT-iTRAQTM experiment comprising nr = 9 runs and nγ = 4 tags. Numbers denote
trays, upper case letters denote plant IDs, while the lower case letters denote the treatments.

Tag
Run 114 115 116 117

1 2Jd 1Bb 1Ee 2Ic
2 1Bb 2Jd 2Ic 1Ee
3 1Cc 2Ke 2Lf 1Aa
4 2Ke 1Cc 1Aa 2Lf
5 1Ff 2Ga 2Hb 1Dd
6 2Ga 1Ff 1Dd 2Hb
7 3Pd 3Ma 3Oc 3Nb
8 3Ma 3Pd 3Nb 3Oc
9 3Qe 3Qe 3Rf 3Rf

stratum, there are still 6 Residual DF for estimating the variance of Treatments effects, which is

reduced from 10 DF of the Phase 1 experiment. The 4 DF associated with Plants Within Trays

stratum are lost to the 3 DF in the Between Runs stratum and 1 DF associated with Tag effects.

In addition, the amount of treatment information remaining is 0.8204, compared to 100% in the

Phase 1 experiment.

Table 4.26: Theoretical ANOVA table for the Phase 2 experiment in Table 4.25.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 1 σ2 + 2σ2

p + 12σ2
b + 4σ2

r

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 4σ2
r + θτ 0.1667

Residual 4 σ2 + 4σ2
r

Within Runs
Between Trays 1 σ2 + 2σ2

p + 12σ2
b

Between Plants Within Trays
Tag 1 σ2 + 2σ2

p + 9θγ + 0.67θτ 1 0.1111
Treatment 5 σ2 + 2σ2

p + 4.923θτ 0.8204
Residual 6 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 9θγ 1
Residual 12 σ2

Notice that the treatment average efficiency factors in the Between Plants Within Trays

Between Runs (0.1667) and Within Runs (0.8204) strata do not add up to 1. This is because the

treatment average efficiency factor in the Between Plants Within Trays Within Runs stratum
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of 0.8204 is computed from the harmonic mean of the five treatment canonical efficiency factors

of 1, 0.894, 0.889, 0.833 and 0.606. Since these five treatment canonical efficiency factors are not

identical, the optimal design of the Phase 2 experiment is not balanced. To examine how the

treatment comparisons are made for each of these treatment canonical efficiency factors, we

generate the five basic contrasts corresponding to the five treatment canonical efficiency factors



1 2 3 4 5

a 0.2887 −0.5577 0.4082 −0.5 −0.1494

b 0.2887 0.1494 0.4082 0.5 0.5577

c −0.2887 −0.5577 −0.4082 0.5 −0.1494

d 0.5774 0.4082 −0.4082 0 −0.4082

e −0.2887 0.1494 −0.4082 −0.5 0.5577

f −0.5774 0.4082 0.4082 0 −0.4082


.

The first contrast based on 100% of treatment information, compares Treatment a, b and d with

Treatments c, e, f, with more weights in comparing Treatments d with f. The second contrast

based on 0.894 of treatment information, compares Treatments b, d, e and f with Treatments

a and c, with more weights in comparing between Treatments d and f with Treatments a and

c. The third contrast based on 0.889 of treatment information compares, Treatments a, b and

f with Treatments c, d and e, with equal weighting. The fourth contrast based on 0.833 of

treatment information, compares Treatments b and c with Treatments a and e, with equal

weighting. The fifth contrast based on 0.606 of treatment information, compares Treatments b

and e with Treatments a, c, d and f, with more weights in comparing Treatments b and e with

Treatments d and f. This optimal design has unequal treatment canonical efficiency factors is

because the criteria of the objective function is to maximise the treatment average efficiency

factor. The unequal weights within some of the basic contrasts could be an artefact of the

objective while finding for the optimal design.

The theoretical ANOVA given in Table 4.27 is constructed using these five basic treatment

contrasts to determine in which stratum each of these five basic treatment contrasts are esti-

mated. Treatment contrast 1 has all its information in the Between Plants Within Trays Within

Runs stratum. The Tag effects in the Between Plants Within Trays Within Runs stratum

contains 0.111 of treatment information from treatment contrast 3, which means there is still

0.889 of treatment information remaining. Treatment contrasts 2, 4 and 5 have 0.1057, 0.1667

and 0.3943, respectively, of treatment information in the Between Plants Within Trays Between

Runs stratum. Note that the harmonic mean of 0.1057, 0.1667 and 0.3943 is 0.1667, which rep-
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resents the 0.167 of treatment information in the Between Plants Within Trays Between Runs

stratum in the theoretical ANOVA in Table 4.26. The amount of treatment information remain-

ing in the Between Plants Within Trays Between Runs stratum for treatment contrasts 1, 2, 3,

4 and 5 are 1, 0.894, 0.889, 0.833 and 0.606, respectively, giving us a harmonic mean of 0.8204 for

the amount of treatment information in Between Plants Within Trays Within Runs stratum.
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4.9 Optimal designs for experiments involving two to eight

treatments and two technical replicates

A table of optimal designs for a range of design parameters is generated using the objective

function described in Section 4.5, and the SA algorithm described in Section 4.7. This set of

optimal designs is for Phase 1 experiments featuring ν = 2, . . . , 8 treatments, np = νrb plots

(plants), nb = 2, . . . , 10 blocks (trays), ns = 2 sub-samples, nγ = 4, 8 tags, and nr = n/nγ runs,

where rb denotes the number of biological replicates and n denotes total number of sub-samples,

(rb = 2, . . . , 8). This set of optimal designs is presented in Appendix I. This catalogue of designs

enables any biologist without any experience in experimental design, to undertake a two-phase

experiment that provides maximum precision for any given set of design parameters. A set of

tables, summarising the properties of the theoretical ANOVA table for each optimal design of

the Phase 2 experiment, is presented in the Appendix J. This section discusses the properties of

the optimal designs found.

The general layout of the design is the same as what have been described in Chapter 3 when

the Phase 1 experiment is arranged in a CRD. The design form of a two-way table comprising

n/nγ rows and nγ columns, where nγ can be four for the four-plex experiment or eight for the

eight-plex experiment.

4.9.1 Phase 1 Block and Plot effects

With the addition of the Block component in the Phase 1 experiment, the Residual DF in the

Between Plots Within Blocks stratum will be decreased to accommodate the additional DF for

estimating the Between Blocks effect at Phase 1. Thus, the Residual DF in the Between Plots

Within Blocks Within Runs of the Phase 2 experiment will decrease as well. Therefore, in

general, the greater the number of Blocks, nb, is used in the Phase 1 experiment, the lower the

Residual DF in the Between Plots Within Blocks Within Runs stratum.

As shown in the example in Section 4.5, using an initial design in which the Tag effects are

intentionally confounded with the Block effects, can result in an optimal design having higher

Residual DF in the Between Plots Within Blocks Within Runs stratum. This is because, based

on the structure that we set up in the initial design, the optimal designs of the Phase 2 experiment

always have the property that 1 and 3 DF are associated with Tag effects in the Between Plots

Within Blocks stratum for the four-plex and eight-plex experiments, respectively. For an initial

design where the Block effects are intentionally confounded with Tag effects, the DF associated

127



Chapter 4. Optimal designs for two-phase experiments when the Phase 1 experiment is
arranged in blocks

with Tag effects will move from the Between Plots Within Blocks Within Runs stratum to the

Between Blocks Within Runs stratum, which frees up some of the Residual DF in the Between

Plots Within Blocks Within Runs stratum. This cases only applies where the number of blocks

is even, because it is not possible to allocate an odd number of blocks equally across four or

eight tags of the Phase 2 experiment. However, there can also be the case when the Block effects

are intentionally confounded with the Run effects, which can result in a better optimal design

with higher Residual DF in the Between Plots Within Blocks Within Runs stratum. Such case

is described in Section 4.6.1.

Comparing between the four-plex and eight-plex experiments, we find that, similar to the

case when the Phase 1 experiment is arranged in a CRD, it is still recommended to use the four-

plex system for a a smaller number of experimental units in the Phase 1 experiment. However,

when the number of the experimental units in the Phase 1 experiment increases, the eight-plex

system becomes more preferable than the four-plex system. As the example of chapter has an

additional Block component in the Phase 1 experiment, there can be some cases when we can

generate Phase 2 designs with higher Residual DF such that Blocks effects are confounded with

Tag effects. Thus, there is not a clear cut-off for the number of experimental units at which that

the eight-plex system becomes more preferred than the four-plex system.

4.9.2 Treatment effects

In general, the Treatment average efficiency factors from the optimal designs found are the

same as for the case where the Phase 1 experiment is arranged in CRD. Treatment effects

are confounded with the Tag effects if the number of runs is not divisible by the number of

treatments. Moreover, Treatment effects can also be confounded with Run effects where the

number of tags is not divisible by the number of treatments. In most situations, both types of

confounding result in optimal designs with the treatment canonical efficiency factors not being

identical. An example of the canonical efficiency factors not being identical is presented in

Section 4.8. The Appendix J presents the treatment average and canonical efficiency factors of

every optimal design found.
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4.10 Simulation study demonstrating search procedure

developed in Sections 4.5 – 4.7 find optimal designs

A reasonable question to ask at this point is whether the search procedure based on Sections 4.5

– 4.7 is capable of finding optimal designs for a Phase 2 iTRAQ experiment when the Phase 1

experiment is arranged in a complete block design. This section demonstrates via a simulation

study that this is indeed the case.

Section 4.10.1 presents and describes the optimal design for a Phase 2 four-plex iTRAQ

experiment arranged in six runs found by my search procedure when the experimental material

comes from a Phase 1 plant experiment arranged in a complete block design. More specifically,

the Phase 1 experiment comprises 12 plants, labelled A,B, . . . , L, arranged on two trays (blocks).

Each tray comprises six plants with three treatments, a, b and c, assigned to two plants per tray.

The design of the Phase 1 experiment is shown in Figure 4.28. At the end of the experiment,

the target tissue is harvested from each of the 12 plants; each tissue sample is independently

processed and then further subdivided into two sub-samples. Thus, there is a total of 24 sub-

samples from the Phase 1 experiment to be allocated to the experimental units in the Phase 2

experiment.

Table 4.28: Experimental design of Phase 1 plant experiment with ν = 3 treatments (labelled
a, b and c) assigned to np = 12 plants (labelled A to L) in nb = 2 trays (labelled 1 and 2).

Tray 1 Aa Bb Cc Da Eb Fc
Tray 2 Ga Hb Ic Ja Kb Lc

Section 4.10.2 describes the procedure used to enumerate all essentially different designs for

the Phase 2 experiment assuming the design in Table 4.28 is used for the Phase 1 experiment.

Three designs found from this enumeration process are retained, namely the designs with the

highest, middle and lowest average efficiency factors. Finally, Section 4.10.3 explores via simu-

lated datasets how well these three designs perform in the recovery of the assumed prior values

of the model parameters for these designs.

4.10.1 Optimal design for Phase 2 experiment found using RCBD

objective function

Table 4.29 shows the optimal design found using the objective functions, starting design and SA

algorithm described in Sections 4.5 – 4.7, respectively. First notice that sub-samples from Tray

1 are labelled with Tags 114 and 115, while sub-samples from Tray 2 are labelled with Tags 116
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and 117. The idea here is that the initial design is constructed so that Phase 1 block effects

(here, Trays) are confounded as much as possible with Tag effects; see Section 4.6 for details.

Also notice that the 24 sub-samples from the Phase 1 experiment are assigned to Runs and Tags

using multiple 2×2 Latin Squares, i.e. Runs and Tags are partitioned into 2×2 subarrays with a

pair of plants from the same tray, but with different treatments, assigned to each such subarray.

Treatment effects are orthogonal to Tag effects, as two subsamples from each treatment group

is labelled with each tag. This arrangement results in Treatment effects being orthogonal to

Tag effects, as each treatment is labelled twice with each tag. However, the three treatments

are arranged in a balanced incomplete block design with respect to runs so that there is some

confounding of Treatment effects with Run effects.

Table 4.29: Optimal design for the Phase 2 experiment showing assignment of trays, plants
and treatments to runs and tags when the Phase 1 experiment consists of ν = 3 treatments
assigned to each of np = 12 plants in each of nb = 2 trays, ns = 2 sub-samples are then taken
from each plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 6
runs and nγ = 4 tags. Numbers denote trays, upper case letters denote plant IDs, and lower
case letters denote treatments.

Tag
Run 114 115 116 117

1 1Aa 1Bb 2Lc 2Hb
2 1Bb 1Aa 2Hb 2Lc
3 1Da 1Cc 2Ga 2Kb
4 1Cc 1Da 2Kb 2Ga
5 1Eb 1Fc 2Ja 2Ic
6 1Fc 1Eb 2Ic 2Ja

Table 4.30 shows the ANOVA for the design in Table 4.29. Since there are 24 observations,

there is total of 23 DF. These 23 DF are partitioned into 5 DF for the Between Runs stratum

and 18 DF for the Within Runs stratum. In the Within Runs stratum, the 18 DF are further

partitioned into 1, 8 and 9 DF for the Between Trays, the Between Plants Within Trays and

the Within Plants Within Trays strata respectively. The Treatment effects are estimated in

the Between Plants Within Trays Within Runs stratum, with 6 DF available for estimating the

Residual MS. Had a Phase 2 experiment not been required to make measurements on the sub-

samples, the expected Residual MS would have been the same as that shown in the ANOVA in

Table 4.30 but estimated with 8 DF, i.e. an additional 2 DF. Finally, a valid F-test is available

for testing Treatment effects since the linear combination of variance components in the expected

Treatment MS is the same as that for the expected Residual MS in the Between Plants Within

Trays Within Runs stratum.
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Table 4.30: Theoretical ANOVA table of design in Table 4.29.

Source of Variation DF EMS Eτ Eγ

Between Runs
Between Plants Within Trays

Treatment 2 σ2 + 2σ2
p + 4σ2

r + 1/2θγ 0.0625

Within Plants Within Trays 3 σ2 + 4σ2
r

Within Runs
Between Tray

Tag 1 σ2 + 2σ2
p + 12σ2

t + 6θτ 1

Between Plants Within Trays
Treatment 2 σ2 + 2σ2

p + 15/2θγ 0.9375
Residual 6 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 6θτ 1
Residual 7 σ2

4.10.2 Enumeration of all essentially different Phase 2 designs

The goal now is to enumerate all of the different assignments of the 24 sub-samples collected from

the Phase 1 experiment to the 24 experimental units arranged in six runs of size 4 (i.e. using

the 4-plex labelling system) at Phase 2. Ignoring for the moment that some, perhaps many, of

these enumerations will yield isomorphic designs, a total of 6.2× 1023 permutations of these 24

sub-samples is possible. This naive enumeration approach is not only computationally intensive,

beyond the storage capabilities of most personal computers, and involves numerous permutations

of sub-samples which yield isomorphic designs, but it will also yield many undesirable designs.

For instance, it has already been shown (see Subsection 4.6) that it is preferable to maximise

the confounding of Tray effects with Tag effects, rather than with Run effects, as this enables

the Residual MS of interest to be estimated with more DF.

To substantially reduce the number of enumerations which must be considered, we consider

the sub-sample allocation to the Phase 2 experiment in three steps. The first step is to consider

the allocation of sub-samples from the two trays at Phase 1 to the six runs and four tags at

Phase 2. Once this allocation is fixed, we are next concerned with the allocation of treatment and

plant labels within each tray. We further reduce the number of permutations by restricting our

attention to three scenarios when assigning sub-samples from trays at Phase 1 to runs and tags

in the Phase 2 experiment. The first scenario (see Table 4.31) assigns sub-samples from trays

such that Tray effects are intentionally confounded with Tag effects. The second scenario (see

Table 4.32) assigns sub-samples from trays such that Tray effects are intentionally confounded

with Run effects. The third scenario (see Table 4.33) assigns sub-samples from trays such that
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Tray effects are orthogonal to both Run and Tray effects.

Table 4.31: Scenario 1: Tray allocation to runs and tags where the degree of confounding
between Tray and Tag effects is maximised.

Tag
Run 114 115 116 117

1 1 1 2 2
2 1 1 2 2
3 1 1 2 2
4 1 1 2 2
5 1 1 2 2
6 1 1 2 2

Table 4.32: Scenario 2: Tray allocation to runs and tags where the degree of confounding
between Tray and Run effects is maximised.

Tag
Run 114 115 116 117

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 2 2 2 2
5 2 2 2 2
6 2 2 2 2

Table 4.33: Scenario 3: Tray allocation to runs and tags where the Tray effects are orthogonal
to both Run and Tag effects.

Tag
Run 114 115 116 117

1 1 2 1 2
2 2 1 2 1
3 1 2 1 2
4 2 1 2 1
5 1 2 1 2
6 2 1 2 1

Once the allocation of sub-samples from trays to runs and tags is fixed, we can then decide

how to allocate the treatments into 12 units within each tray. Since each of the three treatments

are replicated four times within a tray, taking sub-samples into account, the number of unique

permutations is
12!

4!4!4!
= 34650.

Table 4.34 lists the first and final six of these 34650 possible permutations of treatment labels to

the 12 sub-samples from the same tray, given that tray’s assignment to runs and tags is fixed.

As there are two trays for which we must consider permuting the treatment labels, there are(
34650

2

)
= 600, 293, 925 ways in which we can choose 2 permutations from the 34650 rows in

Table 4.34. This does not take account of the case that the same permutation may be selected
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for both trays. Thus, in total there are 6× 108 + 34650 = 600, 328, 575 possible permutations.

Table 4.34: The first and last six permutations of treatment labels to the 12 sub-samples
within a tray assigned to runs and tags, using Tray 1 of the tray allocation in Scenario 1 from
Table 4.31 as an example.

Run 1 1 2 2 3 3 4 4 5 5 6 6
Tag 114 115 114 115 114 115 114 115 114 115 114 115

Permutation
1 a a a a b b b b c c c c
2 a a a a b b b c b c c c
3 a a a a b b b c c b c c
4 a a a a b b b c c c b c
5 a a a a b b b c c c c b
6 a a a a b b c b b c c c

...
...

...
...

...
...

...
...

...
...

...
...

34645 c c c c b b a b b a a a
34646 c c c c b b b a a a a b
34647 c c c c b b b a a a b a
34648 c c c c b b b a a b a a
34649 c c c c b b b a b a a a
34650 c c c c b b b b a a a a

Having now fixed the allocation of tray and treatment labels with respect to runs and tags

at Phase 2, the next step is to consider the allocation of plant labels to the four sub-samples

in each treatment group. As shown in Phase 1 experiment presented in Table 4.28, Treatment

a is assigned to Plants A and D, thus there are three distinct ways these two plant labels can

be assigned to four sub-samples at Phase 2. For example, fixing the tray allocation defined

by Scenario 1 (see Table 4.31) and the first permutation of treatment labels within a tray from

Table 4.34, there are three permutations of plant labels to Treatment a, as shown in Table 4.35. It

follows that for each scenario, 600, 328, 575×3 = 1, 8×109 permutations are possible. As it takes

about 2 hours to generate two million random designs and to carry out the necessary calculations

to ascertain the properties of each, it is impossible to evaluate all of these enumerations. Thus,

we will randomly sample 2 million permutations for each scenario. These designs are compared

based on their Between Plants average efficiency factor, Treatment degrees of freedom, Residual

degrees of freedom and Treatment average efficiency factor in the Between Plants Within Trays

Within Runs stratum.

In Scenario 1, where Tray effects were intentionally confounded with Tag effects, 292 designs

were found to have a Between Plants average efficiency factor of 1. Of these 292 designs, 277 had

treatment DF equal to 2 in the Between Plants Within Trays Within Runs stratum. This means

all treatment DF are intact. Furthermore, all pairwise treatment comparisons are estimable in

the Between Plants Within Trays Within Runs stratum. Of these 277 designs, only three designs
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Table 4.35: The three different permutations of plant labels to the 4 sub-samples assigned by
Treatment a in Tray 1 allocated to runs and tags, using the first permutation of treatment labels
within a tray from Table 4.34 and the tray allocation in Scenario 1 from Table 4.31.

Run 1 1 2 2
Tag 114 115 114 115

Permutation
1 A A D D
2 A D A D
3 A D D A

had 6 residual DF in the Between Plants Within Trays Within Runs stratum. The remaining

274 designs had fewer than 6 residual DF. The three designs with 6 residual DF had treatment

average efficiency factors of 0.8571 and 0.9375. The design with the treatment average efficiency

factor of 0.9375 is presented in Table 4.36. It is easily verified that this design is isomorphic to

the optimal design in Table 4.29. While this search process took two hours to complete, it took

less than a minute using the objective function and SA algorithm based on Sections 4.5 – 4.7.

Table 4.36: Best design from search of Scenario 1.

Tag
Run 114 115 116 117

1 1Aa 1Da 2Hb 2Ic
2 1Cc 1Bb 2Lc 2Ga
3 1Fc 1Eb 2Kb 2Ja
4 1Eb 1Fc 2Ja 2Kb
5 1Bb 1Cc 2Ga 2Lc
6 1Da 1Aa 2Ic 2Hb

In Scenario 2, where Tray effects were intentionally confounded with Run effects, 3304 designs

were found to have a Between Plants average efficiency factor of 1. Of these 3304 designs, 3179

designs had treatment DF equal to 2 in the Between Plants Within Trays Within Runs stratum.

Of these 3179 designs, only five designs had 5 residual DF in the Between Plants Within Trays

Within Runs stratum. The remaining 3174 designs had fewer than 5 residual DF. The five

designs with 5 residual DF had treatment average efficiency factors ranging from 0.5455 to

0.8705. Thus, for Scenario 2, the best design had 5 residual DF and treatment average efficiency

factor of 0.8705, which is a poorer design than the optimal design in Table 4.29 and the best

design from Scenario 1 presented in Table 4.36.

In Scenario 3, where Tray effects were orthogonal to both Run and Tag effects, 352 designs

were found to have a Between Plants average efficiency factor of 1. Of these 352 designs, 313

designs had treatment DF equal to 2 in the Between Plants Within Trays Within Runs stratum.

Of these 313 designs, only four designs had 5 residual DF in the Between Plants Within Trays
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Within Runs stratum. The remaining 309 designs had fewer than 5 residual DF. The four

designs with 5 residual DF had treatment average efficiency factors ranging from 0.5237 to 0.75.

Thus, for Scenario 3, the best design has 5 residual DF and treatment average efficiency factor

of 0.75. Again this is a poorer design than the optimal design in Table 4.29 and best design from

Scenario 1 presented in Table 4.36.

Table 4.37: Design from Scenario 1 with the mid-level average efficiency factor for treatment
and residual DF are 0.5 and 4, respectively.

Tag
Run 114 115 116 117

1 1Aa 1Cc 2Ga 2Hb
2 1Bb 1Bb 2Ic 2Ic
3 1Cc 1Aa 2Hb 2Ga
4 1Fc 1Eb 2Lc 2Kb
5 1Da 1Da 2Ja 2Ja
6 1Fc 1Eb 2Kb 2Lc

Table 4.38: Design from Scenario 1 with the lowest treatment average efficiency factor and
residual DF are 0.3214 and 2, respectively.

Tag
Run 114 115 116 117

1 1Bb 1Bb 2Aa 2Aa
2 1Cc 1Cc 2Da 2Da
3 1Eb 1Eb 2Bb 2Bb
4 1Fc 1Aa 2Cc 2Eb
5 1Fc 1Aa 2Cc 2Eb
6 1Da 1Da 2Fc 2Fc

In summary, from two million designs enumerated under each of the three different scenar-

ios, only the first scenario generates a design that is as good as the optimal design using the

search procedure I developed in Sections 4.5 – 4.7. Furthermore, this brute force approach is

computationally very expensive and inefficient compared with my approach.

We will only retain three designs from Scenario 1, namely the designs with the highest,

middle and lowest treatment average efficiency factors. The ANOVA tables for these three

design are presented in Table 4.39. The design with the highest treatment average efficiency

factor and residual DF has the treatment average efficiency factor and residual DF of 0.9375 and

6, respectively. The design with the mid-level average efficiency factor for treatments and residual

DF has the treatment average efficiency factor and residual DF of 0.5 and 4, respectively. The

design with the lowest treatment average efficiency factor and residual DF has the treatment

average efficiency factor and residual DF are 0.3214 and 2, respectively. Table 4.39 displays
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Table 4.39: Theoretical ANOVA table with DF and Eτ for designs in Tables 4.36, 4.37 and
4.38 from Scenario 1.

Design 4.36 Design 4.37 Design 4.38
Source of Variation DF Eτ DF Eτ DF Eτ

Between Runs
Between Plants Within Trays

Treatment 2 0.0625 2 0.625 2 0.15
Residual 0 2 2

Within Plants Within Trays 3 2 1
Within Runs

Between Tray
Tag 1 1 1

Between Plants Within Trays
Tag 0 1 0.25 2 0.1875
Treatment 2 0.9375 2 0.5 2 0.3214
Residual 6 4 2

Within Plants Within Trays
Tag 2 2 2
Residual 7 8 9

theoretical ANOVAs side by side for the designs in Tables 4.36, 4.37 and 4.38. Subsection 4.10.3

considers these three designs by performing a simulation study and comparing the recoveries of

their prior assumed model parameters.

4.10.3 Simulation study comparing three designs via their recovery

of prior assumed model parameters

The simulation study presented here was performed with five sets of prior assumed variance

component (VC) values, shown in Table 4.40. The first set of VCs is based on a real MudPiT-

iTRAQTM experiment analysed by Chang (2008). The means for Treatments a, b and c for the

simulated datasets are set to a = 1, b = 3, and c = 6.

Theoretical ANOVA tables were constructed for all three designs and the VCs were estimated

by equating each expected Residual MS to its value estimated (from the simulated data) and

solving the system of four equations.

In this subsection, we will refer the design with the highest treatment average efficiency factor

and residual DF as “Best”, the design with the mid-level average efficiency factor for treatments

and residual DF as “Mid” and the design with the lowest treatment average efficiency factor

and residual DF as “Worst”.

Table 4.41 shows the actual VCs and mean VCs estimates from three different designs over

1000 simulated datasets. There appears to be little difference in the means of estimated values
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Table 4.40: Five sets of prior assumed values of the variance components used to generate the
simulated datasets.

Set σr σt σp σ
1 0.0800 0.0060 0.0030 0.0200
2 0.0800 0.0060 0.0030 0.0020
3 0.0800 0.0600 0.0300 0.0200
4 0.0800 0.0600 0.0030 0.0200
5 0.8000 0.0060 0.0030 0.0200

Table 4.41: Actual values of variance component (VC) and the mean VC estimates to the
mean of variance component (VC) estimates from 1000 simulated datasets for the three designs
shown in Tables 4.36 (Best), 4.37 (Mid) and 4.38 (Worst).

Set VC Actual Best Mid Worst

1

σr 0.0800 0.0799 0.0802 0.0807
σt 0.0060 0.0065 0.0057 0.0064
σp 0.0030 0.0027 0.0038 0.0048
σ 0.0200 0.0198 0.0199 0.0197

2

σr 0.0800 0.0804 0.0803 0.0810
σt 0.0060 0.0059 0.0060 0.0060
σp 0.0030 0.0027 0.0029 0.0031
σ 0.0020 0.0020 0.0020 0.0020

3

σr 0.0800 0.0790 0.0773 0.0808
σt 0.0600 0.0614 0.0593 0.0610
σp 0.0300 0.0263 0.0309 0.0303
σ 0.0200 0.0200 0.0198 0.0199

4

σr 0.0800 0.0796 0.0778 0.0821
σt 0.0600 0.0602 0.0611 0.0585
σp 0.0030 0.0011 0.0034 0.0031
σ 0.0200 0.0201 0.0199 0.0199

5

σr 0.8000 0.8044 0.8000 0.8280
σt 0.0060 0.0060 0.0056 0.0059
σp 0.0030 0.0020 0.0041 0.0026
σ 0.0200 0.0201 0.0199 0.0200

of the VCs between the “Best” and “Mid” designs and it seems all three designs do very well at

estimating σ. However, it is worth noting that in the cases where σp = 0.003 the mean estimates

of the variance components tend to be poorer than those of the “Best” and “Mid” designs.

Figure 4.1 presents boxplot the VCs estimates obtained from the simulated datasets based

on the prior assumed VC values in Set 1 of Table 4.40, i.e. σr = 0.08, σt = 0.006, σp = 0.003 and

σ = 0.02. Firstly, the boxplots from the “Best” design shown to have the smallest spread for the

Between Runs and Between Plants Within Trays estimated VCs, while the VCs estimates of the

simulated datasets from the “Mid” design have the smallest spread on the estimated VCs for

the Between Trays and measurement error. However, in general there appeared to be no major

differences in the distribution estimated values of VCs between the three designs. Therefore, for
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Figure 4.1: Box plots of VCs estimates using simulated datasets based on σr = 0.08, σt = 0.006,
σp = 0.003 and σ = 0.02, comparing between three different designs.

these three designs at least, VCs estimation is robust to the designs’ efficiencies.

Each of five sets of prior assume values for the means of the three treatment groups, shown

in Table 4.42, were used to generate another five sets of 1000 simulated datasets. The VCs of

simulated datasets are set as σr = 0.08, σt = 0.006, σp = 0.003 and σ = 0.02. We will then

estimate the differences between pairs of treatment means. There are three pairwise comparisons

of means, a vs b, a vs c and b vs c. We will only focus on the first two pairwise comparisons

here.

Table 4.43 shows the actual treatment differences between pairs of treatment means, the mean

of the estimated differences between pairs of treatment groups and the mean standard errors

of differences of the pairwise treatment comparisons for the three different designs. Firstly, the

table shows the actual treatment mean differences are again almost identical to the mean of
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Table 4.42: Five sets of prior assumed treatment means for generating simulated datasets.
The VCs estimates using simulated datasets based on σr = 0.08, σt = 0.006, σp = 0.003 and
σ = 0.02.

Set ā b̄ c̄
1 1 3 6
2 1 2 4
3 6 3 1
4 4 2 1
5 1 1 1

Table 4.43: Actual treatment differences between pairs of treatment means, the mean of
the estimated differences between pairs of treatment groups and the mean standard errors of
differences of the pairwise treatment comparisons from 1000 simulated datasets for the three
designs shown in Tables 4.36 (Best), 4.37 (Mid) and 4.38 (Worst).

Best Mid Worst
Set Comparison Actual Estimate SE Estimate SE Estimate SE

1
b – a 2.0000 2.0002 0.0100 2.0004 0.0148 2.0011 0.0150
c – a 5.0000 5.0000 0.0100 5.0009 0.0148 5.0005 0.0130

2
b – a 1.0000 0.9993 0.0101 1.0001 0.0146 0.9997 0.0149
c – a 3.0000 2.9993 0.0101 3.0004 0.0146 2.9996 0.0129

3
b – a -3.0000 -3.0004 0.0101 -3.0009 0.0149 -2.9997 0.0144
c – a -5.0000 -5.0001 0.0101 -5.0008 0.0149 -4.9993 0.0125

4
b – a -2.0000 -2.0002 0.0100 -1.9991 0.0147 -2.0000 0.0146
c – a -3.0000 -3.0001 0.0100 -2.9994 0.0147 -3.0000 0.0127

5
b – a 0.0000 -0.0000 0.0101 0.0005 0.0149 0.0004 0.0147
c – a 0.0000 0.0001 0.0101 0.0005 0.0149 -0.0001 0.0127

treatment mean differences of pairwise treatment comparisons for all three designs. However,

the mean of standard error of differences is always the lowest for the “Best” design, i.e. the

design with the highest treatment average efficiency factors and residual DF. Thus, this design

will have higher power in detecting significant treatment differences.

Since the standard errors of differences between pairs of treatment means are based on the

Residual MS in the Between Plants Within Trays Within Runs stratum, we examine the spread

of the Residual MS between the three designs using the boxplots (see Figure 4.2). The narrower

spread of values in the boxplot for the “Best” design shows that the variance of pairwise treatment

comparisons can be estimated more precisely than the other two designs.
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Figure 4.2: Box plots of Residual MS using simulated datasets based on σr = 0.08, σt = 0.006,
σp = 0.003 and σ = 0.02, comparing between three different designs.

4.11 Extension when the Phase 1 experiment is arranged

in a BIBD

When the number of treatments exceeds the number of plots in a block, the resulting experi-

mental design is known as an incomplete block design. A particular type of incomplete block

design occurs when all blocks are of equal size and all treatments are equally replicated, and

where each pair of treatments occurs in two blocks together equally often, this is known as

the balanced incomplete block design (BIBD). Since the treatment information of all treatment

contrasts is split evenly across the Between Blocks and Within Blocks strata, the amount of

treatment information in the Within Blocks stratum is decreased.

From the optimal design found, when the Phase 1 experiment is arranged in either CRD or

RCBD, it has been shown that the amount of treatment information can be diluted in the Phase

2 experiment. Thus, when allocating the samples from the Phase 1 experiment arranged in a

BIBD to be analysed in the Phase 2 experiment, the amount of treatment information is likely

to be further diluted.

Since the Phase 1 experiment still comprises a block structure of Blocks and Plots within

Blocks, the aim of finding the optimal design is the same as when the Phase 1 experiment is

arranged in a RCBD. Hence, we can still use the same objective function defined in Section 4.5.2

to find the optimal design of the Phase 2 experiment.
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4.11.1 BIBD example with six treatments

Consider the Phase 1 experiment involving ν = 6 treatments (labelled a, . . . , f ) assigned to

np = 30 plants (labelled AA, . . . , BE ) in nb = 6 trays (labelled 1, . . . , 6). Since the Phase 1

experiment involves np = 30 plants, the labelling system requires two upper case letters instead

of one. Table 4.44 illustrates the layout of the Phase 1 experiment, in which each treatment

is replicated five times and is assigned to plants in five of six trays. In addition, any pair of

treatments is present together in four trays.

Table 4.44: Phase 1 experimental design with ν = 6 treatments assigned to np = 30 plants
in nb = 6 trays. Upper case letters denote plant IDs, while the lower case letters denote the
treatments.

Tray 1 AAb ABc ACd ADe AEf
Tray 2 AFc AGd AHe AIf AJa
Tray 3 AKd ALe AMf ANa AOb
Tray 4 APe AQf ARa ASb ATc
Tray 5 AUf AVa AWb AXc AYd
Tray 6 AZa BAb BBc BCd BDe

Table 4.45 shows the theoretical ANOVA of the Phase 1 experiment in Table 4.44. The

total of 29 DF are separated into Between Trays (5 DF) and Between Plants Within Trays (24

DF) strata. All 5 DF associated with the Between Trays stratum are confounded with the 5

DF associated with the Treatment effects. In the Within Trays stratum, since there are 5 DF

associated with Treatment effects, there are 19 Residual DF in the Between Plants Within Trays

stratum. As for the amount of treatment information, it is split between 0.04 and 0.96 in the

Between Trays and Between Plants Within Trays strata, respectively. Since we know the number

of treatments is 6 and the size of each tray is 5, the amount of treatment information in the

Between Plants Within Trays stratum can be calculated directly by

Eτ =
6(5− 1)

(6− 1)5
= 0.96.

Table 4.45: Theoretical ANOVA table of the Phase 1 experiment arranged in a BIBD with
ν = 6 treatments assigned to np = 5 plants within each of nb = 6 trays.

Source of Variation DF EMS Eγ

Between Trays
Treatments 5 σ2

p + 5σ2
b + 0.2θγ 0.04

Between Plants Within Trays
Treatments 5 σ2

p + 4.8θγ 0.96
Residual 19 σ2

p
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Each plant of the Phase 1 experiment is split into ns = 2 sub-samples and analysed in

nr = 15 runs and nγ = 4 tags of Phase 2 experiment. Since the number of trays is even, we

can use an initial design where the Tray effects are intentionally confounded with Tag effects to

start the search. The optimal design of the Phase 2 experiment is shown in Table 4.46, which

shows that the sub-samples from Trays 1, 2 and 3 are differentially labelled by Tags 114 and

115, while sub-samples from Trays 4, 5 and 6 are differentially labelled by Tags 116 and 117.

Additionally, Runs 1 to 10 contain Trays 1, 2, 4 and 5, while Runs 11 to 15 contain only Trays 3

and 6. Hence, the Tray effects are confounded with both Run and Tag effects. Since Treatment

effects are confounded with Tray effects in the Phase 1 experiment, the Treatment effects are

also confounded with both Run and Tag effects in the Phase 2 experiment.

Table 4.46: Optimal design for the Phase 2 experiment showing assignment of trays, plants
and treatments to runs and tags, when the Phase 1 experiment consists of ν = 6 treatments
assigned to np = 30 plants in nb = 6 trays, ns = 2 sub-samples are then taken from each plant
and analysed in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 15 runs and nγ = 4
tags. Numbers denote trays, upper case letters denote plant IDs, while the lower case letters
denote the treatments.

Tag
Run 114 115 116 117

1 2AJa 2AIf 5AXc 5AYd
2 2AIf 2AJa 5AYd 5AXc
3 1ADe 2AGd 4ASb 5AVa
4 2AGd 1ADe 5AVa 4ASb
5 1ABc 1ACd 5AWb 5AUf
6 1ACd 1ABc 5AUf 5AWb
7 2AFc 2AHe 4ARa 4AQf
8 2AHe 2AFc 4AQf 4ARa
9 1AAb 1AEf 4APe 4ATc
10 1AEf 1AAb 4ATc 4APe
11 3ANa 3AMf 6BDe 6BAb
12 3AMf 3ANa 6BAb 6BDe
13 3AOb 3AKd 6AZa 6BBc
14 3AKd 3AOb 6BBc 6AZa
15 3ALe 3ALe 6BCd 6BCd

Table 4.47 shows the theoretical ANOVA of the Phase 2 experiment. The total of 59 DF is

separated into 14 DF in the Between Runs stratum and 45 DF in the Within Runs stratum.

The Between Runs stratum (14 DF) is further partitioned into the Between Trays (3 DF) and

the Between Plants Within Trays (4 DF) strata, where 3 DF associated with the Treatment

effects are present in both Between Trays and the Between Plants Within Trays strata. The

Within Runs stratum (45 DF) is partitioned into the Between Trays (4 DF), Between Plants

Within Trays (18 DF) and Within Plants Within Trays (23 DF) strata. Since this design is
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constructed from an initial design in which Tray effects are confounded more with Tag effects, 1

DF associated with Tag effects is in the Between Trays stratum. The Treatment effects in the

Between Plants Within Trays Within Runs stratum can be estimated with treatment average

efficiency factor of 0.8606, which is computed from five treatment canonical efficiency factors of

0.9383, 0.9, 0.8736, 0.8217 and 0.7864. This amount of treatment information is smaller than that

which can be obtained from the Phase 1 experiment of 0.96 as shown in Table 4.45. The Residual

DF in the Between Plants Within Trays Within Runs stratum is 13 DF which is reduced from

19 DF in the Phase 1 experiment as shown in Table 4.45. However, there is still a valid F-test

for testing the Treatment effects.

Table 4.47: Theoretical ANOVA for the Phase 2 experiment in Table 4.46.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays

Treatment 3 σ2 + 2σ2
p + 6σ2

b + 4σ2
r + 0.0667θτ 0.0667

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 4σ2
r + 1.098θτ 0.1098

Residual 1 σ2 + 2σ2
p + 4σ2

r

Residual 7 σ2 + 4σ2
r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 10σ2

b + 15θγ + 0.4θτ 1 0.04
Treatment 1 σ2 + 2σ2

p + 10σ2
b + 0.4θτ 0.04

Residual 2 σ2 + 2σ2
p + 6σ2

b

Between Plants Within Trays
Treatment 5 σ2 + 2σ2

p + 8.606θτ 0.8606
Residual 13 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 15θγ 1
Residual 21 σ2

Further dissecting the theoretical ANOVA in Table 4.47 reveals 3 and 4 DF associated with

the Between Trays stratum in the Between and Within Runs strata, respectively. Given that

the Phase 1 experiment only involves six trays, the total DF associated with Tray effects should

be 5 DF. Additionally, the coefficients of the Between Trays variance component, σ2
b , are not

identical across the theoretical ANOVA, which suggests the Tray effects are confounded with

Run effects with an unbalanced structure.

The confounding between Tray effects and Run effects can be confirmed by using a single-

phase theoretical ANOVA in Table 4.48 by fitting the Tray and Plant effects as fixed effects.

The 0.5 of the tray information in the Between Runs stratum is derived from the three canonical
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efficiency factors of 1, 0.4 and 0.4. The 0.75 of the tray information in the Within Runs stratum

is derived from the four canonical efficiency factors of 1, 1, 0.6 and 0.6.

The consequence of this confounding causes the Plant effects to be confounded with Tray

effects given 0.6 and 0.4 of plant information being estimated with Tray effects of the Between

Runs and Within Runs strata, respectively. Notice that the theoretical ANOVA of the Phase 2

experiment contains 13 Residual DF in the Between Plants Within Trays Within Runs stratum as

shown in Table 4.47. The theoretical ANOVA of the Phase 1 experiment in Table 4.45 shows the

Residual DF of Between Plants Within Trays stratum is 19 DF. This means there are 6 Residual

DF lost in moving from the Phase 1 to the Phase 2 design. There are 4 DF of the Between

Plants Within Trays being estimated in the Between Run stratum of the Phase 2 experiment.

The remaining missing 2 Residual DF are the 2 DF of Tray effects that are confounded with

Run and Plant effects.

Table 4.48: Theoretical ANOVA with DF and average efficiency factors for the Phase 2 exper-
iment in Table 4.46 which generated by treating Tray and Plant effects as the fixed effects.

