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Abstract

Maximum likelihood estimation generally requires finding exact density or mass

functions of probability distributions, which are often intractable for complicated

statistical models. This PhD thesis shows that probability density approximation

can be an effective tool to address this problem. Following this idea, we investigate

two specific problems arising in the contexts of ecology and population genetics.

In the first project, we investigate the problem of parameter estimation under

latent multinomial models, in which observed data are obtained from a linear

transformation of a latent vector of counts arising from a multinomial distribution

with unknown parameters. Currently, inference under these models relies primarily

on Bayesian methods, which involve long computation times and often require

expert implementation. In this thesis, we present a novel likelihood-based approach

suitable for all models in the class, using likelihoods constructed by the saddlepoint

approximation method. We validate the method by applying it to specific models

for which exact or approximate likelihoods are available, by comparing it with other

estimation approaches, and by simulation. The saddlepoint method consistently gives

accurate inference while being considerably faster than Bayesian methods and more

general than other alternative estimation approaches. We show the generality of the

approach by applying it to two new models for which no existing likelihood-based

approach has been proposed.

In the second project, we propose a new method for estimating the evolutionary

parameters of mutation rate and recombination rate from sample data of r2, which is

a common measure of linkage disequilibrium in population genetics. The probability

v



density function of r2 is an unknown and complicated function of the evolutionary

parameters. Our interest is focused on exploring the quantitative properties and

sampling distribution of r2. We demonstrate that a finite sequence of moments of r2

can be computed without knowing its probability distribution under the diffusion

approximation. From the moments obtained, we construct an approximate probability

density function of r2 for a two-locus genetic model using the maximum entropy

principle. This density is then used for parameter estimation. The performance of

the proposed method is shown by simulation studies and real data analysis.
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1
Introduction

1.1 Problem Statement

Maximum likelihood estimation is a fundamental approach for parameter estimation

in statistics, and is widely used because of the attractive limiting properties it

possesses such as consistency, asymptotic normality, and efficiency. To apply this

approach, one first needs to specify a likelihood function, which is defined as a function

of model parameters conditional on observed data. The likelihood is equivalent to

the joint density for all observations, which is a function of the data conditional on

the model parameters. However, finding probability density functions (PDFs) or

probability mass functions (PMFs) for complicated distributions is often intractable,

1



Introduction

in which case maximum likelihood estimation can be very difficult. Here, we describe

two specific problems of real interest, with intractable densities. We will investigate

density approximation techniques and study the resulting approximate maximum

likelihood estimators.

In the first project of this thesis (Chapters 2 and 3), we investigate the problem of

parameter estimation under a class of latent multinomial models (LMMs), which

is of widespread interest in many fields, including ecology, epidemiology, and social

sciences. For a LMM, observed data y is a linear transformation of a latent vector of

counts z, where z arises from a multinomial distribution with unknown parameters.

The linear relationship can be expressed as y = Tz, where T is typically a known

matrix with more columns than rows. We aim to estimate the parameters from the

data y. In this context, the density of the random variable underlying the data y is

unknown, and is no longer multinomial (Link et al., 2010). Previous authors pointed

out that specifying an exact likelihood function for LMMs is difficult (Link et al.,

2010; Dobra et al., 2006; Sutherland and Schwarz, 2005). Thus, so far there is no

general likelihood-based approach to address the parameter estimation problem for

LMMs, although sophisticated tools are available in a Bayesian framework in which

the latent vector z is sampled through Markov chain Monte Carlo (MCMC) methods

(e.g., Schofield and Bonner, 2015; Bonner and Holmberg, 2013; Higgs et al., 2013;

McClintock et al., 2013; Link et al., 2010).

The second project of this thesis (Chapters 4 and 5) addresses the problem of

estimating evolutionary parameters such as population-scaled genetic mutation rate

θ and recombination rate ρ, from observed data of r2 at stationarity. Here r2 is a

common measure of linkage disequilibrium (LD) in population genetics. LD refers to

the non-random association of alleles at different genetic loci for a given population.

Suppose we consider two loci that exhibit alleles A1, A2 and B1, B2 respectively.

Then the four possible types of gamete are A1B1, A1B2, A2B1, and A2B2. The LD

2



1.2 Motivation

measure r2 is defined by

r2 = D2

p (1 − p) q (1 − q) , (1.1)

where p and q denote the marginal frequencies of alleles A1 and B1, and D =

p1 − pq = p1 − (p1 + p2) (p1 + p3), with p1, p2, and p3 denoting the frequencies of

gamete types A1B1, A1B2, and A2B1. Thus, D is the difference between the actual

frequency of gamete type A1B1, and the frequency that would arise if the two loci

were independent. To estimate the parameters θ and ρ from sample observations of

r2 using maximum likelihood, we need the PDF of r2 at stationarity; however, this

is a complicated function of θ and ρ that has not been found so far.

1.2 Motivation

This PhD project was largely motivated by the recent work of Fewster et al. (in prep)

and Liu (2012), in approximating densities of complicated probability distributions.

Although they considered two problems arising in very different contexts, and applied

distinct methods, their work showed that density approximation can act as a powerful

tool for statistical estimation.

Fewster et al. (in prep) proposed a hybrid density approximation method for maximum

likelihood estimation under the two-source capture-recapture model, which is a specific

LMM. The method is of interest because it has excellent inferential performance,

and is considerably faster than alternative Bayesian methods for this model (e.g.,

McClintock, 2015; Bonner and Holmberg, 2013; McClintock et al., 2013). The method

is designed specifically for the two-source model, and cannot easily be extended to

other models in the latent multinomial class; however, it shows the feasibility of

density approximation for LMMs as an alternative approach to Bayesian inference,

which involves long computation times and often requires expert implementation.

Motivated by the idea underlying the method of Fewster et al. (in prep), we aimed

to generalise it or develop a new density approximation method for all LMMs.
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Investigating the stationary distribution of r2 was initially motivated by the pioneering

work of Liu (2012), who constructed the stationary distribution of the vector of

gametic frequencies (p1, p2, p3) for a two-locus model that will be described in

Chapter 4. The underlying idea is that an unknown probability distribution can be

approximated using a series of moments from the distribution, which can be computed

without needing to know the distribution itself first. The idea was originally from

Song and Song (2007), who developed an analytic method of computing E
(
r2
)
, the

expectation of r2 at stationarity, despite its stationary distribution being unknown.

They showed that E
(
r2
)

can be written as an infinite sum of expectations expressed

in terms of (p, q, D) that can be obtained using a diffusion approximation that we

describe in Chapter 4.

Using Liu (2012)’s stationary distribution for the vector (p1, p2, p3), it is possible to

derive the approximate stationary distribution of r2. However, the method is high-

dimensional and requires considerable computing power distributed across computer

clusters. The new idea in this thesis is to extend Song and Song (2007)’s method to

calculate higher moments of r2 itself, and then directly approximate the PDF of r2

at stationarity, which is much faster than approximating the multivariate PDF of

(p1, p2, p3) and using this to derive the PDF of r2.

1.3 Objectives

We intend to develop density approximation methods to address the two problems

described in Section 1.1. The primary research objectives of this thesis include:

– To develop a general approximate likelihood approach for fitting LMMs;

– To investigate several specific models in the latent multinomial class using the

proposed method, and compare our estimation results with those obtained by

alternative estimation approaches where these are available;
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– To construct the PDF of r2 at stationarity under a two-locus diallelic model

incorporating mutation and recombination;

– To illustrate how to apply the resulting density function for maximum likelihood

inference on mutation rate and recombination rate from data of r2, and to

demonstrate the performance of the method by simulation and by applying it to

real data analysis.