Source of Variation DF Eb Ep

Between Runs
Tray 3 0.5 0.6
Plant Within Trays 4 1
Residual 7

Within Runs
Tray 4 0.75 0.4
Plant Within Trays 18 1
Residual 23

4.11.2 Optimal designs when the Phase 1 experiment is a BIBD

Using the objective function derived in Section 4.5, and the SA algorithm described in Section 4.7,

a set of optimal designs were found and are presented in Appendix K. This set of optimal designs

is for experiments with ν = 4, . . . , 8 treatment, nb = νrb plots, nb = ν trays, ns = 2 sub-samples,

nγ = 4, 8 tags and nr = n/nγ runs (rb = 3, . . . , 7). The researcher can again obtain a design for

their experiment with a given set of design parameters. A table, summarising the properties of

the theoretical ANOVA for each optimal Phase 2 design, is presented in the Appendix L. This

section discusses the properties of the optimal designs found.

A four-plex system can only be used for experiments with ν = 6 treatments and np = 30

plots, and ν = 7 treatments and np = 42 plots. Due to the confounding of Block effects with

both Run and Treatment effects, both the treatment average efficiency factors, Eτ , and Residual
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DF are further diluted from the Phase 1 experiment.

Both four-plex and eight-plex systems can be used for the Phase 2 experiment when Phase

1 experiments involve ν = 4 treatments with np = 12 plots, ν = 5 treatments with np = 20

plots, ν = 7 treatments with np = 28 plots, and ν = 8 treatments with np = 56 plots. For Phase

1 experiments involving ν = 4, ν = 5 and ν = 7 treatments, the treatment average efficiency

factors, Eτ , are the same between the four-plex and eight-plex systems and are preserved from

the Phase 1 experiment. However, their Residual DF have all been reduced from the Phase 1

experiment, with the four-plex experiment yielding higher Residual DF for experiments involving

ν = 5 and ν = 7 treatments and the eight-plex experiment yielding higher Residual DF for

experiments involving ν = 4 treatments. For the experiment with ν = 8 treatments, the eight-

plex experiment must be used as it preserves the treatment average efficiency factors from the

Phase 1 experiment and yields higher Residual DF compared to the four-plex experiment.

4.12 Summary

This Chapter presented a method for finding optimal designs of Phase 2 experiments when the

Phase 1 experiment is arranged in a RCBD or a BIBD. First step was to derived a new four-

criterion objective function for finding optimal designs for Phase 2 experiments, when the Phase

1 experiment is arranged in a RCBD or a BIBD. These four criteria are: (1) Phase 1 Plots average

efficiency factor in the Within Runs and Tags vector subspace must be 1; (2) the DF associated

with treatment effects in the Between Plots Within Blocks Within Runs stratum must be intact;

(3) the Residual DF in the Between Plots Within Blocks Within Runs stratum is maximised

and (4) the treatment average efficiency factor in the Between Plots Within Blocks Within Runs

and Tags vector subspace is maximised. We have shown that this new four-criterion objective

function can find optimal designs with different combinations of the design parameters.

Even though Treatment effects are estimated in the Within Blocks stratum, the construction

of the initial design must take Phase 1 Blocks into account. This is because Phase 1 block can

be allocated such that the Phase 1 Block effects are intentionally confounded with either Runs

effects or Tags effects, which has shown to increase the Residual DF in the Between Plots Within

Blocks stratum.

Finally, this Chapter also showed that the same method can be used when the Phase 1

experiment is arranged in a BIBD. Since the block structures are identical in such a design,

the components of the objective function and the SA algorithm do not require adjustment.

The main issue is that the treatment information has already been diluted since some of the

145



Chapter 4. Optimal designs for two-phase experiments when the Phase 1 experiment is
arranged in blocks

treatment information is in the Between Blocks stratum of the Phase 1 experiment; hence, the

degree to which treatment information can be further diluted in some optimal designs of Phase

2 experiments is problematic.
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Chapter 5

Estimation of variance components and

effective degrees of freedom in

two-phase proteomic experiments

5.1 Introduction

In Chapter 2, we described the methodology needed to construct theoretical ANOVA tables for

two-phase experiments. Chapters 3 and 4 then developed methods for constructing and searching

for optimal designs for Phase 2 proteomics experiments when the Phase 1 experiment is arranged

in a completely randomised design (CRD), a randomised complete block design (RCBD), or a

balanced incomplete block design (BIBD). Theoretical ANOVA tables were shown to be a very

useful tool for investigating and comparing the properties of optimal designs of different Phase

2 experiments for a given Phase 1 design. This chapter presents a third component of this

thesis in estimating variance components (VCs) based on expected mean squares (EMS) of

the theoretical ANOVA table, where we focus on the Residual mean squares (MS) of the same

stratum for testing the Treatment effects. The example of this chapter is in the Between Animals

Within Runs stratum. In addition, the Phase 2 Block (Run) effects are assumed to be random

may allow us to obtain a test that effectively has higher degrees of freedom (DF) for the Residual

MS, namely the effective degrees of freedom (EDF).

Jarrett and Ruggiero (2008) demonstrated that given the same design at Phase 1, the choice

of design at Phase 2 can affect the analysis of a micro-array experiment. MudPIT-iTRAQTM

experiments have their own unique set of problems. Either a four-plex or eight-plex labelling

system can be used for the Phase 2 proteomics experiment, which allows researchers to measure
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either four or eight biological samples simultaneously. The EDF provide us with another property

by which we can compare designs using four- and eight-plex systems, which we will apply to

some of the optimal designs of the Phase 2 experiments found in Chapters 3 and 4.

This Chapter first uses an optimal design, described in Section 5.2, to illustrate the esti-

mation of VCs in Section 5.3. Based on the VCs estimates, the approximation method for the

EDF is then shown in Section 5.4. Section 5.5 compares the EDF between the Phase 2 design

with four-plex and eight-plex systems given the same Phase 1 experiment arranged in a CRD.

Section 5.6 compares the EDF between four Phase 2 designs, given the same Phase 1 experi-

ment is arranged in a RCBD, using two different confounding schemes when the Phase 1 Block

effects are intentionally confounded with Tag effects or Phase 1 Block effects are intentionally

confounded with Run effects, and between the four-plex and eight-plex systems.

5.2 An illustrative example

This section presents the most trivial example of a two-phase experiment, in which the Phase

1 experiment is arranged in a CRD with ν = 2 treatments assigned to na = 6 animals. The

layout of the Phase 1 design consists of Treatment a assigned to Animals A, C and E, and

Treatment b assigned to Animals B, D and F. The samples from each animal are further split

into ns sub-samples which are differentially labelled by nγ tags and analysed in nr runs of the

Phase 2 experiment. The linear model of this Phase 2 experiment has been previously described

in (3.2).

Table 5.1: Optimal design of Phase 2 proteomics experiment showing allocation of sub-samples
from animals and treatment to runs and tags, when the Phase 1 experiment consists of ν = 2
treatments assigned to each of na = 6 animals, ns = 2 sub-samples are then taken from each
animal, and labelled by nγ = 4 tags and analysed in nr = 3 runs of the Phase 2 MudPIT-
iTRAQTM experiment.

Tag
Run 114 115 116 117

1 Db Ca Fb Ea
2 Ca Db Ea Fb
3 Bb Bb Aa Aa

An optimal design found using the methods described in Chapter 3 is shown in Table 5.1.

There are several characteristics of this design: Runs 1 and 2 contain sub-samples from Animals

C, D, E and F , while Run 3 contains sub-samples from Animals A and B. Thus, 1 of 4 DF

associated with the Animal effects is confounded with 1 DF of the Between Runs stratum.

Furthermore, Animals B, C and D are assigned to Tags 114 and 115, and Animals A, E and
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F are assigned to Tags 116 and 117. Thus, 1 DF associated with Tag effects is in the Between

Animals stratum. Treatment effects are orthogonal to Run effects, as each run contains two of

each treatment. There are unequal numbers of sub-samples from Treatment a and b labelled

with each Tag resulting in some confounding between Treatment and Tag effects.

Table 5.2: Theoretical ANOVA table of the Phase 2 experiment in Table 5.1.

Source of Variation DF MS EMS Eγ Eτ

Between Runs
Between Animals 1 s2

1 σ2 + 2σ2
a + 4σ2

r

Within Animals 1 s2
2 σ2 + 4σ2

r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 3θγ + 0.67θτ 1 0.111

Treatment 1 σ2 + 2σ2
a + 5.33θτ 0.889

Residual 2 s2
3 σ2 + 2σ2

a

Within Animals
Tag 2 σ2 + 3θγ 1
Residual 3 s2

4 σ2

The theoretical ANOVA of the optimal design of the Phase 2 experiment in Table 5.1 is

presented in Table 5.2. Notice that an additional column is present in this table, namely the

mean square (MS) column, i.e. the estimated value of its corresponding EMS being computed

from experimental data. There are four MS of interest, which contain only the random error

variances: the Between Animals Between Runs MS (s2
1), the Within Animals Between Runs MS

(s2
2), the Residual MS of the Between Animals Within Runs stratum (s2

3) and the Residual MS

of the Within Animals Within Runs stratum (s2
4). These MS, also known as residual variances,

are related to their associated EMS as follows

s2
1 = σ̂2 + 2σ̂2

a + 4σ̂2
r , (5.1)

s2
2 = σ̂2 + 4σ̂2

r , (5.2)

s2
3 = σ̂2 + 2σ̂2

a, (5.3)

s2
4 = σ̂2, (5.4)

where σ̂2, σ̂2
a, and σ̂2

r are the estimated between sub-samples, between animals, and between

runs VCs, respectively. The σ̂2 is the residual variance from the Within Animals Within Runs

stratum as shown in (5.4). Subtracting (5.4) from (5.3) gives σ̂2
a = (s2

3−s2
4)/2. We then subtract

(5.4) from (5.2) to solve for σ̂2
r , which gives σ̂2

r = (s2
2 − s2

4)/4. Following Jarrett and Ruggiero

(2008), this method of solving a system of linear equations to obtain estimates of the variance

components is, from this point forward, referred to as the linear combination (LC) method.
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A purpose of constructing the theoretical ANOVA table is that it enables us to determine

variances of Treatment effects, and therefore, a valid F-test for the Treatment effects can be

obtained. The estimated Treatment difference between Treatments a and b is given by (ȳa..... −ȳb..... ),
which, for the Phase 2 design presented in Table 5.1, has variance

Var(ȳa..... − ȳb..... ) =
σ2 + 2σ2

a

3
, (5.5)

where ȳi..... denotes the mean of the log-protein abundance values over all observations of Treat-

ment i. The denominator of (5.5) is 3, because each treatment group is replicated six times

(with two sub-samples from each of three animals). The numerator of (5.5), i.e. σ2 + 2σ2
a, can

be estimated directly from the residual variance in the Within Animals Within Runs stratum,

the same stratum in which the Treatment effects are being estimated.

If Run effects are regarded as fixed effects, the row of Table 5.2 containing σ2
r is not available

to be used, i.e. s2
1 and s2

2, which implies that the estimate of variance of the Treatment effects

will be based solely on s2
3 with 2 DF. If the Run effects are assumed to be random effects, we can

recover extra information about σ2
a from s2

1, defined in (5.1), as well as information about σ2 in

the other residual variances. Thus, we can then improve the estimate of σ̂2 + 2σ̂2
a either via the

LC method as illustrated above, or by using restricted maximum likelihood (REML) approach

to estimate the VC. How this may be achieved is discussed in Section 5.3.

5.3 Estimation of variance components

The theoretical ANOVA in Table 5.2 identified four MS, with expected values ξ2
i and υi DF

(i = 1, . . . , 4), which are available for estimation of the VCs defined by ς = (σ̂2, σ̂2
a, σ̂

2
r)
′. This

section shows the REML approach in estimating the VCs developed by Jarrett and Ruggiero

(2008).

5.3.1 Constructing the score function and Fisher information matrix

The mean squares s2
i are assumed to have a χ2 distribution, i.e.

s2
i ∼

ξ2
i

υi
χ2
υi
, (i = 1, . . . , 4), (5.6)

where υi denotes the DF corresponding to s2
i . The log-likelihood of s2

i can be shown to be

L(ξ2
i ; s

2
i ) = constant−

4∑
i=1

[
υi log(ξ2

i )

2
+
υis

2
i

2ξ2
i

]
, (i = 1, . . . , 4). (5.7)
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The score is the first derivative of the log-likelihood function with respect to the ith element of

EMS, ξ2
i , i.e.

∂L(ξ2
i ; s

2
i )

∂ξ2
i

=
υi(s

2
i − ξ2

i )

2ξ4
i

, (i = 1, . . . , 4).

Since the expected values vector ξ2 is a vector containing (ξ2
1 , ξ

2
2 , ξ

2
3 , ξ

2
4)′, the score function with

respect to ξ2 can be re-written in vector form as follows

S(ξ2) =
∂L(ξ2; s2)

∂ξ2
=



υ1(s2
1 − ξ2

1)

2ξ4
1

υ2(s2
2 − ξ2

2)

2ξ4
2

υ3(s2
3 − ξ2

3)

2ξ4
3

υ4(s2
4 − ξ2

4)

2ξ4
4


. (5.8)

The Fisher information is defined as the variance of the score, which is computed from the

negative of the expectation of the second derivative of the log-likelihood function with respect

to ξ2
i . This is also known as the expected Fisher information.

Since the expected values vector ξ2 is a vector containing (ξ2
1 , ξ

2
2 , ξ

2
3 , ξ

2
4)′, the negative ex-

pectation of the second partial derivative of the log-likelihood function gives a 4 × 4 Fisher

information matrix, i.e.

E

(
−∂

2L(ξ2; s2)

∂ξ4

)
= E


−



∂2L

∂ξ4
1

∂2L

∂ξ2
1∂ξ

2
2

∂2L

∂ξ2
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∂2L)

∂ξ4
4




,

where L denotes L(ξ2
i ; s

2
i ) with the ith diagonal element given by

∂2L

∂ξ4
i

= −υis
2
i

ξ6
i

+
υi

2ξ4
i

, (i = 1, . . . , 4).

Its negative has expectation

E

(
−∂

2L

∂ξ4
i

)
= E

(
υis

2
i

ξ6
i

− υi
2ξ4
i

)
=
υi E(s2

i )

ξ6
i

− υi
2ξ4

1

=
υiξ

2
i

ξ6
i

− υi
2ξ4
i

=
υi

2ξ4
i

.

The off-diagonal elements of the Fisher information matrix,
∂2L

∂ξ2
i ∂ξ

2
j

, (i 6= j), are all zero. Thus,
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it follows that the Fisher information matrix with respect to ξ2 is given by

Aξ2 = E

(
−∂

2L(ξ2; s2)

∂ξ4

)
= diag

(
υi

2ξ4
i

)
, (i = 1, . . . , 4). (5.9)

5.3.2 Transformation from expected values in ξ2 to estimates in ς

The score function and Fisher information matrix, as defined in (5.8) and (5.9), respectively,

are functions of ξ2. However, the goal here is to estimate the VCs, which this formulation will

not allow. Thus, we must first transform the score function and Fisher information matrix to

functions of ς.

The relationship between the vector of expected values in ξ2 and the vector of VCs estimates

in ς can be written as

ξ2 = Gς,

where the matrix G, has (i, j)-th element equal to ∂ξ2
i /∂ςj. From the theoretical ANOVA in

Table 5.2, it follows that the row elements of the G matrix are the coefficients of the VCs in

each Residual EMS, i.e. 
1 2 4

1 0 4

1 2 0

1 0 0

 .

Based on the product rule for differentiation, it follows that

∂ξ2

∂ς
= G. (5.10)

Since the log-likelihood in (5.7) is a function of ξ2 containing four elements, the change of

variable technique can be implemented by using the multi-variable chain rule to calculate the

score function with respect to ς, i.e.

S(ς) =
∂L(ξ2)

∂ς
=
∂L(ξ2)

∂ξ2
∂ξ2

∂ς
, (5.11)

where
∂ξ2

∂ς
is the matrix G defined in (5.10). It follows, therefore, the score function with respect

to ς is

S(ς) = G′S(ξ2) = G′
∂L(ξ2)

∂ξ2
(5.12)

and the Fisher information matrix with respect to ς becomes

Aς = G′Aξ2G = G′
[
diag

(
υi

2ξ4
i

)]
G, (i = 1, . . . , 4). (5.13)
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5.3.3 Estimating VCs in ς2

Using the score function and the Fisher information matrix defined in (5.12) and (5.13), the

vector of VCs, ς, can be estimated using Fisher’s scoring algorithm, which is an iterative proce-

dure that can be used to solve maximum likelihood equations. The formula for Fisher’s scoring

algorithm can be written as

ςt+1 = ςt + A−1
ςt S(ςt), (5.14)

where ςt and ςt+1 are vectors of VCs estimates at the t-th and (t+ 1)-th iterations, respectively.

The initial estimates can be any value. The iterations stop when the differences between the

VCs estimates in two consecutive iterations are less than 1 × 10−7 (Patterson and Thompson,

1971).

5.4 Satterthwaite’s approximation in deriving the EDF

Assessment on how well the estimation of the variance, i.e. σ̂2 + 2σ̂2
a, has been performed is by

examining the DF of Residual MS associated with the Between Animals Within Runs stratum.

Once the VCs are estimated from the experimental data using either the LC or REML method,

a higher DF, or EDF, may be approximated. The higher the EDF the better this variance is

estimated, and also the higher the Residual DF for the F-test of the Treatment effects.

Using the estimated VCs, the EDF are approximated as twice the square of the expected

mean divided by the variance (Satterthwaite, 1941). We can show this based on the mean

squares, s2
i , are assumed to have a χ2

υi
distribution, from (5.6), then its expectation is given by

E(s2
i ) = E

(
ξ2
i

υi
χ2
υi

)
=
ξ2
i

υi
E(χ2

υi
) =

ξ2
i

υi
υi = ξ2

i , (5.15)

and its variance is given by

Var(s2
i ) = Var

(
ξ2
i

υi
χ2
υi

)
=
ξ4
i

υ2
i

Var(χ2
υi

) = 2
ξ4
i

υ2
i

υi = 2
ξ4
i

υi
. (5.16)

From (5.15) and (5.16), the EDF are approximated from the twice the square of the expected

mean divided by the variance, i.e.

EDF =
2[E(s2

i )]
2

Var(s2
i )

=
2ξ4
i

2ξ4
i

υi

= υi.

From Table 5.2, the MS of interest is the Residual MS in the Between Animals Within Runs
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stratum, i.e. s2
3, thus the EDF associated with this MS are computed as

EDF =
2(s2

3)2

Var(s2
3)

=
2(σ̂2 + 2σ̂2

a)
2

Var(σ̂2 + 2σ̂2
a)
. (5.17)

The asymptotic variance of the estimates of ς is given by the inverse of the Fisher information

matrix, which can be expressed as

A−1
ς =


Var(σ2) Cov(σ2, σ2

a) Cov(σ2, σ2
r)

Cov(σ2, σ2
a) Var(σ2

a) Cov(σ2
a, σ

2
r)

Cov(σ2, σ2
r) Cov(σ2

a, σ
2
r) Var(σ2

r)

 . (5.18)

The estimated variance of σ2 + 2σ2
a in (5.17), i.e. Var(σ̂2 + 2σ̂2

a) is given by the sum of the four

elements in the top left 2× 2 submatrix in (5.18) and can be written as

Var(σ̂2 + 2σ̂2
a) = Var(σ̂2) + 4 Var(σ̂2

a) + 4 Cov(σ̂2, σ̂2
a).

From (5.17), the EDF of Residual MS in the Between Animals Within Runs stratum in Sec-

tion 5.2 can be computed from

EDF =
2(σ̂2 + 2σ̂2

a)
2

Var(σ̂2) + 4 Var(σ̂2
a) + 4 Cov(σ̂2, σ̂2

a)
.

5.4.1 Comparing VCs between LC and REML methods

In this section, a simulation study, is used to compare the effects of the two VC estimation

methods - LC and REML - on the estimated EDF of the variance, i.e. σ̂2 + 2σ̂2
a, for the design

in the example discussed in Section 5.2. The simulation datasets were generated on the basis

that the residual MS have a chi-square distribution, with the ratio of the Between Animals VC

to measurement error VC, denoted by σ2
a/σ

2, set with 17 values ranging from 10−4 to 104, and

the ratio of Between Runs VC to measurement error, denoted by σ2
r/σ

2, set to 0, 0.25, 1, 5, 100.

The case when run effects of run are fixed is also considered (effectively when σ2
r =∞).

Figure 5.1 shows the EDF for the range of values of the ratio σ2
r/σ

2 and σ2
a/σ

2, including

a line for the fixed Run effects case. It shows that the EDF can be as low as 2 DF when

there are large Run effects, but that the EDF approach 3 when the between-animal variation

dominates. Note that, when the run-to-run variation is substantially larger than the between

animal variation we see that the EDF based on VCs estimated using the LC method are slightly

higher than those using REML. This suggests that the optimal design presented in Section 5.2

may be robust to the method of VCs estimation. We will show EDF approximated from both
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LC and REML methods for the remaining of this Chapter to confirm this.

σr
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2 σ2 = 100 Runs Fixed
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2 σ2 = 0 σr

2 σ2 = 0.25 σr
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Figure 5.1: EDF for the variance of the treatment effects for two-phase experiment, i.e. for
the optimal design of the Phase 2 experiment which takes account of the design of the Phase 1
experiment involves ν = 2 treatments assigned to na = 6 animals. Each sample is further split
into ns = 2 sub-samples labelled by nγ = 4 tags and measured in nr = 3 runs, based on REML
estimates of the variance components and on a linear combination of the mean squares.

5.5 EDF when Phase 1 experiment is arrange in a CRD

This section compares the EDF obtained from optimal designs of the Phase 2 experiment found

when the Phase 1 experiment is arranged in a CRD. The main consideration is on comparing

four-plex and eight-plex experiments using an identical Phase 1 experiment. Three different

cases are presented, showing that different sets of design parameters can work better depending

on whether the four-plex or eight-plex experiment is used.

5.5.1 Example 1: A CRD with 2 treatments and 12 animals

The first example experiment to be considered is the Phase 1 experiment with ν = 2 treatments

assigned to na = 12 animals. Based on the methods presented in Chapter 3, two optimal

designs are found for the Phase 2 proteomics experiment: one assuming the four-plex iTRAQTM

system is used and the other assuming that the eight-plex system is used, which are presented

in Tables 5.3a and 5.3b, respectively.

155



Chapter 5. Estimation of variance components and effective degrees of freedom in two-phase
proteomic experiments

Table 5.3: Optimal (a) four- and (b) eight-plex designs of Phase 2 proteomics experiment when
the Phase 1 experiment consists of ν = 2 treatments assigned to each of na = 12 animals, with
ns = 2 sub-samples taken from each animal and analysed in the Phase 2 MudPIT-iTRAQTM

experiment. Animal IDs are denoted by upper case letters, while the lower case letters a and b
denote the two treatments.

(a) Four-plex system.

Tag
Run 114 115 116 117

1 Jb Aa Lb Ca
2 Aa Jb Ca Lb
3 Ia Fb Hb Ka
4 Fb Ia Ka Hb
5 Bb Ea Db Ga
6 Ea Bb Ga Db

(b) Eight-plex system.

Tag
Run 113 114 115 116 117 118 119 121

1 Ia Ea Ga Db Hb Ca Bb Jb
2 Ea Ia Db Ga Ca Hb Jb Bb
3 Fb Fb Lb Lb Ka Ka Aa Aa

The theoretical ANOVA tables for the four- and eight-plex optimal designs are presented in

Tables 5.4 and 5.5, respectively. Based solely on these two theoretical ANOVA tables, the four-

plex design is shown to be the better design, because it has higher Residual DF for estimating

the Residual MS and therefore for testing treatment effects (7 DF compared to with 6 DF for

the eight-plex design), and Treatment effects are fully estimated in the desired stratum, namely

Between Animals within Runs. In comparison, the average efficiency factor for treatment effects

in the eight-plex design is 0.889 due to the 1 DF of treatment contrast being partially confounded

with the contrast of Tag 113, 114, 117, 118 versus Tag 115, 116, 119, 121. In addition, the

theoretical ANOVA table of the four-plex experiment shows there are 2 DF associated with

the residual variance in the Between Animals Between Runs stratum, potentially enabling the

recovery of up to 2 additional DF, i.e. yielding up to 9 EDF. The eight-plex experiment has 1

DF associated with the Between Animals Between Runs stratum, which can be recovered giving

EDF as high as 7 DF.

The EDF plots, in Figure 5.2, show that the EDF from the four-plex experiment is always

higher than that from the eight-plex experiment. The EDF of the four-plex experiment can be

as low as 7 DF when there is large run-to-run variation, but the EDF approach 9 when the

between-animal variation dominates. As for the eight-plex experiment, the EDF can be as low

as 6 DF with large Run effects, but the EDF approach 7 with high between-animal variation.

This suggests that the optimal design using the four-plex experiment is to be preferred over the

eight-plex experiment in this case. In addition, the EDF appears to be very similar between the

REML and LC methods.
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Table 5.4: Theoretical ANOVA table for the optimal design of the Phase 2 experiment in
Table 5.3a.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 2 σ2 + 2σ2

a + 4σ2
r

Within Animals 3 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 6θγ 1

Treatment 1 σ2 + 2σ2
a + 12θτ 1

Residual 7 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 6θγ 1
Residual 7 σ2

Table 5.5: Theoretical ANOVA table for the optimal design of Phase 2 experiment in Table 5.3b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 8σ2
r

Within Animals 1 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 3θγ + 1.33θτ 1 0.1111

Treatment 1 σ2 + 2σ2
a + 10.67θτ 0.8889

Residual 6 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 3θγ 1
Residual 7 σ2

5.5.2 Example 2: A CRD with 8 treatments and 16 animals

The second example experiment to be considered is a Phase 1 experiment with ν = 8 treatments

each assigned to na = 16 animals. Based on the methods presented in Chapter 3, two optimal

designs are found for the Phase 2 proteomics experiment: one assuming the four-plex iTRAQTM

system is used and the other assuming that the eight-plex system is used. These designs are

presented in Tables 5.6a and 5.6b, respectively.

The theoretical ANOVA tables for the four- and eight-plex optimal designs in Tables 5.6a

and 5.6b are presented in Tables 5.7 and 5.8, respectively. Based solely on these two theoretical

ANOVA tables, both designs have the 4 Residual DF for estimating the Residual MS and

therefore for testing Treatment effects. Furthermore, in both designs the Treatment effects are

estimated, in the desired stratum, namely Between Animals within Runs, and have average

efficiency factor Eτ = 0.8077.
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Figure 5.2: EDF plots for optimal designs shown in Tables 5.3a and 5.3b, where EDF is
calculated using VCs estimated by both the REML and LC methods.

Table 5.6: Optimal (a) four- and (b) eight-plex designs of Phase 2 proteomics experiment when
the Phase 1 experiment consists of ν = 8 treatments each assigned to na = 16 animals, with
ns = 2 sub-samples are then taken from each animal and analysed in the Phase 2 MudPIT-
iTRAQTM experiment. Upper case letters denote animal IDs, while the lower case letters denote
the treatments.

(a) Four-plex system.

Tag
Run 114 115 116 117

1 Jb Dd Ph Kc
2 Dd Jb Kc Ph
3 Hh Ee Nf Bb
4 Ee Hh Bb Nf
5 Aa Og Me Ld
6 Og Aa Ld Me
7 Ff Cc Ia Gg
8 Cc Ff Gg Ia

(b) Eight-plex system.

Tag
Run 113 114 115 116 117 118 119 121

1 Ff Dd Kc Hh Me Aa Og Bb
2 Dd Ff Hh Kc Aa Me Bb Og
3 Cc Ia Nf Jb Gg Ph Ld Ee
4 Ia Cc Jb Nf Ph Gg Ee Ld

For the four-plex experiment, the treatment average efficiency factor of 0.8077 is due to the

3 DF associated with Treatment effects being confounded with Run effects. Thus, the Between

Animals Between Runs EMS, which in previous cases provided a measure of pure error, now

includes a contribution from the Treatment fixed effect. The 3 DF associated with this effect

are not available for recovery of information, i.e. the existing 4 Residual DF for estimating

the variance of the treatment effects cannot be improved upon. In comparison, although the
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treatment average efficiency factor, in the eight-plex design, is also 0.8077, 3 of 7 DF associated

with Treatment effects are now partially confounded with Tag effects. As a result, the 1 DF

associated with the Between Animals MS in the Between Runs stratum remains pure error and

can be recovered in the estimation of the VCs, resulting in the EDF to being as high as 5 DF.

Table 5.7: Theoretical ANOVA table for the optimal design of Phase 2 experiment in Table 5.6a.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatment 3 σ2 + 2σ2
a + 4σ2

r + 1.2θτ 0.3
Within Animals 4 σ2 + 4σ2

r

Within Run
Between Animals

Tag 1 σ2 + 2σ2
a + 8θγ 1

Treatment 7 σ2 + 2σ2
a + 3.23θτ 0.8077

Residual 4 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 8θγ 1
Residual 10 σ2

Table 5.8: Theoretical ANOVA table for the optimal design of Phase 2 experiment in Table 5.6b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 8σ2
r

Within Animals 2 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 4θγ + 1.2θτ 1 0.3

Treatment 7 σ2 + 2σ2
a + 3.23θτ 0.8077

Residual 4 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

The EDF plots, in Figure 5.3, show that the EDF for the design using the eight-plex system

is always 4 irrespective of the values of the ratios σ2
a/σ

2 and σ2
r/σ

2. For the four-plex design,

the EDF can be as low as 4 when the run-to-run variation is much larger than the between

animal variation, and as high as 5 DF when the between-animal variation dominates. The EDF

are the same (4 DF) between four- and eight-plex experiments when σ2
r/σ

2 = 100 and σ2
a/σ

2 is

between 1 × 10−4 to 10, i.e. when the run-to-run variation is 10 to 1 × 106 times of run-to-run

variation over animal-to-animal variation. The EDF are also the same (4 DF) between four-

and eight-plex experiments when Run effects are assumed to be fixed. In addition, the EDF are

again shown to be very similar between the REML and LC methods.
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Figure 5.3: EDF plots for optimal designs shown in Tables 5.6a and 5.6b, where EDF is
calculated using VCs estimated by both the REML and LC methods.

5.5.3 Example 3: A CRD with 4 treatments and 24 animals

In the third example, the Phase 1 experiment involves ν = 4 treatments assigned to na = 24

animals. Based on the methods presented in Chapter 3, two optimal designs are found for the

Phase 2 proteomics experiment: one assuming the four-plex iTRAQTM system is used and the

other assuming that the eight-plex system is used. These designs are presented in Tables 5.9a

and 5.9b, respectively.

The theoretical ANOVA tables for the four- and eight-plex optimal designs in Tables 5.9a and

5.9b are presented in Tables 5.10 and 5.11, respectively. Based solely on these two theoretical

ANOVA tables, the eight-plex design has higher Residual DF for estimating the Residual MS and

for testing treatment effects (15 DF compared 14 DF for the four-plex design). Comparing the

treatment average efficiency factor from the two designs: Eτ = 0.9623 for the eight-plex design

which is slightly lower than Eτ = 1 for the four-plex design. In addition, the theoretical ANOVA

table of the four-plex design has 5 DF associated with the Between Animals Between Runs

stratum, which can be recovered giving EDF as high as 19, whereas the eight-plex experiment

has 2 DF associated with the Between Animals Between Runs stratum, which can be recovered

giving EDF as high as 17.

The EDF plots, in Figure 5.4, show that, for the design using the four-plex experiment, the

EDF can be as low as 14 when the run-to-run variation is much larger than the between-animal
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Table 5.9: Optimal (a) four- and (b) eight-plex designs of Phase 2 proteomics experiment,
when the Phase 1 experiment consists of ν = 4 treatments assigned to each of na = 24 animals,
ns = 2 sub-samples are then taken from each animal and analysed in the Phase 2 MudPIT-
iTRAQTM experiment. Upper case letters denote animal IDs, while the lower case letters denote
the treatments.

(a) Four-plex system.

Tag
Run 114 115 116 117

1 Aa Rb Cc Dd
2 2 Rb Aa Dd Cc
3 3 Ea Fb Gc Hd
4 4 Fb Ea Hd Gc
5 5 Ia Jb Kc Ld
6 6 Jb Ia Ld Kc
7 7 Oc Pd Ma Nb
8 8 Pd Oc Nb Ma
9 9 Sc Td Qa Bb

10 10 Td Sc Bb Qa
11 11 Wc Xd Ua Vb
12 12 Xd Wc Vb Ua

(b) Eight-plex system.

Tag
Run 113 114 115 116 117 118 119 121

1 Vb Ma Qa Pd Dd Wc Bb Oc
2 Ma Vb Pd Qa Wc Dd Oc Bb
3 Kc Rb Td Cc Jb Ea Aa Hd
4 Rb Kc Cc Td Ea Jb Hd Aa
5 Sc Ld Fb Nb Xd Ua Gc Ia
6 Ld Sc Nb Fb Ua Xd Ia Gc
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Figure 5.4: EDF plots for optimal designs shown in Tables 5.9a and 5.9b, where EDF is
calculated using VCs estimated by both the REML and LC methods.

variation, and as high as 19 when between-animal variation dominates. For the the design

using eight-plex experiment, the EDF can be as low as 15 DF when the run-to-run variation is

much larger than the between-animal variation, and as high as 17 DF when the between-animal
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Table 5.10: Theoretical ANOVA table for the optimal design of Phase 2 experiment in Ta-
ble 5.9a.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 5 σ2 + 2σ2

a + 4σ2
r

Within Animals 6 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 12θγ 1

Treatment 3 σ2 + 2σ2
a + 12θτ 1

Residual 14 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 12θγ 1
Residual 16 σ2

Table 5.11: Theoretical ANOVA table for the optimal design of Phase 2 experiment in Ta-
ble 5.9b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 2 σ2 + 2σ2

a + 8σ2
r

Within Animals 3 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 6θγ + 0.67θτ 1 0.0556

Treatment 3 σ2 + 2σ2
a + 11.55θτ 0.9623

Residual 15 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 6θγ 1
Residual 17 σ2

variation dominates. Furthermore, recall from the theoretical ANOVA tables (in Tables 5.10 and

5.11) that the eight-plex design has 15 Residual DF compared with 14 Residual DF in the four-

plex design. From the EDF plots, we can see the EDF for the four-plex design exceed those of the

eight-plex design as σ2
a/σ

2 increases. For example, when σ2
r/σ

2 = 0.25, the EDF become higher

for the four-plex experiment when σ2
a/σ

2 = 1× 10−0.5, that is about 0.79 times of the run-to-run

variation over animal-to-animal variation. Table 5.12 lists the σ2
r/σ

2 and σ2
a/σ

2 combinations

when the EDF become higher for the four-plex experiment than the eight-plex experiment, and

the magnitudes of the run-to-run variation over animal-to-animal variation based on Figure 5.4.
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Table 5.12: Magnitudes of the run-to-run variation over animal-to-animal variation when the
EDF become higher for four-plex experiment than eight-plex experiments based on Figure 5.4.

σ2
r/σ

2 0.25 1 4 100
σ2
a/σ

2 10−0.5 100.25 10 102.25

σ2
r/σ

2
a 0.79 0.56 0.4 0.32

5.6 Comparing the EDF when Phase 1 experiment is ar-

ranged in a RCBD

This section compares the EDF of optimal designs between Phase 2 four-plex and eight-plex

experiments when the Phase 1 experiment is arranged in a RCBD. There are four types of

designs that can be compared, given the same Phase 1 experiment is arranged in a RCBD:

1. Phase 1 Block effects are intentionally confounded with Run effects using the four-plex

system,

2. Phase 1 Block effects are intentionally confounded with Tag effects using the four-plex

system,

3. Phase 1 Block effects are intentionally confounded with Run effects using the eight-plex

system and

4. Phase 1 Block effects are intentionally confounded with Tag effects using the eight-plex

system,

The same method for estimating the VCs and approximating the EDF can also be applied to

this example, because we can still construct an ANOVA table with Residual MS which assumed

to have a chi-square distribution. In addition, the EDF are still approximated based on the

Residual MS of the Between Experimental units (Plants) Within Blocks (Trays) Within Runs

stratum, i.e. σ2 + σ2
p.

This section first compares designs from two different confounding schemes for each four-

and eight-plex experiment, followed by an overall comparison between the four- and eight-plex

systems. The Phase 2 experiment uses plants as an example when the Phase 1 experiment

involves ν = 4 treatments assigned to np = 16 plants in nb = 4 trays. Then ns = 2 sub-

samples are obtained from each plant, i.e. a total of 32 sub-samples, for the Phase 2 proteomics

experiment.

The simulation study was done on the basis that MS has at chi-square distribution, with the

ratio of Between Plants VCs to measurement error, denoted by σ2
p/σ

2, set with 17 values ranging
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from 10−4 to 104, the ratio of Between Trays VCs to measurement error and Between Runs VCs

to measurement error, denoted by σ2
b/σ

2 and σ2
r/σ

2, respectively, set to 0, 0.25, 1, 5, 100, as well

as having effects of tray and run fixed are also considered (effectively when σ2
b =∞ and σ2

r =∞).

5.6.1 Four-plex system

Given the Phase 1 experiment with ν = 4 treatments assigned to na = 16 plants in nb = 4 trays,

based on the methods presented in Chapter 4, two optimal designs are found for the Phase 2

four-plex proteomics experiment: one assumes that Tray effects are intentionally confounded

with Run effects, and the other that Tray effects are intentionally confounded with Tag effects.

These are presented in Tables 5.9a and 5.9b, respectively.

Table 5.13: Optimal design of Phase 2 proteomics experiment showing allocation of sub-samples
from trays, plants and treatments to runs and tags, when the Phase 1 experiment consists of
ν = 2 treatments assigned to na = 16 plants in nb = 4 trays, ns = 2 sub-samples are then taken
from each plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment using nγ = 4 tags.
Numbers denote trays, upper case letters denote plant IDs, while the lower case letters denote
the treatments.

(a) Tray effects are intentionally
confounded with Run effects.

Tag
Run 114 115 116 117

1 1Cc 1Dd 1Bb 1Aa
2 1Dd 1Cc 1Aa 1Bb
3 2Hd 2Fb 2Ea 2Gc
4 2Fb 2Hd 2Gc 2Ea
5 3Ia 3Jb 3Ld 3Kc
6 3Jb 3Ia 3Kc 3Ld
7 4Ma 4Oc 4Pd 4Nb
8 4Oc 4Ma 4Nb 4Pd

(b) Tray effects are intentionally
confounded with Tag effects.

Tag
Run 114 115 116 117

1 1Bb 1Dd 3Kc 3Ia
2 1Dd 1Bb 3Ia 3Kc
3 1Cc 1Aa 3Ld 3Jb
4 1Aa 1Cc 3Jb 3Ld
5 2Gc 2Fb 4Ma 4Pd
6 2Fb 2Gc 4Pd 4Ma
7 2Ea 2Hd 4Nb 4Oc
8 2Hd 2Ea 4Oc 4Nb

The theoretical ANOVA tables for the optimal designs of the Phase 2 experiment using the

four-plex system are presented in Tables 5.14 and 5.15, respectively. Based solely on these two

theoretical ANOVA tables, the design when Tray effects are intentionally confounded with Run

effects is shown to be the better design, because it has higher Residual DF for estimating the

Residual MS and therefore for testing Treatment effects (8 DF compared to 7 DF for the four-

plex design) in the Between Plants Within Trays stratum. Both designs can estimate Treatment

effects with full efficiency in the Between Plants Within Trays stratum, because the treatment

average efficiency factors for both designs are 100%.

From the theoretical ANOVA of both designs, there is extra information on the Between

Plants VC σ2
p in the Between Trays Between Runs MS, however, we may not be able to recover
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this information, because we cannot equate Residual MS in Between Trays Between Runs stra-

tum based on the EMS to estimate σ2
p. For the design when the Tray effects are intentionally

confounded the Run effects (see Table 5.15), there are 2 DF associated with the Between Plants

Within Blocks Between Runs stratum which can be recovered giving EDF as high as 9.

Table 5.14: Theoretical ANOVA table from the Phase 2 experiment in Table 5.13a.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 3 σ2 + 2σ2

p + 8σ2
b + 4σ2

r

Within Plants Within Trays 4 σ2 + 4σ2
r

Within Runs
Between Plants Within Trays

Tag 1 σ2 + 2σ2
p + 8θγ 1

Treatment 3 σ2 + 2σ2
p + 8θτ 1

Residual 8 σ2 + 2σ2
p

Within Plants Within Trays
Tag 2 σ2 + 8θγ 1
Residual 10 σ2

Table 5.15: Theoretical ANOVA table from the Phase 2 experiment in Table 5.13b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 1 σ2 + 2σ2

p + 8σ2
b + 4σ2

r

Between Plants Within Trays 2 σ2 + 2σ2
p + 4σ2

r

Within Plants Within Trays 4 σ2 + 4σ2
r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 8σ2

b + 8θγ 1
Residual 1 σ2 + 2σ2

p + 8σ2
b

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 8θτ 1
Residual 7 σ2 + 2σ2

p

Within Plants Within Trays
Tag 2 σ2 + 8θγ 1
Residual 10 σ2
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The EDF plots in Figure 5.5 are presented as a 6-by-6 panels having different combination

of ranges of ratios for Between Plants VCs, Between Trays VCs and Between Runs VCs to

measurement error, denoted by σ2
p/σ

2, σ2
b/σ

2 and σ2
r/σ

2, respectively. We can first observe that

different values of the ratio σ2
b/σ

2 do not change the EDF. For the design when Tray effects

are intentionally confounded with Run effects, the EDF are always 8 DF. For the design when

Tray effects are intentionally confounded with Tag effects, the EDF can be as low as 7 DF when

run-to-run variation is much larger than the between-plants variation, but the EDF approach

9 DF when the between-plants variation dominates. From the EDF plot, we can see that the

EDF of the design when Tray effects are intentionally confounded with Tag effects become

better than the design when Tray effects are intentionally confounded with Run effects as σ2
p/σ

2

increases. For example, when σ2
r/σ

2 = 0.25, the EDF become higher when σ2
p/σ

2 = 1, that is

about 0.25 times of the run-to-run variation over plant-to-plant variation. Table 5.12 lists the

σ2
r/σ

2 and σ2
p/σ

2 combinations when the EDF become higher for the design when Tray effects

are intentionally confounded with Tag effects than the design when Tray effects are intentionally

confounded with Run effects, and the magnitudes of the run-to-run variation over plant-to-plant

variation are based on Figure 5.4. In addition, the EDF are again shown to be very similar

between the REML and LC methods.