1.4 Approach

The general idea of density approximation in this thesis is to use information we

know about an unknown distribution to approximate its true PDF or PMF. For

different problems, different information might be known, and thus we need to

apply different approximation methods. The maximum entropy principle and the

saddlepoint approximation method are two effective tools we will use in approximating

probability distributions in this thesis.

For a latent multinomial variable, we can derive its moment generating function

without knowing its mass function. Therefore, we apply the saddlepoint approxima-

tion method that converts a moment generating function to an approximate PMF,

which is then used for maximum likelihood estimation.

For the genetic model, we extend the method of Song and Song (2007) to compute a

series of moments of r2 at stationarity, and then use the maximum entropy principle

to approximate the PDF of r2. The PDF is then used for estimating mutation rate

and recombination rate from a sample of r2.

1.5 Outline

This thesis is organised as follows. We introduce a set of specific LMMs for studying

animal and human populations, and summarise some existing estimation approaches
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in Chapter 2. Then we derive a novel approximate likelihood approach based on the

saddlepoint approximation method for fitting LMMs in Chapter 3. We validate the

proposed method by applying it to specific models for which exact or approximate

likelihoods are available, by comparing it with other estimation approaches, and by

simulation. In Chapter 4, some background related to r2 is presented, including

the two-locus genetic model we use, the maximum entropy principle, the diffusion

approximation, and Song and Song (2007)’s method. We construct the stationary

PDF of r2 using the maximum entropy principle in Chapter 5, and illustrate the

procedure of how to use the density for maximum likelihood inference on mutation

rate and recombination rate. Chapter 6 presents a finite difference method to find

the stationary distribution for the vector (p1, p2, p3). Some potential future work is

discussed in Chapter 7.
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Part I

Parameter Estimation Methods for

Latent Multinomial Models
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2
Background: Latent Multinomial Models

2.1 Overview

In this chapter, we first define notation for describing a general framework for LMMs.

Then we give a brief introduction to classical capture-recapture methods. Following

that, a suite of specific LMMs is introduced, including model Mt,α and the two-

source model in ecology, multi-list models in epidemiology, and models for data

augmentation in multi-way contingency tables given known marginal totals in social

sciences. In the second half of this chapter, we provide a review of some existing

estimation approaches and software for these models in the literature. Finally, we

introduce the R package TMB, which is an important tool for optimisation used in
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this thesis. The main purpose of this chapter is to give notation and present some

background for the first project.

2.2 Models and Notation

2.2.1 Notation

For LMMs, the vector of observed data y is a linear transformation of a latent

(unobservable) vector z, where z arises from a multinomial distribution. The two

data vectors are linked by a known matrix T such that y = Tz, where T is typically

a matrix with more columns than rows.

Define the random vectors underlying the data vectors y and z to be Y = (Y1, . . . , YI)

and Z = (Z1, . . . , ZJ), where I < J . Then T is an I × J matrix that connects Y

and Z by Y = TZ. Suppose Z follows a multinomial distribution with index N

and cell probabilities π (θ), a known function of θ, where N and θ are unknown

parameters. In different models, π (θ) is of different forms. For simplicity, we use

π = (π1, . . . , πJ) to replace π (θ) hereafter.

In the context of capture-recapture and multi-list models that will be discussed

below, N always denotes the size of an animal or human population, while the

parameter vector θ varies between models. The observed vector Y is a vector of

frequencies of observable capture histories, and the latent vector Z is a vector of

latent history frequencies. Let {ω1, . . . , ωI} denote the set of all observable capture

histories, and let {λ1, . . . , λJ} denote the set of all latent capture histories. In our

notation, Yi is the count of the observable history ωi, and Zj is the count of the

latent history λj, for i = 1, . . . , I and j = 1, . . . , J . We may also use notations Yωi

and Zλj
interchangeably with Yi and Zj in some places. In the context of multi-way

contingency tables, Y is a set of marginal totals, Z is a vector of cell entries of the

table, and N is the number of entries in the table.
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2.2.2 Capture-Recapture