Table 5.16: Magnitudes of the run-to-run variation over plant-to-plant variation when the EDF
become higher for design when Tray effects are intentionally confounded with Tag effects than
the design when Tray effects are intentionally confounded with Run effect based on Figure 5.5.

σ2
r/σ

2 0.25 1 4 100
σ2
p/σ

2 1 100.5 101.25 102.75

σ2
r/σ

2
p 0.25 0.32 0.22 0.18

5.6.2 Eight-plex system

Using the same Phase 1 experiment with ν = 4 treatments assigned to na = 16 plants in nb = 4

trays, there are two optimal design that are found in the Phase 2 proteomics experiment using

the eight-plex system. The first design assumes that the Tray effects are intentionally confounded

with Run effects (see Tables 5.9a). The second design assumes that Tray effects are intentionally

confounded with Tag effects (see Tables 5.9a).

The theoretical ANOVA tables for the optimal designs of the Phase 2 experiment using the

eight-plex system are presented in Tables 5.14 and 5.15, respectively. Based solely on these two

theoretical ANOVA tables, the design when Tray effects are intentionally confounded with Tag

effects is shown to be the better design, because it has higher Residual DF for estimating the
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Table 5.17: Optimal design of Phase 2 proteomics experiment showing allocation of sub-samples
from trays, plants and treatments to runs and tags, when the Phase 1 experiment consists of
ν = 2 treatments assigned to na = 16 plants in nb = 4 trays, ns = 2 sub-samples are then taken
from each plant and analysed in the Phase 2 MudPIT-iTRAQTM experiment using nγ = 8 tags.
Numbers denote trays, upper case letters denote plant IDs, while the lower case letters denote
the treatments.

(a) Tray effects are intentionally confounded with Run
effects.

Tag
Run 113 114 115 116 117 118 119 121

1 1Bb 1Dd 1Aa 1Cc 2Ea 2Fb 2Gc 2Hd
2 1Dd 1Bb 1Cc 1Aa 2Fb 2Ea 2Hd 2Gc
3 3Ia 3Kc 3Ld 3Jb 4Oc 4Pd 4Ma 4Nb
4 3Kc 3Ia 3Jb 3Ld 4Pd 4Oc 4Nb 4Ma

(b) Tray effects are intentionally confounded with Run
effects.

Tag
Run 113 114 115 116 117 118 119 121

1 1Aa 1Cc 2Gc 2Fb 3Ld 3Ia 4Pd 4Nb
2 1Cc 1Aa 2Fb 2Gc 3Ia 3Ld 4Nb 4Pd
3 1Bb 1Dd 2Hd 2Ea 3Kc 3Jb 4Ma 4Oc
4 1Dd 1Bb 2Ea 2Hd 3Jb 3Kc 4Oc 4Ma

Residual MS and therefore for testing Treatment effects (8 DF compared to 7 DF for the four-

plex design) in the Between Plants Within Trays stratum. Both designs can estimate Treatment

effects with full efficiency in the Between Plants Within Trays stratum, because the treatment

average efficiency factors Eτ for both designs are 100%.

For the design in which the Tray effects are intentionally confounded with Run effects (see

Table 5.18), there is no extra information on the Between Plants VC σ2
p that can be recovered,

because these σ2
p are all in Between Trays Between Runs MS and we cannot equate residual MS

in the Between Trays Between Runs strata based on the EMS to estimate σ2
p for this design.

For the design when the Tray effects are intentionally confounded with Tag effects (see

Table 5.19), there are 2 DF associated with the Between Plants Within Blocks Between Runs

stratum which can be recovered giving EDF as high as 10 DF. In addition, since the 3 DF

associated with Tray effects are confounded with Tag effects, Tray effects can only be considered

to be fixed.

The EDF plots, in Figure 5.2, show that the EDF for the design when the Tray effects are

intentionally confounded with Run effects is always 7 DF under different ranges of values of the

ratios σ2
p/σ

2, σ2
b/σ

2 and σ2
r/σ

2.

For the design when Tray effects are intentionally confounded with Tag effects, the change
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Table 5.18: Theoretical ANOVA table of the Phase 2 experiment in Table 5.17a.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Trays 1 σ2 + 2σ2

p + 8σ2
b + 8σ2

r

Within Plants Within Trays 2 σ2 + 8σ2
r

Within Runs
Between Trays

Tag 1 σ2 + 2σ2
p + 8σ2

b + 4θγ 1
Residual 1 σ2 + 2σ2

p + 8σ2
b

Between Plants Within Trays
Tag 2 σ2 + 2σ2

p + 4θγ 1
Treatment 3 σ2 + 2σ2

p + 8θτ 1
Residual 7 σ2 + 2σ2

p

Within Plants Within Trays
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

Table 5.19: Theoretical ANOVA table of the Phase 2 experiment in Table 5.17b.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Plants Within Trays 1 σ2 + 2σ2

p + 8σ2
r

Within Plants Within Trays 2 σ2 + 8σ2
r

Within Runs
Between Trays

Tag 3 σ2 + 2σ2
p + 8σ2

b + 4θγ 1

Between Plants Within Trays
Treatment 3 σ2 + 2σ2

p + 8θτ 1
Residual 8 σ2 + 2σ2

p

Within Plants Within Trays
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

of EDF can only be observed when the Tray effects are assumed to be fixed. Further, the

EDF can be as low as 8 DF when run-to-run variation is much larger than the between-plants

variation, but the EDF approach 9 DF when the between plants variation dominates. Therefore,

the design in which Tray effects are intentionally confounded with Tag effects is always better

than the design in which the Tray effects are intentionally confounded with Run effects using

the eight-plex system. The EDF are again shown to be very similar between the REML and LC

methods.
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5.6.3 Four-plex versus Eight-plex system

From Figures 5.5 and 5.6, different ranges of values of the Between Tray VCs to measurement

error ratio, denoted by σ2
b/σ

2, did not change the EDF, because no extra information on the

Between Plants VCs can be recovered from the Residual MS of the Between Tray Within Runs

stratum and the Between Tray Within Runs stratum. Thus, Figure 5.7 only presents the EDF

when Tray effects are assumed to be fixed, i.e. σ2
b =∞, to make an overall comparison between

the four- and eight-plex systems.

Figure 5.7 shows the design when Tray effects are intentionally confounded with Tag effects

with the eight-plex system being superior over the other three Phase 2 design options. However,

there are three occasions when the EDF are the same between designs when Tray effects are

intentionally confounded with Tag effects using the eight-plex system, and the design when

Tray effects are intentionally confounded with Run effects using the four-plex system. The first

occasion is when σ2
r/σ

2 = 4 and σ2
p/σ

2 is less than 0.1, thus, run-to-run variation is 40 times

that of plant-to-plant variation. The second occasion is when σ2
r/σ

2 = 100 and σ2
p/σ

2 is less

than 10, thus the run-to run variation is 10 times that of the plant-to-plant variation. The last

occasion is when the Run effects are assumed to be fixed. Hence, the four-plex system will have

the same precision as the eight-plex system when the run-to-run variation is 10 times higher

than the plant-to-plant variation.

5.7 Summary

The Chapter described methods in estimating the VCs and approximating the EDF of Phase

2 experiments. EDF indicate how well we estimate the variances of Treatment effects, i.e. the

Residual MS of the Between Experimental units stratum. Thus, the higher the EDF the better

the estimates of the variance of Treatment effects and the valid F-test of the Treatment effects.

We use EDF as another property with which to compare different optimal designs of the Phase

2 experiment found in Chapters 3 and 4.

From all the EDF plots, we have shown that the REML method described here did not

improve the approximation of the EDF from the optimal designs found in Chapters 3 and 4.

This is due to these optimal designs having the property when the Phase 1 experimental units

to the Phase 2 Blocks are always balanced, which ensures that we always have a valid F-test

for testing for Treatment effects. Thus, these optimal designs are robust to the VC estimation

procedure.

Three different cases were described when each case consists of the same Phase 1 design
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Figure 5.7: EDF for optimal designs shown in Tables 5.13a, 5.13b, 5.17a and 5.17b, with
Tray effects are assumed to be fixed, where EDF is calculated using VCs estimated by both the
REML and LC methods.

arranged in a CRD, comparing between using four-and eight-plex systems. The first case showed

the four-plex system always generates higher EDF than the eight-plex system under different

ranges of the VCs ratios. The second case showed when the EDF are always the same under

different ranges of VCs ratios, because Treatment effects are completely confounded with Phase

2 Run effects, thus, the Run effects have to be assumed to be fixed. The last case showed

an example when the four-plex system can have higher EDF than the eight-plex system, with

run-to-run variation being higher than animal-to-animal variation, but the eight-plex system

becomes better, with higher EDF, than the four-plex system when the animal-to-animal variation

dominates.

The last part of the comparison was on the four different types of Phase 2 design with

the same Phase 1 design arranged in a RCBD. These four different types of Phase 2 design

comprised four-and eight-plex systems with two different confounding schemes when the Phase

1 Block (Tray) effects are intentionally confounded with the Phase 2 Tag and Run effects. We

first showed that different ratios of Between Trays VCs to measurement error have no effects on

the EDF. Further, the design when Phase 1 Block (Tray) effects are intentionally confounded

with the Phase 2 Tag effects using the eight-plex system is preferable, as it generates the highest
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EDF among the four designs under all different combinations of the VCs.
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Chapter 6

Discussion

6.1 Summary

The primary purpose of this study was to develop a method for the computer generation of

optimal designs of two-phase multiplex proteomics experiments. This method for generating

optimal designs uses a combination of theory to define objective functions and computing, to

improve the simulated annealing (SA) algorithm. Since designs are computer generated, there is

no restriction on the design parameters (of the Phase 1 experiment), and end-users do not need

to be expert in designing experiments to use this tool to generate their design.

The first part of this thesis applied the method of information decomposition to the design of

any single- and two-phase experiment, and automated the construction of theoretical ANOVA

tables. For single-phase experiments, the decomposition method was straightforward, as once the

strata were defined based on the block structure, the treatment structure was then decomposed

within each stratum. In two-phase experiments, however, decomposition began with the strata

corresponding to the block structure in the Phase 2 experiment, followed by decomposition of

the treatment structure into the strata corresponding to the Phase 1 experiment block structure.

The procedure for the Phase 1 block-information decomposition was undertaken by regarding

the Phase 1 block factors just as we would treatment factors.

The method for applying information decomposition to designs of any single- and two-phase

experiments is implemented in a newly developed R package called infoDecompuTE which is

available on the Comprehensive R Archive Network (CRAN). This R Package allows the user

to automate the construction of theoretical ANOVA tables to enable fast assessment of the

attributes of designs. These attributes are the degrees of freedom (DF), expected mean squares

(EMS), along with the variance components, fixed effects components, and the treatment average

efficiency factor for every source of variation.
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For researchers who have no R experience, a Shiny application for the infoDecompuTE

package is hosted at: https://kcha193.shinyapps.io/infoDecompuTE_Shiny/. There are

three type of outputs that can be generated from this Shiny application: 1) output from the

R console as a text file, 2) latex code as a text file, and 3) latex compiled portable document

format file.

The second part of this thesis described a computational approach for finding optimal de-

signs for Phase 2 proteomics experiments using MudPIT-iTRAQTM technologies. Chapter 3

presented the Phase 1 experiment arranged in a completely randomised design (CRD). The ob-

jective function was constructed to minimise confounding between Phase 1 Experiment units and

Treatment effects with Phase 2 Run and Tag effects. The information matrix was constructed

with an orthogonal projection matrix which projects y onto the Within Runs and Tags vector

subspace, by assuming that Tag effects are random.

A three-criterion objective function was derived for generating the optimal design with three

properties:

1. information of the Phase 1 Experimental Units is maximised in the Within Runs stratum,

based on A-optimal criteria,

2. treatment information is maximised in the Between Experimental Units Within Runs

stratum, based on A-optimal criteria, and

3. DF of the Treatment effects must still be intact in the Between Experimental Units Within

Runs stratum.

The modified nested SA algorithm presented consisted of two further improvements. The

first improvement was applying the swapping method to only two of the experimental units of

the Phase 1 experiment instead of the observational units. The second improvement was the

three-stage swapping procedure, which divides a single large search space into three smaller

search spaces, swapping the experiment units: 1) within the same runs, 2) within the same tags,

and 3) not within the same runs and tags. These improvements were aimed at speeding up the

process by optimising the objective function and then obtaining the optimal design.

Chapter 4 extended the concept to finding the optimal design when the Phase 1 experiment

is arranged in blocks, more specifically, a randomised complete block design (RCBD), or a

balanced incomplete block design (BIBD). Having this additional Block factor from the Phase 1

experiment required us to adjust the objective function to have another criterion in maximising

the Residual DF in the Between Plots Within Blocks Within Runs stratum. In addition, instead
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of having a single equation combining these four criteria with some weights, we optimise this

new four-criterion objective function with three incremental steps:

1. The first step is to locate designs in which the Phase 1 Plots average efficiency factor in the

Within Blocks Within Runs and Tags vector subspace equals 1, and the DF associated with

Treatment effects in the Between Plots Within Blocks Within Runs stratum are intact.

2. Then from among the designs located in the first step, the second step uses the modified

nested SA algorithm to find optimal designs in which the Residual DF in the Between

Plots Within Blocks Within Runs stratum are maximised.

3. From among the designs found in the second step, the third step is to find the optimal

design in which the treatment average efficiency factor in the Between Plots Within Blocks

Within Runs and Tags vector subspace is maximised.

Furthermore, two different types of confounding schemes were investigated, where Phase 1

Block effects are intentionally confounded with Tag effects, and where Phase 1 Block effects

were intentionally confounded with Run effects. In general, designs in which Phase 1 Block

effects were intentionally confounded with Tag effects were shown to have higher Residual DF

in the Between Plots Within Blocks Within Runs stratum, because some DF associated with

Tag effects were then estimated in the Between Block stratum.

From the optimal designs generated, it was found that, if the Phase 1 experiment was ar-

ranged in a CRD with fewer than 16 animals (experimental units), it was better to use the

four-plex system instead of the eight-plex system, due to the two extra DF available in the Be-

tween Animals Within Runs stratum. However, when more Phase 1 animals (experimental units)

were used, the degrees of confounding between Animal effects and Run effects increased in the

Phase 2 experiment; thus, it became preferable to use the eight-plex system over the four-plex

system. In general, if the Phase 1 experiment is arranged in Blocks, it is recommended that the

four-plex system should still be used when there are fewer than 16 animals (experimental units).

However, no clear cut-off number of experimental units was identified, at which the eight-plex

system become better than the four-plex system. This is because having the additional Block

component could generate designs with higher Residual DF when Blocks effects that confounded

with Tag effects.

The main purpose of Chapters 3 and 4 was to describe the development of an automated pro-

cess for finding the optimal design for a wide range of two-phase multiplexing experiments. Even

though the main examples were comprise of four- and eight-plex experiments, the methods pre-

sented were more general and could be applied to all two-phase designs. This allows researchers
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using these technologies to design their experiments without requiring expert knowledge in ex-

perimental design. In addition, having this tool available also allows the consulting statisticians

to present a quick solution to their client. (A set of resulting optimal designs were presented in

Appendices G, I and K, and their properties were presented as tables in Appendices H, J and

L.)

The last part of the thesis showed how to estimate the variance components (VCs) using

a restricted maximum likelihood (REML) when the Phase 2 Run effects are assumed to be

random. We then showed how to approximate the effective degrees of freedom (EDF), which

indicated how well we estimate the variances of Treatment effects, i.e. the residual MS of the

stratum associated with the experimental unit. A design with higher EDF provided a better

estimated of the variance of Treatment effects. However, the REML method described here did

not improve the approximation of the EDF from the optimal designs found in Chapters 3 and

4. This was due to these optimal designs having the characteristic of balanced arrangement

for Phase 1 experimental units to the Phase 2 Blocks, which ensured that we always had a

valid F-test for testing Treatment effects. Thus, these optimal designs were robust to the VCs

estimation procedure.

6.2 Future lines of research

6.2.1 Shiny application for generating optimal designs of Phase 2

experiments

Scientists are very adaptive at using these technologies, and they also have a good intuitive

sense of needing to design their experiments to protect against unwanted systematic sources of

variation. The introduction of labelling technologies in multiplexing for the “omics” experiments

is evidence of this.

In Appendices G, I and K, we provided a set of designs that were generated from the work

in Chapters 3 and 4. Researchers can used these to match their design parameters and select a

design for their two-phase experiment.

Some additional R functions for the optimisation algorithm have been written, which will be

published as a publicly available package on CRAN. Furthermore, this R package will also be

turned into a Shiny application, so that it is easily accessible to end-users from a wide range

of scientific disciplines. Thus, even scientists who are unfamiliar with R will feel comfortable

using this application with user-friendly interface, and our design methods will become publicly
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available to all researchers.

6.2.2 Effective degrees of freedom versus average treatment efficiency

factor

Chapter 5 included an example of a Phase 1 experiment involving ν = 8 treatments assigned

to na = 16 animals. We compared the theoretical ANOVA from the designs of the Phase 2

experiment using four-plex and eight-plex in Tables 6.1 and 6.2.

In Table 6.1, when the Phase 2 experiment used the four-plex system, there were 3 DF

associated with the Treatment effects estimated in the Between Runs stratum, with a treatment

efficiency factors of 0.3. Thus, the Run effects were assumed to be fixed, because we could not

recover the extra information on Between Animals VC, σ2
a,from the MS in the Between Animals

Between Run stratum for estimating the variance of the Treatment effects. Hence, the EDF of

the Between Animal Within Run stratum in this case were always 4 DF. As in Table 6.1 when the

Phase 2 experiment used the eight-plex system, confounding occurred between Treatment and

Tag effects, with Tag effects containing 0.3 of the treatment information. Since the Run effects

were assumed as random, we could recover the extra information from the Between Animals

Between Runs stratum for estimating the variance of Treatment effects, thus the EDF could be

as high as 5 DF.

Table 6.1: Theoretical ANOVA table from the Phase 1 experiment arranged in CRD with
ν = 8 and rb = 2, and from the Phase 2 experiment using the four-plex system.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals

Treatment 3 σ2 + 2σ2
a + 4σ2

r + 1.2θτ 0.3
Within Animals 4 σ2 + 4σ2

r

Within Run
Between Animals

Tag 1 σ2 + 2σ2
a + 8θγ 1

Treatment 7 σ2 + 2σ2
a + 3.23θτ 0.8077

Residual 4 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 8θγ 1
Residual 10 σ2

Additional work can be done in comparing between recovering the treatment information

across runs, and recovering the extra DF in EDF to get a better estimate of the variance. To

achieve this, it would mean performing more extensive simulation studies to understand which
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Table 6.2: Theoretical ANOVA table from the Phase 1 experiment arranged in CRD with
ν = 8 and rb = 2 and the Phase 2 experiment using the eight-plex system.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 1 σ2 + 2σ2

a + 8σ2
r

Within Animals 2 σ2 + 8σ2
r

Within Runs
Between Animals

Tag 3 σ2 + 2σ2
a + 4θγ + 1.2θτ 1 0.3

Treatment 7 σ2 + 2σ2
a + 3.23θτ 0.8077

Residual 4 σ2 + 2σ2
a

Within Animals
Tag 4 σ2 + 4θγ 1
Residual 10 σ2

of these two designs would be preferable and under which circumstances. These circumstances

are not just different ranges of values of VCs, but also different ranges of values in the fixed

effects for the simulation study.

6.2.3 Missing values

One of the issues that arises with high-throughput multiplexing experiments is that of missing

data. For a single protein, there are various ways in which missing values can arise in a MudPIT-

iTRAQTM proteomics experiment. One form of missing data in which we are most interested, is

when a unique peptide, which only belongs to a specific protein, is simply not found in one run

of the experiment, but can be found on the other runs of the experiment. Thus, during database

searching, bioinformatics software cannot re-construct this specific protein; and this protein

would then be considered as missing for one entire run of the Phase 2 experiment. This can be

problematic in the analysis stage, as the design is likely to become unbalanced due to unequal

replication of the treatment group or the experimental units from the Phase 1 experiment.

For example, consider the Phase 2 experiment with the Phase 1 experiment consisting of

ν = 4 treatments assigned to na = 12 animals. Each animal is then further split into ns = 2

sub-samples and measured in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 6

runs and nγ = 4 tags. An optimal design of Phase 2 experiment or this scenario is presented in

Table 6.3.

The theoretical ANOVA of the full design in Table 6.3 is presented in Table 6.4. The total

of 23 DF were partitioned to 5 DF for Between Runs stratum and 18 DF for Within Runs

stratum. In the Between Animals Within Runs stratum, Treatment effects could be estimated
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Table 6.3: Optimal design for Phase 2 experiment showing the allocation of sub-samples from
treatments assigned to animals, when the Phase 1 experiment consists of ν = 4 treatments
assigned to na = 12 animals, ns = 2 sub-samples are then taken from each animals and measured
in the Phase 2 MudPIT-iTRAQTM experiment comprising nr = 6 runs and nγ = 4 tags.

Tag
Run 114 115 116 117

1 Jb Ld Ea Cc
2 Ld Jb Cc Ea
3 Aa Gc Fb Dd
4 Gc Aa Dd Fb
5 Hd Ia Kc Bb
6 Ia Hd Bb Kc

with 0.96 amount of the treatment information with 5 Residual DF for estimating the variance

of Treatment effects. In addition, there was a valid F-test for comparing between treatments,

because the coefficients of VCs were the same for the Treatment and Residual EMS in the

Between Animals Within Runs stratum.

Table 6.4: Theoretical ANOVA table of design in Table 6.3.

Source of Variation DF EMS Eγ Eτ

Between Runs
Between Animals 2 σ2 + 2σ2

a + 4σ2
r

Within Animals 3 σ2 + 4σ2
r

Within Runs
Between Animals

Tag 1 σ2 + 2σ2
a + 6θγ + 0.67θτ 1 0.1111

Treatment 3 σ2 + 2σ2
a + 5.76θτ 0.96

Residual 5 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 6θγ 1
Residual 7 σ2

If a given protein was not detected in Run 6, then there would be four observations missing

for the Phase 2 experiment. The theoretical ANOVA is presented Table 6.5, which shows that

the total DF are reduced to 19 DF. The Residual DF in the Between Animals Within Runs

stratum are also reduced to 3 DF, which is 2 DF less than the full design. Furthermore, there is

no direct valid F-test for this design, as coefficients of the VCs from the Treatment and Residual

EMS are different in the Between Animals Within Runs stratum. Finally, the amount of the

treatment information is also reduced from 0.96 to 0.8.

If a given protein is not detected in Runs 5 and 6, we then are left with 16 observations for the

Phase 2 experiment. The theoretical ANOVA of the new design is presented in Table 6.6. The

Residual DF in the Between Animals Within Runs stratum is reduced to 2 DF, which is 3 DF
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Table 6.5: Theoretical ANOVA table of design in Table 6.3 with Run 6 missing.

Source of Variation DF EMS Eγ Eτ

Between Run
Between Animals 2 σ2 + 1.6σ2

a + 4σ2
r

Within Animals 2 σ2 + 4σ2
r

Within Run
Between Animals

Tag 3 σ2 + 1.27σ2
a + 1.36θγ + 0.43θτ 0.2727 0.0857

Treatment 3 σ2 + 1.96σ2
a + 4.23θτ 0.8471

Residual 3 σ2 + 1.78σ2
a

Within Animals
Tag 2 σ2 + 4θγ 0.8
Residual 4 σ2

less than the full design. However, there is a valid F-test for Treatment effects, with Treatment

effects being fully estimable in the Between Animals Within Runs stratum. This is due to the

way that we structured our initial designs with a 2-run-by-2-tag array system. Hence, if the last

two runs of the experiment were to be missing, we basically lose one biological replicate, i.e. there

would now be 8 animals from the Phase 1 experiments, so that the allocation of sub-samples

of animals and treatments, to be labelled with tags and analysed with runs still would have a

balanced arrangement. Hence, the optimal design presented in Table 6.3 is shown to be robust

in dealing with certain patterns of missing data, i.e. when Runs 1 and 2, or Runs 3 and 4, or

Runs 5 and 6 are missing. Other different patterns of missing data will result in designs that

have no valid F-test for treatment effects, or will make it difficult to estimate the VCs from the

theoretical ANOVA.

Table 6.6: Theoretical ANOVA table of design in Table 6.3 with Runs 5 and 6 missing.

Source of Variation DF EMS Eγ Eτ

Between Run
Between Animals 1 σ2 + 2σ2

a + 4σ2
r

Within Animals 2 σ2 + 4σ2
r

Within Run
Between Animals

Tag 1 σ2 + 2σ2
a + 4θγ 1

Treatment 3 σ2 + 2σ2
a + 4θτ 1

Residual 2 σ2 + 2σ2
a

Within Animals
Tag 2 σ2 + 4θγ 1
Residual 4 σ2

Further simulation studies can be done to explore what happens to the properties of the
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designs considered in Chapters 3 and 4 with different patterns of missingness. We may investigate

how the design can start to break down as observed in Table 6.5, when there is one run of the

experiment that is missing. We can further examine any alternative designs which have more

desirable properties in terms of their robustness for downstream statistical analyses when we

have missing values.

An alternative approach would be to construct an imputation model under a Bayesian mul-

tivariate and multilevel inference framework (Zeng et al., 2017). This model would use the

information from experimental factors, such as the physical properties of the peptides, the ef-

fects from iTRAQTM tags and MudPIT runs, along with the clinical factors of each patient

to construct a likelihood model. Each parameter in the likelihood model would be estimated

using an Empirical Bayesian Hamiltonian MC algorithm, which integrates prior information for

missing data and the distribution of missing values. The resultant posterior distribution of these

parameters, including parameters of interest, would therefore be estimated utilising both the

pattern of missing data and information for missing values. We could incorporate this frame-

work into how to better design the Phase 2 experiment, which would enable us to impute reliable

values for the final analysis.

6.3 More general future research directions

Another multiplexing technology, which started to become popular only a few years ago is Next-

Generation Sequencing (NGS). This multi-plexing technology can be carried out by attaching

unique index sequences, namely barcodes, onto the end of each DNA or RNA fragment (Smith

et al., 2010). Therefore, different barcodes are attached to different biological samples, allowing

an NGS instrument to sequence multiple samples simultaneously. The abundance levels of

sequences are then measured based on the number of barcodes present in each sample. These

barcodes are very similar to the iTRAQTM tags used when measuring protein abundances. Note

that MudPIT runs of the proteomics experiments are referred to as lanes of the NGS experiments.

Thus, the methods of optimal designs described in this thesis also apply to this technology.

We can currently obtain a kit with 96 and 384 barcodes, meaning that we can quantify up to

96 or 384 unique samples at the same time (Smith et al., 2010; Shapland et al., 2015). However,

using more barcodes is not always ideal, because as more barcodes are used the number of DNA

or RNA sequences for each barcode decreases (Campbell et al., 2015). Hence, deciding on the

number of barcodes is more practical than theoretical.

Let us consider a Phase 1 experiment arranged in a CRD with ν = 8 treatments assigned to
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na = 48 animals, and the sample from each animal split into ns = 2 sub-samples, which gives us

a total of n = 96 sub-samples to be measured using the NGS technology. If a researcher decides

to use the kit with 96 barcodes for just one lane of the experiment, then the Treatment effects

are completely confounded with Tag effects.

Using the objective function and SA algorithm derived in this thesis, we can quickly generate

four optimal designs with multiple lanes, where all have a valid F-test for Treatment effects,

with different numbers of barcodes used in the Phase 2 experiment. The Residual DF and

the treatment average efficiency factors of these four designs are presented in Table 6.7. This

shows that the best option is to use 8 lanes of the experiment with 12 barcodes, which generates

the highest Residual DF (32 DF) and the treatment average efficiency factors (0.9837) in the

Between Animals Within Runs stratum. However, given that each lane of experiment costs about

five thousand dollars, it may be ideal to advise the researcher to use 4 lanes with 24 barcodes,

because there would not a lot of improvement compared to using 8 lanes of the experiment with

12 barcodes. Therefore, more work can be done in examining the efficiency of using different

numbers of barcodes for generating a better optimal design of the Phase 2 experiment.

Table 6.7: Residual DF and treatment average efficiency factors from the optimal design with
different number of lanes and barcodes for Next-Generation Sequencing technology.

Number of lanes Number of barcodes Residual DF Eτ
2 48 17 0.56
4 24 28 0.8532
8 12 32 0.9837
16 6 31 0.9510

Finally, the NGS experiment returns counts as the response. The method in this thesis

assumes that the response, once log transformed, is normally distributed; thus, all of the designs

we have generated assume unit-treatment additivity. Having a count as the response violates

this assumption, and so further research could be undertaken on how to obtain optimal designs

of the two-phase experiment where the response exhibits a non-normal distribution.

Further research outlined here will help to maximise the benefits of new technologies, such

as NGS, while at the same time extending the capabilities of our method, for generating optimal

designs, to a wider range of settings in two-phase multiplex proteomics experiments.
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March 6, 2017

Title Information Decomposition of Two-Phase Experiments

Version 0.6.0

Date 2017-03-05

Description The main purpose of this package is to generate the structure of the analysis of variance
(ANOVA) table of the two-phase experiments. The user only need to input the design and the
relationships of the random and fixed factors using the Wilkinson-Rogers' syntax,
this package can then quickly generate the structure of the ANOVA table with the
coefficients of the variance components for the expected mean squares.
Thus, the balanced incomplete block design and provides the efficiency
factors of the fixed effects can also be studied and compared much easily.

Depends R (>= 3.0.0)

Imports MASS

License GPL (>= 3)

Encoding UTF-8

LazyLoad yes

URL https://github.com/kcha193/infoDecompuTE

BugReports https://github.com/kcha193/infoDecompuTE/issues

RoxygenNote 6.0.1

NeedsCompilation no

Author Kevin Chang [aut, cre]

Maintainer Kevin Chang <k.chang@auckland.ac.nz>

Repository CRAN

Date/Publication 2017-03-06 15:54:30

R topics documented:
infoDecompuTE-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
adjustEffectNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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infoDecompuTE-package Information Decomposition of Two-phase Experiments

Description

InfoDecompuTE is capable of generating the structure of the analysis of variance (ANOVA) table
of the two-phase experiments. By inputting the design and the relationships of the random and
fixed factors using the Wilkinson-Rogers’ syntax, infoDecompuTE can generate the structure of the
ANOVA table with the coefficients of the variance components for the expected mean squares. This
package can also study the balanced incomplete block design and provides the efficiency factors of
the fixed effects.

Details

Package: infoDecompuTE
Type: Package
Version: 0.5.1
Date: 2013-01-04
License: GPL (>= 3)
LazyLoad: yes
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Author(s)

Kevin Chang and Katya Ruggiero

Maintainer: Kevin Chang <kcha193@aucklanduni.ac.nz>

adjustEffectNames Adjust the Effects’ Names

Description

Adjust for appropriate syntax describing the effects matching the structural formula.

Usage

adjustEffectNames(effectsMatrix, effectNames)

Arguments

effectNames a vector of character containing the labels of the treatment or block terms in the
model generated by the terms.

effectsMatrix a matrix of variables by terms showing which variables appear in which terms
generated by the terms.

Value

A vector of character containing the labels of the terms in the model with appropriate syntax de-
scribing the effects.

Author(s)

Kevin Chang

Examples

str.for = "A*(B/E/C)*D"
effectsMatrix= attr(terms(as.formula(paste("~", str.for)), keep.order = TRUE) , "factors")
effectNames = attr(terms(as.formula(paste("~", str.for)), keep.order = TRUE) , "term.labels")

adjustEffectNames(effectsMatrix, effectNames)
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adjustMissingLevels Adjust the Missing Levels

Description

Adjust for appropriate syntax describing the effects matching the structural formula.

Usage

adjustMissingLevels(design.df, str.for)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

str.for a single string of characters containing the structural formula using the Wilkinson-
Rogers’ syntax.

Value

A list containing a data frame with the experimental design and a single string of characters con-
taining the structural formula.

Author(s)

Kevin Chang

Examples

design.df = data.frame( Blk = factor(1:16),
Ani = factor(c( 1,1,2,2,

1,1,2,2,
1,1,2,2,
1,1,2,2)),

Trt = factor(c( 1,2,3,4,
1,2,3,4,
1,2,3,4,
1,2,3,4)))

adjustMissingLevels(design.df, str.for = "Ani/Trt")
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getCoefVC Get Variance Components’ Coefficients and Mean Squares for Single-
Phase or Two-Phase Experiments

Description

Compute the variance components’ coefficients and corresponding to random effects in the ex-
pected mean squares of ANOVA table in single-phase or two-phase experiments. These coefficients
are then inserted to a matrix where the rows correspond to each source of variation and column
correspond to DF and every variance component. The mean squares is calculated if the response
argument is used.

Usage

getCoefVC.onePhase(Pb, design.df, v.mat, response, table.legend, decimal, digits)
getCoefVC.twoPhase(Pb, design.df, v.mat, response, table.legend, decimal, digits)

Arguments

Pb a list of matrices generated by infoDecompMat function.

design.df a data frame containing the experimental design. Requires every column be a
factor.

v.mat a list of matrix generated by getVMat.onePhase or getVMat.twoPhase.

response a numeric vector contains the responses from the experiment.

table.legend a logical allows users to generate a legend for the variance components of the
ANOVA table for large designs. Default is FALSE, resulting in the use of original
block factor names.

decimal a logical allows users to display the coefficients as the decimals. Default is
FALSE, resulting in the use of fractions.

digits a integer indicating the number of decimal places. Default is 2, resulting in 2
decimal places.

Details

The main purpose of this function is to combine the matrices presenting every source of variation of
the ANOVA table and the variance matrix to compute the coefficients of the variance components.

The complication arise in giving the row names of the matrix for the source of variation in the
ANOVA table.

Value

A matrix containing the characters.

Author(s)

Kevin Chang
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Examples

design1 <- local({
Ani <- as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt <- as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str <- "Ani"

rT <- terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm <- attr(rT,"term.labels")

Z <- makeBlkDesMat(design1, blkTerm)

trt.str <- "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms

trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

N = makeOverDesMat(design1, trtTerm)

Replist = getTrtRep(design1, trtTerm)

Rep <- Replist$Rep
trt.Sca <- Replist$Sca

effFactors = lapply(makeOrthProjectors(Z), function(z)
getEffFactor(z, T, N, Rep, trt.Sca))

#Now construct variance matrices
Pb <- effFactors[sort(1:length(effFactors), decreasing=TRUE)]

v.mat <- getVMat.onePhase(Z.Phase1 = Z, design.df = design.df, var.comp = NA)

getCoefVC.onePhase(Pb = Pb, design.df = design1, v.mat = v.mat, response = NA,
table.legend = FALSE, decimal = FALSE, digit = 2)

getEffFactor Construct the Matrix from Information Decomposition and Compute
the Efficiency Factors of Treatment effects

Description

Perform the information decomposition for either the block or treatment effects within a single
stratum and Compute the Efficiency Factors for every treatment effect within a single stratum.
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Usage

getEffFactor(z, T, N, Rep, trt.Sca)

Arguments

z a matrix containing the orthogonal projector of a stratum generated by makeOrthProjectors.

T a list of contrast matrices generated by makeContrMat.

N a matrix containing the design matrix generated by makeOverDesMat.

Rep a matrix containing the treatment replication number and is generated by getTrtRep.

trt.Sca a numeric vector for computing a coefficients of the fixed effect parameter in
EMS and is generated by getTrtRep.

Details

The main purpose of this function is to construct a list of resultant matrices associated with each
source of variation after the information decomposition and to compute the canonical or average
efficiency factors for each treatment effects in each stratum of ANOVA table.

The canonical efficiency factors are generated when the user input the treatment contrasts, otherwise
the average efficiency factors, which is the harmonic mean of the canonical efficiency factors, are
generated.

Value

A list of matrices andnumeric vectors containing the efficiency factors of every treatment effect.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str = "Ani"

rT = terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm = attr(rT,"term.labels")

Z = makeBlkDesMat(design1, blkTerm)

trt.str = "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms
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trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

N = makeOverDesMat(design1, trtTerm)

Replist = getTrtRep(design1, trtTerm)

Rep <- Replist$Rep
trt.Sca <- Replist$Sca

effFactors = lapply(makeOrthProjectors(Z), function(z)
getEffFactor(z, T, N, Rep, trt.Sca))

getFixedEF Get the Fixed Components’ coefficients and Efficiency Factors of
Single-Phase or Two-Phase Experiments.

Description

Calculate coefficients of fixed effects components of EMS and Treatment Efficiency Factors within
each stratum in Single-Phase or two-phase experiment.

Constructs a matrix containing the coefficients of the coefficients of fixed effects components of
EMS within each stratum. Also calculates and the average efficiency factors of each treatment
effect across all strata

Construct a matrix contain the coefficients of the fixed Components and the average efficiency
factors of single-phase experiments.

Usage

getFixedEF.onePhase(effFactors, trt.Sca, T, Rep, table.legend, decimal, digits, list.sep)
getFixedEF.twoPhase(effFactors, trt.Sca, T, Rep, table.legend, decimal, digits, list.sep)

Arguments

effFactors a list of numeric vector generated by getEffFactor function.

trt.Sca a numeric vector generated by getTrtRep function.

T a list of matrices generated by makeContrMat function.

Rep a numeric matrix generated by getTrtRep function.

table.legend a logical allows users to generate a legend for the variance components of the
ANOVA table for large designs. Default is FALSE, resulting in the use of original
treatment factor names.

decimal a logical allows users to display the coefficients as the decimals. Default is
FALSE, resulting in the use of fractions.
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digits a integer indicating the number of decimal places. Default is 2, resulting in 2
decimal places.

list.sep a logical allows users to present the efficiency factors and coefficients of the
fixed effects a list of seperate matrices.

Details

The function uses the efficiency factors generated by getEffFactor to calculated the coefficients
of fixed Effects components of EMS and insert the treatment efficiency factor within each stratum.

The complication arise in giving the row names of the matrix for the source of variation in the
ANOVA table.

Value

A matrix.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str <- "Ani"

rT <- terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm = attr(rT,"term.labels")

Z <- makeBlkDesMat(design1, blkTerm)

trt.str <- "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms

trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

N <- makeOverDesMat(design1, trtTerm)

Replist = getTrtRep(design1, trtTerm)

Rep <- Replist$Rep
trt.Sca <- Replist$Sca
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effFactors = lapply(makeOrthProjectors(Z), function(z) getEffFactor(z, T, N, Rep, trt.Sca))

effFactors <- effFactors[sort(1:length(effFactors), decreasing=TRUE)]

getFixedEF.onePhase(effFactors = effFactors, trt.Sca = trt.Sca, T = T, Rep = Rep,
table.legend = FALSE, decimal = FALSE, digits = 2, list.sep = TRUE)

getTrtCoef Get the Treatment Coefficients

Description

Compute the overll coefficients every treatment term including the interaction.

Usage

getTrtCoef(design.df, trtTerm)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

trtTerm a vector of character containing the labels of the treatment terms in the model
generated by terms.

Value

The numeric vector.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

trt.str = "Trt"

fT = terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms
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trtTerm = attr(fT,"term.labels")
effectsMatrix = attr(fT,"factor")

trt.Coef = getTrtCoef(design1, trtTerm)

getTrtRep Calculate the Treatment Replication number

Description

Calculate the replication number of every treatment term including the interaction. This is used to
compute the treatment efficiency factors.

Usage

getTrtRep(design.df, trtTerm)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

trtTerm a vector of character containing the labels of the treatment terms in the model
generated by the terms.

Value

A list containing two objects. The first object is a matrix called Rep which contains the replication
numbers, where the rows correspond to each treatment combination and the columns correspond to
the treatment factors, i.e. the replication number with respect to each treatment factor based on the
treatment combination. The second object called Sca which is a numeric vector for computing a
coefficients of the fixed effect parameter in EMS.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.
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Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

trt.str = "Trt"

fT = terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms

trtTerm = attr(fT,"term.labels")
effectsMatrix = attr(fT,"factor")

getTrtRep(design1, trtTerm)

getVMat.onePhase Get the Variance Matrices for Sngle-Phase or Two-Phase experiment

Description

Construct the matrix for each variance components for the single-phase or two-phase experiment.

Usage

getVMat.onePhase(Z.Phase1, design.df, var.comp = NA)
getVMat.twoPhase(Z.Phase1, Z.Phase2, design.df, var.comp = NA)

Arguments

Z.Phase1 a list of block design matrix from makeBlkDesMat function from Phase 1 block
structure.