Capture-recapture sampling is a popular method in ecology for estimating the size

of animal populations. To apply the method, researchers make repeated attempts

to sight or ‘capture’ animals in the population over a period of time, and record

the encounter histories of captured animals. Then the number of animals that have

never been sighted can be estimated by analysing the pattern of recaptures of the

captured animals. There is considerable literature about statistical models that can

be applied in capture-recapture studies (see McCrea and Morgan, 2014; Chao, 2001;

Pollock, 2000; Cormack, 1979; Otis et al., 1978; Darroch, 1958, 1959, for a review),

and their applications in a variety of areas (e.g., King et al., 2009; Karanth et al.,

2006; Link and Barker, 2005).

Capture-recapture data typically consist of a large number of capture histories. For

convenience, we use an ID number i = 1, . . . , n to represent each captured animal,

and use t = 1, . . . , K to number each capture occasion. The data can be expressed

as a matrix

Λ =



Λ11 Λ12 . . . Λ1K

Λ21 Λ22 . . . Λ2K

... ... ...

Λn1 Λn2 . . . ΛnK


, (2.1)

where Λit is 1 if animal i was captured on occasion t, and 0 otherwise. The ith

row (Λi1, . . . , ΛiK) of the data matrix represents the encounter history of animal i,

while the tth column (Λ1t, . . . , Λnt) represents the capture results on occasion t. For

example, when K = 4, the history (1, 0, 1, 0) or simply 1010, denotes an animal that

was captured on occasions 1 and 3, while not captured on occasions 2 and 4.

To analyse the data, we first need an appropriate statistical model, specifying the

capture probability pit of animal i on capture occasion t. In different contexts,

different models can be used. For example, if we assume pit = p for all possible

combinations of i and t, this is the simplest capture-recapture model M0 (Otis
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et al., 1978), which has two parameters N and p. The assumption of constant

capture probabilities in model M0 is too ideal, so it has not gained much attention

in the literature. To be more realistic, we need to consider more factors, such as

heterogeneity in capture probabilities, behavioural response to capture, and variation

of capture situations over time. See Otis et al. (1978) for a review of a suite of

capture-recapture models incorporating these factors.

In conventional capture-recapture studies, investigators trap animals physically, and

mark them with man-made tags that uniquely identify each captured animal. In

more recent studies, individual identification relies increasingly on natural features of

animals, including genetic markers, scars, and skin patterns, which can be recognised

by, for example, DNA profiles (e.g., Vale et al., 2014; Carroll et al., 2011; Wright

et al., 2009) and photographs (e.g., Bonner and Holmberg, 2013; McClintock et al.,

2013; Higgs et al., 2013; Karanth et al., 2006).

Compared with traditional trapping methods, the use of natural marks has several

apparent advantages. First, it requires less effort than physically capturing and

marking animals. Second, the risk of causing harm or disturbance to animals is

reduced, because they are often detected from a distance. Third, it is possible

to obtain more sightings of animals, for example when studying populations that

live in large remote areas at low densities, which may result in better precision for

population estimation. However, these new techniques also introduce a potential

problem of identity uncertainty, i.e., whether two observed samples belong to the

same animal or to two distinct animals. Identity uncertainty transforms a model

from conventional capture-recapture to a LMM. Here, we investigate two LMMs that

arise from uncertain identity in capture-recapture: model Mt,α and the two-source

model.
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2.2.3 Models Mt and Mt,α

We introduce models Mt and Mt,α following Vale et al. (2014) and Link et al. (2010).

Consider a closed animal population of N individuals, which are supposed to be

captured independently from each other. Model Mt (Otis et al., 1978; Darroch, 1958)

assumes that each individual in the population has the same probability pt of being

captured on occasion t for t = 1, 2, . . . , K. Moreover, capture outcomes for a single

animal on different occasions are also assumed to be independent.