Z.Phase2 a list of block design matrix from makeBlkDesMat function from Phase 2 block
structure.

design.df a data frame containing the experimental design. Requires every column be a
factor.

var.comp a vector of characters containing the variance components of interest this allows
the user to specify the variance components to be shown on the ANOVA table.
This also allows the user to specify artificial stratum to facilitate decomposi-
tion. Default is NA, which uses every random factor as the variance components
with the first phase’s variance components in appear before the second phase’s
variance components.
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Value

A list of matrices.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str = "Ani"

rT = terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)

blkTerm = attr(rT,"term.labels")
Z = makeBlkDesMat(design1, rev(attr(rT,"term.labels")))

V = getVMat.onePhase(Z, design1)

design2 <- local({
Run = as.factor(rep(1:4, each = 4))
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8,
3,4,1,2,
7,8,5,6)])

Tag = as.factor(c(114,115,116,117)[rep(1:4, 4)])
Trt = as.factor(letters[c(1,2,1,2,

2,1,2,1,
1,2,1,2,
2,1,2,1)])

data.frame(Run, Ani, Tag, Trt)
})

blk.str1 = "Ani"
blk.str2 = "Run"

rT1 = terms(as.formula(paste("~", blk.str1, sep = "")), keep.order = TRUE)
#random terms phase 1
rT2 = terms(as.formula(paste("~", blk.str2, sep = "")), keep.order = TRUE)
#random terms phase 2

blkTerm1 = attr(rT1,"term.labels")
blkTerm2 = attr(rT2,"term.labels")

Z1 = makeBlkDesMat(design2, rev(blkTerm1))
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Z2 = makeBlkDesMat(design2, rev(blkTerm2))

V = getVMat.twoPhase(Z1, Z2, design2, var.comp = NA)

identityMat Identity Matrix

Description

Construct an identity matrix.

Usage

identityMat(n)

Arguments

n a numeric describes the dimension of the identity matrix.

Value

This function returns a matrix with the diagonal elements equal to one and the off-diagonal elements
equal to zero.

Author(s)

Kevin

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

See Also

diag

Examples

identityMat(10)
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infoDecompMat Construct the Matrix from Information Decomposition

Description

Perform the information decomposition for either the block or treatment effects within a single
stratum.

Usage

infoDecompMat(z, T, N)

Arguments

z a matrix containing the orthogonal projector for a single stratum generated by
makeOrthProjectors.

T a list of contrast matrices generated by makeContrMat.

N a matrix containing the design matrix generated by makeOverDesMat.

Details

The main purpose of this function is to construct a list of resultant matrices associated with each
source of variation after the information decomposition.

This list of matrices are then used to compute the coefficient of the variance components in the
expected mean squares.

Value

A list of matrices.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str = "Ani"

rT = terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm = attr(rT,"term.labels")
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Z = makeBlkDesMat(design1, blkTerm)
Pb = makeOrthProjectors(Z)

trt.str = "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms

trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

N = makeOverDesMat(design1, trtTerm)

infoDecompMat(Pb[[1]], T, N)

invInfMat Invert the Information Matrix

Description

Using the eigenvalue decomposition method to invert the information matrix.

Usage

invInfMat(C, N, T)

Arguments

C a matrix of block projector for a single stratum.

N a matrix representation the smallest unit of block or treatment effects generated
by makeOverDesMat.

T a list of contrast matrices from makeContrMat.

Value

This function returns a matrix.

Author(s)

Kevin Chang

References

Nelder JA (1965b). "The Analysis of Randomized Experiments with Orthogonal Block Structure.
II. Treatment Structure and the General Analysis of Variance." Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 283(1393), 163-178.
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Examples

m <- matrix(rnorm(10), 10, 10)

invInfMat(m, identityMat(10), identityMat(10))

J Identity Matrix Minus Averging Matrix

Description

Construct a square matrix which the identity matrix minus the averging matrix.

Usage

J(n)

Arguments

n a numeric describes the dimension of the square matrix.

Value

This function return a square matrix which the identity matrix minus the averging matrix.

Author(s)

Kevin Chang

Examples

J(10)
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K Averaging Matrix

Description

Construct a n-by-n averaging matrix.

Usage

K(n)

Arguments

n a numeric describes the dimension of the averaging matrix.

Value

This function returns a n× n square matrix with all elements equal 1/n.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

Examples

K(10)

makeBlkDesMat Construct Block Design Matrix

Description

Construct a binary matrix representing the block design. The rows are corrosponding to the obser-
vations and the columns are corrosponding to the blocks.

Usage

makeBlkDesMat(design.df, blkTerm)
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Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

blkTerm a vector of charactor containing the labels of the block terms in the model gen-
erated by the terms.

Value

A list of the binary matrices.

Author(s)

Kevin Chang

See Also

terms

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str = "Ani*Trt"

rT = terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)

blkTerm = attr(rT,"term.labels")
Z = makeBlkDesMat(design1, blkTerm)

makeContrMat Make Contrast Matrix

Description

Construct a list of contrast matrices for block for treatment effects.

Usage

makeContrMat(design.df, effectNames, effectsMatrix, contr.vec)
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Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

effectNames a vector of character containing the labels of the treatment or block terms in the
model generated by the terms.

effectsMatrix a matrix of variables by terms showing which variables appear in which terms
generated by the terms.

contr.vec a list of contrast vectors, this allows the user to specify the contrasts for each
treatment or block factor. Note that if this argument is used, it is necessary to
specify the contrasts for every treatment or block factor with the same order as
effectNames. Default is NA, and the function output the C matrices described
by John and Williams (1987).

Details

The main purpose of this function is to compute a list of C matrices described by John and Williams
(1987). These C matrices are used for the information decomposition for every treatment effect in
every stratum of the experiment.

If the user input their own defined contrasts for each treatment effects. This function will then
transform the input contrasts to the C matrices for the treatment effects.

For the two-phase experiments, the same method of information decomposition is used for the block
effects of Phase 1 experiment in the stratum defined from the block structure of the Phase 2 exper-
iment. Hence, the C matrices for the block effects of Phase 1 experiment can also be constructed
using this function.

Value

A list of contrast matrices.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})
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trt.str = "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE) #fixed terms

trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

#Fit each treatment contrasts as a vector seperately
Trt1 <- rep(c(1,-1), each = 4)
Trt2 <- rep(c(1,-1), time = 4)
Trt3 <- Trt1*Trt2

T <- makeContrMat(design1, trtTerm, effectsMatrix,
contr.vec =list(Trt = list(Trt1 = Trt1, Trt2 = Trt2, Trt3 = Trt3)))

makeOrthProjectors Construct Orthogonal Projector Matrices

Description

Construct a list of orthogonal projector matrices corresponding to all strata of the experiment.

Usage

makeOrthProjectors(BlkDesList)

Arguments

BlkDesList a list of block design matrices generated by makeBlkDesMat.

Details

The strata decomposition is performed within this function. The first step is to convert the list of
block design matrices generated by makeBlkDesMat to projection matrices using projMat. The
second step is to use these projection matrices to project the raw data vector from one stratum to
next stratum of the experiment; the resulting matrix corresponds to each stratum is the orthogonal
projector matrix of the given stratum.

Value

A list containing matrices.

Author(s)

Kevin Chang
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Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str = "Ani"

rT = terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm = attr(rT,"term.labels")

Z = makeBlkDesMat(design1, blkTerm)
Pb = makeOrthProjectors(Z)

makeOverDesMat Construct the Overall Treatment or Block design Matrix

Description

Construct the treatment or block matrix of the smallest unit based from the experimental design.

Usage

makeOverDesMat(design.df, effectNames)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor.

effectNames a vector of charactor containing the labels of the treatment or block terms in the
model generated by the terms.

Details

The main purpose this matrix is used in information decomposition. For the factorial experiment,
this matrix is typeically the treatment design matrix associated with the interaction effects, because
the interaction effects are the smallest unit for the treatment effects.

For the two-phase experiments, the same method of information decomposition is used for the
block effects of Phase 1 experiment in the stratum defined from the block structure of the Phase
2 experiment. Hence, the block design matrix of the smallest unit for the block effects of Phase 1
experiment can also be constructed using this function.

Value

A matrix where the rows correspond to the observation and columns correspond to the overall
combination of the treatment factors or the block factors of the Phase 1 experiment.
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Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

trt.str = "Trt"

fT = terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE)

trtTerm = attr(fT,"term.labels")
effectsMatrix = attr(fT,"factor")

makeOverDesMat(design1, trtTerm)

projMat Construct a Projection Matrix

Description

Compute the projection matrix from a square matrix.

Usage

projMat(X)

Arguments

X a square matrix.

Value

A square matrix.
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Author(s)

Kevin Chang

Examples

m = matrix(1, nrow = 10, ncol = 3)
projMat(m)

summaryAovOnePhase Summarize an Theoretical Analysis of Variance Model of Single-Phase
Experiments

Description

Computes the coefficients of the variance components for the expected mean squares for single-
phase experiments. The function accepts a data frame of the experimental design with the structural
formulae of the block and treatment factors. Two tables containing the variance components of the
random effects and fixed effects are returned.

Usage

summaryAovOnePhase(design.df, blk.str, trt.str, var.comp = NA,
trt.contr = NA, table.legend = FALSE,
response = NA, latex = FALSE, fixed.names = NA,
decimal = FALSE, digits = 2, list.sep = TRUE)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor. Any punctuation or symbol such as dots or parentheses should be avoid for the column names..

blk.str a single string of characters containing the structural formula for the block fac-
tors using the Wilkinson-Rogers’ syntax.

trt.str a single string of characters containing the structural formula for the treatment
factors using the Wilkinson-Rogers’ syntax.

var.comp a vector of characters containing the variance components of interest this allows
the user to specify the variance components to be shown on the ANOVA table.
This also allows the user to specify artificial stratum to facilitate decomposition.
Default is NA, which uses every random factor as the variance components from
random.terms.

trt.contr a list of treatment contrast vectors, this allows the user to specify the contrasts for
each treatment factor. Note that if this argument is used, it is necessary to specify
the contrasts for every treatment factor with the same order as fixed.terms.
Default is NA, which uses the C matrix described by John and Williams (1987).
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table.legend a logical allows the users to use the legend for the variance components of the
ANOVA table for a large design. Default is FALSE, which uses the original
names.

response a numeric vector contains the responses from the experiment.

latex a logical allows the users to output the Latex script to Latex table. Once the La-
tex script is generated, it requires the user to install and load two Latex packages:
booktabs and bm to compile the Latex script.

fixed.names a vector of character allows the users to modify symbols for the fixed effects for
the Latex outputs.

decimal a logical allows users to display the coefficients as the decimals. Default is
FALSE, resulting in the use of function fractions.

digits a integer indicating the number of decimal places. Default is 2, resulting in 2
decimal places.

list.sep a logical allows users to present the efficiency factors and coefficients of the
fixed effects a list of seperate matrices. Default is TRUE.

Value

The values returned depends on the value of the table.legend argument. If table.legend = FALSE,
this function will return a list of two data frames. The first data frame contains the random effects
and the second data frame contains the fixed effects. If the table.legend argument is TRUE, then
it will return a list containing two lists. The first list consists of a data frame of random effects
and a character string for the legend. The second list consists of a data frame of fixed effects and a
character string for the legend. If response argument is used, the random effect table will have one
extra column with of mean squares computed from the responses from the experiment.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

Nelder JA (1965b). "The Analysis of Randomized Experiments with Orthogonal Block Structure.
II. Treatment Structure and the General Analysis of Variance." Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 283(1393), 163-178.

Wilkinson GN, Rogers CE (1973). "Symbolic Description of Factorial Models for Analysis of
Variance." Applied Statistics, 22(3), 392-399.

See Also

terms for more information on the structural formula.
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Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

summaryAovOnePhase(design1, blk.str = "Ani", trt.str = "Trt")

summaryAovOnePhase(design1, blk.str = "Ani", trt.str = "Trt",
latex = TRUE, fixed.names = c("\\tau"))

summaryAovTwoPhase Summarize an Theoretical Analysis of Variance Model of Two-Phase
Experiments

Description

Computes the coefficients of the variance components for the expected mean squares for two-phase
experiments. The function accepts a data frame of the experimental design with the structural
formulae of the block and treatment factors. Two tables containing the variance components of the
random effects and fixed effects are returned.

Usage

summaryAovTwoPhase(design.df, blk.str1, blk.str2, trt.str, var.comp = NA,
blk.contr = NA, trt.contr = NA, table.legend = FALSE,
response = NA, latex = FALSE, fixed.names = NA,
decimal = FALSE, digits = 2, list.sep = TRUE)

Arguments

design.df a data frame containing the experimental design. Requires every column be a
factor. Any punctuation or symbol such as dots or parentheses should be avoid for the column names..

blk.str1 a single string of characters containing the structural formula for the block fac-
tors of the first-phase experiment using the Wilkinson-Rogers’ syntax.

blk.str2 a single string of characters containing the structural formula for the block fac-
tors of the second-phase experiment using the Wilkinson-Rogers’ syntax.

trt.str a single string of characters containing the structural formula for the treatment
factors using the Wilkinson-Rogers’ syntax.

var.comp a vector of characters containing the variance components of interest this allows
the user to specify the variance components to be shown on the ANOVA table.
This also allows the user to specify artificial stratum to facilitate decomposi-
tion. Default is NA, which uses every random factor as the variance components
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with the first phase’s variance components in random.terms1 appear before the
second phase’s variance components in random.terms2.

blk.contr a list of first-phase block contrast vectors, this allows the user to specify the
contrasts for each block factor in the first phase experiment. Note that if this
argument is used, it is necessary to specify the contrasts for every treatment
factor with the same order as fixed.terms. Default is NA, which uses the C
matrix described by John and Williams (1987).

trt.contr a list of treatment contrast vectors, this allows the user to specify the contrasts for
each treatment factor. Note that if this argument is used, it is necessary to specify
the contrasts for every treatment factor with the same order as fixed.terms.
Default is NA, which uses the C matrix described by John and Williams (1987).

table.legend a logical allows the users to use the legend for the variance components of the
ANOVA table for a large design. Default is FALSE, which uses the original
names.

response a numeric vector contains the responses from the experiment.

latex a logical allows the users to output the Latex script to Latex table. Once the La-
tex script is generated, it requires the user to install and load two Latex packages:
booktabs and bm to compile the Latex script.

fixed.names a vector of character allows the users to modify symbols for the fixed effects for
the Latex outputs.

decimal a logical allows users to display the coefficients as the decimals. Default is
FALSE, resulting in the use of function fractions.

digits a integer indicating the number of decimal places. Default is 2, resulting in 2
decimal places.

list.sep a logical allows users to present the efficiency factors and coefficients of the
fixed effects a list of seperate matrices. Default is TRUE.

Value

The values returned depends on the value of the table.legend argument. If table.legend = FALSE,
this function will return a list of two data frames. The first data frame contains the random effects
and the second data frame contains the fixed effects. If the table.legend argument is TRUE, then
it will return a list containing two lists. The first list consists of a data frame of random effects
and a character string for the legend. The second list consists of a data frame of fixed effects and a
character string for the legend. If response argument is used, the random effect table will have one
extra column with of mean squares computed from the responses from the experiment.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.
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Nelder JA (1965b). "The Analysis of Randomized Experiments with Orthogonal Block Structure.
II. Treatment Structure and the General Analysis of Variance." Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 283(1393), 163-178.

Wilkinson GN, Rogers CE (1973). "Symbolic Description of Factorial Models for Analysis of
Variance." Applied Statistics, 22(3), 392-399.

See Also

terms for more information on the structural formula.

Examples

#Phase 2 experiment
design2 <- local({

Run = as.factor(rep(1:4, each = 4))
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8,
3,4,1,2,
7,8,5,6)])

Sam = as.factor(as.numeric(duplicated(Ani)) + 1)
Tag = as.factor(c(114,115,116,117)[rep(1:4, 4)])
Trt = as.factor(c("healthy", "diseased")[c(1,2,1,2,

2,1,2,1,
1,2,1,2,
2,1,2,1)])

data.frame(Run, Ani, Sam, Tag, Trt)
})
design2

summaryAovTwoPhase(design2, blk.str1 = "Ani", blk.str2 = "Run",
trt.str = "Tag + Trt")

#Add the sample into the Phase 1 block structure
summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
trt.str = "Tag + Trt")

#Assuming there is crossing between the animals and samples
summaryAovTwoPhase(design2, blk.str1 = "Ani*Sam", blk.str2 = "Run",
trt.str = "Tag + Trt")

#Set Artificial stratum
design2$AniSet = as.factor(c(2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1))
design2

summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "AniSet/Run",
trt.str = "Tag + Trt", var.comp = c("Ani:Sam", "Ani", "Run"))

#Define traetment contrasts
TagA = rep(c(1,1,-1,-1),time = 4)
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TagB = rep(c(1,-1,1,-1),time = 4)
TagC = TagA * TagB
Tag = list(TagA = TagA, TagB = TagB, TagC = TagC)
Tag

Trt = as.numeric(design2$Trt)-1.5
Trt

summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
trt.str = "Tag + Trt",
trt.contr = list(Tag = list(TagA = TagA, TagB = TagB, TagC = TagC), Trt = Trt),
table.legend = TRUE)

#Compute MS
set.seed(527)
summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
trt.str = "Tag + Trt", response = rnorm(16))$ANOVA

#Generate Latex scripts
summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
trt.str = "Tag + Trt", latex = TRUE, fixed.names = c("\\gamma", "\\tau"))

#Generate Latex scripts with MS
set.seed(527)
summaryAovTwoPhase(design2, blk.str1 = "Ani/Sam", blk.str2 = "Run",
trt.str = "Tag + Trt", response = rnorm(16), latex = TRUE,
fixed.names = c("\\gamma", "\\tau") )

toLatexTable Convert the R output to Latex Table

Description

Print the Latex scripts on the screen for the user to output the table from the Latex output.

Usage

toLatexTable(ANOVA, EF, fixed.names)

Arguments

ANOVA a matrix containing the coefficients of the variance components in EMS of
ANOVA table generated by getCoefVC.onePhase or getCoefVC.twoPhase.

EF a matrix containing the coefficient of the fixed effects components and the treat-
ment average efficiency factors generated by getFixedEF.onePhase or getFixedEF.onePhase
function.

fixed.names a vector of character allows the users to modify symbols for the fixed effects.
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Details

Once the Latex script is generated, it requires the user to install and load two Latex packages:
booktabs and bm to compile the Latex script.

Author(s)

Kevin Chang

Examples

design1 <- local({
Ani = as.factor(LETTERS[c(1,2,3,4,

5,6,7,8)])
Trt = as.factor(letters[c(1,1,1,1,

2,2,2,2)])
data.frame(Ani, Trt)

})

blk.str <- "Ani"

rT <- terms(as.formula(paste("~", blk.str, sep = "")), keep.order = TRUE)
blkTerm <- attr(rT,"term.labels")

Z <- makeBlkDesMat(design1, blkTerm)

trt.str = "Trt"
fT <- terms(as.formula(paste("~", trt.str, sep = "")), keep.order = TRUE)

trtTerm <- attr(fT, "term.labels")
effectsMatrix <- attr(fT, "factor")

T <- makeContrMat(design1, trtTerm, effectsMatrix, contr.vec = NA)

N <- makeOverDesMat(design1, trtTerm)

Replist = getTrtRep(design1, trtTerm)

Rep <- Replist$Rep
trt.Sca <- Replist$Sca

effFactors = lapply(makeOrthProjectors(Z), function(z)
getEffFactor(z, T, N, Rep, trt.Sca))

effFactors <- effFactors[sort(1:length(effFactors), decreasing=TRUE)]

v.mat <- getVMat.onePhase(Z.Phase1 = Z, design.df = design.df, var.comp = NA)

ANOVA <- getCoefVC.onePhase(Pb = effFactors, design.df = design1, v.mat = v.mat,
response = NA, table.legend = FALSE, decimal = FALSE, digits = 2)

EF <- getFixedEF.onePhase(effFactors = effFactors, trt.Sca = trt.Sca, T = T,
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Rep = Rep,
table.legend = FALSE, decimal = FALSE, digits = 2, list.sep = FALSE)

toLatexTable(ANOVA = ANOVA, EF = EF, fixed.names = c("\\tau"))

tr Trace of the Matrix

Description

Compute the trace of the square matrix.

Usage

tr(X)

Arguments

X a square matrix.

Value

A numeric value.

Author(s)

Kevin

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

See Also

diag

Examples

m = matrix(1, nrow = 10, ncol = 10)
tr(m)
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unity Construct a unity vector

Description

Construct a vector with all elements unity.

Usage

unity(n)

Arguments

n a numeric describe the length of vector.

Value

This function returns a n
times1 matrix will all elements unity.

Author(s)

Kevin Chang

References

John J, Williams E (1987). Cyclic and computer generated Designs. Second edition. Chapman &
Hall.

Examples

unity(10)
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Appendix B

The Information matrix in more detail

This Chapter is to show that the information matrix Z′(I−Pr)(I−Pγ)Z used for the objective

function is symmetric.

Let Pr and Pγ be orthogonal projection matrices, then

Pr = P2
r = PrPr and Pr = P′r

So

Z′(I−Pr)(I−Pγ)Z

= Z′(I−Pr −Pγ + PrPγ)Z

= Z′Z− Z′PrZ− Z′PγZ + 2Z′PrPγZ

= Z′Z− (PrZ)′ZPr − (PγZ)′PγZ + 2Z′PrPγZ (B.1)

(B.2)

where Z′Z, (PrZ)′ZPr and (PγZ)′PγZ are symmetric.

The projection matrix which projects y onto the Between Runs vector subspace is

Pr = Wr(W
′
rWr)

−1W′
r

where Wr is design matrix for Run factor of the Phase 2 experiment and can be expressed as

Wr = 1nγ ⊗ Inr.

Thus, projection matrix for Between Runs can be re-written as

Pr =
1

nγ
1nγ1

′
nγ ⊗ Inr.
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The projection matrix which projects y onto the Between Tags vector subspace is

Pγ = Xγ(X
′
γXγ)

−1Xγ

where Xγ is design matrix for Tag factor of the Phase 2 experiment and can be expressed as

Xγ = Inγ ⊗ 1nr

Thus, projection matrix for Between Tags can be re-written as

Pγ =
1

nr
Inγ ⊗ 1nr1

′
nr .

This follow by PrPγ in B.1 becomes

PrPγ =
1

nrnγ
1nγ1

′
nγ ⊗ 1nr1

′
nr

=
1

n
1nγnr1

′
nγnr

=
1

n
1n1

′
n

= Kn.

(B.3)

Thus, PrPγ = K, then

Z′PrPγZ =
1

n
Z′11′Z =

1

n
(Z′1)(Z′1)′.

Let

Z =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

then

Z ′1 =


a.1

a.2

a.3

 .
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So,

(Z′1)(Z′1)′ =


a.1

a.2

a.3

(a.1 a.2 a.3

)

=


a2
.1 a.1a.2 a.1a.3

a.2a.1 a2
.2 a.2a.3

a.3a.1 a.3a.2 a2
.3

 .

Thus, Z′PrPγZ is also symmetric.
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Appendix C

Various matrices from the example in

Section 3.4

The orthogonal projection matrix of Within Runs and Tags vector subspace is given by

Qrγ =



0.38 −0.12 −0.12 −0.12 −0.38 0.12 0.12 0.12

−0.12 0.38 −0.12 −0.12 0.12 −0.38 0.12 0.12

−0.12 −0.12 0.38 −0.12 0.12 0.12 −0.38 0.12

−0.12 −0.12 −0.12 0.38 0.12 0.12 0.12 −0.38

−0.38 0.12 0.12 0.12 0.38 −0.12 −0.12 −0.12

0.12 −0.38 0.12 0.12 −0.12 0.38 −0.12 −0.12

0.12 0.12 −0.38 0.12 −0.12 −0.12 0.38 −0.12

0.12 0.12 0.12 −0.38 −0.12 −0.12 −0.12 0.38



.

The animal information matrix in the Within Runs and Tags vector subspace is given by

Aa = Z′aQrγZa =


1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

 .

The treatment information matrix of animals in the Within Runs and Tags vector subspace

is given by

Aτ = X′aQrγXa =

 2 −2

−2 2

 .
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Appendix D

Various matrices from the example in

Subsection 3.6.1

The animal information matrix in the Within Runs and Tags vector subspace of the MS-optimal

design is given by

Aa = Z′aQrγZa =



1.17 −0.25 −0.25 −0.25 −0.17 −0.25

−0.25 1.17 −0.25 0.08 −0.25 −0.50

−0.25 −0.25 1.17 −0.50 −0.25 0.08

−0.25 0.08 −0.50 1.17 −0.25 −0.25

−0.17 −0.25 −0.25 −0.25 1.17 −0.25

−0.25 −0.50 0.08 −0.25 −0.25 1.17


.

The animal information matrix in the Within Runs and Tags vector subspace of the A-optimal

design is given by

Aa = Z′aQrγZa =



1.17 −0.83 0.33 −0.17 −0.17 −0.33

−0.83 1.17 0.33 −0.17 −0.17 −0.33

0.33 0.33 0.67 −0.33 −0.33 −0.67

−0.17 −0.17 −0.33 1.17 −0.83 0.33

−0.17 −0.17 −0.33 −0.83 1.17 0.33

−0.33 −0.33 −0.67 0.33 0.33 0.67


.
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Appendix E

Various matrices from the example in

Subsection 3.6.2

The animal information matrix in the Within Runs and Tags vector subspace of the optimal

design obtained from the objective function with equal weights is given by

Aa = Z′aQrγZa =


2.00 −0.67 −0.67 −0.67

−0.67 2.00 −0.67 −0.67

−0.67 −0.67 2.00 −0.67

−0.67 −0.67 −0.67 2.00

 .

The treatment information matrix of animals in the Within Runs and Tags vector subspace

of the optimal design obtained from the objective function with equal weights is given by

Aτ = X′aQrγXa =

 2.67 −2.67

−2.67 2.67

 .
The animal information matrix in the Within Runs and Tags vector subspace of the optimal

design obtained from the objective function with greater weight on Ea is given by

Aa = Z′aQrγZa =


2.00 −1.00 −1.00 −0.00

−1.00 2.00 −1.00 −0.00

−1.00 −1.00 2.00 −0.00

−0.00 −0.00 −0.00 0.00

 .

The treatment information matrix of animals in the Within Runs and Tags vector subspace

of the optimal design obtained from the objective function with greater weight on Ea is given
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Appendix E. Various matrices from the example in Subsection 3.6.2

by

Aτ = X′aQrγXa =

 2 −2

−2 2

 .
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Appendix F

Various matrices from the example in

Section 3.6.3

The treatment information matrix of animals in the Within Runs and Tags vector subspace of

the optimal design obtained from the objective function without maximising the treatment DF

is given by

Aτ = X′aQrγXa =


2.00 −2.00 −0.00

−2.00 2.00 −0.00

−0.00 −0.00 −0.00

 .
The treatment information matrix of animals in the Within Runs and Tags vector subspace

of the optimal design obtained from the objective function with maximising the treatment DF

is given by

Aτ = X′aQrγXa =


2.50 −1.00 −1.50

−1.00 2.00 −1.00

−1.50 −1.00 2.50

 .
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Appendix F. Various matrices from the example in Section 3.6.3
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Appendix G

Tables of optimal designs when Phase 1

is a CRD
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Two Treatments 
Four-plex system 
4 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Aa Bb Ca Db 
2 Bb Aa Db Ca 

 
8 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Ea Db Bb Ca 
2 Db Ea Ca Bb 
3 Hb Ga Fb Aa 
4 Ga Hb Aa Fb 

 
10 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Hb Fb Ga Ea 
2 Fb Hb Ea Ga 
3 Bb Aa Ca Db 
4 Aa Bb Db Ca 
5 Ia Ia Jb Jb 

 
12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Aa Bb Ca Db 
2 Bb Aa Db Ca 
3 Ea Fb Ga Hb 
4 Fb Ea Hb Ga 
5 Ia Jb Ka Lb 
6 Jb Ia Lb Ka 

14 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 Jb Ga Ia Db 
2 Ga Jb Db Ia 
3 Bb Ea Lb Aa 
4 Ea Bb Aa Lb 
5 Fb Ca Nb Ka 
6 Ca Fb Ka Nb 
7 Hb Hb Ma Ma 

 
16 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Bb Aa Lb Ka 
2 Aa Bb Ka Lb 
3 Ma Hb Fb Ca 
4 Hb Ma Ca Fb 
5 Ia Ga Pb Nb 
6 Ga Ia Nb Pb 
7 Jb Db Oa Ea 
8 Db Jb Ea Oa 

 

 

 
 
 
 

 
Eight-plex system 
8 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Aa Bb Ca Db Ea Fb Ga Hb 
2 Bb Aa Db Ca Fb Ea Hb Ga 

 
12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Ca Ia Fb Hb Jb Aa Ea Bb 
2 Ia Ca Hb Fb Aa Jb Bb Ea 
3 Db Db Ga Ga Ka Ka Lb Lb 

 
16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Ga Ia Jb Aa Ka Bb Pb Fb 
2 Ia Ga Aa Jb Bb Ka Fb Pb 
3 Nb Db Lb Ca Ma Hb Ea Oa 
4 Db Nb Ca Lb Hb Ma Oa Ea 

 

  



Three Treatments 
Four-plex system 
6 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Bb Da Aa Cc 
2 Da Bb Cc Aa 
3 Fc Fc Eb Eb 

 
12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Da Eb Kb Lc 
2 Eb Da Lc Kb 
3 Hb Ja Ga Ic 
4 Ja Hb Ic Ga 
5 Fc Cc Aa Bb 
6 Cc Fc Bb Aa 

 
18 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Ja Ga Hb Lc 
2 Ga Ja Lc Hb 
3 Kb Ic Da Cc 
4 Ic Kb Cc Da 
5 Eb Aa Bb Fc 
6 Aa Eb Fc Bb 
7 Nb Oc Pa Ma 
8 Oc Nb Ma Pa 
9 Rc Rc Qb Qb 

 

24 Phase 1 experimental units 
Run Tag 

114 115 116 117 
1 Ga Nb Fc Ja 
2 Nb Ga Ja Fc 
3 Lc Da Ic Qb 
4 Da Lc Qb Ic 
5 Ma Hb Aa Oc 
6 Hb Ma Oc Aa 
7 Xc Rc Sa Wb 
8 Rc Xc Wb Sa 
9 Kb Bb Va Uc 
10 Bb Kb Uc Va 
11 Cc Pa Eb Tb 
12 Pa Cc Tb Eb 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Eight-plex system 
12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Cc Bb Ja Eb Lc Kb Aa Fc 
2 Bb Cc Eb Ja Kb Lc Fc Aa 
3 Ga Ga Ic Ic Da Da Hb Hb 

 
18 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Va Rc Kb Fc Hb Aa Ga Nb 
2 Rc Va Fc Kb Aa Hb Nb Ga 
3 Pa Bb Eb Da Oc Wb Xc Cc 
4 Bb Pa Da Eb Wb Oc Cc Xc 
5 Tb Uc Ic Ja Sa Lc Qb Ma 
6 Uc Tb Ja Ic Lc Sa Ma Qb 

 
  



Four Treatments 
Four-plex system 
8 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Ea Bb Cc Dd 
2 Bb Ea Dd Cc 
3 Gc Hd Aa Fb 
4 Hd Gc Fb Aa 

 
12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Bb Kc Ia Hd 
2 Kc Bb Hd Ia 
3 Dd Aa Cc Fb 
4 Aa Dd Fb Cc 
5 Ea Jb Ld Gc 
6 Jb Ea Gc Ld 

 
16 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Dd Aa Bb Cc 
2 Aa Dd Cc Bb 
3 Gc Fb Hd Ea 
4 Fb Gc Ea Hd 
5 Kc Jb Ld Ia 
6 Jb Kc Ia Ld 
7 Ma Pd Oc Nb 
8 Pd Ma Nb Oc 

 
20 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Kc Rb Aa Ld 
2 Rb Kc Ld Aa 
3 Jb Td Oc Ea 
4 Td Jb Ea Oc 
5 Hd Gc Fb Ia 
6 Gc Hd Ia Fb 
7 Qa Pd Sc Bb 
8 Pd Qa Bb Sc 
9 Ma Nb Cc Dd 
10 Nb Ma Dd Cc 

 
24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Cc Bb Aa Dd 
2 Bb Cc Dd Aa 
3 Hd Ea Fb Gc 
4 Ea Hd Gc Fb 
5 Jb Kc Ld Ia 
6 Kc Jb Ia Ld 
7 Ma Pd Oc Nb 
8 Pd Ma Nb Oc 
9 Sc Qa Td Rb 
10 Qa Sc Rb Td 
11 Vb Xd Ua Wc 
12 Xd Vb Wc Ua 

28 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 AIa ALd AOc ARb 
2 ALd AIa ARb AOc 
3 AHd BAc AEa AZb 
4 BAc AHd AZb AEa 
5 AGc ATd ANb AYa 
6 ATd AGc AYa ANb 
7 ACc AVb AUa AXd 
8 AVb ACc AXd AUa 
9 AJb ADd ASc AAa 
10 ADd AJb AAa ASc 
11 AQa ABb APd AWc 
12 ABb AQa AWc APd 
13 AKc AMa AFb BBd 
14 AMa AKc BBd AFb 

 
32 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 ACc ADd AAa ABb 
2 ADd ACc ABb AAa 
3 AGc AEa AHd AFb 
4 AEa AGc AFb AHd 
5 ALd AJb AKc AIa 
6 AJb ALd AIa AKc 
7 APd AMa AOc ANb 
8 AMa APd ANb AOc 
9 AQa ASc ARb ATd 
10 ASc AQa ATd ARb 
11 AVb AUa AWc AXd 
12 AUa AVb AXd AWc 
13 BBd AZb BAc AYa 
14 AZb BBd AYa BAc 
15 BDb BEc BCa BFd 
16 BEc BDb BFd BCa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Eight-plex system 
8 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Aa Gc Cc Fb Hd Bb Ea Dd 
2 Gc Aa Fb Cc Bb Hd Dd Ea 

 
12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Bb Ld Ea Jb Aa Cc Hd Kc 
2 Ld Bb Jb Ea Cc Aa Kc Hd 
3 Gc Gc Dd Dd Fb Fb Ia Ia 

 
16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Kc Ld Jb Dd Fb Ea Gc Ma 
2 Ld Kc Dd Jb Ea Fb Ma Gc 
3 Aa Bb Cc Ia Oc Pd Nb Hd 
4 Bb Aa Ia Cc Pd Oc Hd Nb 

 
20 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Cc Qa Ia Fb Sc Td Rb Ld 
2 Qa Cc Fb Ia Td Sc Ld Rb 
3 Dd Jb Kc Ma Bb Aa Pd Gc 
4 Jb Dd Ma Kc Aa Bb Gc Pd 
5 Oc Oc Hd Hd Nb Nb Ea Ea 

 
24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Qa Sc Rb Ld Vb Kc Ma Pd 
2 Sc Qa Ld Rb Kc Vb Pd Ma 
3 Hd Ua Wc Dd Cc Nb Jb Aa 
4 Ua Hd Dd Wc Nb Cc Aa Jb 
5 Bb Fb Oc Ea Td Ia Xd Gc 
6 Fb Bb Ea Oc Ia Td Gc Xd 

 
28 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 AHd AVb AZb AGc APd AWc AYa AEa 
2 AVb AHd AGc AZb AWc APd AEa AYa 
3 AJb AUa BAc AIa AFb ADd ASc AXd 
4 AUa AJb AIa BAc ADd AFb AXd ASc 
5 ALd AAa ARb BBd AKc AMa ABb AOc 
6 AAa ALd BBd ARb AMa AKc AOc ABb 
7 ACc ACc AQa AQa ANb ANb ATd ATd 

 
  



32 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 AAa ABb ACc ADd AEa AFb AGc AHd 
2 ABb AAa ADd ACc AFb AEa AHd AGc 
3 AIa AJb AKc ALd AMa ANb AOc APd 
4 AJb AIa ALd AKc ANb AMa APd AOc 
5 ASc ATd AQa ARb AWc AXd AUa AVb 
6 ATd ASc ARb AQa AXd AWc AVb AUa 
7 BAc BBd AYa AZb BEc BFd BCa BDb 
8 BBd BAc AZb AYa BFd BEc BDb BCa 

 
Five Treatments 
Four-plex system 
10 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Gb Cc Aa Dd 
2 Cc Gb Dd Aa 
3 Je Fa Bb Hc 
4 Fa Je Hc Bb 
5 Id Id Ee Ee 

 
20 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Te Rc Dd Bb 
2 Rc Te Bb Dd 
3 Gb Sd Mc Fa 
4 Sd Gb Fa Mc 
5 Cc Ka Lb Oe 
6 Ka Cc Oe Lb 
7 Qb Nd Aa Je 
8 Nd Qb Je Aa 
9 Pa Ee Id Hc 
10 Ee Pa Hc Id 

 
30 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 BBc AEe AZa AGb 
2 AEe BBc AGb AZa 
3 AKa ASd AMc ATe 
4 ASd AKa ATe AMc 
5 AYe ACc AFa ABb 
6 ACc AYe ABb AFa 
7 BDe APa AXd BAb 
8 APa BDe BAb AXd 
9 AUa AVb AJe ADd 
10 AVb AUa ADd AJe 
11 AQb ARc BCd AOe 
12 ARc AQb AOe BCd 
13 AId ALb AHc AAa 
14 ALb AId AAa AHc 
15 ANd ANd AWc AWc 

 
40 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 AId AFa ABb ACc 
2 AFa AId ACc ABb 
3 BLc BJa BAb AOe 
4 BJa BLc AOe BAb 
5 BDe BBc BCd AUa 
6 BBc BDe AUa BCd 
7 ADd AWc AEe BFb 
8 AWc ADd BFb AEe 
9 BIe BKb BEa AMc 
10 BKb BIe AMc BEa 
11 BHd AQb BNe AHc 
12 AQb BHd AHc BNe 
13 AGb ASd BGc APa 
14 ASd AGb APa BGc 
15 AAa ARc AXd AJe 
16 ARc AAa AJe AXd 
17 ATe ALb AKa BMd 
18 ALb ATe BMd AKa 
19 AZa AYe ANd AVb 
20 AYe AZa AVb ANd 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Eight-plex system 
20 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Ka Cc Ee Sd Je Mc Fa Qb 
2 Cc Ka Sd Ee Mc Je Qb Fa 
3 Dd Lb Bb Rc Id Pa Te Hc 
4 Lb Dd Rc Bb Pa Id Hc Te 
5 Oe Oe Aa Aa Gb Gb Nd Nd 

 
40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 BLc BNe AMc ADd BKb AAa AOe AUa 
2 BNe BLc ADd AMc AAa BKb AUa AOe 
3 ASd AVb AYe BIe BBc AQb ANd BJa 
4 AVb ASd BIe AYe AQb BBc BJa ANd 
5 AWc AKa BMd AGb AXd BDe ALb AHc 
6 AKa AWc AGb BMd BDe AXd AHc ALb 
7 AFa BFb APa BGc BHd AJe BAb ACc 
8 BFb AFa BGc APa AJe BHd ACc BAb 
9 ATe BCd ABb BEa AZa ARc AEe AId 
10 BCd ATe BEa ABb ARc AZa AId AEe 

 

Six Treatments 
Four-plex iTRAQ system 
12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Hb Cc Aa Lf 
2 Cc Hb Lf Aa 
3 Ff Jd Ke Bb 
4 Jd Ff Bb Ke 
5 Ga Ee Ic Dd 
6 Ee Ga Dd Ic 

 
18 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Jd Oc Ke Lf 
2 Oc Jd Lf Ke 
3 Aa Bb Cc Rf 
4 Bb Aa Rf Cc 
5 Ee Ff Ma Nb 
6 Ff Ee Nb Ma 
7 Qe Ic Ga Pd 
8 Ic Qe Pd Ga 
9 Hb Hb Dd Dd 

 
 
 
 
 
 
 
 
 
 
 
 

24 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 Jd Uc Ga Nb 
2 Uc Jd Nb Ga 
3 Bb Dd Cc Xf 
4 Dd Bb Xf Cc 
5 Ee Lf Hb Pd 
6 Lf Ee Pd Hb 
7 Ke Aa Vd Rf 
8 Aa Ke Rf Vd 
9 Oc Ff We Sa 
10 Ff Oc Sa We 
11 Tb Ma Qe Ic 
12 Ma Tb Ic Qe 

 
30 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 AWe BDf AIc ANb 
2 BDf AWe ANb AIc 
3 AMa ACc BBd AXf 
4 ACc AMa AXf BBd 
5 AVd ARf ASa AKe 
6 ARf AVd AKe ASa 
7 ATb AYa AEe ADd 
8 AYa ATb ADd AEe 
9 AGa ABb APd AUc 
10 ABb AGa AUc APd 
11 AQe AJd AHb BAc 
12 AJd AQe BAc AHb 
13 BCe AOc AAa ALf 
14 AOc BCe ALf AAa 
15 AZb AZb AFf AFf 



36 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 BHd AMa AUc AHb 
2 AMa BHd AHb AUc 
3 BGc AZb AKe AGa 
4 AZb BGc AGa AKe 
5 ASa AIc AXf BIe 
6 AIc ASa BIe AXf 
7 AYa ACc BDf APd 
8 ACc AYa APd BDf 
9 ARf ATb BBd BCe 
10 ATb ARf BCe BBd 
11 AWe ALf AAa AVd 
12 ALf AWe AVd AAa 
13 AFf AQe BAc BFb 
14 AQe AFf BFb BAc 
15 ADd AEe ABb BEa 
16 AEe ADd BEa ABb 
17 AJd ANb BJf AOc 
18 ANb AJd AOc BJf 

 
42 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 BFb AQe AMa ACc 
2 AQe BFb ACc AMa 
3 AEe BLb AJd ASa 
4 BLb AEe ASa AJd 
5 AXf BBd AUc AZb 
6 BBd AXf AZb AUc 
7 AOc AHb AKe ARf 
8 AHb AOc ARf AKe 
9 AVd ANb AFf BOe 
10 ANb AVd BOe AFf 
11 ADd AGa BMc BIe 
12 AGa ADd BIe BMc 
13 AYa BAc ALf ATb 
14 BAc AYa ATb ALf 
15 AAa BCe AIc BJf 
16 BCe AAa BJf AIc 
17 APd BPf ABb BKa 
18 BPf APd BKa ABb 
19 BEa BDf BNd AWe 
20 BDf BEa AWe BNd 
21 BGc BGc BHd BHd 

 

48 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 APd BAc BRb BUe 
2 BAc APd BUe BRb 
3 ARf AQe BMc BFb 
4 AQe ARf BFb BMc 
5 BTd BKa BVf ACc 
6 BKa BTd ACc BVf 
7 BSc AVd BQa AKe 
8 AVd BSc AKe BQa 
9 BEa AUc BOe AFf 
10 AUc BEa AFf BOe 
11 BDf AHb ADd BGc 
12 AHb BDf BGc ADd 
13 AOc AYa BHd AZb 
14 AYa AOc AZb BHd 
15 AMa BPf ABb BNd 
16 BPf AMa BNd ABb 
17 BLb AEe AIc AAa 
18 AEe BLb AAa AIc 
19 AWe ANb AJd ALf 
20 ANb AWe ALf AJd 
21 BCe BBd AGa BJf 
22 BBd BCe BJf AGa 
23 AXf ATb ASa BIe 
24 ATb AXf BIe ASa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



Eight-plex system 
24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Qe Ic Lf Ke Vd Ma Oc Hb 
2 Ic Qe Ke Lf Ma Vd Hb Oc 
3 Rf Bb Cc Dd Nb Ee Xf Ga 
4 Bb Rf Dd Cc Ee Nb Ga Xf 
5 Jd Aa Sa Tb Uc Ff We Pd 
6 Aa Jd Tb Sa Ff Uc Pd We 

 
36 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 ARf BEa AJd AIc AQe AGa ALf AZb 
2 BEa ARf AIc AJd AGa AQe AZb ALf 
3 AVd AKe AYa BDf ABb BAc AUc AWe 
4 AKe AVd BDf AYa BAc ABb AWe AUc 
5 BCe BJf ACc BFb AOc ADd AAa BHd 
6 BJf BCe BFb ACc ADd AOc BHd AAa 
7 AMa BGc ANb AEe AFf AHb ASa BBd 
8 BGc AMa AEe ANb AHb AFf BBd ASa 
9 ATb ATb APd APd AXf AXf BIe BIe 

 
48 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 APd AMa BCe AHb BOe AIc BNd ALf 
2 AMa APd AHb BCe AIc BOe ALf BNd 
3 BVf BFb BGc AVd AFf BAc AAa AQe 
4 BFb BVf AVd BGc BAc AFf AQe AAa 
5 BPf AJd ARf AZb ANb AEe AUc ASa 
6 AJd BPf AZb ARf AEe ANb ASa AUc 
7 BSc BIe ACc AGa AXf BKa BLb BBd 
8 BIe BSc AGa ACc BKa AXf BBd BLb 
9 BRb BEa BUe ADd BHd ABb AOc BJf 
10 BEa BRb ADd BUe ABb BHd BJf AOc 
11 AKe BMc BDf BQa AYa BTd AWe ATb 
12 BMc AKe BQa BDf BTd AYa ATb AWe 

 

Seven Treatments 
Four-plex system 
14 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Aa Dd Jc Ib 
2 Dd Aa Ib Jc 
3 Ff Ng Ee Kd 
4 Ng Ff Kd Ee 
5 Le Cc Ha Mf 
6 Cc Le Mf Ha 
7 Bb Bb Gg Gg 

 
 
 
 
 
 
 
 

 
28 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 AAa AJc ALe ANg 
2 AJc AAa ANg ALe 
3 AUg AKd BAf AVa 
4 AKd AUg AVa BAf 
5 AHa AWb AZe AMf 
6 AWb AHa AMf AZe 
7 AQc ADd AOa ABb 
8 ADd AQc ABb AOa 
9 AIb ASe AGg ARd 
10 ASe AIb ARd AGg 
11 BBg AFf ACc APb 
12 AFf BBg APb ACc 
13 AEe ATf AYd AXc 
14 ATf AEe AXc AYd 

  



42 Phase 1 experimental units 
Run Tag 

114 115 116 117 
1 APb AHa AMf AXc 
2 AHa APb AXc AMf 
3 BLc AKd AOa AGg 
4 AKd BLc AGg AOa 
5 ATf BNe ACc BCa 
6 BNe ATf BCa ACc 
7 AZe BBg BMd AVa 
8 BBg AZe AVa BMd 
9 AAa BFd AWb BHf 
10 BFd AAa BHf AWb 
11 BDb ANg AQc ARd 
12 ANg BDb ARd AQc 
13 BGe BJa AIb AUg 
14 BJa BGe AUg AIb 
15 BIg BEc AEe BKb 
16 BEc BIg BKb AEe 
17 AYd ABb ALe AFf 
18 ABb AYd AFf ALe 
19 BAf AJc ADd ASe 
20 AJc BAf ASe ADd 
21 BOf BOf BPg BPg 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56 Phase 1 experimental units 
Run Tag 

114 115 116 117 
1 AXc BGe BBg AIb 
2 BGe AXc AIb BBg 
3 BFd BVf BNe BDb 
4 BVf BFd BDb BNe 
5 AKd CCf BIg BUe 
6 CCf AKd BUe BIg 
7 AUg AOa CBe BOf 
8 AOa AUg BOf CBe 
9 AZe APb BJa BMd 
10 APb AZe BMd BJa 
11 BCa ANg BKb BTd 
12 ANg BCa BTd BKb 
13 CAd BRb AJc AMf 
14 BRb CAd AMf AJc 
15 AFf ABb AAa BPg 
16 ABb AFf BPg AAa 
17 BYb AEe BZc BWg 
18 AEe BYb BWg BZc 
19 CDg ACc BHf AYd 
20 ACc CDg AYd BHf 
21 BSc BAf AHa ASe 
22 BAf BSc ASe AHa 
23 BXa AGg ADd BLc 
24 AGg BXa BLc ADd 
25 AQc BQa ATf AWb 
26 BQa AQc AWb ATf 
27 ALe ARd AVa BEc 
28 ARd ALe BEc AVa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Eight-plex system 
28 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 AGg ABb ALe AJc AOa BAf AYd AVa 
2 ABb AGg AJc ALe BAf AOa AVa AYd 
3 AQc AEe ATf AHa AKd AZe ANg AWb 
4 AEe AQc AHa ATf AZe AKd AWb ANg 
5 AMf AAa AIb ARd AXc AUg AFf ASe 
6 AAa AMf ARd AIb AUg AXc ASe AFf 
7 ADd ADd BBg BBg APb APb ACc ACc 

 
56 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 ACc AHa AFf AGg ABb ADd AEe AAa 
2 AHa ACc AGg AFf ADd ABb AAa AEe 
3 ANg AKd APb AMf AOa ALe AJc AIb 
4 AKd ANg AMf APb ALe AOa AIb AJc 
5 ARd AWb AXc AVa ATf ASe AQc AUg 
6 AWb ARd AVa AXc ASe ATf AUg AQc 
7 BDb AZe AYd BCa BEc BBg BFd BAf 
8 AZe BDb BCa AYd BBg BEc BAf BFd 
9 BGe BHf BIg BMd BLc BJa BNe BKb 
10 BHf BGe BMd BIg BJa BLc BKb BNe 
11 BOf BSc BYb CBe BTd CDg BPg BQa 
12 BSc BOf CBe BYb CDg BTd BQa BPg 
13 BXa BWg BZc BUe CCf BRb CAd BVf 
14 BWg BXa BUe BZc BRb CCf BVf CAd 

 

Eight Treatments 
Four-plex system 
 
16 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Og Ia Ee Hh 
2 Ia Og Hh Ee 
3 Jb Me Dd Ff 
4 Me Jb Ff Dd 
5 Ph Nf Kc Gg 
6 Nf Ph Gg Kc 
7 Ld Cc Aa Bb 
8 Cc Ld Bb Aa 

 
24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 Bb Vf Ue Wg 
2 Vf Bb Wg Ue 
3 Ld Me Sc Gg 
4 Me Ld Gg Sc 
5 Qa Cc Jb Td 
6 Cc Qa Td Jb 
7 Rb Ph Kc Nf 
8 Ph Rb Nf Kc 
9 Ee Og Ia Hh 
10 Og Ee Hh Ia 
11 Xh Dd Ff Aa 
12 Dd Xh Aa Ff 

 

32 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 APh ANf ASc AJb 
2 ANf APh AJb ASc 
3 AVf AXh AMe ALd 
4 AXh AVf ALd AMe 
5 ADd BAc BCe AYa 
6 BAc ADd AYa BCe 
7 ARb AQa BFh ATd 
8 AQa ARb ATd BFh 
9 BEg ABb AFf AAa 
10 ABb BEg AAa AFf 
11 AOg BBd ACc BDf 
12 BBd AOg BDf ACc 
13 AIa AEe AHh AWg 
14 AEe AIa AWg AHh 
15 AUe AKc AGg AZb 
16 AKc AUe AZb AGg 

 
  



40 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 BFh AVf AKc AGg 
2 AVf BFh AGg AKc 
3 ARb BBd BCe ACc 
4 BBd ARb ACc BCe 
5 BAc AMe AHh AYa 
6 AMe BAc AYa AHh 
7 ANf AUe AXh ALd 
8 AUe ANf ALd AXh 
9 AJb BJd AOg APh 
10 BJd AJb APh AOg 
11 AIa BMg BKe ATd 
12 BMg AIa ATd BKe 
13 AQa BEg BHb ASc 
14 BEg AQa ASc BHb 
15 AFf BNh AZb BGa 
16 BNh AFf BGa AZb 
17 AEe ABb BDf AWg 
18 ABb AEe AWg BDf 
19 BIc AAa BLf ADd 
20 AAa BIc ADd BLf 

 
48 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 BIc BBd BSe BDf 
2 BBd BIc BDf BSe 
3 BRd AQa BKe BPb 
4 AQa BRd BPb BKe 
5 BQc BNh BGa AOg 
6 BNh BQc AOg BGa 
7 BJd BUg ASc AZb 
8 BUg BJd AZb ASc 
9 AAa AVf BCe AXh 
10 AVf AAa AXh BCe 
11 BAc BVh ATd BOa 
12 BVh BAc BOa ATd 
13 BMg AEe BTf ACc 
14 AEe BMg ACc BTf 
15 ARb AUe AWg AYa 
16 AUe ARb AYa AWg 
17 ABb AMe AKc AHh 
18 AMe ABb AHh AKc 
19 BEg BFh BLf BHb 
20 BFh BEg BHb BLf 
21 AIa AFf ADd AGg 
22 AFf AIa AGg ADd 
23 ANf AJb APh ALd 
24 AJb ANf ALd APh 

 

56 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 BLf AJb BNh BYc 
2 AJb BLf BYc BNh 
3 BAc ALd ANf BCe 
4 ALd BAc BCe ANf 
5 AAa BVh BBd AEe 
6 BVh AAa AEe BBd 
7 AQa ASc AVf ADd 
8 ASc AQa ADd AVf 
9 AHh BJd AGg CBf 
10 BJd AHh CBf AGg 
11 BRd BSe AWg ARb 
12 BSe BRd ARb AWg 
13 BPb BGa BZd BFh 
14 BGa BPb BFh BZd 
15 BDf BKe BXb AXh 
16 BKe BDf AXh BXb 
17 CCg BTf AMe BOa 
18 BTf CCg BOa AMe 
19 CAe BIc AYa AZb 
20 BIc CAe AZb AYa 
21 APh AUe BQc AOg 
22 AUe APh AOg BQc 
23 AIa CDh BMg AKc 
24 CDh AIa AKc BMg 
25 BEg AFf BWa BHb 
26 AFf BEg BHb BWa 
27 ABb BUg ATd ACc 
28 BUg ABb ACc ATd 

 

 

 

 

 

 

 

 

 

 

 

  



64 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 BWa AXh AUe ALd 
2 AXh BWa ALd AUe 
3 AIa BEg ATd ACc 
4 BEg AIa ACc ATd 
5 BYc BPb APh CKg 
6 BPb BYc CKg APh 
7 CHd BXb BKe BIc 
8 BXb CHd BIc BKe 
9 AHh BCe BUg BQc 
10 BCe AHh BQc BUg 
11 BFh BJd BTf CEa 
12 BJd BFh CEa BTf 
13 AEe BLf AGg CDh 
14 BLf AEe CDh AGg 
15 BHb CAe AVf AYa 
16 CAe BHb AYa AVf 
17 ASc AQa CFb CLh 
18 AQa ASc CLh CFb 
19 ANf BAc BGa AMe 
20 BAc ANf AMe BGa 
21 BSe CGc CBf ABb 
22 CGc BSe ABb CBf 
23 AJb ADd BDf CCg 
24 ADd AJb CCg BDf 
25 BMg BBd CIe AAa 
26 BBd BMg AAa CIe 
27 BVh AFf BRd AZb 
28 AFf BVh AZb BRd 
29 AWg BOa ARb BNh 
30 BOa AWg BNh ARb 
31 AOg CJf BZd AKc 
32 CJf AOg AKc BZd 

Eight-plex system 
16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Hh Ia Cc Ld Bb Ee Gg Ff 
2 Ia Hh Ld Cc Ee Bb Ff Gg 
3 Nf Jb Aa Og Kc Dd Ph Me 
4 Jb Nf Og Aa Dd Kc Me Ph 

 
24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 Ph Ff Ee Qa Rb Og Ld Sc 
2 Ff Ph Qa Ee Og Rb Sc Ld 
3 Bb Ue Xh Dd Kc Aa Vf Gg 
4 Ue Bb Dd Xh Aa Kc Gg Vf 
5 Wg Td Jb Cc Hh Nf Me Ia 
6 Td Wg Cc Jb Nf Hh Ia Me 

 
  



32 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 AAa ABb ACc ADd AEe AFf AGg AHh 
2 ABb AAa ADd ACc AFf AEe AHh AGg 
3 AKc ALd AIa AJb AOg APh AMe ANf 
4 ALd AKc AJb AIa APh AOg ANf AMe 
5 AUe AVf AWg AXh AQa ARb ASc ATd 
6 AVf AUe AXh AWg ARb AQa ATd ASc 
7 BEg BFh BCe BDf BAc BBd AYa AZb 
8 BFh BEg BDf BCe BBd BAc AZb AYa 

 
40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 AAa AFf ACc AEe ADd ABb AHh AGg 
2 AFf AAa AEe ACc ABb ADd AGg AHh 
3 AOg APh ALd AIa AMe ANf AJb AKc 
4 APh AOg AIa ALd ANf AMe AKc AJb 
5 ARb ATd AXh AQa AUe AWg ASc AVf 
6 ATd ARb AQa AXh AWg AUe AVf ASc 
7 AZb BBd BEg BFh BAc AYa BCe BDf 
8 BBd AZb BFh BEg AYa BAc BDf BCe 
9 BKe BIc BHb BLf BMg BNh BJd BGa 
10 BIc BKe BLf BHb BNh BMg BGa BJd 

 
48 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 AGg ABb AFf AAa ADd ACc AHh AEe 
2 ABb AGg AAa AFf ACc ADd AEe AHh 
3 APh AOg AKc ALd AIa AMe ANf AJb 
4 AOg APh ALd AKc AMe AIa AJb ANf 
5 AUe AVf ASc AWg AXh ARb AQa ATd 
6 AVf AUe AWg ASc ARb AXh ATd AQa 
7 BDf AYa BFh BEg BAc AZb BBd BCe 
8 AYa BDf BEg BFh AZb BAc BCe BBd 
9 BIc BJd BHb BKe BLf BMg BGa BNh 
10 BJd BIc BKe BHb BMg BLf BNh BGa 
11 BVh BOa BRd BPb BSe BTf BUg BQc 
12 BOa BVh BPb BRd BTf BSe BQc BUg 

 
56 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 ADd AGg AEe AHh AFf AAa ACc ABb 
2 AGg ADd AHh AEe AAa AFf ABb ACc 
3 ANf AIa ALd AJb AOg APh AMe AKc 
4 AIa ANf AJb ALd APh AOg AKc AMe 
5 ARb AUe AWg AVf ATd ASc AQa AXh 
6 AUe ARb AVf AWg ASc ATd AXh AQa 
7 AZb BDf BAc AYa BFh BCe BBd BEg 
8 BDf AZb AYa BAc BCe BFh BEg BBd 
9 BIc BVh BGa BRd BTf BPb BSe BUg 
10 BVh BIc BRd BGa BPb BTf BUg BSe 
11 BQc BMg BNh BHb BKe BJd BLf BOa 
12 BMg BQc BHb BNh BJd BKe BOa BLf 
13 CDh BWa BYc CAe CCg BXb BZd CBf 
14 BWa CDh CAe BYc BXb CCg CBf BZd 

 
  



64 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 AAa ABb ACc ADd AEe AFf AGg AHh 
2 ABb AAa ADd ACc AFf AEe AHh AGg 
3 AIa AJb AKc ALd AMe ANf AOg APh 
4 AJb AIa ALd AKc ANf AMe APh AOg 
5 ASc ATd AQa ARb AWg AXh AUe AVf 
6 ATd ASc ARb AQa AXh AWg AVf AUe 
7 BAc BBd AYa AZb BEg BFh BCe BDf 
8 BBd BAc AZb AYa BFh BEg BDf BCe 
9 BKe BLf BMg BNh BGa BHb BIc BJd 
10 BLf BKe BNh BMg BHb BGa BJd BIc 
11 BSe BTf BUg BVh BOa BPb BQc BRd 
12 BTf BSe BVh BUg BPb BOa BRd BQc 
13 CCg CDh CAe CBf BYc BZd BWa BXb 
14 CDh CCg CBf CAe BZd BYc BXb BWa 
15 CKg CLh CIe CJf CGc CHd CEa CFb 
16 CLh CKg CJf CIe CHd CGc CFb CEa 
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Phase 1 Experiment Phase 2 Experiment 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF Tag DF Residual DF Tag ⊥ Trt ( E ) 

Treatment 
efficiency factors 

E 
2 4 2 2 4 0 1 1 Yes 1 

6 4 3 1 1 2 No (1/9) 0.8889 
8 6 4 1 1 4 Yes 1 
10 8 5 2 1 5 No (1/25) 0.96 
12 10 6 2 1 7 Yes 1 
14 12 7 3 1 8 No (1/49) 0.9796 
16 14 8 3 1 10 Yes 1 
8 6 2 8 0 3 3 Yes 1 
12 10 3 1 3 6 No (1/9) 0.8889 
16 14 4 1 3 10 Yes 1 



     
 

 
 

 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
3 6 3 3 4 1  1 1 1 Yes 1,  3/4 0.8571 

12 9 6 2  2 1 6 Yes 15/16(2) 0.9375 
18 15 9 4  2 1 10 Yes 23/24,   7/8 0.9148 
24 21 12 5  2 1 15 Yes 15/16 (2) 0.9375 
12 9 3 8 1  1 3 5 Yes 1, 15/16 0.9677 
24 21 6 2  2 3 16 Yes 63/64 (2) 0.9844 

 

  



     
 

 
 

 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt (E) 

Treatment efficiency factors 

ei E 
4 8 4 4 4 1 0 1 2 Yes 1 1 

12 8 6 2 0 1 5 No (1/9) 1(2), 8/9 0.96 
16 12 8 3 0 1 8 Yes 1 1 
20 16 10 4 0 1 11 No (1/25) 1(2), 24/25 0.9863 
24 20 12 5 0 1 14 Yes 1 1 
28 24 14 6 0 1 17 No (1/49) 1(2), 48/49 0.9931 
32 28 16 7 0 1 20 Yes 1 1 
8 4 2 8 0 0 3 2 No (1/2) 1,1/2(2) 0.6 
12 8 3 1 0 3 4 No (1/9) 8/9 (3) 0.8889 
16 12 4 1 0 3 8 Yes 1 1 
20 16 5 2 0 3 11 No (1/25) 24/25(3) 0.96 
24 20 6 2 0 3 15 No (1/18) 1, 17/18(2) 0.9623 
28 24 7 3 0 3 18 No (1/49) 48/49(3) 0.9796 
32 28 8 3 0 3 22 Yes 1 1 

 

 

 

  



     
 

 
 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
5 10 5 5 4 2  2 1 2 Yes 1(2), 7/8, 5/8 0.8434 

20 15 10 4  4 1 10 Yes 15/16(4) 0.9375 
30 25 15 7  4 1 17 Yes 23/24(2), 11/12   5/6 0.9137 
40 35 20 9  4 1 25 Yes 15/16(4) 0.9375 
50 45 25 12 4 1 32 Yes 19/20(2), 37/40,   7/8 0.9240 
20 15 5 8 2 2 3 10 Yes 1(2), 15/16(2) 0.9677 
40 35 10 4 4 3 28 Yes 0.994 (2), 0.959(2) 0.9763 

 

  



     
 

 
 

 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt (E) 

Treatment efficiency factors 

ei E 
6 12 6 6 4 2 2 1 3 Yes 1(3), 3/4(2) 0.8824 

18 12 9 4 4 1 7 No (1/9) 11/12(2), 8/9, 3/4(2)  0.8370 
24 18 12 5 4 1 12 Yes 1, 15/16(2), 13/16(2) 0.8937 

30 24 15 
7 5 1 16 No (1/25) 0.953, 9/10, 0.8836, 

0.8235, 4/5 
0.8686 

36 30 18 8 4 1 21 Yes 1, 7/8 (4)  0.8974 

42 36 21 
10 5 1 25 No (1/49) 13/14, 0.9164, 6/7(2),  

0.8489 
0.8804 

48 42 24 11 5 1 30 Yes 15/16 (2),  7/8 (3)  0.8990 
12 6 3 8 1  1 3 2 No (1/3) 1, 3/4, 2/3(3)  0.7317 
24 18 6 2  2 3 13 Yes 1(3), 15/16(2) 0.9740 

36 30 9 
4  4 3 23 No (4/81) 0.9792, 0.9601, 0.9421 

0.9375 0.9033 
0.9438 
 

48 42 12 5  4 3 34 Yes 1, 63/64(2), 61/64(2)  0.9746 
 

  



     
 

 
 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
7 14 7 7 4 3 3 1 3 Yes 1(3), 7/8, 5/8, 1/2 0.7749 

28 21 14 6 6 1 14 Yes 7/8 (6) 0.875 
42 35 21 10 6 1 24 Yes 7/8(5), 19/24 0.8599 
56 49 28 13 6 1 35 Yes 7/8 (6) 0.875 
28 21 7 8 3 3 3 15 Yes 1(3),31/32(2), 7/8 0.9666 
56 49 14 6 6 3 40 Yes 63/64 (6) 0.9844 

 

  



     
 

 
 

Phase 1 Design Phase 2 Design 

v na 

Between 
Animals 
Residual DF nRuns nTags  

Between Runs stratum  Between Animals within Runs stratum 

Animal DF  Trt DF Tag DF Residual DF Tag ⊥ Trt (E) 

Treatment efficiency factors 

ei E 
8 16 8 8 4 3 3 1 4 Yes 1(4), 3/4(2), 1/2 0.8077 

24 16 12 
5 5 1 

10 
No (1/9) 1,  11/12(2), 8/9, 3/4(2),  

2/3 
0.8261 

32 24 16 
7 7 1 

16 
Yes 0.963 (2), 0.875 (2), 0.7866 

(2), 0.75 
0.8498 

40 32 20 9 7 1 22 No (1/25) 9/10(3), 43/50,  4/5(3) 0.8489 
48 40 24 11 7 1 28 Yes 1, 5/6(6) 0.8537 
56 48 28 13 7 1 34 No (1/49) 6/7(6), 41/49 0.8542 

64 56 32 
15 7 1 

40 
Yes 0.9192(2), 0.875, 0.8308(2), 

0.8125(2)  
0.8550 

16 8 4 8 1 0 3 4 No (3/10) 1(4), 3/4(2), 1/2 0.8077 
24 16 6 2 0 3 11 No (1/9) 1(4), 8/9(3) 0.9492 
32 24 8 3 0 3 18 Yes 1(7) 1 
40 32 10 4 0 3 25 No (1/25) 1(4), 24/25(3)  0.9825 
48 40 12 5 0 3 32 No (1/30) 1(4), 35/36(2), 17/18 0.9837 
56 48 14 6 0 3 39 No (1/49) 1(4), 48/49(3)  0.9912 
64 56 16 7 0 3 46 Yes 1(7) 1 
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Two Treatments 
Four-plex system 
2 Blocks and 4 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Bb 1Aa 2Ca 2Db 
2 1Aa 1Bb 2Db 2Ca 

 
3 Blocks and 6 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 3Ea 1Bb 3Fb 1Aa 
2 1Bb 3Ea 1Aa 3Fb 
3 2Ca 2Ca 2Db 2Db 

 
2 Blocks and 8 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Db 1Ca 2Ca 2Db 
2 1Ca 1Db 2Db 2Ca 
3 1Bb 1Aa 2Bb 2Aa 
4 1Aa 1Bb 2Aa 2Bb 

 
4 Blocks and 8 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2Ca 2Db 4Ga 4Hb 
2 2Db 2Ca 4Hb 4Ga 
3 1Aa 1Bb 3Ea 3Fb 
4 1Bb 1Aa 3Fb 3Ea 

 
5 Blocks and 10 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2Db 1Aa 1Bb 2Ca 
2 1Aa 2Db 2Ca 1Bb 
3 4Ga 3Fb 4Hb 3Ea 
4 3Fb 4Ga 3Ea 4Hb 
5 5Ia 5Ia 5Jb 5Jb 

 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2Jb 2Lb 1Ca 1Ea 
2 2Lb 2Jb 1Ea 1Ca 
3 2Ka 2Ia 1Db 1Bb 
4 2Ia 2Ka 1Bb 1Db 
5 2Hb 2Ga 1Fb 1Aa 
6 2Ga 2Hb 1Aa 1Fb 

 
3 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Aa 1Bb 1Ca 1Db 
2 1Bb 1Aa 1Db 1Ca 
3 2Fb 2Ea 2Ga 2Hb 
4 2Ea 2Fb 2Hb 2Ga 
5 3Jb 3Ia 3Ka 3Lb 
6 3Ia 3Jb 3Lb 3Ka 

 
 

6 Blocks and 12 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1Bb 1Aa 6Lb 6Ka 
2 1Aa 1Bb 6Ka 6Lb 
3 3Fb 3Ea 4Ga 4Hb 
4 3Ea 3Fb 4Hb 4Ga 
5 2Db 2Ca 5Ia 5Jb 
6 2Ca 2Db 5Jb 5Ia 

 
7 Blocks and 14 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Aa 2Db 1Bb 2Ca 
2 2Db 1Aa 2Ca 1Bb 
3 3Ea 4Hb 3Fb 4Ga 
4 4Hb 3Ea 4Ga 3Fb 
5 6Ka 5Jb 5Ia 6Lb 
6 5Jb 6Ka 6Lb 5Ia 
7 7Nb 7Nb 7Ma 7Ma 

 
2 Blocks and 16 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Db 1Ga 2Oa 2Nb 
2 1Ga 1Db 2Nb 2Oa 
3 1Aa 1Bb 2Ia 2Pb 
4 1Bb 1Aa 2Pb 2Ia 
5 1Ca 1Hb 2Lb 2Ma 
6 1Hb 1Ca 2Ma 2Lb 
7 1Fb 1Ea 2Jb 2Ka 
8 1Ea 1Fb 2Ka 2Jb 

 
4 Blocks and 16 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1Bb 1Ca 1Aa 1Db 
2 1Ca 1Bb 1Db 1Aa 
3 2Ea 2Fb 2Ga 2Hb 
4 2Fb 2Ea 2Hb 2Ga 
5 3Lb 3Ka 3Ia 3Jb 
6 3Ka 3Lb 3Jb 3Ia 
7 4Nb 4Oa 4Pb 4Ma 
8 4Oa 4Nb 4Ma 4Pb 

 
4 Blocks and 16 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1Ca 1Bb 3Lb 3Ka 
2 1Bb 1Ca 3Ka 3Lb 
3 1Aa 1Db 3Jb 3Ia 
4 1Db 1Aa 3Ia 3Jb 
5 2Ga 2Hb 4Oa 4Pb 
6 2Hb 2Ga 4Pb 4Oa 
7 2Fb 2Ea 4Nb 4Ma 
8 2Ea 2Fb 4Ma 4Nb 



8 Blocks and 16 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1Bb 1Aa 6Lb 6Ka 
2 1Aa 1Bb 6Ka 6Lb 
3 3Ea 3Fb 2Db 2Ca 
4 3Fb 3Ea 2Ca 2Db 
5 5Jb 5Ia 8Oa 8Pb 
6 5Ia 5Jb 8Pb 8Oa 
7 7Ma 7Nb 4Ga 4Hb 
8 7Nb 7Ma 4Hb 4Ga 

 
Eight-plex system 
2 Blocks and 8 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Bb 1Ca 1Db 2Fb 2Ea 2Hb 2Ga 
2 1Bb 1Aa 1Db 1Ca 2Ea 2Fb 2Ga 2Hb 

 
4 Blocks and 8 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Bb 2Ca 2Db 3Ea 3Fb 4Hb 4Ga 
2 1Bb 1Aa 2Db 2Ca 3Fb 3Ea 4Ga 4Hb 

 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Bb 1Ea 1Aa 1Db 2Ka 2Hb 2Jb 2Ga 
2 1Ea 1Bb 1Db 1Aa 2Hb 2Ka 2Ga 2Jb 
3 1Fb 1Fb 1Ca 1Ca 2Lb 2Lb 2Ia 2Ia 

 
3 Blocks and 12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2Ga 2Fb 2Ea 2Hb 1Bb 1Aa 1Ca 1Db 
2 2Fb 2Ga 2Hb 2Ea 1Aa 1Bb 1Db 1Ca 
3 3Ka 3Ka 3Jb 3Jb 3Lb 3Lb 3Ia 3Ia 

 
6 Blocks and 12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 6Ka 1Bb 6Lb 1Aa 4Hb 2Ca 2Db 4Ga 
2 1Bb 6Ka 1Aa 6Lb 2Ca 4Hb 4Ga 2Db 
3 3Fb 3Fb 3Ea 3Ea 5Ia 5Ia 5Jb 5Jb 

 
2 Blocks and 16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Fb 1Ea 1Bb 2Lb 2Oa 2Pb 2Ka 
2 1Fb 1Aa 1Bb 1Ea 2Oa 2Lb 2Ka 2Pb 
3 1Ca 1Hb 1Db 1Ga 2Ia 2Nb 2Jb 2Ma 
4 1Hb 1Ca 1Ga 1Db 2Nb 2Ia 2Ma 2Jb 

 
4 Blocks and 16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Db 2Fb 2Ga 3Lb 3Ka 4Oa 4Nb 
2 1Db 1Aa 2Ga 2Fb 3Ka 3Lb 4Nb 4Oa 
3 1Bb 1Ca 2Hb 2Ea 3Ia 3Jb 4Pb 4Ma 
4 1Ca 1Bb 2Ea 2Hb 3Jb 3Ia 4Ma 4Pb 

 



8 Blocks and 16 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Aa 1Bb 3Ea 3Fb 5Jb 5Ia 7Ma 7Nb 
2 1Bb 1Aa 3Fb 3Ea 5Ia 5Jb 7Nb 7Ma 
3 2Ca 2Db 4Hb 4Ga 6Lb 6Ka 8Oa 8Pb 
4 2Db 2Ca 4Ga 4Hb 6Ka 6Lb 8Pb 8Oa 

Three Treatments 
Four-plex system 
2 Blocks and 6 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Aa 1Bb 2Fc 2Da 
2 1Bb 1Aa 2Da 2Fc 
3 1Cc 1Cc 2Eb 2Eb 

 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Aa 1Bb 2Lc 2Hb 
2 1Bb 1Aa 2Hb 2Lc 
3 1Cc 1Da 2Ga 2Kb 
4 1Da 1Cc 2Kb 2Ga 
5 1Eb 1Fc 2Ic 2Ja 
6 1Fc 1Eb 2Ja 2Ic 

 
4 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 2Eb 3Hb 4Ja 
2 2Eb 1Cc 4Ja 3Hb 
3 1Aa 2Fc 3Ga 4Kb 
4 2Fc 1Aa 4Kb 3Ga 
5 1Bb 2Da 3Ic 4Lc 
6 2Da 1Bb 4Lc 3Ic 

 
2 Blocks and 18 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Hb 1Cc 2Ma 2Nb 
2 1Cc 1Hb 2Nb 2Ma 
3 1Aa 1Fc 2Qb 2Pa 
4 1Fc 1Aa 2Pa 2Qb 
5 1Da 1Eb 2Oc 2Rc 
6 1Eb 1Da 2Rc 2Oc 
7 1Ic 1Bb 2Kb 2Ja 
8 1Bb 1Ic 2Ja 2Kb 
9 1Ga 1Ga 2Lc 2Lc 

 
3 Blocks and 18 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2Ic 1Bb 2Hb 1Da 
2 1Bb 2Ic 1Da 2Hb 
3 1Cc 2Ja 2Ga 1Eb 
4 2Ja 1Cc 1Eb 2Ga 
5 2Kb 1Aa 1Fc 2Lc 
6 1Aa 2Kb 2Lc 1Fc 
7 3Ma 3Nb 3Pa 3Oc 
8 3Nb 3Ma 3Oc 3Pa 
9 3Rc 3Rc 3Qb 3Qb 

 
 
6 Blocks and 18 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Aa 2Eb 4Lc 5Ma 
2 2Eb 1Aa 5Ma 4Lc 
3 1Cc 2Da 4Kb 5Nb 
4 2Da 1Cc 5Nb 4Kb 
5 2Fc 1Bb 5Oc 4Ja 
6 1Bb 2Fc 4Ja 5Oc 
7 3Ga 3Hb 6Rc 6Qb 
8 3Hb 3Ga 6Qb 6Rc 
9 3Ic 3Ic 6Pa 6Pa 

 
2 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Ic 1Da 2Nb 2Xc 
2 1Da 1Ic 2Xc 2Nb 
3 1Ja 1Fc 2Sa 2Qb 
4 1Fc 1Ja 2Qb 2Sa 
5 1Cc 1Kb 2Tb 2Pa 
6 1Kb 1Cc 2Pa 2Tb 
7 1Bb 1Lc 2Va 2Wb 
8 1Lc 1Bb 2Wb 2Va 
9 1Ga 1Hb 2Oc 2Uc 
10 1Hb 1Ga 2Uc 2Oc 
11 1Aa 1Eb 2Rc 2Ma 
12 1Eb 1Aa 2Ma 2Rc 

 
4 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Eb 1Fc 3Pa 3Nb 
2 1Fc 1Eb 3Nb 3Pa 
3 1Bb 1Cc 3Rc 3Ma 
4 1Cc 1Bb 3Ma 3Rc 
5 1Da 1Aa 3Oc 3Qb 
6 1Aa 1Da 3Qb 3Oc 
7 2Kb 2Ja 4Wb 4Uc 
8 2Ja 2Kb 4Uc 4Wb 
9 2Hb 2Ic 4Sa 4Xc 
10 2Ic 2Hb 4Xc 4Sa 
11 2Lc 2Ga 4Tb 4Va 
12 2Ga 2Lc 4Va 4Tb 

 
 
 
 
 
 
 
  



8 Blocks and 24 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2Eb 1Aa 6Pa 5Oc 
2 1Aa 2Eb 5Oc 6Pa 
3 1Bb 2Da 6Rc 5Nb 
4 2Da 1Bb 5Nb 6Rc 
5 1Cc 2Fc 6Qb 5Ma 
6 2Fc 1Cc 5Ma 6Qb 
7 4Lc 3Hb 7Sa 8Xc 
8 3Hb 4Lc 8Xc 7Sa 
9 4Ja 3Ga 8Wb 7Uc 
10 3Ga 4Ja 7Uc 8Wb 
11 4Kb 3Ic 7Tb 8Va 
12 3Ic 4Kb 8Va 7Tb 

 
Eight-plex system 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Cc 1Da 1Eb 1Aa 2Lc 2Hb 2Kb 2Ga 
2 1Da 1Cc 1Aa 1Eb 2Hb 2Lc 2Ga 2Kb 
3 1Bb 1Bb 1Fc 1Fc 2Ja 2Ja 2Ic 2Ic 

 
4 Blocks and 12 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Cc 2Fc 2Eb 3Ga 3Hb 4Kb 4Ja 
2 1Cc 1Aa 2Eb 2Fc 3Hb 3Ga 4Ja 4Kb 
3 1Bb 1Bb 2Da 2Da 3Ic 3Ic 4Lc 4Lc 

 
2 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Ga 1Hb 1Eb 1Fc 2Rc 2Uc 2Sa 2Ma 
2 1Hb 1Ga 1Fc 1Eb 2Uc 2Rc 2Ma 2Sa 
3 1Kb 1Lc 1Cc 1Da 2Tb 2Va 2Nb 2Oc 
4 1Lc 1Kb 1Da 1Cc 2Va 2Tb 2Oc 2Nb 
5 1Ja 1Ic 1Aa 1Bb 2Pa 2Qb 2Wb 2Xc 
6 1Ic 1Ja 1Bb 1Aa 2Qb 2Pa 2Xc 2Wb 

 
4 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Fc 2Kb 2Ga 3Ma 3Qb 4Wb 4Xc 
2 1Fc 1Aa 2Ga 2Kb 3Qb 3Ma 4Xc 4Wb 
3 1Eb 1Cc 2Ja 2Lc 3Nb 3Oc 4Va 4Sa 
4 1Cc 1Eb 2Lc 2Ja 3Oc 3Nb 4Sa 4Va 
5 1Bb 1Da 2Ic 2Hb 3Rc 3Pa 4Uc 4Tb 
6 1Da 1Bb 2Hb 2Ic 3Pa 3Rc 4Tb 4Uc 

 
8 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2Eb 1Aa 4Ja 3Hb 6Rc 5Oc 8Wb 7Uc 
2 1Aa 2Eb 3Hb 4Ja 5Oc 6Rc 7Uc 8Wb 
3 1Cc 2Da 4Lc 3Ga 6Qb 5Nb 8Xc 7Sa 
4 2Da 1Cc 3Ga 4Lc 5Nb 6Qb 7Sa 8Xc 
5 1Bb 2Fc 4Kb 3Ic 6Pa 5Ma 7Tb 8Va 
6 2Fc 1Bb 3Ic 4Kb 5Ma 6Pa 8Va 7Tb 



Four Treatments 
Four-plex system 
2 Blocks and 8 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Bb 1Aa 2Gc 2Hd 
2 1Aa 1Bb 2Hd 2Gc 
3 1Dd 1Cc 2Fb 2Ea 
4 1Cc 1Dd 2Ea 2Fb 

 
3 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Dd 1Cc 1Bb 1Aa 
2 1Cc 1Dd 1Aa 1Bb 
3 2Fb 2Hd 2Ea 2Gc 
4 2Hd 2Fb 2Gc 2Ea 
5 3Ia 3Jb 3Kc 3Ld 
6 3Jb 3Ia 3Ld 3Kc 

 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Hd 1Cc 2Jb 2Ia 
2 1Cc 1Hd 2Ia 2Jb 
3 1Gc 1Dd 2Ma 2Nb 
4 1Dd 1Gc 2Nb 2Ma 
5 1Ea 1Bb 2Ld 2Oc 
6 1Bb 1Ea 2Oc 2Ld 
7 1Aa 1Fb 2Pd 2Kc 
8 1Fb 1Aa 2Kc 2Pd 

 
4 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 1Dd 1Bb 1Aa 
2 1Dd 1Cc 1Aa 1Bb 
3 2Hd 2Fb 2Ea 2Gc 
4 2Fb 2Hd 2Gc 2Ea 
5 3Ia 3Jb 3Kc 3Ld 
6 3Jb 3Ia 3Ld 3Kc 
7 4Oc 4Ma 4Pd 4Nb 
8 4Ma 4Oc 4Nb 4Pd 

 
4 Blocks and 12 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1Bb 1Aa 3Kc 3Ld 
2 1Aa 1Bb 3Ld 3Kc 
3 2Hd 2Gc 4Nb 4Ma 
4 2Gc 2Hd 4Ma 4Nb 
5 2Ea 2Fb 4Oc 4Pd 
6 2Fb 2Ea 4Pd 4Oc 
7 1Cc 1Dd 3Ia 3Jb 
8 1Dd 1Cc 3Jb 3Ia 

 
 
 
 
 

 
5 Blocks and 20 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 1Aa 1Bb 1Dd 
2 1Aa 1Cc 1Dd 1Bb 
3 2Fb 2Hd 2Ea 2Gc 
4 2Hd 2Fb 2Gc 2Ea 
5 3Kc 3Ia 3Jb 3Ld 
6 3Ia 3Kc 3Ld 3Jb 
7 4Ma 4Pd 4Oc 4Nb 
8 4Pd 4Ma 4Nb 4Oc 
9 5Sc 5Rb 5Qa 5Td 
10 5Rb 5Sc 5Td 5Qa 

 
2 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 1Aa 2Td 2Rb 
2 1Aa 1Cc 2Rb 2Td 
3 1Dd 1Ia 2Oc 2Nb 
4 1Ia 1Dd 2Nb 2Oc 
5 1Ea 1Bb 2Pd 2Wc 
6 1Bb 1Ea 2Wc 2Pd 
7 1Jb 1Kc 2Xd 2Ua 
8 1Kc 1Jb 2Ua 2Xd 
9 1Hd 1Gc 2Vb 2Ma 
10 1Gc 1Hd 2Ma 2Vb 
11 1Ld 1Fb 2Qa 2Sc 
12 1Fb 1Ld 2Sc 2Qa 

 
3 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Dd 1Bb 1Cc 1Aa 
2 1Bb 1Dd 1Aa 1Cc 
3 1Hd 1Fb 1Ea 1Gc 
4 1Fb 1Hd 1Gc 1Ea 
5 2Ia 2Kc 2Ld 2Jb 
6 2Kc 2Ia 2Jb 2Ld 
7 2Nb 2Ma 2Pd 2Oc 
8 2Ma 2Nb 2Oc 2Pd 
9 3Sc 3Td 3Qa 3Rb 
10 3Td 3Sc 3Rb 3Qa 
11 3Wc 3Ua 3Vb 3Xd 
12 3Ua 3Wc 3Xd 3Vb 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