Under model Mt, each animal has two possible events on a single capture occasion:

either it was captured (denoted by code 1), or it was not captured (denoted by code

0). Thus there are 2K possible capture histories, each of which is denoted by a binary

string of length K. For example, an animal with capture history 1101 indicates it

was captured on occasions 1, 2, and 4, while not captured on occasion 3.

Classic capture-recapture models, including model Mt, assume that each captured

animal is correctly and uniquely identified, so that the number of observed histories is

equivalent to the number of distinct animals captured. However, this assumption can

be questionable in practice due to misidentification of animals, which is a common

problem especially when natural marks are used (see Morrison et al., 2011; Wright

et al., 2009, for example). Because of misidentification, one animal’s capture history

might be observed as histories from two distinct animals. Consider an animal with

true capture history 1011. If the animal was misidentified on occasion 3, we would

observe two histories 1001 and 0010. In this case, a “ghost” history is observed,

corresponding to the history of the misidentified animal, 0010; thus the number of

observed histories is higher than the number of different animals captured. It has

been shown that even for a low level of identification error, population size can be

markedly overestimated under model Mt (Vale et al., 2014; Link et al., 2010; Wright

et al., 2009).
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Based on the assumptions of model Mt, model Mt,α (Link et al., 2010) takes into

account the influence of misidentification on estimating population size, by incor-

porating a new parameter α that denotes the probability of a captured animal

being correctly identified on each capture occasion. Model Mt,α assumes that each

misidentification always spawns a new history with exactly one entry. That is to

say, a specific identification error never occurs twice, and an individual is never

misidentified as other captured individuals. The validity of this assumption might

be questionable in practice (Lukacs and Burnham, 2005), but it provides some

convenience for presenting the modelling framework. Extensions to model Mt,α that

relax this assumption have been discussed in Link et al. (2010), Schofield and Bonner

(2015), and Bonner et al. (2016).

Under model Mt,α, there are three possible outcomes for each animal on occasion

t: (i) it was not captured (denoted by code 0), (ii) it was captured and correctly

identified (denoted by code 1), and (iii) it was captured but misidentified (denoted

by code 2). These events occur with probabilities 1 − pt, αpt, and (1 − α) pt. The

true encounter history for each animal consists of its capture outcomes on all capture

occasions. For example, an animal with true capture history 1012 means it was not

captured on occasion 2, was captured and correctly identified on occasions 1 and 3,

and was captured but misidentified on occasion 4. Thus for K occasions, there are

J = 3K true but unobservable capture histories for model Mt,α. We call these latent

histories.

The latent vector Z of true encounter-history counts for model Mt,α follows a

multinomial distribution with index N and cell probabilities π = (π1, . . . , πJ), where

for latent history j = 1, . . . , J ,

πj =
K∏

t=1

[
p

I{λjt>0}
t (1 − pt)I{λjt=0} αI{λjt=1} (1 − α)I{λjt=2}

]
, (2.2)

with λjt denoting the capture code of history λj on occasion t and I {·} denoting

the usual indicator function.
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Similarly to model Mt, observed histories for Mt,α are also in the form of binary

strings of length K. Excluding the null history 00 . . . 0, we have I = 2K −1 observable

histories. For convenience, all histories (latent or observable) for model Mt,α are

ordered lexicographically. Unless otherwise stated, this ordering rule also applies to

other models discussed subsequently.

An individual with latent history containing code 2 generates more than one observed

history. For example, an animal with latent history 1221 produces three observed

histories 1001, 0100, and 0010. However, when the three histories are observed, we

cannot determine whether they come from an individual with latent history 1221, or

from three distinct individuals with latent histories 1001, 0100, and 0010, or from two

individuals with some combination of true and ghost histories. The only exception is

that if we observe a history 11 . . . 1, we can be sure that it comes from an animal

with the same latent history, and conversely an individual with latent history 11 . . . 1

only produces the same observed history. We call a latent history satisfying this

condition a fully-observed history. This terminology will also be used in other models.