6 Blocks and 24 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1Dd 1Cc 1Bb 1Aa 
2 1Cc 1Dd 1Aa 1Bb 
3 2Ea 2Gc 2Fb 2Hd 
4 2Gc 2Ea 2Hd 2Fb 
5 3Ld 3Ia 3Jb 3Kc 
6 3Ia 3Ld 3Kc 3Jb 
7 4Ma 4Nb 4Oc 4Pd 
8 4Nb 4Ma 4Pd 4Oc 
9 5Rb 5Sc 5Qa 5Td 
10 5Sc 5Rb 5Td 5Qa 
11 6Xd 6Vb 6Ua 6Wc 
12 6Vb 6Xd 6Wc 6Ua 

 
6 Blocks and 24 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1Aa 1Bb 4Pd 4Oc 
2 1Bb 1Aa 4Oc 4Pd 
3 1Cc 1Dd 4Nb 4Ma 
4 1Dd 1Cc 4Ma 4Nb 
5 2Gc 2Fb 5Td 5Qa 
6 2Fb 2Gc 5Qa 5Td 
7 2Ea 2Hd 5Sc 5Rb 
8 2Hd 2Ea 5Rb 5Sc 
9 3Ia 3Kc 6Vb 6Xd 
10 3Kc 3Ia 6Xd 6Vb 
11 3Jb 3Ld 6Wc 6Ua 
12 3Ld 3Jb 6Ua 6Wc 

 
7 Blocks and 28 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AAa 1ADd 1ABb 1ACc 
2 1ADd 1AAa 1ACc 1ABb 
3 2AGc 2AFb 2AEa 2AHd 
4 2AFb 2AGc 2AHd 2AEa 
5 3AKc 3AJb 3AIa 3ALd 
6 3AJb 3AKc 3ALd 3AIa 
7 4AOc 4ANb 4AMa 4APd 
8 4ANb 4AOc 4APd 4AMa 
9 5ASc 5AQa 5ATd 5ARb 
10 5AQa 5ASc 5ARb 5ATd 
11 6AVb 6AXd 6AWc 6AUa 
12 6AXd 6AVb 6AUa 6AWc 
13 7AYa 7BBd 7AZb 7BAc 
14 7BBd 7AYa 7BAc 7AZb 

 
 
 
 
 
 
 
 
 
 
 
 

2 Blocks and 32 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AIa 1APd 2BEc 2AVb 
2 1APd 1AIa 2AVb 2BEc 
3 1AJb 1AMa 2BBd 2ASc 
4 1AMa 1AJb 2ASc 2BBd 
5 1AFb 1AKc 2AXd 2AUa 
6 1AKc 1AFb 2AUa 2AXd 
7 1ALd 1AEa 2AWc 2BDb 
8 1AEa 1ALd 2BDb 2AWc 
9 1AHd 1AAa 2ARb 2BAc 
10 1AAa 1AHd 2BAc 2ARb 
11 1ANb 1AOc 2BCa 2BFd 
12 1AOc 1ANb 2BFd 2BCa 
13 1AGc 1ADd 2AYa 2AZb 
14 1ADd 1AGc 2AZb 2AYa 
15 1ABb 1ACc 2AQa 2ATd 
16 1ACc 1ABb 2ATd 2AQa 

 
4 Blocks and 2 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1AGc 1AEa 1AFb 1AHd 
2 1AEa 1AGc 1AHd 1AFb 
3 1ADd 1AAa 1ACc 1ABb 
4 1AAa 1ADd 1ABb 1ACc 
5 2ALd 2AKc 2AIa 2AJb 
6 2AKc 2ALd 2AJb 2AIa 
7 2AMa 2ANb 2APd 2AOc 
8 2ANb 2AMa 2AOc 2APd 
9 3ATd 3ARb 3AQa 3ASc 
10 3ARb 3ATd 3ASc 3AQa 
11 3AUa 3AVb 3AXd 3AWc 
12 3AVb 3AUa 3AWc 3AXd 
13 4AZb 4BAc 4AYa 4BBd 
14 4BAc 4AZb 4BBd 4AYa 
15 4BEc 4BFd 4BDb 4BCa 
16 4BFd 4BEc 4BCa 4BDb 

 
4 Blocks and 32 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1ADd 1AEa 3ASc 3AVb 
2 1AEa 1ADd 3AVb 3ASc 
3 1ACc 1AFb 3AQa 3AXd 
4 1AFb 1ACc 3AXd 3AQa 
5 1AGc 1ABb 3ATd 3AUa 
6 1ABb 1AGc 3AUa 3ATd 
7 1AAa 1AHd 3AWc 3ARb 
8 1AHd 1AAa 3ARb 3AWc 
9 2AIa 2AJb 4BFd 4BEc 
10 2AJb 2AIa 4BEc 4BFd 
11 2AOc 2ALd 4AZb 4AYa 
12 2ALd 2AOc 4AYa 4AZb 
13 2ANb 2AKc 4BCa 4BBd 
14 2AKc 2ANb 4BBd 4BCa 
15 2APd 2AMa 4BDb 4BAc 
16 2AMa 2APd 4BAc 4BDb 

 
  



8 Blocks and 32 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1ABb 1ADd 1AAa 1ACc 
2 1ADd 1ABb 1ACc 1AAa 
3 2AEa 2AFb 2AHd 2AGc 
4 2AFb 2AEa 2AGc 2AHd 
5 3ALd 3AIa 3AKc 3AJb 
6 3AIa 3ALd 3AJb 3AKc 
7 4AMa 4AOc 4APd 4ANb 
8 4AOc 4AMa 4ANb 4APd 
9 5ARb 5ASc 5AQa 5ATd 
10 5ASc 5ARb 5ATd 5AQa 
11 6AVb 6AXd 6AWc 6AUa 
12 6AXd 6AVb 6AUa 6AWc 
13 7AYa 7BAc 7AZb 7BBd 
14 7BAc 7AYa 7BBd 7AZb 
15 8BFd 8BEc 8BDb 8BCa 
16 8BEc 8BFd 8BCa 8BDb 

 

8 Blocks and 32 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1ADd 1ABb 5AQa 5ASc 
2 1ABb 1ADd 5ASc 5AQa 
3 1AAa 1ACc 5ATd 5ARb 
4 1ACc 1AAa 5ARb 5ATd 
5 2AEa 2AGc 6AVb 6AXd 
6 2AGc 2AEa 6AXd 6AVb 
7 2AHd 2AFb 6AWc 6AUa 
8 2AFb 2AHd 6AUa 6AWc 
9 3AJb 3AKc 7AYa 7BBd 
10 3AKc 3AJb 7BBd 7AYa 
11 3ALd 3AIa 7AZb 7BAc 
12 3AIa 3ALd 7BAc 7AZb 
13 4ANb 4AOc 8BFd 8BCa 
14 4AOc 4ANb 8BCa 8BFd 
15 4AMa 4APd 8BEc 8BDb 
16 4APd 4AMa 8BDb 8BEc 

 
Eight-plex system 
2 Blocks and 8 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Dd 1Aa 1Bb 1Cc 2Ea 2Fb 2Gc 2Hd 
2 1Aa 1Dd 1Cc 1Bb 2Fb 2Ea 2Hd 2Gc 

 
3 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2Ea 1Dd 2Hd 1Bb 1Cc 2Fb 2Gc 1Aa 
2 1Dd 2Ea 1Bb 2Hd 2Fb 1Cc 1Aa 2Gc 
3 3Kc 3Kc 3Ia 3Ia 3Ld 3Ld 3Jb 3Jb 

 
2 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Hd 1Cc 1Dd 1Gc 2Ia 2Nb 2Jb 2Ma 
2 1Cc 1Hd 1Gc 1Dd 2Nb 2Ia 2Ma 2Jb 
3 1Fb 1Aa 1Ea 1Bb 2Ld 2Oc 2Kc 2Pd 
4 1Aa 1Fb 1Bb 1Ea 2Oc 2Ld 2Pd 2Kc 

 
4 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Cc 2Gc 2Fb 3Ld 3Ia 4Nb 4Pd 
2 1Cc 1Aa 2Fb 2Gc 3Ia 3Ld 4Pd 4Nb 
3 1Bb 1Dd 2Hd 2Ea 3Jb 3Kc 4Oc 4Ma 
4 1Dd 1Bb 2Ea 2Hd 3Kc 3Jb 4Ma 4Oc 

 
5 Blocks and 40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Bb 2Ea 1Aa 2Fb 2Gc 1Dd 2Hd 1Cc 
2 2Ea 1Bb 2Fb 1Aa 1Dd 2Gc 1Cc 2Hd 
3 3Ld 4Pd 4Oc 3Kc 4Nb 3Ia 4Ma 3Jb 
4 4Pd 3Ld 3Kc 4Oc 3Ia 4Nb 3Jb 4Ma 
5 5Sc 5Sc 5Td 5Td 5Qa 5Qa 5Rb 5Rb 

 
  



2 Blocks and 24 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Fb 1Ea 1Gc 1Dd 2Xd 2Nb 2Wc 2Qa 
2 1Ea 1Fb 1Dd 1Gc 2Nb 2Xd 2Qa 2Wc 
3 1Cc 1Ia 1Aa 1Bb 2Sc 2Vb 2Pd 2Td 
4 1Ia 1Cc 1Bb 1Aa 2Vb 2Sc 2Td 2Pd 
5 1Kc 1Ld 1Jb 1Hd 2Oc 2Ma 2Rb 2Ua 
6 1Ld 1Kc 1Hd 1Jb 2Ma 2Oc 2Ua 2Rb 

 
3 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Dd 1Gc 1Fb 1Bb 1Aa 1Ea 1Hd 1Cc 
2 1Gc 1Dd 1Bb 1Fb 1Ea 1Aa 1Cc 1Hd 
3 2Ma 2Pd 2Oc 2Kc 2Jb 2Nb 2Ld 2Ia 
4 2Pd 2Ma 2Kc 2Oc 2Nb 2Jb 2Ia 2Ld 
5 3Vb 3Sc 3Td 3Ua 3Xd 3Wc 3Rb 3Qa 
6 3Sc 3Vb 3Ua 3Td 3Wc 3Xd 3Qa 3Rb 

 
6 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 3Kc 2Fb 2Ea 3Ld 5Td 4Ma 4Nb 5Sc 
2 2Fb 3Kc 3Ld 2Ea 4Ma 5Td 5Sc 4Nb 
3 3Ia 1Dd 1Cc 3Jb 4Oc 6Ua 4Pd 6Vb 
4 1Dd 3Ia 3Jb 1Cc 6Ua 4Oc 6Vb 4Pd 
5 1Bb 2Gc 2Hd 1Aa 5Rb 6Wc 6Xd 5Qa 
6 2Gc 1Bb 1Aa 2Hd 6Wc 5Rb 5Qa 6Xd 

 
7 Blocks and 28 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2AEa 1AAa 1ABb 2AHd 1ACc 2AFb 1ADd 2AGc 
2 1AAa 2AEa 2AHd 1ABb 2AFb 1ACc 2AGc 1ADd 
3 3AKc 4ANb 3AJb 4APd 4AMa 3ALd 4AOc 3AIa 
4 4ANb 3AKc 4APd 3AJb 3ALd 4AMa 3AIa 4AOc 
5 5ASc 6AXd 6AUa 5AQa 5ARb 6AWc 6AVb 5ATd 
6 6AXd 5ASc 5AQa 6AUa 6AWc 5ARb 5ATd 6AVb 
7 7AZb 7AZb 7BAc 7BAc 7BBd 7BBd 7AYa 7AYa 

 
2 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFb 1AAa 1AKc 1AMa 2ATd 2BFd 2AVb 2AWc 
2 1AAa 1AFb 1AMa 1AKc 2BFd 2ATd 2AWc 2AVb 
3 1ACc 1AHd 1AJb 1APd 2BCa 2BDb 2AQa 2ASc 
4 1AHd 1ACc 1APd 1AJb 2BDb 2BCa 2ASc 2AQa 
5 1AGc 1ABb 1ALd 1AIa 2BAc 2AZb 2AUa 2AXd 
6 1ABb 1AGc 1AIa 1ALd 2AZb 2BAc 2AXd 2AUa 
7 1ADd 1AEa 1ANb 1AOc 2AYa 2BEc 2ARb 2BBd 
8 1AEa 1ADd 1AOc 1ANb 2BEc 2AYa 2BBd 2ARb 

 
 
 
  



4 Blocks and 32 Phase 1 Experimental units (Higher Residual EDF) 
Run Tag 

113 114 115 116 117 118 119 121 
1 1ABb 1AAa 2AIa 2AOc 3ATd 3ARb 4BEc 4BFd 
2 1AAa 1ABb 2AOc 2AIa 3ARb 3ATd 4BFd 4BEc 
3 1ACc 1AGc 2ALd 2ANb 3AQa 3AXd 4AYa 4BDb 
4 1AGc 1ACc 2ANb 2ALd 3AXd 3AQa 4BDb 4AYa 
5 1AFb 1AHd 2AJb 2APd 3AUa 3ASc 4BAc 4BCa 
6 1AHd 1AFb 2APd 2AJb 3ASc 3AUa 4BCa 4BAc 
7 1AEa 1ADd 2AKc 2AMa 3AWc 3AVb 4BBd 4AZb 
8 1ADd 1AEa 2AMa 2AKc 3AVb 3AWc 4AZb 4BBd 

 
8 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AAa 1ABb 3ALd 3AJb 5ATd 5ASc 7AYa 7BAc 
2 1ABb 1AAa 3AJb 3ALd 5ASc 5ATd 7BAc 7AYa 
3 1ADd 1ACc 3AIa 3AKc 5AQa 5ARb 7AZb 7BBd 
4 1ACc 1ADd 3AKc 3AIa 5ARb 5AQa 7BBd 7AZb 
5 2AHd 2AFb 4AMa 4AOc 6AVb 6AWc 8BFd 8BCa 
6 2AFb 2AHd 4AOc 4AMa 6AWc 6AVb 8BCa 8BFd 
7 2AGc 2AEa 4APd 4ANb 6AXd 6AUa 8BDb 8BEc 
8 2AEa 2AGc 4ANb 4APd 6AUa 6AXd 8BEc 8BDb 

Five Treatments 
Four-plex system 
2 Blocks and 10 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 1Bb 2Fa 2Id 
2 1Bb 1Cc 2Id 2Fa 
3 1Aa 1Ee 2Gb 2Hc 
4 1Ee 1Aa 2Hc 2Gb 
5 1Dd 1Dd 2Je 2Je 

 
2 Blocks and 20 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Gb 1Cc 2Nd 2Oe 
2 1Cc 1Gb 2Oe 2Nd 
3 1Bb 1Ee 2Pa 2Sd 
4 1Ee 1Bb 2Sd 2Pa 
5 1Id 1Aa 2Mc 2Qb 
6 1Aa 1Id 2Qb 2Mc 
7 1Je 1Hc 2Lb 2Ka 
8 1Hc 1Je 2Ka 2Lb 
9 1Fa 1Dd 2Te 2Rc 
10 1Dd 1Fa 2Rc 2Te 

 
4 Blocks and 20 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 2Je 4Qb 3Ka 
2 2Je 1Cc 3Ka 4Qb 
3 1Bb 2Fa 3Nd 4Rc 
4 2Fa 1Bb 4Rc 3Nd 
5 1Dd 2Gb 4Te 3Mc 
6 2Gb 1Dd 3Mc 4Te 
7 2Hc 1Aa 3Oe 4Sd 
8 1Aa 2Hc 4Sd 3Oe 
9 2Id 1Ee 4Pa 3Lb 
10 1Ee 2Id 3Lb 4Pa 

2 Blocks and 30 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AGb 1AId 2ATe 2AZa 
2 1AId 1AGb 2AZa 2ATe 
3 1AMc 1ADd 2BAb 2AYe 
4 1ADd 1AMc 2AYe 2BAb 
5 1ANd 1AKa 2BDe 2AQb 
6 1AKa 1ANd 2AQb 2BDe 
7 1AHc 1AOe 2BCd 2AVb 
8 1AOe 1AHc 2AVb 2BCd 
9 1AFa 1ALb 2AWc 2ASd 
10 1ALb 1AFa 2ASd 2AWc 
11 1AJe 1ACc 2AUa 2AXd 
12 1ACc 1AJe 2AXd 2AUa 
13 1AEe 1ABb 2APa 2ARc 
14 1ABb 1AEe 2ARc 2APa 
15 1AAa 1AAa 2BBc 2BBc 

3 Blocks and 30 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2ATe 1AAa 1ACc 2AQb 
2 1AAa 2ATe 2AQb 1ACc 
3 2ASd 1AHc 2ALb 1AEe 
4 1AHc 2ASd 1AEe 2ALb 
5 1AGb 2AKa 1AId 2AOe 
6 2AKa 1AGb 2AOe 1AId 
7 2ARc 1ABb 2APa 1ADd 
8 1ABb 2ARc 1ADd 2APa 
9 1AJe 1AFa 2ANd 2AMc 
10 1AFa 1AJe 2AMc 2ANd 
11 3AYe 3BBc 3AZa 3BAb 
12 3BBc 3AYe 3BAb 3AZa 
13 3AXd 3AVb 3AUa 3AWc 
14 3AVb 3AXd 3AWc 3AUa 
15 3BCd 3BCd 3BDe 3BDe 



Six Blocks and 30 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AAa 2AJe 4AQb 5AWc 
2 2AJe 1AAa 5AWc 4AQb 
3 2AHc 1ABb 5AXd 4APa 
4 1ABb 2AHc 4APa 5AXd 
5 2AId 1ACc 5AVb 4ATe 
6 1ACc 2AId 4ATe 5AVb 
7 2AGb 1AEe 4ASd 5AUa 
8 1AEe 2AGb 5AUa 4ASd 
9 2AFa 1ADd 4ARc 5AYe 
10 1ADd 2AFa 5AYe 4ARc 
11 3AOe 3AMc 6AZa 6BCd 
12 3AMc 3AOe 6BCd 6AZa 
13 3ANd 3AKa 6BDe 6BAb 
14 3AKa 3ANd 6BAb 6BDe 
15 3ALb 3ALb 6BBc 6BBc 

 
2 Blocks and 40 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AFa 1AEe 2BAb 2BLc 
2 1AEe 1AFa 2BLc 2BAb 
3 1AKa 1ALb 2BIe 2BGc 
4 1ALb 1AKa 2BGc 2BIe 
5 1AId 1APa 2BBc 2BDe 
6 1APa 1AId 2BDe 2BBc 
7 1ANd 1AHc 2AVb 2BJa 
8 1AHc 1ANd 2BJa 2AVb 
9 1ADd 1AMc 2AYe 2BEa 
10 1AMc 1ADd 2BEa 2AYe 
11 1AAa 1ABb 2AXd 2AWc 
12 1ABb 1AAa 2AWc 2AXd 
13 1ARc 1ATe 2BKb 2BCd 
14 1ATe 1ARc 2BCd 2BKb 
15 1ASd 1AGb 2AUa 2BNe 
16 1AGb 1ASd 2BNe 2AUa 
17 1AQb 1AJe 2AZa 2BHd 
18 1AJe 1AQb 2BHd 2AZa 
19 1AOe 1ACc 2BFb 2BMd 
20 1ACc 1AOe 2BMd 2BFb 

 
 
 
 
 
 
 

4 Blocks and 40 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AGb 1AAa 3BCd 3AYe 
2 1AAa 1AGb 3AYe 3BCd 
3 1AHc 1ADd 3BAb 3BDe 
4 1ADd 1AHc 3BDe 3BAb 
5 1ABb 1AEe 3AUa 3BBc 
6 1AEe 1ABb 3BBc 3AUa 
7 1AId 1AJe 3AZa 3AWc 
8 1AJe 1AId 3AWc 3AZa 
9 1AFa 1ACc 3AVb 3AXd 
10 1ACc 1AFa 3AXd 3AVb 
11 2AQb 2AKa 4BMd 4BGc 
12 2AKa 2AQb 4BGc 4BMd 
13 2AOe 2ALb 4BJa 4BHd 
14 2ALb 2AOe 4BHd 4BJa 
15 2AMc 2ATe 4BEa 4BFb 
16 2ATe 2AMc 4BFb 4BEa 
17 2ANd 2ARc 4BKb 4BNe 
18 2ARc 2ANd 4BNe 4BKb 
19 2APa 2ASd 4BIe 4BLc 
20 2ASd 2APa 4BLc 4BIe 

 
8 Blocks and 40 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2AHc 1AAa 6BAb 5AYe 
2 1AAa 2AHc 5AYe 6BAb 
3 2AGb 1AEe 5AXd 6AZa 
4 1AEe 2AGb 6AZa 5AXd 
5 2AId 1ACc 5AUa 6BDe 
6 1ACc 2AId 6BDe 5AUa 
7 2AFa 1ADd 6BBc 5AVb 
8 1ADd 2AFa 5AVb 6BBc 
9 2AJe 1ABb 6BCd 5AWc 
10 1ABb 2AJe 5AWc 6BCd 
11 3ANd 4ARc 8BNe 7BFb 
12 4ARc 3ANd 7BFb 8BNe 
13 4ATe 3ALb 8BMd 7BEa 
14 3ALb 4ATe 7BEa 8BMd 
15 3AOe 4APa 7BGc 8BKb 
16 4APa 3AOe 8BKb 7BGc 
17 3AMc 4AQb 7BHd 8BJa 
18 4AQb 3AMc 8BJa 7BHd 
19 4ASd 3AKa 8BLc 7BIe 
20 3AKa 4ASd 7BIe 8BLc 

 

Eight-plex iTRAQ system 
2 Blocks and 20 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Aa 1Cc 1Gb 1Id 2Qb 2Pa 2Nd 2Oe 
2 1Cc 1Aa 1Id 1Gb 2Pa 2Qb 2Oe 2Nd 
3 1Dd 1Bb 1Je 1Fa 2Te 2Rc 2Ka 2Mc 
4 1Bb 1Dd 1Fa 1Je 2Rc 2Te 2Mc 2Ka 
5 1Ee 1Ee 1Hc 1Hc 2Sd 2Sd 2Lb 2Lb 

 
  



4 Blocks and 20 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Bb 1Cc 2Id 2Je 3Nd 3Oe 4Pa 4Qb 
2 1Cc 1Bb 2Je 2Id 3Oe 3Nd 4Qb 4Pa 
3 1Dd 1Aa 2Fa 2Hc 3Lb 3Mc 4Te 4Sd 
4 1Aa 1Dd 2Hc 2Fa 3Mc 3Lb 4Sd 4Te 
5 1Ee 1Ee 2Gb 2Gb 3Ka 3Ka 4Rc 4Rc 

 
2 Blocks and 40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AGb 1AQb 1AOe 1ADd 2BNe 2BJa 2BLc 2AWc 
2 1AQb 1AGb 1ADd 1AOe 2BJa 2BNe 2AWc 2BLc 
3 1ACc 1APa 1ATe 1ABb 2BBc 2BIe 2BCd 2BMd 
4 1APa 1ACc 1ABb 1ATe 2BIe 2BBc 2BMd 2BCd 
5 1ANd 1AJe 1ALb 1AAa 2BGc 2AXd 2AUa 2BAb 
6 1AJe 1ANd 1AAa 1ALb 2AXd 2BGc 2BAb 2AUa 
7 1AHc 1AFa 1AId 1ARc 2BHd 2AVb 2BDe 2AZa 
8 1AFa 1AHc 1ARc 1AId 2AVb 2BHd 2AZa 2BDe 
9 1ASd 1AEe 1AMc 1AKa 2BEa 2BKb 2AYe 2BFb 
10 1AEe 1ASd 1AKa 1AMc 2BKb 2BEa 2BFb 2AYe 

 
4 Blocks and 40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AAa 1AHc 2APa 2ALb 3AYe 3AWc 4BIe 4BMd 
2 1AHc 1AAa 2ALb 2APa 3AWc 3AYe 4BMd 4BIe 
3 1AJe 1AGb 2ATe 2AMc 3AZa 3BAb 4BHd 4BLc 
4 1AGb 1AJe 2AMc 2ATe 3BAb 3AZa 4BLc 4BHd 
5 1ADd 1ABb 2AQb 2ASd 3BBc 3BDe 4BEa 4BNe 
6 1ABb 1ADd 2ASd 2AQb 3BDe 3BBc 4BNe 4BEa 
7 1AId 1ACc 2AKa 2AOe 3AUa 3AXd 4BFb 4BKb 
8 1ACc 1AId 2AOe 2AKa 3AXd 3AUa 4BKb 4BFb 
9 1AFa 1AEe 2ARc 2ANd 3AVb 3BCd 4BJa 4BGc 
10 1AEe 1AFa 2ANd 2ARc 3BCd 3AVb 4BGc 4BJa 

 
8 Blocks and 40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2AJe 1ACc 3ALb 4APa 5AUa 6BCd 8BMd 7BFb 
2 1ACc 2AJe 4APa 3ALb 6BCd 5AUa 7BFb 8BMd 
3 2AFa 1ABb 3ANd 4ATe 5AWc 6BAb 7BEa 8BLc 
4 1ABb 2AFa 4ATe 3ANd 6BAb 5AWc 8BLc 7BEa 
5 1AAa 2AHc 4ASd 3AOe 6AZa 5AYe 7BHd 8BKb 
6 2AHc 1AAa 3AOe 4ASd 5AYe 6AZa 8BKb 7BHd 
7 2AGb 1ADd 4ARc 3AKa 5AXd 6BBc 8BNe 7BIe 
8 1ADd 2AGb 3AKa 4ARc 6BBc 5AXd 7BIe 8BNe 
9 2AId 1AEe 4AQb 3AMc 5AVb 6BDe 8BJa 7BGc 
10 1AEe 2AId 3AMc 4AQb 6BDe 5AVb 7BGc 8BJa 

Six Treatments 
Four-plex system 
2 Blocks and 12 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Bb 1Ee 2Jd 2Ga 
2 1Ee 1Bb 2Ga 2Jd 
3 1Aa 1Ff 2Ic 2Ke 
4 1Ff 1Aa 2Ke 2Ic 
5 1Cc 1Dd 2Lf 2Hb 
6 1Dd 1Cc 2Hb 2Lf 

 
  



2 Blocks and 18 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2Jd 1Bb 1Ee 2Ic 
2 1Bb 2Jd 2Ic 1Ee 
3 1Cc 2Ke 2Lf 1Aa 
4 2Ke 1Cc 1Aa 2Lf 
5 1Ff 2Ga 2Hb 1Dd 
6 2Ga 1Ff 1Dd 2Hb 
7 3Pd 3Ma 3Oc 3Nb 
8 3Ma 3Pd 3Nb 3Oc 
9 3Qe 3Qe 3Rf 3Rf 

 
2 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Cc 1Jd 2Tb 2We 
2 1Jd 1Cc 2We 2Tb 
3 1Bb 1Ee 2Ma 2Oc 
4 1Ee 1Bb 2Oc 2Ma 
5 1Ic 1Aa 2Xf 2Nb 
6 1Aa 1Ic 2Nb 2Xf 
7 1Ga 1Ke 2Rf 2Vd 
8 1Ke 1Ga 2Vd 2Rf 
9 1Lf 1Hb 2Qe 2Pd 
10 1Hb 1Lf 2Pd 2Qe 
11 1Dd 1Ff 2Uc 2Sa 
12 1Ff 1Dd 2Sa 2Uc 

 
4 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Ee 1Dd 3Nb 3Ma 
2 1Dd 1Ee 3Ma 3Nb 
3 1Cc 1Aa 3Rf 3Qe 
4 1Aa 1Cc 3Qe 3Rf 
5 1Ff 1Bb 3Oc 3Pd 
6 1Bb 1Ff 3Pd 3Oc 
7 2Ga 2Jd 4Uc 4Xf 
8 2Jd 2Ga 4Xf 4Uc 
9 2Ic 2Ke 4Vd 4Tb 
10 2Ke 2Ic 4Tb 4Vd 
11 2Hb 2Lf 4We 4Sa 
12 2Lf 2Hb 4Sa 4We 

 
5 Blocks and 30 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 2AJd 2AHb 1AEe 1AFf 
2 2AHb 2AJd 1AFf 1AEe 
3 2ALf 1ACc 2AGa 1ABb 
4 1ACc 2ALf 1ABb 2AGa 
5 1ADd 1AAa 2AKe 2AIc 
6 1AAa 1ADd 2AIc 2AKe 
7 3APd 4AWe 3AOc 4AXf 
8 4AWe 3APd 4AXf 3AOc 
9 4ASa 3ARf 4ATb 3AQe 
10 3ARf 4ASa 3AQe 4ATb 
11 3ANb 4AUc 3AMa 4AVd 
12 4AUc 3ANb 4AVd 3AMa 
13 5AYa 5BCe 5AZb 5BBd 
14 5BCe 5AYa 5BBd 5AZb 
15 5BDf 5BDf 5BAc 5BAc 

Two Blocks and 36 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1APd 1AEe 2BEa 2BGc 
2 1AEe 1APd 2BGc 2BEa 
3 1AQe 1AOc 2BJf 2AZb 
4 1AOc 1AQe 2AZb 2BJf 
5 1AIc 1AKe 2ATb 2BBd 
6 1AKe 1AIc 2BBd 2ATb 
7 1ANb 1AAa 2AVd 2BDf 
8 1AAa 1ANb 2BDf 2AVd 
9 1AGa 1ALf 2BFb 2BAc 
10 1ALf 1AGa 2BAc 2BFb 
11 1ABb 1AJd 2AUc 2AYa 
12 1AJd 1ABb 2AYa 2AUc 
13 1AHb 1ADd 2AXf 2BIe 
14 1ADd 1AHb 2BIe 2AXf 
15 1ARf 1ACc 2ASa 2AWe 
16 1ACc 1ARf 2AWe 2ASa 
17 1AMa 1AFf 2BHd 2BCe 
18 1AFf 1AMa 2BCe 2BHd 

Three Blocks and 36 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AFf 1AKe 1AIc 1AAa 
2 1AKe 1AFf 1AAa 1AIc 
3 1ADd 1AEe 1ACc 1ABb 
4 1AEe 1ADd 1ABb 1ACc 
5 1AHb 1AGa 1AJd 1ALf 
6 1AGa 1AHb 1ALf 1AJd 
7 2AOc 2APd 2ARf 2ANb 
8 2APd 2AOc 2ANb 2ARf 
9 2AUc 2AMa 2AQe 2AVd 
10 2AMa 2AUc 2AVd 2AQe 
11 2ASa 2ATb 2AWe 2AXf 
12 2ATb 2ASa 2AXf 2AWe 
13 3BGc 3BDf 3BEa 3BBd 
14 3BDf 3BGc 3BBd 3BEa 
15 3BJf 3AZb 3BCe 3BAc 
16 3AZb 3BJf 3BAc 3BCe 
17 3BHd 3BIe 3AYa 3BFb 
18 3BIe 3BHd 3BFb 3AYa 

Six Blocks and 36 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AAa 1ACc 4AXf 4ATb 
2 1ACc 1AAa 4ATb 4AXf 
3 1ADd 1AFf 4ASa 4AWe 
4 1AFf 1ADd 4AWe 4ASa 
5 1ABb 1AEe 4AUc 4AVd 
6 1AEe 1ABb 4AVd 4AUc 
7 2AHb 2AGa 5BCe 5BAc 
8 2AGa 2AHb 5BAc 5BCe 
9 2AIc 2ALf 5AYa 5BBd 
10 2ALf 2AIc 5BBd 5AYa 
11 2AKe 2AJd 5AZb 5BDf 
12 2AJd 2AKe 5BDf 5AZb 
13 3AOc 3AQe 6BHd 6BEa 
14 3AQe 3AOc 6BEa 6BHd 
15 3APd 3ANb 6BJf 6BGc 
16 3ANb 3APd 6BGc 6BJf 
17 3AMa 3ARf 6BIe 6BFb 
18 3ARf 3AMa 6BFb 6BIe 



7 Blocks and 42 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1ADd 2ALf 1ABb 2AKe 
2 2ALf 1ADd 2AKe 1ABb 
3 1AFf 2AIc 1AAa 2AHb 
4 2AIc 1AFf 2AHb 1AAa 
5 1ACc 2AGa 2AJd 1AEe 
6 2AGa 1ACc 1AEe 2AJd 
7 4AWe 3APd 3ARf 4AUc 
8 3APd 4AWe 4AUc 3ARf 
9 4ASa 3AQe 3ANb 4AXf 
10 3AQe 4ASa 4AXf 3ANb 
11 4ATb 3AOc 3AMa 4AVd 
12 3AOc 4ATb 4AVd 3AMa 
13 6BFb 6BHd 5BAc 5BDf 
14 6BHd 6BFb 5BDf 5BAc 
15 5BCe 6BJf 6BEa 5BBd 
16 6BJf 5BCe 5BBd 6BEa 
17 5AZb 5AYa 6BIe 6BGc 
18 5AYa 5AZb 6BGc 6BIe 
19 7BLb 7BOe 7BMc 7BPf 
20 7BOe 7BLb 7BPf 7BMc 
21 7BNd 7BNd 7BKa 7BKa 

 
2 Blocks and 48 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1ABb 1AAa 2BUe 2BBd 
2 1AAa 1ABb 2BBd 2BUe 
3 1AOc 1AWe 2AZb 2BDf 
4 1AWe 1AOc 2BDf 2AZb 
5 1AJd 1AGa 2BIe 2BAc 
6 1AGa 1AJd 2BAc 2BIe 
7 1ARf 1AIc 2BOe 2BHd 
8 1AIc 1ARf 2BHd 2BOe 
9 1APd 1ASa 2BRb 2BVf 
10 1ASa 1APd 2BVf 2BRb 
11 1AQe 1ACc 2BLb 2BKa 
12 1ACc 1AQe 2BKa 2BLb 
13 1ALf 1ADd 2BQa 2BSc 
14 1ADd 1ALf 2BSc 2BQa 
15 1ANb 1AMa 2BJf 2BGc 
16 1AMa 1ANb 2BGc 2BJf 
17 1AVd 1ATb 2BCe 2BMc 
18 1ATb 1AVd 2BMc 2BCe 
19 1AEe 1AXf 2BEa 2BFb 
20 1AXf 1AEe 2BFb 2BEa 
21 1AHb 1AUc 2BNd 2BPf 
22 1AUc 1AHb 2BPf 2BNd 
23 1AFf 1AKe 2BTd 2AYa 
24 1AKe 1AFf 2AYa 2BTd 

 
 

 

 

 

 

 

4 Blocks and 48 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1AGa 1AEe 1ABb 1AFf 
2 1AEe 1AGa 1AFf 1ABb 
3 1ALf 1ADd 1ACc 1AAa 
4 1ADd 1ALf 1AAa 1ACc 
5 1AHb 1AJd 1AIc 1AKe 
6 1AJd 1AHb 1AKe 1AIc 
7 2ARf 2ANb 2AUc 2APd 
8 2ANb 2ARf 2APd 2AUc 
9 2AVd 2AQe 2ASa 2ATb 
10 2AQe 2AVd 2ATb 2ASa 
11 2AOc 2AXf 2AMa 2AWe 
12 2AXf 2AOc 2AWe 2AMa 
13 3BIe 3BAc 3BDf 3BBd 
14 3BAc 3BIe 3BBd 3BDf 
15 3BEa 3BGc 3BCe 3AZb 
16 3BGc 3BEa 3AZb 3BCe 
17 3BFb 3BJf 3BHd 3AYa 
18 3BJf 3BFb 3AYa 3BHd 
19 4BUe 4BMc 4BRb 4BVf 
20 4BMc 4BUe 4BVf 4BRb 
21 4BTd 4BKa 4BPf 4BOe 
22 4BKa 4BTd 4BOe 4BPf 
23 4BQa 4BLb 4BNd 4BSc 
24 4BLb 4BQa 4BSc 4BNd 

 
4 Blocks and 48 Phase 1 Experimental units 
(Higher Residual EDF) 

Run Tag 
114 115 116 117 

1 1ALf 1AAa 3BCe 3BBd 
2 1AAa 1ALf 3BBd 3BCe 
3 1AIc 1ADd 3BJf 3BEa 
4 1ADd 1AIc 3BEa 3BJf 
5 1AFf 1AHb 3BHd 3BAc 
6 1AHb 1AFf 3BAc 3BHd 
7 1AGa 1ABb 3BIe 3BGc 
8 1ABb 1AGa 3BGc 3BIe 
9 1AJd 1AEe 3BFb 3AYa 
10 1AEe 1AJd 3AYa 3BFb 
11 1ACc 1AKe 3AZb 3BDf 
12 1AKe 1ACc 3BDf 3AZb 
13 2ATb 2ARf 4BSc 4BKa 
14 2ARf 2ATb 4BKa 4BSc 
15 2APd 2AMa 4BVf 4BRb 
16 2AMa 2APd 4BRb 4BVf 
17 2ANb 2ASa 4BPf 4BUe 
18 2ASa 2ANb 4BUe 4BPf 
19 2AXf 2AUc 4BTd 4BOe 
20 2AUc 2AXf 4BOe 4BTd 
21 2AVd 2AWe 4BLb 4BMc 
22 2AWe 2AVd 4BMc 4BLb 
23 2AOc 2AQe 4BNd 4BQa 
24 2AQe 2AOc 4BQa 4BNd 

 
  



8 Blocks and 48 Phase 1 Experimental units 
(Higher EDF) 

Run Tag 
114 115 116 117 

1 1AAa 1ADd 5BDf 5AZb 
2 1ADd 1AAa 5AZb 5BDf 
3 1AEe 1AFf 5BBd 5BAc 
4 1AFf 1AEe 5BAc 5BBd 
5 1ACc 1ABb 5AYa 5BCe 
6 1ABb 1ACc 5BCe 5AYa 
7 2AIc 2AJd 6BJf 6BFb 
8 2AJd 2AIc 6BFb 6BJf 
9 2AGa 2AKe 6BGc 6BHd 
10 2AKe 2AGa 6BHd 6BGc 
11 2AHb 2ALf 6BIe 6BEa 
12 2ALf 2AHb 6BEa 6BIe 
13 3AMa 3ARf 7BMc 7BNd 
14 3ARf 3AMa 7BNd 7BMc 
15 3AQe 3APd 7BKa 7BLb 
16 3APd 3AQe 7BLb 7BKa 
17 3ANb 3AOc 7BOe 7BPf 
18 3AOc 3ANb 7BPf 7BOe 
19 4ASa 4AWe 8BVf 8BSc 
20 4AWe 4ASa 8BSc 8BVf 
21 4ATb 4AXf 8BUe 8BTd 
22 4AXf 4ATb 8BTd 8BUe 
23 4AVd 4AUc 8BRb 8BQa 
24 4AUc 4AVd 8BQa 8BRb 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Eight-plex system 

2 Blocks and 12 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Bb 1Cc 1Ee 1Aa 2Lf 2Ga 2Jd 2Hb 
2 1Cc 1Bb 1Aa 1Ee 2Ga 2Lf 2Hb 2Jd 
3 1Ff 1Ff 1Dd 1Dd 2Ic 2Ic 2Ke 2Ke 

 
2 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Hb 1Ic 1Cc 1Dd 2Rf 2Qe 2Vd 2Sa 
2 1Ic 1Hb 1Dd 1Cc 2Qe 2Rf 2Sa 2Vd 
3 1Ke 1Jd 1Ff 1Aa 2Oc 2Nb 2Tb 2We 
4 1Jd 1Ke 1Aa 1Ff 2Nb 2Oc 2We 2Tb 
5 1Lf 1Ga 1Ee 1Bb 2Pd 2Ma 2Uc 2Xf 
6 1Ga 1Lf 1Bb 1Ee 2Ma 2Pd 2Xf 2Uc 

 
4 Blocks and 24 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Bb 1Cc 2Ic 2Ke 3Pd 3Rf 4Vd 4Sa 
2 1Cc 1Bb 2Ke 2Ic 3Rf 3Pd 4Sa 4Vd 
3 1Aa 1Dd 2Lf 2Hb 3Oc 3Qe 4Xf 4Tb 
4 1Dd 1Aa 2Hb 2Lf 3Qe 3Oc 4Tb 4Xf 
5 1Ee 1Ff 2Ga 2Jd 3Ma 3Nb 4Uc 4We 
6 1Ff 1Ee 2Jd 2Ga 3Nb 3Ma 4We 4Uc 

 
  



2 Blocks and 36 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1AIc 1AGa 1AHb 1AJd 2BCe 2BEa 2AXf 2AUc 
2 1AGa 1AIc 1AJd 1AHb 2BEa 2BCe 2AUc 2AXf 
3 1ALf 1AQe 1ABb 1AKe 2BGc 2ASa 2BHd 2AZb 
4 1AQe 1ALf 1AKe 1ABb 2ASa 2BGc 2AZb 2BHd 
5 1ADd 1ARf 1AOc 1AMa 2AVd 2AWe 2ATb 2BAc 
6 1ARf 1ADd 1AMa 1AOc 2AWe 2AVd 2BAc 2ATb 
7 1APd 1AEe 1AAa 1ACc 2BFb 2BJf 2BDf 2BIe 
8 1AEe 1APd 1ACc 1AAa 2BJf 2BFb 2BIe 2BDf 
9 1ANb 1ANb 1AFf 1AFf 2BBd 2BBd 2AYa 2AYa 

 
3 Blocks and 36 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2AXf 1AEe 2AOc 1ACc 1AFf 2AVd 2AMa 1ABb 
2 1AEe 2AXf 1ACc 2AOc 2AVd 1AFf 1ABb 2AMa 
3 2ANb 1AIc 1ADd 1AGa 2AWe 1AKe 2ASa 2ARf 
4 1AIc 2ANb 1AGa 1ADd 1AKe 2AWe 2ARf 2ASa 
5 1AJd 1AAa 1AHb 2ATb 2AUc 2APd 1ALf 2AQe 
6 1AAa 1AJd 2ATb 1AHb 2APd 2AUc 2AQe 1ALf 
7 3BJf 3BHd 3AYa 3BIe 3BEa 3AZb 3BBd 3BAc 
8 3BHd 3BJf 3BIe 3AYa 3AZb 3BEa 3BAc 3BBd 
9 3BCe 3BCe 3BDf 3BDf 3BGc 3BGc 3BFb 3BFb 

 
6 Blocks and 36 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFf 2AIc 2AJd 3AQe 4AWe 5AYa 5BBd 6BFb 
2 2AIc 1AFf 3AQe 2AJd 5AYa 4AWe 6BFb 5BBd 
3 2AKe 3APd 1ABb 2ALf 6BEa 5BDf 4AUc 5BAc 
4 3APd 2AKe 2ALf 1ABb 5BDf 6BEa 5BAc 4AUc 
5 2AHb 1AAa 2AGa 3AOc 5AZb 4AXf 5BCe 6BHd 
6 1AAa 2AHb 3AOc 2AGa 4AXf 5AZb 6BHd 5BCe 
7 3ANb 1ADd 3AMa 1AEe 6BGc 4AVd 6BJf 4ASa 
8 1ADd 3ANb 1AEe 3AMa 4AVd 6BGc 4ASa 6BJf 
9 3ARf 3ARf 1ACc 1ACc 6BIe 6BIe 4ATb 4ATb 

 
2 Blocks and 48 Phase 1 Experimental units 

Run Tag V2 V3 V4 V5 V6 V7 V8 
113 114 115 116 117 118 119 121 

1 1AFf 1AWe 1ATb 1AOc 2BQa 2BGc 2BVf 2BHd 
2 1AWe 1AFf 1AOc 1ATb 2BGc 2BQa 2BHd 2BVf 
3 1AMa 1ARf 1AKe 1AXf 2BTd 2BLb 2AZb 2BMc 
4 1ARf 1AMa 1AXf 1AKe 2BLb 2BTd 2BMc 2AZb 
5 1AIc 1AHb 1AJd 1AGa 2BNd 2BPf 2BIe 2BEa 
6 1AHb 1AIc 1AGa 1AJd 2BPf 2BNd 2BEa 2BIe 
7 1ADd 1ACc 1ASa 1AVd 2BOe 2BDf 2BRb 2BCe 
8 1ACc 1ADd 1AVd 1ASa 2BDf 2BOe 2BCe 2BRb 
9 1APd 1AQe 1ALf 1AUc 2AYa 2BFb 2BAc 2BKa 
10 1AQe 1APd 1AUc 1ALf 2BFb 2AYa 2BKa 2BAc 
11 1ANb 1AAa 1ABb 1AEe 2BSc 2BUe 2BJf 2BBd 
12 1AAa 1ANb 1AEe 1ABb 2BUe 2BSc 2BBd 2BJf 

 
  



4 Blocks and 48 Phase 1 Experimental units (Higher Residual EDF) 
Run Tag 

113 114 115 116 117 118 119 121 
1 1AFf 1ADd 2AOc 2ATb 3BEa 3BCe 4BUe 4BTd 
2 1ADd 1AFf 2ATb 2AOc 3BCe 3BEa 4BTd 4BUe 
3 1AHb 1AIc 2ASa 2AVd 3BGc 3BDf 4BOe 4BPf 
4 1AIc 1AHb 2AVd 2ASa 3BDf 3BGc 4BPf 4BOe 
5 1ALf 1ABb 2AXf 2AQe 3AYa 3BFb 4BMc 4BNd 
6 1ABb 1ALf 2AQe 2AXf 3BFb 3AYa 4BNd 4BMc 
7 1AJd 1AAa 2ARf 2AUc 3BBd 3BIe 4BQa 4BLb 
8 1AAa 1AJd 2AUc 2ARf 3BIe 3BBd 4BLb 4BQa 
9 1AEe 1ACc 2APd 2AWe 3BAc 3BJf 4BRb 4BKa 
10 1ACc 1AEe 2AWe 2APd 3BJf 3BAc 4BKa 4BRb 
11 1AKe 1AGa 2AMa 2ANb 3AZb 3BHd 4BVf 4BSc 
12 1AGa 1AKe 2ANb 2AMa 3BHd 3AZb 4BSc 4BVf 

 
8 Blocks and 48 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AEe 1ABb 3ARf 3AQe 5AYa 5BBd 7BPf 7BMc 
2 1ABb 1AEe 3AQe 3ARf 5BBd 5AYa 7BMc 7BPf 
3 1ADd 1ACc 3AMa 3AOc 5BDf 5BCe 7BLb 7BKa 
4 1ACc 1ADd 3AOc 3AMa 5BCe 5BDf 7BKa 7BLb 
5 1AAa 1AFf 3ANb 3APd 5BAc 5AZb 7BOe 7BNd 
6 1AFf 1AAa 3APd 3ANb 5AZb 5BAc 7BNd 7BOe 
7 2ALf 2AIc 4ATb 4ASa 6BIe 6BHd 8BRb 8BSc 
8 2AIc 2ALf 4ASa 4ATb 6BHd 6BIe 8BSc 8BRb 
9 2AGa 2AJd 4AXf 4AUc 6BJf 6BFb 8BTd 8BUe 
10 2AJd 2AGa 4AUc 4AXf 6BFb 6BJf 8BUe 8BTd 
11 2AKe 2AHb 4AWe 4AVd 6BEa 6BGc 8BQa 8BVf 
12 2AHb 2AKe 4AVd 4AWe 6BGc 6BEa 8BVf 8BQa 

Seven Treatments 
Four-plex system 
2 Blocks and 14 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Dd 1Aa 2Le 2Mf 
2 1Aa 1Dd 2Mf 2Le 
3 1Ff 1Gg 2Ib 2Ha 
4 1Gg 1Ff 2Ha 2Ib 
5 1Bb 1Ee 2Jc 2Ng 
6 1Ee 1Bb 2Ng 2Jc 
7 1Cc 1Cc 2Kd 2Kd 

 
2 Blocks and 28 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AGg 1AMf 2ARd 2AWb 
2 1AMf 1AGg 2AWb 2ARd 
3 1ACc 1AIb 2ASe 2BBg 
4 1AIb 1ACc 2BBg 2ASe 
5 1ABb 1AJc 2AOa 2AYd 
6 1AJc 1ABb 2AYd 2AOa 
7 1ALe 1AHa 2APb 2ATf 
8 1AHa 1ALe 2ATf 2APb 
9 1ANg 1AKd 2AVa 2AZe 
10 1AKd 1ANg 2AZe 2AVa 
11 1AEe 1ADd 2AXc 2BAf 
12 1ADd 1AEe 2BAf 2AXc 
13 1AFf 1AAa 2AQc 2AUg 
14 1AAa 1AFf 2AUg 2AQc 

4 Blocks and 28 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AFf 2ANg 4AYd 3AQc 
2 2ANg 1AFf 3AQc 4AYd 
3 2ALe 1AGg 3ATf 4AWb 
4 1AGg 2ALe 4AWb 3ATf 
5 2AHa 1ACc 3APb 4BAf 
6 1ACc 2AHa 4BAf 3APb 
7 2AJc 1AEe 3AOa 4BBg 
8 1AEe 2AJc 4BBg 3AOa 
9 1ADd 2AIb 4AXc 3ASe 
10 2AIb 1ADd 3ASe 4AXc 
11 2AMf 1AAa 4AZe 3ARd 
12 1AAa 2AMf 3ARd 4AZe 
13 2AKd 1ABb 3AUg 4AVa 
14 1ABb 2AKd 4AVa 3AUg 

 
 
 
 
 
 
 
 
 
 
 
  



2 Blocks and 42 Phase 1 Experimental units 
Run Tag  

114 115 116 117 
1 1ARd 1AGg 2BHf 2AXc 
2 1AGg 1ARd 2AXc 2BHf 
3 1AEe 1AOa 2BAf 2BLc 
4 1AOa 1AEe 2BLc 2BAf 
5 1ALe 1ABb 2BJa 2BPg 
6 1ABb 1ALe 2BPg 2BJa 
7 1ACc 1AHa 2AYd 2BDb 
8 1AHa 1ACc 2BDb 2AYd 
9 1ADd 1ATf 2BIg 2BKb 
10 1ATf 1ADd 2BKb 2BIg 
11 1AAa 1AFf 2AZe 2BBg 
12 1AFf 1AAa 2BBg 2AZe 
13 1ASe 1AJc 2BOf 2AWb 
14 1AJc 1ASe 2AWb 2BOf 
15 1ANg 1AIb 2BNe 2BEc 
16 1AIb 1ANg 2BEc 2BNe 
17 1APb 1AMf 2AVa 2BFd 
18 1AMf 1APb 2BFd 2AVa 
19 1AUg 1AQc 2BCa 2BMd 
20 1AQc 1AUg 2BMd 2BCa 
21 1AKd 1AKd 2BGe 2BGe 

 
3 Blocks and 42 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AEe 2BBg 2AVa 1AMf 
2 2BBg 1AEe 1AMf 2AVa 
3 2AXc 2ASe 1AIb 1AAa 
4 2ASe 2AXc 1AAa 1AIb 
5 1AJc 1ABb 2AUg 2AZe 
6 1ABb 1AJc 2AZe 2AUg 
7 1ALe 1ANg 2ATf 2AYd 
8 1ANg 1ALe 2AYd 2ATf 
9 2AOa 1ADd 1AFf 2APb 
10 1ADd 2AOa 2APb 1AFf 
11 1AHa 2ARd 1AGg 2AQc 
12 2ARd 1AHa 2AQc 1AGg 
13 2AWb 2BAf 1AKd 1ACc 
14 2BAf 2AWb 1ACc 1AKd 
15 3BDb 3BPg 3BMd 3BJa 
16 3BPg 3BDb 3BJa 3BMd 
17 3BCa 3BHf 3BEc 3BNe 
18 3BHf 3BCa 3BNe 3BEc 
19 3BLc 3BOf 3BKb 3BIg 
20 3BOf 3BLc 3BIg 3BKb 
21 3BFd 3BFd 3BGe 3BGe 

 
 

 

 

 

 

 

 

 

6 Blocks and 42 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2AKd 1ACc 4BBg 5BHf 
2 1ACc 2AKd 5BHf 4BBg 
3 2ALe 1ADd 4AWb 5BCa 
4 1ADd 2ALe 5BCa 4AWb 
5 1AFf 2AJc 5BDb 4AZe 
6 2AJc 1AFf 4AZe 5BDb 
7 2AMf 1ABb 4AVa 5BEc 
8 1ABb 2AMf 5BEc 4AVa 
9 1AAa 2ANg 5BGe 4BAf 
10 2ANg 1AAa 4BAf 5BGe 
11 1AGg 2AHa 5BFd 4AXc 
12 2AHa 1AGg 4AXc 5BFd 
13 1AEe 2AIb 4AYd 5BIg 
14 2AIb 1AEe 5BIg 4AYd 
15 3AQc 3AUg 6BKb 6BJa 
16 3AUg 3AQc 6BJa 6BKb 
17 3AOa 3ARd 6BOf 6BNe 
18 3ARd 3AOa 6BNe 6BOf 
19 3APb 3ATf 6BPg 6BMd 
20 3ATf 3APb 6BMd 6BPg 
21 3ASe 3ASe 6BLc 6BLc 

 
2 Blocks and 56 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AHa 1AQc 2BYb 2BHf 
2 1AQc 1AHa 2BHf 2BYb 
3 1AFf 1AKd 2BIg 2BCa 
4 1AKd 1AFf 2BCa 2BIg 
5 1ALe 1AIb 2BSc 2CAd 
6 1AIb 1ALe 2CAd 2BSc 
7 1ASe 1ATf 2BRb 2BFd 
8 1ATf 1ASe 2BFd 2BRb 
9 1ADd 1AJc 2BOf 2BPg 
10 1AJc 1ADd 2BPg 2BOf 
11 1ARd 1ACc 2BQa 2BGe 
12 1ACc 1ARd 2BGe 2BQa 
13 1AVa 1AYd 2CBe 2CCf 
14 1AYd 1AVa 2CCf 2CBe 
15 1AEe 1BBg 2BVf 2BZc 
16 1BBg 1AEe 2BZc 2BVf 
17 1AWb 1AMf 2BUe 2BWg 
18 1AMf 1AWb 2BWg 2BUe 
19 1AZe 1AXc 2BJa 2CDg 
20 1AXc 1AZe 2CDg 2BJa 
21 1ABb 1AUg 2BXa 2BNe 
22 1AUg 1ABb 2BNe 2BXa 
23 1BAf 1AOa 2BEc 2BKb 
24 1AOa 1BAf 2BKb 2BEc 
25 1ANg 1AAa 2BDb 2BTd 
26 1AAa 1ANg 2BTd 2BDb 
27 1AGg 1APb 2BLc 2BMd 
28 1APb 1AGg 2BMd 2BLc 

 
 
 
 
 
  



4 Blocks and 56 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AHa 1AEe 3BMd 3BEc 
2 1AEe 1AHa 3BEc 3BMd 
3 1ALe 1AAa 3BHf 3BLc 
4 1AAa 1ALe 3BLc 3BHf 
5 1AKd 1AFf 3BGe 3BKb 
6 1AFf 1AKd 3BKb 3BGe 
7 1ACc 1ADd 3BIg 3BOf 
8 1ADd 1ACc 3BOf 3BIg 
9 1AJc 1AMf 3BPg 3BDb 
10 1AMf 1AJc 3BDb 3BPg 
11 1ANg 1ABb 3BJa 3BFd 
12 1ABb 1ANg 3BFd 3BJa 
13 1AGg 1AIb 3BCa 3BNe 
14 1AIb 1AGg 3BNe 3BCa 
15 2AYd 2AUg 4BXa 4CCf 
16 2AUg 2AYd 4CCf 4BXa 
17 2AZe 2APb 4BWg 4BZc 
18 2APb 2AZe 4BZc 4BWg 
19 2BBg 2ASe 4BTd 4BSc 
20 2ASe 2BBg 4BSc 4BTd 
21 2AXc 2AVa 4BYb 4BVf 
22 2AVa 2AXc 4BVf 4BYb 
23 2AWb 2AQc 4BQa 4CAd 
24 2AQc 2AWb 4CAd 4BQa 
25 2ARd 2ATf 4BRb 4CBe 
26 2ATf 2ARd 4CBe 4BRb 
27 2AOa 2BAf 4BUe 4CDg 
28 2BAf 2AOa 4CDg 4BUe 

 
 

8 Blocks and 56 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1ABb 2AMf 6BPg 5BEc 
2 2AMf 1ABb 5BEc 6BPg 
3 1AGg 2ALe 6BMd 5BCa 
4 2ALe 1AGg 5BCa 6BMd 
5 2AJc 1AFf 6BNe 5BIg 
6 1AFf 2AJc 5BIg 6BNe 
7 1ACc 2AKd 6BKb 5BGe 
8 2AKd 1ACc 5BGe 6BKb 
9 2ANg 1ADd 5BHf 6BJa 
10 1ADd 2ANg 6BJa 5BHf 
11 2AHa 1AEe 6BOf 5BDb 
12 1AEe 2AHa 5BDb 6BOf 
13 1AAa 2AIb 6BLc 5BFd 
14 2AIb 1AAa 5BFd 6BLc 
15 4BAf 3ARd 7BRb 8CBe 
16 3ARd 4BAf 8CBe 7BRb 
17 4AZe 3AQc 7BVf 8BXa 
18 3AQc 4AZe 8BXa 7BVf 
19 4AWb 3ATf 8CDg 7BTd 
20 3ATf 4AWb 7BTd 8CDg 
21 4AYd 3AOa 8CCf 7BSc 
22 3AOa 4AYd 7BSc 8CCf 
23 4BBg 3APb 7BQa 8BZc 
24 3APb 4BBg 8BZc 7BQa 
25 3ASe 4AVa 8BYb 7BWg 
26 4AVa 3ASe 7BWg 8BYb 
27 4AXc 3AUg 7BUe 8CAd 
28 3AUg 4AXc 8CAd 7BUe 

 

Eight-plex system 
2 Blocks and 28 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1ADd 1AGg 1AFf 1AAa 2ASe 2AQc 2APb 2AVa 
2 1AGg 1ADd 1AAa 1AFf 2AQc 2ASe 2AVa 2APb 
3 1ACc 1AMf 1AKd 1ABb 2AUg 2AOa 2AXc 2AZe 
4 1AMf 1ACc 1ABb 1AKd 2AOa 2AUg 2AZe 2AXc 
5 1AEe 1AHa 1AJc 1ANg 2ATf 2AWb 2BBg 2ARd 
6 1AHa 1AEe 1ANg 1AJc 2AWb 2ATf 2ARd 2BBg 
7 1AIb 1AIb 1ALe 1ALe 2AYd 2AYd 2BAf 2BAf 

 
4 Blocks and 28 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFf 1AAa 2ANg 2AJc 3ASe 3ARd 4BBg 4AWb 
2 1AAa 1AFf 2AJc 2ANg 3ARd 3ASe 4AWb 4BBg 
3 1AGg 1AEe 2AIb 2AMf 3AQc 3ATf 4AVa 4AYd 
4 1AEe 1AGg 2AMf 2AIb 3ATf 3AQc 4AYd 4AVa 
5 1ACc 1ADd 2ALe 2AHa 3AUg 3APb 4BAf 4AZe 
6 1ADd 1ACc 2AHa 2ALe 3APb 3AUg 4AZe 4BAf 
7 1ABb 1ABb 2AKd 2AKd 3AOa 3AOa 4AXc 4AXc 

 
  



2 Blocks and 56 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1AZe 1AIb 1ANg 1AMf 2BQa 2BSc 2BMd 2BZc 
2 1AIb 1AZe 1AMf 1ANg 2BSc 2BQa 2BZc 2BMd 
3 1AGg 1ADd 1AWb 1AJc 2BCa 2CCf 2BNe 2BXa 
4 1ADd 1AGg 1AJc 1AWb 2CCf 2BCa 2BXa 2BNe 
5 1ACc 1ATf 1AVa 1AKd 2BRb 2CAd 2CDg 2CBe 
6 1ATf 1ACc 1AKd 1AVa 2CAd 2BRb 2CBe 2CDg 
7 1AAa 1AQc 1ALe 1APb 2BDb 2BFd 2BPg 2BHf 
8 1AQc 1AAa 1APb 1ALe 2BFd 2BDb 2BHf 2BPg 
9 1AHa 1AFf 1AYd 1AEe 2BIg 2BGe 2BEc 2BYb 
10 1AFf 1AHa 1AEe 1AYd 2BGe 2BIg 2BYb 2BEc 
11 1ASe 1ARd 1BAf 1BBg 2BOf 2BLc 2BJa 2BKb 
12 1ARd 1ASe 1BBg 1BAf 2BLc 2BOf 2BKb 2BJa 
13 1ABb 1AUg 1AOa 1AXc 2BUe 2BWg 2BTd 2BVf 
14 1AUg 1ABb 1AXc 1AOa 2BWg 2BUe 2BVf 2BTd 

 
4 Blocks and 56 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AEe 1ANg 2AYd 2AOa 3BEc 3BDb 4CDg 4CCf 
2 1ANg 1AEe 2AOa 2AYd 3BDb 3BEc 4CCf 4CDg 
3 1AFf 1AJc 2AWb 2AVa 3BPg 3BMd 4BQa 4BUe 
4 1AJc 1AFf 2AVa 2AWb 3BMd 3BPg 4BUe 4BQa 
5 1AIb 1ACc 2ASe 2APb 3BJa 3BOf 4BWg 4BTd 
6 1ACc 1AIb 2APb 2ASe 3BOf 3BJa 4BTd 4BWg 
7 1AKd 1AGg 2BAf 2ATf 3BNe 3BKb 4BXa 4BZc 
8 1AGg 1AKd 2ATf 2BAf 3BKb 3BNe 4BZc 4BXa 
9 1ALe 1ADd 2AXc 2AUg 3BCa 3BHf 4CAd 4BRb 
10 1ADd 1ALe 2AUg 2AXc 3BHf 3BCa 4BRb 4CAd 
11 1AHa 1AMf 2AZe 2AQc 3BFd 3BIg 4CBe 4BYb 
12 1AMf 1AHa 2AQc 2AZe 3BIg 3BFd 4BYb 4CBe 
13 1ABb 1AAa 2ARd 2BBg 3BLc 3BGe 4BSc 4BVf 
14 1AAa 1ABb 2BBg 2ARd 3BGe 3BLc 4BVf 4BSc 

 
8 Blocks and 56 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 2AMf 1AEe 3AQc 4BBg 6BMd 5BDb 7BQa 8CBe 
2 1AEe 2AMf 4BBg 3AQc 5BDb 6BMd 8CBe 7BQa 
3 1AAa 2AIb 3ASe 4BAf 5BCa 6BPg 7BSc 8CAd 
4 2AIb 1AAa 4BAf 3ASe 6BPg 5BCa 8CAd 7BSc 
5 2AHa 1AFf 3AUg 4AYd 6BLc 5BGe 7BWg 8BYb 
6 1AFf 2AHa 4AYd 3AUg 5BGe 6BLc 8BYb 7BWg 
7 1ADd 2AJc 4AZe 3APb 6BKb 5BIg 8BXa 7BVf 
8 2AJc 1ADd 3APb 4AZe 5BIg 6BKb 7BVf 8BXa 
9 1AGg 2ALe 3ARd 4AVa 5BFd 6BOf 8BZc 7BRb 
10 2ALe 1AGg 4AVa 3ARd 6BOf 5BFd 7BRb 8BZc 
11 2ANg 1ACc 4AWb 3AOa 5BEc 6BNe 8CCf 7BTd 
12 1ACc 2ANg 3AOa 4AWb 6BNe 5BEc 7BTd 8CCf 
13 2AKd 1ABb 3ATf 4AXc 5BHf 6BJa 7BUe 8CDg 
14 1ABb 2AKd 4AXc 3ATf 6BJa 5BHf 8CDg 7BUe 

 

  



Eight Treatments 
Four-plex system 
2 Blocks and 16 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Bb 1Cc 2Ld 2Og 
2 1Cc 1Bb 2Og 2Ld 
3 1Aa 1Dd 2Jb 2Me 
4 1Dd 1Aa 2Me 2Jb 
5 1Ff 1Hh 2Ia 2Kc 
6 1Hh 1Ff 2Kc 2Ia 
7 1Ee 1Gg 2Ph 2Nf 
8 1Gg 1Ee 2Nf 2Ph 

 
3 Blocks and 24 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1Bb 1Ff 1Gg 1Ee 
2 1Ff 1Bb 1Ee 1Gg 
3 1Cc 1Hh 1Dd 1Aa 
4 1Hh 1Cc 1Aa 1Dd 
5 2Ld 2Og 2Ia 2Me 
6 2Og 2Ld 2Me 2Ia 
7 2Kc 2Nf 2Jb 2Ph 
8 2Nf 2Kc 2Ph 2Jb 
9 3Td 3Ue 3Vf 3Xh 
10 3Ue 3Td 3Xh 3Vf 
11 3Qa 3Wg 3Rb 3Sc 
12 3Wg 3Qa 3Sc 3Rb 

 
2 Blocks and 32 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AJb 1AHh 2BBd 2BCe 
2 1AHh 1AJb 2BCe 2BBd 
3 1ADd 1AGg 2BFh 2AVf 
4 1AGg 1ADd 2AVf 2BFh 
5 1ANf 1AIa 2BAc 2ATd 
6 1AIa 1ANf 2ATd 2BAc 
7 1AMe 1ALd 2ASc 2BEg 
8 1ALd 1AMe 2BEg 2ASc 
9 1AKc 1AFf 2AWg 2ARb 
10 1AFf 1AKc 2ARb 2AWg 
11 1ACc 1APh 2AYa 2AZb 
12 1APh 1ACc 2AZb 2AYa 
13 1AAa 1AEe 2AXh 2BDf 
14 1AEe 1AAa 2BDf 2AXh 
15 1AOg 1ABb 2AQa 2AUe 
16 1ABb 1AOg 2AUe 2AQa 

 
 
 
 
 
 
 
 
 
 
 
 
 

4 Blocks and 32 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1ABb 1AAa 1ADd 1ACc 
2 1AAa 1ABb 1ACc 1ADd 
3 1AFf 1AHh 1AEe 1AGg 
4 1AHh 1AFf 1AGg 1AEe 
5 2ALd 2AOg 2AJb 2APh 
6 2AOg 2ALd 2APh 2AJb 
7 2AKc 2ANf 2AMe 2AIa 
8 2ANf 2AKc 2AIa 2AMe 
9 3AXh 3AWg 3AQa 3ASc 
10 3AWg 3AXh 3ASc 3AQa 
11 3ARb 3AUe 3ATd 3AVf 
12 3AUe 3ARb 3AVf 3ATd 
13 4BCe 4AYa 4AZb 4BEg 
14 4AYa 4BCe 4BEg 4AZb 
15 4BBd 4BAc 4BFh 4BDf 
16 4BAc 4BBd 4BDf 4BFh 

 
4 Blocks and 32 Phase 1 Experimental units 
(Higher Residual EDF) 

Run Tag 
114 115 116 117 

1 1ABb 1AHh 3ATd 3AQa 
2 1AHh 1ABb 3AQa 3ATd 
3 1AAa 1AFf 3AUe 3AWg 
4 1AFf 1AAa 3AWg 3AUe 
5 1AGg 1ACc 3ARb 3AVf 
6 1ACc 1AGg 3AVf 3ARb 
7 1AEe 1ADd 3ASc 3AXh 
8 1ADd 1AEe 3AXh 3ASc 
9 2AKc 2AIa 4BBd 4BEg 
10 2AIa 2AKc 4BEg 4BBd 
11 2AMe 2ALd 4BDf 4AZb 
12 2ALd 2AMe 4AZb 4BDf 
13 2AOg 2AJb 4BCe 4BFh 
14 2AJb 2AOg 4BFh 4BCe 
15 2ANf 2APh 4AYa 4BAc 
16 2APh 2ANf 4BAc 4AYa 

 
  



5 Blocks and 40 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1ACc 1AGg 1AAa 1AEe 
2 1AGg 1ACc 1AEe 1AAa 
3 1AHh 1ADd 1ABb 1AFf 
4 1ADd 1AHh 1AFf 1ABb 
5 2AOg 2AKc 2APh 2AJb 
6 2AKc 2AOg 2AJb 2APh 
7 2ANf 2AMe 2AIa 2ALd 
8 2AMe 2ANf 2ALd 2AIa 
9 3AQa 3ARb 3ASc 3ATd 
10 3ARb 3AQa 3ATd 3ASc 
11 3AUe 3AWg 3AXh 3AVf 
12 3AWg 3AUe 3AVf 3AXh 
13 4BBd 4BDf 4BEg 4BAc 
14 4BDf 4BBd 4BAc 4BEg 
15 4AZb 4AYa 4BFh 4BCe 
16 4AYa 4AZb 4BCe 4BFh 
17 5BLf 5BHb 5BIc 5BKe 
18 5BHb 5BLf 5BKe 5BIc 
19 5BNh 5BGa 5BMg 5BJd 
20 5BGa 5BNh 5BJd 5BMg 

 
2 Blocks and 48 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1ADd 1ARb 2BNh 2BUg 
2 1ARb 1ADd 2BUg 2BNh 
3 1ANf 1ALd 2BSe 2BFh 
4 1ALd 1ANf 2BFh 2BSe 
5 1ATd 1AGg 2BAc 2BKe 
6 1AGg 1ATd 2BKe 2BAc 
7 1ASc 1AIa 2BTf 2BCe 
8 1AIa 1ASc 2BCe 2BTf 
9 1AHh 1AAa 2BBd 2BDf 
10 1AAa 1AHh 2BDf 2BBd 
11 1AKc 1AWg 2BJd 2BGa 
12 1AWg 1AKc 2BGa 2BJd 
13 1AXh 1AUe 2AYa 2BEg 
14 1AUe 1AXh 2BEg 2AYa 
15 1AVf 1AOg 2BOa 2BHb 
16 1AOg 1AVf 2BHb 2BOa 
17 1ABb 1AQa 2BIc 2BVh 
18 1AQa 1ABb 2BVh 2BIc 
19 1ACc 1AJb 2BRd 2BLf 
20 1AJb 1ACc 2BLf 2BRd 
21 1AEe 1APh 2AZb 2BQc 
22 1APh 1AEe 2BQc 2AZb 
23 1AMe 1AFf 2BPb 2BMg 
24 1AFf 1AMe 2BMg 2BPb 

 
 
 
 
 
 
 
 
 
 
 
 
 

3 Blocks and 48 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1APh 1AJb 1AKc 1AGg 
2 1AJb 1APh 1AGg 1AKc 
3 1AMe 1ACc 1AHh 1ANf 
4 1ACc 1AMe 1ANf 1AHh 
5 1AEe 1AFf 1AIa 1ALd 
6 1AFf 1AEe 1ALd 1AIa 
7 1ABb 1AOg 1AAa 1ADd 
8 1AOg 1ABb 1ADd 1AAa 
9 2ATd 2BCe 2AWg 2BFh 
10 2BCe 2ATd 2BFh 2AWg 
11 2BBd 2BEg 2BDf 2BAc 
12 2BEg 2BBd 2BAc 2BDf 
13 2AXh 2ARb 2AQa 2AUe 
14 2ARb 2AXh 2AUe 2AQa 
15 2ASc 2AYa 2AVf 2AZb 
16 2AYa 2ASc 2AZb 2AVf 
17 3BTf 3BJd 3BPb 3BNh 
18 3BJd 3BTf 3BNh 3BPb 
19 3BLf 3BUg 3BKe 3BHb 
20 3BUg 3BLf 3BHb 3BKe 
21 3BQc 3BOa 3BSe 3BMg 
22 3BOa 3BQc 3BMg 3BSe 
23 3BVh 3BGa 3BIc 3BRd 
24 3BGa 3BVh 3BRd 3BIc 

 
6 Blocks and 48 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1AHh 1ACc 1ADd 1AEe 
2 1ACc 1AHh 1AEe 1ADd 
3 1AGg 1AAa 1ABb 1AFf 
4 1AAa 1AGg 1AFf 1ABb 
5 2AKc 2ALd 2AOg 2AIa 
6 2ALd 2AKc 2AIa 2AOg 
7 2AJb 2APh 2ANf 2AMe 
8 2APh 2AJb 2AMe 2ANf 
9 3ARb 3AWg 3ASc 3AXh 
10 3AWg 3ARb 3AXh 3ASc 
11 3AVf 3AQa 3ATd 3AUe 
12 3AQa 3AVf 3AUe 3ATd 
13 4BCe 4BAc 4AYa 4AZb 
14 4BAc 4BCe 4AZb 4AYa 
15 4BBd 4BDf 4BFh 4BEg 
16 4BDf 4BBd 4BEg 4BFh 
17 5BKe 5BMg 5BHb 5BJd 
18 5BMg 5BKe 5BJd 5BHb 
19 5BGa 5BNh 5BLf 5BIc 
20 5BNh 5BGa 5BIc 5BLf 
21 6BRd 6BPb 6BVh 6BOa 
22 6BPb 6BRd 6BOa 6BVh 
23 6BTf 6BSe 6BUg 6BQc 
24 6BSe 6BTf 6BQc 6BUg 

 
  



6 Blocks and 48 Phase 1 Experimental units 
(Higher Residual EDF) 

Run Tag 
114 115 116 117 

1 1AGg 1AAa 4BCe 4BDf 
2 1AAa 1AGg 4BDf 4BCe 
3 1AEe 1ACc 4AZb 4BFh 
4 1ACc 1AEe 4BFh 4AZb 
5 1AHh 1AFf 4BBd 4AYa 
6 1AFf 1AHh 4AYa 4BBd 
7 1ABb 1ADd 4BAc 4BEg 
8 1ADd 1ABb 4BEg 4BAc 
9 2AOg 2ALd 5BNh 5BKe 
10 2ALd 2AOg 5BKe 5BNh 
11 2APh 2AJb 5BMg 5BGa 
12 2AJb 2APh 5BGa 5BMg 
13 2AIa 2AKc 5BLf 5BHb 
14 2AKc 2AIa 5BHb 5BLf 
15 2ANf 2AMe 5BJd 5BIc 
16 2AMe 2ANf 5BIc 5BJd 
17 3ASc 3AXh 6BOa 6BSe 
18 3AXh 3ASc 6BSe 6BOa 
19 3AQa 3ATd 6BUg 6BQc 
20 3ATd 3AQa 6BQc 6BUg 
21 3AWg 3AUe 6BTf 6BPb 
22 3AUe 3AWg 6BPb 6BTf 
23 3ARb 3AVf 6BRd 6BVh 
24 3AVf 3ARb 6BVh 6BRd 

 
7 Blocks and 56 Phase 1 Experimental units 

Run Tag 
114 115 116 117 

1 1AGg 1ADd 1AAa 1AFf 
2 1ADd 1AGg 1AFf 1AAa 
3 1ACc 1ABb 1AHh 1AEe 
4 1ABb 1ACc 1AEe 1AHh 
5 2AMe 2APh 2ALd 2AIa 
6 2APh 2AMe 2AIa 2ALd 
7 2AOg 2ANf 2AJb 2AKc 
8 2ANf 2AOg 2AKc 2AJb 
9 3AQa 3AUe 3ASc 3AWg 
10 3AUe 3AQa 3AWg 3ASc 
11 3ARb 3AVf 3ATd 3AXh 
12 3AVf 3ARb 3AXh 3ATd 
13 4AYa 4BBd 4AZb 4BAc 
14 4BBd 4AYa 4BAc 4AZb 
15 4BFh 4BEg 4BCe 4BDf 
16 4BEg 4BFh 4BDf 4BCe 
17 5BHb 5BNh 5BGa 5BMg 
18 5BNh 5BHb 5BMg 5BGa 
19 5BLf 5BJd 5BKe 5BIc 
20 5BJd 5BLf 5BIc 5BKe 
21 6BQc 6BOa 6BTf 6BVh 
22 6BOa 6BQc 6BVh 6BTf 
23 6BUg 6BSe 6BPb 6BRd 
24 6BSe 6BUg 6BRd 6BPb 
25 7CBf 7BXb 7BWa 7CAe 
26 7BXb 7CBf 7CAe 7BWa 
27 7BZd 7BYc 7CDh 7CCg 
28 7BYc 7BZd 7CCg 7CDh 

 
 
 

2 Blocks and 64 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AGg 1AXh 2BXb 2CEa 
2 1AXh 1AGg 2CEa 2BXb 
3 1ABb 1ACc 2CHd 2CLh 
4 1ACc 1ABb 2CLh 2CHd 
5 1APh 1AWg 2CIe 2BQc 
6 1AWg 1APh 2BQc 2CIe 
7 1BAc 1AOg 2BZd 2BSe 
8 1AOg 1BAc 2BSe 2BZd 
9 1ALd 1AFf 2BUg 2BOa 
10 1AFf 1ALd 2BOa 2BUg 
11 1AKc 1BBd 2BVh 2BWa 
12 1BBd 1AKc 2BWa 2BVh 
13 1AHh 1AQa 2BLf 2CCg 
14 1AQa 1AHh 2CCg 2BLf 
15 1ATd 1ARb 2CDh 2CBf 
16 1ARb 1ATd 2CBf 2CDh 
17 1ANf 1AIa 2BPb 2BKe 
18 1AIa 1ANf 2BKe 2BPb 
19 1AZb 1BDf 2CGc 2CKg 
20 1BDf 1AZb 2CKg 2CGc 
21 1BCe 1AYa 2BRd 2BMg 
22 1AYa 1BCe 2BMg 2BRd 
23 1AAa 1AJb 2BJd 2BIc 
24 1AJb 1AAa 2BIc 2BJd 
25 1AEe 1ADd 2CFb 2BTf 
26 1ADd 1AEe 2BTf 2CFb 
27 1AUe 1BEg 2BNh 2BHb 
28 1BEg 1AUe 2BHb 2BNh 
29 1AVf 1AMe 2BGa 2BYc 
30 1AMe 1AVf 2BYc 2BGa 
31 1ASc 1BFh 2CJf 2CAe 
32 1BFh 1ASc 2CAe 2CJf 

 
  



4 Blocks and 64 Phase 1 Experimental units 
(Higher Residual DF) 

Run Tag 
114 115 116 117 

1 1AKc 1ABb 1AAa 1APh 
2 1ABb 1AKc 1APh 1AAa 
3 1AJb 1AGg 1AMe 1ADd 
4 1AGg 1AJb 1ADd 1AMe 
5 1AEe 1AHh 1ANf 1AIa 
6 1AHh 1AEe 1AIa 1ANf 
7 1AFf 1ALd 1AOg 1ACc 
8 1ALd 1AFf 1ACc 1AOg 
9 2BBd 2AUe 2BDf 2AXh 
10 2AUe 2BBd 2AXh 2BDf 
11 2ATd 2BAc 2AZb 2BEg 
12 2BAc 2ATd 2BEg 2AZb 
13 2ARb 2BFh 2AQa 2ASc 
14 2BFh 2ARb 2ASc 2AQa 
15 2AWg 2AYa 2AVf 2BCe 
16 2AYa 2AWg 2BCe 2AVf 
17 3BMg 3BIc 3BSe 3BVh 
18 3BIc 3BMg 3BVh 3BSe 
19 3BJd 3BOa 3BHb 3BKe 
20 3BOa 3BJd 3BKe 3BHb 
21 3BTf 3BQc 3BGa 3BUg 
22 3BQc 3BTf 3BUg 3BGa 
23 3BPb 3BLf 3BNh 3BRd 
24 3BLf 3BPb 3BRd 3BNh 
25 4CAe 4BWa 4BZd 4CGc 
26 4BWa 4CAe 4CGc 4BZd 
27 4CCg 4CDh 4CFb 4CJf 
28 4CDh 4CCg 4CJf 4CFb 
29 4CIe 4CBf 4BYc 4BXb 
30 4CBf 4CIe 4BXb 4BYc 
31 4CLh 4CEa 4CHd 4CKg 
32 4CEa 4CLh 4CKg 4CHd 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Blocks and 64 Phase 1 Experimental units 
(Higher Residual EDF) 

Run Tag 
114 115 116 117 

1 1AJb 1AOg 3BVh 3BIc 
2 1AOg 1AJb 3BIc 3BVh 
3 1APh 1AIa 3BQc 3BJd 
4 1AIa 1APh 3BJd 3BQc 
5 1AGg 1AHh 3BLf 3BKe 
6 1AHh 1AGg 3BKe 3BLf 
7 1ANf 1ALd 3BGa 3BSe 
8 1ALd 1ANf 3BSe 3BGa 
9 1AKc 1AFf 3BHb 3BOa 
10 1AFf 1AKc 3BOa 3BHb 
11 1ABb 1ADd 3BTf 3BUg 
12 1ADd 1ABb 3BUg 3BTf 
13 1AMe 1ACc 3BRd 3BMg 
14 1ACc 1AMe 3BMg 3BRd 
15 1AEe 1AAa 3BNh 3BPb 
16 1AAa 1AEe 3BPb 3BNh 
17 2BBd 2BEg 4CFb 4BWa 
18 2BEg 2BBd 4BWa 4CFb 
19 2AXh 2ATd 4CIe 4CGc 
20 2ATd 2AXh 4CGc 4CIe 
21 2BDf 2BCe 4BZd 4BXb 
22 2BCe 2BDf 4BXb 4BZd 
23 2AVf 2AQa 4CDh 4CKg 
24 2AQa 2AVf 4CKg 4CDh 
25 2BFh 2AYa 4CCg 4CHd 
26 2AYa 2BFh 4CHd 4CCg 
27 2ASc 2AUe 4CBf 4CEa 
28 2AUe 2ASc 4CEa 4CBf 
29 2AZb 2BAc 4CJf 4CLh 
30 2BAc 2AZb 4CLh 4CJf 
31 2ARb 2AWg 4CAe 4BYc 
32 2AWg 2ARb 4BYc 4CAe 

 
  



8 Blocks and 64 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AEe 1AAa 1ADd 1AFf 
2 1AAa 1AEe 1AFf 1ADd 
3 1AGg 1ACc 1AHh 1ABb 
4 1ACc 1AGg 1ABb 1AHh 
5 2APh 2AMe 2AKc 2AIa 
6 2AMe 2APh 2AIa 2AKc 
7 2AJb 2ANf 2AOg 2ALd 
8 2ANf 2AJb 2ALd 2AOg 
9 3AVf 3AQa 3ARb 3AXh 
10 3AQa 3AVf 3AXh 3ARb 
11 3ATd 3AUe 3ASc 3AWg 
12 3AUe 3ATd 3AWg 3ASc 
13 4BEg 4BDf 4AYa 4BAc 
14 4BDf 4BEg 4BAc 4AYa 
15 4BBd 4BFh 4BCe 4AZb 
16 4BFh 4BBd 4AZb 4BCe 
17 5BNh 5BJd 5BGa 5BMg 
18 5BJd 5BNh 5BMg 5BGa 
19 5BHb 5BIc 5BKe 5BLf 
20 5BIc 5BHb 5BLf 5BKe 
21 6BOa 6BPb 6BUg 6BSe 
22 6BPb 6BOa 6BSe 6BUg 
23 6BQc 6BVh 6BRd 6BTf 
24 6BVh 6BQc 6BTf 6BRd 
25 7BXb 7BWa 7BYc 7BZd 
26 7BWa 7BXb 7BZd 7BYc 
27 7CAe 7CCg 7CBf 7CDh 
28 7CCg 7CAe 7CDh 7CBf 
29 8CGc 8CHd 8CFb 8CEa 
30 8CHd 8CGc 8CEa 8CFb 
31 8CJf 8CKg 8CLh 8CIe 
32 8CKg 8CJf 8CIe 8CLh 

 