Note that fully-observed histories also appear in the set of observable histories.

Since one latent history might produce one or more observed histories, the observed

vector Y is a vector of summary statistics of the latent vector Z. We use a simple

example with K = 2 to illustrate the procedure of finding the matrix T that relates

the latent vector Z to the observed vector Y . For a more complex example with

K = 3, see Link et al. (2010). In this case, we have J = 9 latent histories and I = 3

observable histories. The matrix T is of dimension 3 × 9. If latent history λj gives

rise to observable history ωi, the entry Tij in the ith row and jth column of T is one;
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otherwise zero. The relationship Y = TZ can be expressed as


Y01

Y10

Y11

 =


0 1 1 0 0 1 0 1 1

0 0 0 1 0 1 1 1 1

0 0 0 0 1 0 0 0 0





Z00

Z01

Z02

Z10

Z11

Z12

Z20

Z21

Z22



. (2.3)

We can see that the number of 1s in the ith row of T represents the number of latent

histories that generate the observed history ωi. Likewise, the number of 1s in the jth

column of T represents the number of observed histories that arise from the latent

history λj.

2.2.4 The Two-Source Model

The two-source model (Fewster et al., in prep; Bonner and Holmberg, 2013; Mc-

Clintock et al., 2013) arises in the context of combining two sampling protocols for

inference on population size within the same capture-recapture study, for example,

genetic samples and photographs. This creates analytic challenges because captures

of the same animal from different protocols cannot be matched unless they were

obtained simultaneously on at least one capture occasion. One way of addressing

this problem is to analyse data from each protocol separately, which is inefficient

since information contained in the unused protocol is ignored. In the two-source

model, we assume that misidentification of animals does not occur for either of the

two protocols.

16



2.2 Models and Notation

Table 2.1 Possible latent capture outcomes for each animal and each occasion for
the two-source capture-recapture model.

Outcome Code
Not captured by either method 0
Captured by photo only 1
Captured by genotype only 2
Captured by both methods simultaneously 3
Captured by both methods but non-simultaneously 4

Under the two-source model, each animal in the population has five possible outcomes

on each capture occasion. The outcomes and their corresponding capture codes

are shown in Table 2.1. There are J = 5K possible latent histories for K capture

occasions. Note that latent histories containing at least one code 3 are fully-observed.

For convenience, all latent histories are grouped into: (i) the fully-observed histories;

(ii) histories excluding the null history and the fully-observed histories; (iii) the null

history. We order the latent histories following this ordering, and within each group

histories are ordered lexicographically.

Observed histories for the two-source model include the fully-observed histories,

and histories containing only records from either of the protocols. We order all

these histories in the same manner: (i) the fully-observed histories; (ii) histories

containing records from photographs only excluding the null history, say 10100; (iii)

histories containing records from genetic samples only excluding the null history,

for example, 02202. Thus, in the observed histories we use codes 1 and 2 to refer

to capture by photograph or genotype respectively, but the interpretation of these

codes differs from that in the latent histories. The numbers of histories included in

the three observable groups are 5K − 4K , 2K − 1, and 2K − 1. Thus the total number

of observable histories for the two-source model is I = 5K − 4K + 2(2K − 1).

Individuals with latent histories that consist of records from both the two protocols

but without any simultaneous capture (code 3) contribute to two observed histories,

one containing records from genetic samples only, and the other containing records
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from photographs only. For example, an individual with latent history 1204 gives

rise to two observed histories 1001 and 0202. However, individuals whose latent

histories are 1001 or 0202 are also observed as these two histories. Hence, we cannot

distinguish whether the two observed histories come from one individual or two

distinct individuals. This generates a similar latent multinomial structure to model

Mt,α.