8 Blocks and 64 Phase 1 Experimental units 
(Higher Residual EDF) 

Run Tag 
114 115 116 117 

1 1AHh 4AYa 8CFb 5BJd 
2 4AYa 1AHh 5BJd 8CFb 
3 4BDf 4BFh 8CGc 5BGa 
4 4BFh 4BDf 5BGa 8CGc 
5 1ACc 1ABb 5BNh 8CKg 
6 1ABb 1ACc 8CKg 5BNh 
7 1AAa 1AEe 5BLf 8CHd 
8 1AEe 1AAa 8CHd 5BLf 
9 2AOg 2APh 6BTf 6BRd 
10 2APh 2AOg 6BRd 6BTf 
11 2AMe 2AKc 6BUg 6BOa 
12 2AKc 2AMe 6BOa 6BUg 
13 2AIa 2ALd 6BQc 6BPb 
14 2ALd 2AIa 6BPb 6BQc 
15 2AJb 2ANf 6BVh 6BSe 
16 2ANf 2AJb 6BSe 6BVh 
17 3ASc 3AUe 7BXb 7BWa 
18 3AUe 3ASc 7BWa 7BXb 
19 3AQa 3AXh 7CCg 7BZd 
20 3AXh 3AQa 7BZd 7CCg 
21 3ATd 3AWg 7CBf 7BYc 
22 3AWg 3ATd 7BYc 7CBf 
23 3AVf 3ARb 7CAe 7CDh 
24 3ARb 3AVf 7CDh 7CAe 
25 1AGg 4BCe 8CLh 5BIc 
26 4BCe 1AGg 5BIc 8CLh 
27 1AFf 4AZb 5BMg 8CEa 
28 4AZb 1AFf 8CEa 5BMg 
29 4BEg 4BBd 5BHb 8CIe 
30 4BBd 4BEg 8CIe 5BHb 
31 1ADd 4BAc 5BKe 8CJf 
32 4BAc 1ADd 8CJf 5BKe 

 
Eight-plex system 
2 Blocks and 16 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Cc 1Hh 1Aa 1Gg 1Dd 1Ff 1Bb 1Ee 
2 1Hh 1Cc 1Gg 1Aa 1Ff 1Dd 1Ee 1Bb 
3 2Ld 2Jb 2Kc 2Ph 2Me 2Ia 2Og 2Nf 
4 2Jb 2Ld 2Ph 2Kc 2Ia 2Me 2Nf 2Og 

 
2 Blocks and 16 Phase 1 Experimental units (Higher Residual EDF) 

Run Tag 
113 114 115 116 117 118 119 121 

1 1Gg 1Cc 1Ee 1Bb 2Ph 2Ia 2Nf 2Ld 
2 1Cc 1Gg 1Bb 1Ee 2Ia 2Ph 2Ld 2Nf 
3 1Hh 1Ff 1Dd 1Aa 2Og 2Jb 2Me 2Kc 
4 1Ff 1Hh 1Aa 1Dd 2Jb 2Og 2Kc 2Me 

 
  



3 Blocks and 24 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Gg 1Bb 1Cc 1Dd 1Aa 1Ee 1Ff 1Hh 
2 1Bb 1Gg 1Dd 1Cc 1Ee 1Aa 1Hh 1Ff 
3 2Kc 2Me 2Ph 2Jb 2Ld 2Nf 2Ia 2Og 
4 2Me 2Kc 2Jb 2Ph 2Nf 2Ld 2Og 2Ia 
5 3Xh 3Vf 3Ue 3Qa 3Wg 3Rb 3Sc 3Td 
6 3Vf 3Xh 3Qa 3Ue 3Rb 3Wg 3Td 3Sc 

 
2 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1ALd 1AMe 1APh 1ABb 2AWg 2AQa 2AVf 2BAc 
2 1AMe 1ALd 1ABb 1APh 2AQa 2AWg 2BAc 2AVf 
3 1AAa 1ANf 1AOg 1AEe 2ASc 2AXh 2BBd 2AZb 
4 1ANf 1AAa 1AEe 1AOg 2AXh 2ASc 2AZb 2BBd 
5 1AGg 1AJb 1AIa 1ACc 2BDf 2ATd 2BCe 2BFh 
6 1AJb 1AGg 1ACc 1AIa 2ATd 2BDf 2BFh 2BCe 
7 1AKc 1AHh 1AFf 1ADd 2ARb 2AUe 2AYa 2BEg 
8 1AHh 1AKc 1ADd 1AFf 2AUe 2ARb 2BEg 2AYa 

 
4 Blocks and 32 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AHh 1ABb 2ALd 2AOg 3AVf 3AUe 4AYa 4BAc 
2 1ABb 1AHh 2AOg 2ALd 3AUe 3AVf 4BAc 4AYa 
3 1AEe 1AFf 2APh 2AKc 3AQa 3AWg 4AZb 4BBd 
4 1AFf 1AEe 2AKc 2APh 3AWg 3AQa 4BBd 4AZb 
5 1ACc 1AAa 2AMe 2ANf 3ARb 3ATd 4BEg 4BFh 
6 1AAa 1ACc 2ANf 2AMe 3ATd 3ARb 4BFh 4BEg 
7 1ADd 1AGg 2AIa 2AJb 3ASc 3AXh 4BCe 4BDf 
8 1AGg 1ADd 2AJb 2AIa 3AXh 3ASc 4BDf 4BCe 

 
 
5 Blocks and 40 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFf 1ADd 1AAa 1AGg 1AHh 1ABb 1AEe 1ACc 
2 1ADd 1AFf 1AGg 1AAa 1ABb 1AHh 1ACc 1AEe 
3 2APh 2AMe 2AJb 2AOg 2ANf 2AKc 2ALd 2AIa 
4 2AMe 2APh 2AOg 2AJb 2AKc 2ANf 2AIa 2ALd 
5 3AWg 3ASc 3ARb 3AUe 3AVf 3ATd 3AXh 3AQa 
6 3ASc 3AWg 3AUe 3ARb 3ATd 3AVf 3AQa 3AXh 
7 4BCe 4AZb 4BDf 4BFh 4BBd 4AYa 4BEg 4BAc 
8 4AZb 4BCe 4BFh 4BDf 4AYa 4BBd 4BAc 4BEg 
9 5BNh 5BGa 5BIc 5BJd 5BMg 5BKe 5BHb 5BLf 
10 5BGa 5BNh 5BJd 5BIc 5BKe 5BMg 5BLf 5BHb 

 
  



2 Blocks and 48 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1ASc 1AVf 1ATd 1AEe 2BVh 2BPb 2BOa 2BEg 
2 1AVf 1ASc 1AEe 1ATd 2BPb 2BVh 2BEg 2BOa 
3 1AHh 1AAa 1ADd 1AUe 2BQc 2BMg 2BHb 2BLf 
4 1AAa 1AHh 1AUe 1ADd 2BMg 2BQc 2BLf 2BHb 
5 1ABb 1AOg 1AIa 1APh 2BRd 2BDf 2BKe 2BIc 
6 1AOg 1ABb 1APh 1AIa 2BDf 2BRd 2BIc 2BKe 
7 1AMe 1ACc 1AXh 1ARb 2BGa 2BUg 2BTf 2BBd 
8 1ACc 1AMe 1ARb 1AXh 2BUg 2BGa 2BBd 2BTf 
9 1AQa 1ALd 1ANf 1AWg 2BAc 2BSe 2AZb 2BNh 
10 1ALd 1AQa 1AWg 1ANf 2BSe 2BAc 2BNh 2AZb 
11 1AGg 1AJb 1AFf 1AKc 2BFh 2BJd 2AYa 2BCe 
12 1AJb 1AGg 1AKc 1AFf 2BJd 2BFh 2BCe 2AYa 

 
3 Blocks and 48 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFf 1AHh 1AGg 1AEe 1AAa 1AJb 1ACc 1ADd 
2 1AHh 1AFf 1AEe 1AGg 1AJb 1AAa 1ADd 1ACc 
3 1AOg 1AKc 1ALd 1ANf 1APh 1ABb 1AMe 1AIa 
4 1AKc 1AOg 1ANf 1ALd 1ABb 1APh 1AIa 1AMe 
5 2AUe 2AZb 2ATd 2AQa 2AVf 2ASc 2AWg 2AXh 
6 2AZb 2AUe 2AQa 2ATd 2ASc 2AVf 2AXh 2AWg 
7 2BFh 2BEg 2AYa 2ARb 2BAc 2BCe 2BDf 2BBd 
8 2BEg 2BFh 2ARb 2AYa 2BCe 2BAc 2BBd 2BDf 
9 3BGa 3BJd 3BMg 3BIc 3BKe 3BLf 3BNh 3BHb 
10 3BJd 3BGa 3BIc 3BMg 3BLf 3BKe 3BHb 3BNh 
11 3BPb 3BTf 3BQc 3BVh 3BRd 3BUg 3BOa 3BSe 
12 3BTf 3BPb 3BVh 3BQc 3BUg 3BRd 3BSe 3BOa 

 
6 Blocks and 48 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AHh 1AFf 1AGg 1ACc 1ABb 1ADd 1AAa 1AEe 
2 1AFf 1AHh 1ACc 1AGg 1ADd 1ABb 1AEe 1AAa 
3 2AIa 2APh 2ALd 2AMe 2AJb 2AKc 2ANf 2AOg 
4 2APh 2AIa 2AMe 2ALd 2AKc 2AJb 2AOg 2ANf 
5 3AUe 3AWg 3ARb 3AVf 3ATd 3AQa 3AXh 3ASc 
6 3AWg 3AUe 3AVf 3ARb 3AQa 3ATd 3ASc 3AXh 
7 4BAc 4AZb 4BFh 4AYa 4BCe 4BDf 4BEg 4BBd 
8 4AZb 4BAc 4AYa 4BFh 4BDf 4BCe 4BBd 4BEg 
9 5BJd 5BIc 5BHb 5BLf 5BGa 5BMg 5BNh 5BKe 
10 5BIc 5BJd 5BLf 5BHb 5BMg 5BGa 5BKe 5BNh 
11 6BRd 6BUg 6BQc 6BSe 6BVh 6BTf 6BPb 6BOa 
12 6BUg 6BRd 6BSe 6BQc 6BTf 6BVh 6BOa 6BPb 

 
  



7 Blocks and 56 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1ADd 1ACc 1AGg 1AFf 1ABb 1AEe 1AHh 1AAa 
2 1ACc 1ADd 1AFf 1AGg 1AEe 1ABb 1AAa 1AHh 
3 2AIa 2AOg 2ALd 2AKc 2APh 2AJb 2AMe 2ANf 
4 2AOg 2AIa 2AKc 2ALd 2AJb 2APh 2ANf 2AMe 
5 3AVf 3AUe 3AXh 3ATd 3AWg 3ASc 3ARb 3AQa 
6 3AUe 3AVf 3ATd 3AXh 3ASc 3AWg 3AQa 3ARb 
7 4AZb 4BBd 4AYa 4BEg 4BCe 4BDf 4BAc 4BFh 
8 4BBd 4AZb 4BEg 4AYa 4BDf 4BCe 4BFh 4BAc 
9 5BNh 5BKe 5BHb 5BIc 5BGa 5BLf 5BJd 5BMg 
10 5BKe 5BNh 5BIc 5BHb 5BLf 5BGa 5BMg 5BJd 
11 6BVh 6BQc 6BSe 6BTf 6BOa 6BRd 6BUg 6BPb 
12 6BQc 6BVh 6BTf 6BSe 6BRd 6BOa 6BPb 6BUg 
13 7BXb 7BWa 7CDh 7CAe 7CCg 7BZd 7BYc 7CBf 
14 7BWa 7BXb 7CAe 7CDh 7BZd 7CCg 7CBf 7BYc 

 
2 Blocks and 64 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1ALd 1BCe 1AXh 1ABb 2BYc 2CEa 2CKg 2CJf 
2 1BCe 1ALd 1ABb 1AXh 2CEa 2BYc 2CJf 2CKg 
3 1AQa 1AGg 1AVf 1BFh 2BSe 2BQc 2BPb 2CHd 
4 1AGg 1AQa 1BFh 1AVf 2BQc 2BSe 2CHd 2BPb 
5 1ASc 1ATd 1BDf 1AOg 2BVh 2BHb 2CAe 2BOa 
6 1ATd 1ASc 1AOg 1BDf 2BHb 2BVh 2BOa 2CAe 
7 1ACc 1BEg 1AUe 1AIa 2BLf 2BJd 2BNh 2BXb 
8 1BEg 1ACc 1AIa 1AUe 2BJd 2BLf 2BXb 2BNh 
9 1AMe 1ANf 1AZb 1BAc 2BWa 2CCg 2CLh 2BRd 
10 1ANf 1AMe 1BAc 1AZb 2CCg 2BWa 2BRd 2CLh 
11 1AJb 1AFf 1AWg 1AKc 2CDh 2BZd 2BGa 2CIe 
12 1AFf 1AJb 1AKc 1AWg 2BZd 2CDh 2CIe 2BGa 
13 1ARb 1APh 1AAa 1BBd 2CBf 2BKe 2CGc 2BMg 
14 1APh 1ARb 1BBd 1AAa 2BKe 2CBf 2BMg 2CGc 
15 1AYa 1AHh 1ADd 1AEe 2CFb 2BUg 2BIc 2BTf 
16 1AHh 1AYa 1AEe 1ADd 2BUg 2CFb 2BTf 2BIc 

 
4 Blocks and 64 Phase 1 Experimental units 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AEe 1AGg 2BBd 2ASc 3BTf 3BVh 4CFb 4BWa 
2 1AGg 1AEe 2ASc 2BBd 3BVh 3BTf 4BWa 4CFb 
3 1AAa 1AFf 2AWg 2ARb 3BRd 3BSe 4BYc 4CLh 
4 1AFf 1AAa 2ARb 2AWg 3BSe 3BRd 4CLh 4BYc 
5 1ALd 1AOg 2BFh 2BAc 3BHb 3BOa 4CIe 4CJf 
6 1AOg 1ALd 2BAc 2BFh 3BOa 3BHb 4CJf 4CIe 
7 1AKc 1ANf 2AZb 2AXh 3BJd 3BKe 4CEa 4CCg 
8 1ANf 1AKc 2AXh 2AZb 3BKe 3BJd 4CCg 4CEa 
9 1AHh 1ACc 2AYa 2BCe 3BMg 3BPb 4CBf 4CHd 
10 1ACc 1AHh 2BCe 2AYa 3BPb 3BMg 4CHd 4CBf 
11 1ABb 1ADd 2BEg 2BDf 3BGa 3BNh 4CAe 4CGc 
12 1ADd 1ABb 2BDf 2BEg 3BNh 3BGa 4CGc 4CAe 
13 1AIa 1APh 2AUe 2AVf 3BIc 3BUg 4BZd 4BXb 
14 1APh 1AIa 2AVf 2AUe 3BUg 3BIc 4BXb 4BZd 
15 1AMe 1AJb 2AQa 2ATd 3BQc 3BLf 4CKg 4CDh 
16 1AJb 1AMe 2ATd 2AQa 3BLf 3BQc 4CDh 4CKg 

 
  



8 Blocks and 64 Phase 1 Experimental units (Higher Residual DF) 
Run Tag 

113 114 115 116 117 118 119 121 
1 1AHh 1AAa 1ACc 1ABb 1AEe 1ADd 1AFf 1AGg 
2 1AAa 1AHh 1ABb 1ACc 1ADd 1AEe 1AGg 1AFf 
3 2AOg 2AMe 2AIa 2AKc 2ALd 2APh 2ANf 2AJb 
4 2AMe 2AOg 2AKc 2AIa 2APh 2ALd 2AJb 2ANf 
5 3AUe 3ATd 3ARb 3AXh 3AVf 3AWg 3ASc 3AQa 
6 3ATd 3AUe 3AXh 3ARb 3AWg 3AVf 3AQa 3ASc 
7 4BDf 4AYa 4BEg 4BFh 4AZb 4BCe 4BBd 4BAc 
8 4AYa 4BDf 4BFh 4BEg 4BCe 4AZb 4BAc 4BBd 
9 5BIc 5BHb 5BLf 5BJd 5BNh 5BGa 5BMg 5BKe 
10 5BHb 5BIc 5BJd 5BLf 5BGa 5BNh 5BKe 5BMg 
11 6BUg 6BQc 6BRd 6BTf 6BOa 6BPb 6BSe 6BVh 
12 6BQc 6BUg 6BTf 6BRd 6BPb 6BOa 6BVh 6BSe 
13 7CBf 7BXb 7CAe 7BWa 7BYc 7CCg 7CDh 7BZd 
14 7BXb 7CBf 7BWa 7CAe 7CCg 7BYc 7BZd 7CDh 
15 8CLh 8CHd 8CIe 8CKg 8CJf 8CGc 8CEa 8CFb 
16 8CHd 8CLh 8CKg 8CIe 8CGc 8CJf 8CFb 8CEa 

 
8 Blocks and 64 Phase 1 Experimental units (Higher Residual EDF) 

Run Tag 
113 114 115 116 117 118 119 121 

1 1AFf 1ADd 3AXh 3ASc 5BMg 5BKe 7BWa 7BXb 
2 1ADd 1AFf 3ASc 3AXh 5BKe 5BMg 7BXb 7BWa 
3 1AEe 1ABb 3AWg 3AVf 5BGa 5BNh 7BYc 7BZd 
4 1ABb 1AEe 3AVf 3AWg 5BNh 5BGa 7BZd 7BYc 
5 1AAa 1AGg 3AUe 3ARb 5BJd 5BIc 7CDh 7CBf 
6 1AGg 1AAa 3ARb 3AUe 5BIc 5BJd 7CBf 7CDh 
7 1ACc 1AHh 3ATd 3AQa 5BLf 5BHb 7CAe 7CCg 
8 1AHh 1ACc 3AQa 3ATd 5BHb 5BLf 7CCg 7CAe 
9 2ANf 2APh 4AZb 4BEg 6BQc 6BRd 8CEa 8CIe 
10 2APh 2ANf 4BEg 4AZb 6BRd 6BQc 8CIe 8CEa 
11 2AOg 2ALd 4BAc 4BCe 6BVh 6BOa 8CJf 8CFb 
12 2ALd 2AOg 4BCe 4BAc 6BOa 6BVh 8CFb 8CJf 
13 2AKc 2AIa 4BBd 4BDf 6BPb 6BSe 8CKg 8CLh 
14 2AIa 2AKc 4BDf 4BBd 6BSe 6BPb 8CLh 8CKg 
15 2AJb 2AMe 4AYa 4BFh 6BTf 6BUg 8CHd 8CGc 
16 2AMe 2AJb 4BFh 4AYa 6BUg 6BTf 8CGc 8CHd 

 
 



Appendix I. Tables of optimal designs when Phase 1 is a RCBD
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Appendix J

Tables of properties of optimal designs

when Phase 1 is a RCBD
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Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots  
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF 

Residual 
DF Tag ⊥ Trt 

Treatment 
efficiency 
factors 

E 
2 2 4 1 2 4 0 0 0 0 1 Yes 1 

3 6 2 3 1 0 0 1 1 No(1/9) 0.8889 
2 8 5 4 0 1 0 0 4 Yes 1 
4 3 1 0 0 0 3 Yes 1 
5 10 4 5 2 0 0 1 3 No(1/25) 0.96 
2 12 9 6 0 2 0 0 7 Yes 1 
3 8 2 0 0 1 7 Yes 1 
6 5 2 0 0 0 5 Yes 1 
7 14 6 7 3 0 0 1 5 No(1/49) 0.9796 
2 16 13 8 0 3 0 0 10 Yes 1 
4 11 3 0 0 1 10 Yes 1 

1 2 0 0 9 Yes 1 
8 7 3 0 0 0 7 Yes 1 
2 8 5 2 8 0 0 0 2 3 Yes 1 
4 3 0 0 0 0 3 Yes 1 
2 12 9 3 0 1 0 2 6 No(1/9) 0.8889 
3 8 1 0 0 3 5 No(1/9) 0.8889 
6 5 1 0 0 2 3 No(1/9) 0.8889 
2 16 13 4 0 1 0 2 10 Yes 1 
4 11 0 1 0 0 10 Yes 1 
8 7 1 0 0 0 7 Yes 1 

  

  



      

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots  
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
3 2 6 2 3 4 0 1 1 0 1 Yes 1, 3/4 0.8571 

2 12 8 6 0 2 2 0 6 Yes 15/16 (2) 0.9375 
4 6 0 2 2 0 4 Yes 15/16 (2) 0.9375 
2 18 14 9 0 4 2 0 10 Yes 23/24, 7/8 0.9148 
3 13 1 3 2 1 9 Yes 23/24, 7/8 0.9148 
6 10 1 3 2 0 7 Yes 23/24, 7/8 0.9148 
2 24 20 12 0 5 2 0 15 Yes 15/16 (2) 0.9375 
4 18 1 4 2 0 14 Yes 15/16 (2) 0.9375 
8 14 1 4 2 0 10 Yes 15/16 (2) 0.9375 
2 12 8 3 8 0 1 1 2 5 Yes 1, 15/16 0.9677 
4 6 0 1 1 0 5 Yes 1, 15/16 0.9677 
2 24 20 6 0 2 2 2 16 Yes 63/64(2) 0.9844 
4 18 0 2 2 0 16 Yes 63/64(2) 0.9844 
8 14 0 2 2 0 12 Yes 63/64(2) 0.9844 

  

 

  



      

 

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
4 2 8 3 4 4 0 1 0 0 2 Yes 1(3) 1 

3 12 6 6 2 0 0 1 5 No(1/9) 1(2), 8/9 0.96 
2 16 11 8 0 3 0 0 8 Yes 1(3) 1 
4 9 3 0 0 1 8 Yes 1(3) 1 
  1 2 0 0 7 Yes 1(3) 1 
5 20 12 10 4 0 0 1 11 No(1/25) 1(2), 24/25 0.9863 
2 24 19 12 0 5 0 0 14 Yes 1(3) 1 
3 18 2 3 0 1 14 Yes 1(3) 1 
6 15 5 0 0 1 14 Yes 1(3) 1 

2 3 0 0 12 Yes 1(3) 1 
7 28 18 14 6 0 0 1 17 No(1/49) 1(2), 48/49 0.9931 
2 32 27 16 0 7 0 0 20 Yes 1(3) 1 
4 25 3 4 0 1 20 Yes 1(3) 1 

1 6 0 0 19 Yes 1(3) 1 
8 21 7 0 0 1 20 Yes 1(3) 1 

3 4 0 0 17 Yes 1(3) 1 
 

 

 

 



      

 

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
4 2 8 3 4 8 0 0 0 2 1 No (1/2) 1, 1/2(2) 0.6 

3 12 6 6 1 0 0 3 3 No (1/9) 8/9 (3) 0.8889 
2 16 11 8 0 1 0 2 8 Yes 1 (3) 1 
4 9 0 1 0 0 8 Yes 1 (3) 1 
5 20 12 10 2 0 0 3 9 No (1/25) 24/25 (3) 0.96 
2 24 19 12 0 2 0 2 15 No (1/18) 1, 17/18(2) 0.9623 
3 18 2 0 0 3 15 No (1/18) 1, 17/18(2) 0.9623 
6 15 2 0 0 2 13 No (1/18) 1, 17/18(2) 0.9623 
7 28 18 14 3 0 0 3 15 No (1/49) 48/49 (3) 0.9796 
2 32 27 16 0 3 0 2 22 Yes 1 (3) 1 
4 25 0 3 0 0 22 Yes 1 (3) 1 
8 21 1 2 0 0 19 Yes 1 (3) 1 

 

 

 

 

 

 



      

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
5 2 10 4 5 4 0 2 2 0 2 Yes 1(2), 7/8, 5/8 0.8434 

2 20 14 10 0 4 4 0 10 Yes 15/16(4) 0.9375 
4 12 0 4 4 0 8 Yes 15/16(4) 0.9375 
2 30 24 15 0 7 4 0 17 Yes 23/24(2), 

11/12, 5/6 
0.9137 

3 23 1 6 4 1 16 Yes 23/24(2), 
11/12, 5/6 

0.9137 

6 20 1 6 4 0 14 Yes 23/24(2), 
11/12, 5/6 

0.9137 

2 40 34 20 0 9 4 0 25 Yes 15/16 (4),  0.9375 
4 32 1 8 4 0 24 Yes 15/16 (4),  0.9375 
8 28 1 8 4 0 20 Yes 15/16 (4),  0.9375 
2 20 14 5 8 0 2 2 2 10 Yes 1 (2), 15/16 (2)  0.9677 
4 12 0 2 2 0 10 Yes 1 (2), 15/16 (2)  0.9677 
2 40 34 10 0 4 4 2 28 Yes 0.994(2), 

0.959(2) 
0.9763 

4 32 0 4 4 0 28 Yes 0.994(2), 
0.959(2) 

0.9763 

8 28 0 4 4 0 24 Yes 0.994(2), 
0.959(2) 

0.9763 

 

  



      

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
6 2 12 5 6 4 0 2 2 0 3 Yes 1(3), 3/4(2) 0.8824 

3 18 10 9 1 3 3 1 6 No(1/9) 1, 0.894, 8/9, 
5/6, 0.606 

0.8204 

2 24 17 12 0 5 4 0 12 Yes 1, 15/16(2), 
13/16(2) 

0.8937 

4 15 1 4 4 0 11 Yes 1, 15/16(2), 
13/16(2) 

0.8937 

5 30 20 15 2 5 4 1 14 No(1/25) 
 

0.96, 0.95, 
0.85(2), 0.75 

0.8650 

2 36 29 18 0 8 4 0 21 Yes 1,  7/8(4) 0.8974 
3 28 2 6 4 1 21 Yes 1,  7/8(4) 0.8974 
6 25 2 6 4 0 19 Yes 1,  7/8(4) 0.8974 
7 42 30 21 3 7 5 1 22 No(1/49) 0.947, 0.919, 

25/28, 0.854, 
0.795 

0.8784 

2 48 41 24 0 11 5 0 30 Yes 15/16(2),   
7/8 (3) 

0.8990 

4 39 3 8 5 1 30 Yes 15/16(2),   
7/8 (3) 

0.8990 

  1 10 5 0 29 Yes 15/16(2),   
7/8 (3) 

0.8990 

8 35 3 8 5 0 27 Yes 15/16(2),   
7/8 (3) 

0.8990 

 

 



      

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
6 2 12 5 3 8 0 1 1 2 2 No(4/9) 1(2), 3/4, 2/3, 

1/3 
0.6383 

2 24 17 6 0 2 2 2 13 Yes 1(3),  5/16(2) 0.974 
4 15 0 2 2 0 13 Yes 1(3),  5/16(2) 0.974 
2 36 29 9 0 4 4 2 23 No(4/81) 0.979, 0.960, 

0.942, 0.938, 
0.903 

0.9438 

3 28 1  3 3 3 22 No(4/81) 0.974, 0.963, 
0.958, 0.926, 
0.901 

0.9437 

6 25 1 3 3 2 19 No(4/81) 0.974, 0.963, 
0.958, 0.926 
0.901 

0.9437 

2 48 41 12 0 5 4 2 34 Yes 1, 63/64(2),  
61/64(2) 

0.9746 

4 39 0 5 4 0 34 Yes 1, 63/64(2),  
61/64(2) 

0.9746 

8 35 1 4 4 0 31 Yes 1, 63/64(2),  
61/64(2) 

0.9746 

 

  



      

 

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
7 2 14 6 7 4 0 3 3 0 3 Yes 1(3), 7/8, 5/8, 

1/2 
0.7749 

2 28 
 

20 14 0 6 6 0 14 Yes 7/8(6) 0.875 
4 18 0 6 6 0 12 Yes 7/8(6) 0.875 
2 42 

 
 
 

34 21 0 10 6 0 24 Yes 7/8(5), 19/24 0.8599 
3 33 1 9 6 1 23 Yes 0.934, 7/8(3), 

0.816, 19/24 
0.8586 

6 30 1 9 6 0 21 Yes 0.934, 7/8(3), 
0.816, 19/24 

0.8586 

2 56 
 

48 28 0 13 6 0 35 Yes 7/8(6) 0.875 
4 46 1 12 6 0 34 Yes 7/8(6) 0.875 
8 42 1 12 6 0 30 Yes 7/8(6) 0.875 
2 28 

 
20 7 8 0 3 3 2 15 Yes 1(3), 31/32(2), 

7/8 
0.9666 

4 18 0 3 3 0 15 Yes 1(3), 31/32(2), 
7/8 

0.9666 

2 56 
 

48 14 0 6 6 2 40 Yes 63/64 (6) 0.9844 
4 46 0 6 6 0 40 Yes 63/64 (6) 0.9844 
8 42 0 6 6 0 36 Yes 63/64 (6) 0.9844 

 

  



      

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
8 2 16 7 8 4 0 3 3 0 4 Yes 1(4), 3/4(2),  1/2 0.8077 

3 24 14 12 2 3 3 1 10 No (1/9) 1(3), 8/9 2/3(3) 0.8116 
2 32 23 16 0 7 7 0 16 Yes 0.963(2), 7/8(2), 

0.787(2), 3/4 
0.8498 

4 21 3 4 4 1 16 Yes 1(3), 3/4(4) 0.84 
1 6 6 0 15 Yes 1, 7/8(4), 3/4(2) 0.8497 

5 40 28 20 4 5 5 1 22 No(1/25) 1, 24/25,   4/5(5) 0.8442 
2 48 39 24 0 11 6 0 28 Yes 1, 5/6(6) 0.8537 
3 38 2 9 6 1 28 Yes 1, 5/6(6) 0.8537 
6 35 5 6 6 1 28 Yes 1, 5/6(6) 0.8537 

2 9 6 0 26 Yes 1, 5/6(6) 0.8537 
7 56 42 28 6 7 7 1 34 Yes 6/7(6), 41/49 0.8542 
2 64 55 32 0 15 7 0 40 Yes 0.919(2), 7/8, 

0.831(2), 13/16 (2) 
0.8550 

4 53 3 12 5 1 40 Yes 0.919(2), 7/8, 
0.831(2), 13/16 (2) 

0.8550 

1 14 7 0 39 Yes 0.919(2), 7/8, 
0.831(2), 13/16 (2) 

0.8550 

8 49 7 8 7 1 40 Yes 7/8 (6), 3/4 0.8547 
3 12 7 0 36 Yes 0.919(2), 7/8, 

0.831(2), 13/16 (2) 
0.8550 

 

 



      

 

Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot 
DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
8 2 16 7 4 8 1 0 0 3 4 No(3/10) 1(4), 3/4(2), 1/2 0.8077 

0 1 0 2 4 No(1/2) 1(5), 1/2(2) 0.7778 
3 24 14 6 2 0 0 3 11 No(1/9) 1(4), 8/9(3) 0.9492 
2 32 23 8 0 3 0 2 18 Yes 1(7) 1 
4 21 0 3 0 0 18 Yes 1(7) 1 
5 40 28 10 4 0 0 3 25 No(1/25) 1(4), 24/25(3) 0.9825 
2 48 39 12 0 5 0 2 32 No(0.06) 1(5), 0.944(2) 0.9835 
3 38 2 3 0 3 32 No(1/30) 1(4), 35/36(2), 

17/18 
0.9837 

6 35 5 0 0 3 32 No(1/30) 1(4), 35/36(2), 
17/18 

0.9837 

7 56 42 14 6 0 0 7 39 Yes 1(4), 48/49(3) 0.9912 
2 64 55 16 0 7 0 0 46 Yes 1(7) 1 
4 53 0 7 0 0 46 Yes 1(7) 1 
8 49 7 0 0 3 46 Yes 1(7) 1 

1 6 0 0 43 Yes 1(7) 1 
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Four Treatments 
Four-plex system 

4 Blocks and 12 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 3Ib 1Cd 2Fa 4Lc 
2 1Cd 3Ib 4Lc 2Fa 
3 3Ha 1Bc 4Kb 2Ed 
4 1Bc 3Ha 2Ed 4Kb 
5 3Gd 1Ab 2Dc 4Ja 
6 1Ab 3Gd 4Ja 2Dc 

 
Eight-plex system 

4 Blocks and 12 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Cd 1Bc 2Ed 2Dc 3Ib 3Ha 4Kb 4Ja 
2 1Bc 1Cd 2Dc 2Ed 3Ha 3Ib 4Ja 4Kb 
3 1Ab 1Ab 2Fa 2Fa 3Gd 3Gd 4Lc 4Lc 

 

Five Treatments 
Four-plex system 

5 Blocks and 20 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1Bc 1Ab 1De 1Cd 
2 1Ab 1Bc 1Cd 1De 
3 2Ge 2Ha 2Ec 2Fd 
4 2Ha 2Ge 2Fd 2Ec 
5 3Ka 3Id 3Lb 3Je 
6 3Id 3Ka 3Je 3Lb 
7 4Pc 4Me 4Ob 4Na 
8 4Me 4Pc 4Na 4Ob 
9 5Td 5Rb 5Sc 5Qa 
10 5Rb 5Td 5Qa 5Sc 

 
Eight-plex system 

5 Blocks and 20 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1Cd 2Ec 1De 2Ha 1Bc 2Ge 2Fd 1Ab 
2 2Ec 1Cd 2Ha 1De 2Ge 1Bc 1Ab 2Fd 
3 4Na 3Je 3Lb 4Pc 4Ob 3Id 3Ka 4Me 
4 3Je 4Na 4Pc 3Lb 3Id 4Ob 4Me 3Ka 
5 5Rb 5Rb 5Td 5Td 5Qa 5Qa 5Sc 5Sc 

 

  



Six Treatments 
Four-plex system 

6 Blocks and 30 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2AJa 2AIf 5AXc 5AYd 
2 2AIf 2AJa 5AYd 5AXc 
3 1ADe 2AGd 4ASb 5AVa 
4 2AGd 1ADe 5AVa 4ASb 
5 1ABc 1ACd 5AWb 5AUf 
6 1ACd 1ABc 5AUf 5AWb 
7 2AFc 2AHe 4ARa 4AQf 
8 2AHe 2AFc 4AQf 4ARa 
9 1AAb 1AEf 4APe 4ATc 
10 1AEf 1AAb 4ATc 4APe 
11 3ANa 3AMf 6BDe 6BAb 
12 3AMf 3ANa 6BAb 6BDe 
13 3AOb 3AKd 6AZa 6BBc 
14 3AKd 3AOb 6BBc 6AZa 
15 3ALe 3ALe 6BCd 6BCd 

 

Seven Treatments 
Four-plex system 

7 Blocks and 28 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 1AAd 1ACf 1ADg 1ABe 
2 1ACf 1AAd 1ABe 1ADg 
3 2AHg 2AEb 2AFc 2AGf 
4 2AEb 2AHg 2AGf 2AFc 
5 3AKd 3ALe 3AIb 3AJc 
6 3ALe 3AKd 3AJc 3AIb 
7 4APg 4ANc 4AOe 4AMa 
8 4ANc 4APg 4AMa 4AOe 
9 5ATf 5ARc 5ASd 5AQa 
10 5ARc 5ATf 5AQa 5ASd 
11 6AUa 6AWe 6AVb 6AXf 
12 6AWe 6AUa 6AXf 6AVb 
13 7AZb 7AYa 7BBg 7BAd 
14 7AYa 7AZb 7BAd 7BBg 

 
 

 

 

7 Blocks and 42 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2AJf 2AKg 1ABc 1ACd 
2 2AKg 2AJf 1ACd 1ABc 
3 1AEf 1AAb 1AFg 2AIe 
4 1AAb 1AEf 2AIe 1AFg 
5 2AGc 1ADe 2AHd 2ALa 
6 1ADe 2AGc 2ALa 2AHd 
7 4AVa 3ARb 3APg 4ASe 
8 3ARb 4AVa 4ASe 3APg 
9 3ANe 3AMd 3AOf 4AWb 
10 3AMd 3ANe 4AWb 3AOf 
11 3AQa 4AUg 4ATf 4AXc 
12 4AUg 3AQa 4AXc 4ATf 
13 5BDd 6BGb 6BHc 5AZg 
14 6BGb 5BDd 5AZg 6BHc 
15 6BEg 6BJe 6BId 5BAa 
16 6BJe 6BEg 5BAa 6BId 
17 6BFa 5BCc 5AYf 5BBb 
18 5BCc 6BFa 5BBb 5AYf 
19 7BNd 7BPf 7BLb 7BKa 
20 7BPf 7BNd 7BKa 7BLb 
21 7BMc 7BMc 7BOe 7BOe 

 

  



Eight-plex system 

7 Blocks and 28 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 2AGf 1ABe 1ADg 2AEb 1ACf 2AHg 2AFc 1AAd 
2 1ABe 2AGf 2AEb 1ADg 2AHg 1ACf 1AAd 2AFc 
3 4APg 3AJc 3AKd 4AOe 3ALe 4ANc 4AMa 3AIb 
4 3AJc 4APg 4AOe 3AKd 4ANc 3ALe 3AIb 4AMa 
5 5AQa 6AVb 5ARc 6AXf 5ASd 6AUa 5ATf 6AWe 
6 6AVb 5AQa 6AXf 5ARc 6AUa 5ASd 6AWe 5ATf 
7 7BAd 7BAd 7AYa 7AYa 7AZb 7AZb 7BBg 7BBg 

 

Eight Treatments 
Four-plex system 

8 Blocks and 56 Phase 1 Experimental units 
Run Tag 

114 115 116 117 
1 2AIc 2AKe 6BJa 6BMd 
2 2AKe 2AIc 6BMd 6BJa 
3 2ANh 2ALf 5BCa 5BHg 
4 2ALf 2ANh 5BHg 5BCa 
5 1ADe 1AFg 6BKb 6BPh 
6 1AFg 1ADe 6BPh 6BKb 
7 2AJd 1AEf 6BOg 5BDb 
8 1AEf 2AJd 5BDb 6BOg 
9 2AMg 1AGh 5BFd 6BLc 
10 1AGh 2AMg 6BLc 5BFd 
11 1ABc 2AHa 5BIh 6BNe 
12 2AHa 1ABc 6BNe 5BIh 
13 1ACd 1AAb 5BEc 5BGf 
14 1AAb 1ACd 5BGf 5BEc 
15 3ASf 4BBh 8BXa 7BTd 
16 4BBh 3ASf 7BTd 8BXa 
17 4AZf 4AXc 7BUe 7BWh 
18 4AXc 4AZf 7BWh 7BUe 
19 3AOa 4AYe 7BVf 8BYb 
20 4AYe 3AOa 8BYb 7BVf 
21 3ATg 3ARe 8CAd 8CCf 
22 3ARe 3ATg 8CCf 8CAd 
23 4BAg 3APb 8CBe 7BSc 
24 3APb 4BAg 7BSc 8CBe 
25 3AUh 3AQd 7BRb 7BQa 
26 3AQd 3AUh 7BQa 7BRb 
27 4AWb 4AVa 8BZc 8CDg 
28 4AVa 4AWb 8CDg 8BZc 

 
 

 

 

 

  



Eight-plex system 

8 Blocks and 56 Phase 1 Experimental units 
Run Tag 

113 114 115 116 117 118 119 121 
1 1AGh 2AJe 3ARg 4AZa 5BCf 6BNc 7BUd 8BYb 
2 2AJe 1AGh 4AZa 3ARg 6BNc 5BCf 8BYb 7BUd 
3 2AKf 1ACd 4BAb 3APe 6BJg 5BEh 7BTc 8BXa 
4 1ACd 2AKf 3APe 4BAb 5BEh 6BJg 8BXa 7BTc 
5 1AAb 2AMh 4BBc 3ATa 5BId 6BPe 8CDg 7BWf 
6 2AMh 1AAb 3ATa 4BBc 6BPe 5BId 7BWf 8CDg 
7 2ANa 1ABc 4AXg 3AQf 6BKh 5BGb 7BVe 8CAd 
8 1ABc 2ANa 3AQf 4AXg 5BGb 6BKh 8CAd 7BVe 
9 2AId 1ADe 3AUb 4AWf 6BLa 5BDg 7BQh 8BZc 
10 1ADe 2AId 4AWf 3AUb 5BDg 6BLa 8BZc 7BQh 
11 1AEf 2ALg 3AOd 4AYh 5BHc 6BMb 8CBe 7BRa 
12 2ALg 1AEf 4AYh 3AOd 6BMb 5BHc 7BRa 8CBe 
13 2AHc 1AFg 3ASh 4AVe 5BFa 6BOd 7BSb 8CCf 
14 1AFg 2AHc 4AVe 3ASh 6BOd 5BFa 8CCf 7BSb 
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Phase 1 Design Phase 2 Design 

v nb np 

Between 
Plots 
Residual 
DF E nRuns nTags  

Between Runs stratum  Between Plots within Blocks within Runs stratum 

Phase 1 
Block 
DF 

Phase 1 
Plot DF  Trt DF Tag DF Residual DF Tag ⊥ Trt 

Treatment efficiency factors 

ei E 
4 4 12 5 0.8889 6 4 0 2 0 0 3 Yes 

 
0.8889 (3) 0.8889 

3 8 0 1 0 0 4 0.8889 (3) 0.8889 
5 5 20 11 0.9375 10 4 4 0 4 1 10 0.9375 (4) 0.9375 

5 8 2 0 2 3 8 0.9375 (4) 0.9375 
6 6 30 19 0.96 15 4 3 4 6 0 13 0.938, 0.9, 0.874, 

0.822, 0.786 
0.8606 

7 7 28 15 0.875 14 4 6 0 6 1 14 0.875 (6) 0.875 
7 8 3 0 3 3 12 0.875 (6) 0.875 

7 7 42 29 0.9722 21 4 6 4 10 1 21 0.921, 0.874, 
0.863, 0.840, 
0.814, 0.780 

0.8462 

8 8 56 
 

41 0.9796 28 4 5 8 10 0 29 0.929(2),  0.857, 
0.837(2), 0.786(2) 

0.8478 

14 8 0 6 0 0 35 0.9796 (7) 0.9796 
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