2.2.5 Multi-List Models

Capture-recapture methods are also widespread in epidemiology. Similarities and

differences between capture-recapture and multi-list methods are summarised in

Sutherland (2003). Multi-list methods are mainly used to address human population

estimation problems, in which members of the population may be present on one or

more administrative lists. Different lists may use different tags to identify individuals,

such as name, date of birth, or health insurance number. If there exists a tag common

to all lists, such that individuals can be matched across all lists, then it is common

to use Poisson log-linear models (Cormack, 1989) to estimate the population size.

The assumption of a tag common to all lists is essential for the application of Poisson

log-linear models. If it does not hold, Poisson models can only be applied to a subset

of the lists that share a common tag, so information contained in unused lists is

ignored. To deal with this problem, Sutherland and Schwarz (2005) applied a latent

Poisson model. Here, we consider the same problem as discussed by Sutherland and

Schwarz (2005), but use an equivalent LMM instead.

In this section, we still use the terminology “capture history”, although we do not

capture any individuals in a conventional sense. The word “capture” represents being

present on a list. The latent history λj of an individual is defined as
(
λj1, . . . , λjK

)
or simply λj1 . . . λjK , where λjk is 1 if the individual is on list k; otherwise 0 for

k = 1, . . . , K. We have J = 2K latent histories for a K-list problem. For example,

when K = 4, an individual with latent history 1010 is on lists 1 and 3, but not on
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Fig. 2.1 List structure for a four-list, two-tag example.

lists 2 and 4. We assume all individuals are matched correctly between lists whenever

those lists share a common tag.

Specifying the set of observable histories requires some work. Given the same number

of lists, observable histories can be different for different list structures. Following

Sutherland and Schwarz (2005), we use a graph such as that shown in Fig. 2.1 to

illustrate the procedure of finding observable histories for multi-list problems. Lists

are represented by vertices on the graph. If there exists an edge between two lists,

they share a common tag; otherwise they do not. It follows that the example in

Fig. 2.1 has at least two different tags, one for matching records on lists 1, 2, and 3,

and another for matching records on lists 3 and 4. In this four-list, two-tag example,

the record of an individual on list 4 cannot be matched with the individual’s records

on lists 1 and 2 unless the individual is also included on list 3, which acts as a

“bridge”. For this reason, latent histories with code 1 for list 3 are fully observed

for this list structure. Other latent histories are not observable, but they produce

observed histories containing partial information. For example, the latent history

1101 is unobservable. Instead, it is observed as two vague histories 110· and ··01,

where “·” means that it is unknown whether or not an individual is on a list.

Sutherland and Schwarz (2005) showed that there are 12 observable histories for the

list structure in Fig. 2.1, i.e., {100·, 010·, 110·, 1010, 1011, 0110, 0111, 0010, 0011,
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1110, 1111, ··01}. These histories are ordered as they are shown in the set. They

also derived the 12 × 16 matrix T that connects the vectors Y and Z.

In the modelling framework of Sutherland and Schwarz (2005), it is assumed that

Y = TZ

Z ∼ Poisson (µZ)

log (µZ) = Wβ,

(2.4)

where W is a design matrix, and β is a vector of parameters. The vector β typically

consists of an intercept β0, main effects βk for lists k = 1, . . . , K, and potential

interaction effects between some pairs of the lists, such as first-order interactions βkl

between lists k and l for k, l ∈ {1, . . . , K} with k < l.

Consider an example that includes two first-order interaction effects: interaction β12

between lists 1 and 2, and interaction β13 between lists 1 and 3. In this example, we
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have

W =



1 0 0 0 0 0 0

1 0 0 0 1 0 0

1 0 0 1 0 0 0

1 0 0 1 1 0 0

1 0 1 0 0 0 0

1 0 1 0 1 0 0

1 0 1 1 0 0 0

1 0 1 1 1 0 0

1 1 0 0 0 0 0

1 1 0 0 1 0 0

1 1 0 1 0 0 1

1 1 0 1 1 0 1

1 1 1 0 0 1 0

1 1 1 0 1 1 0

1 1 1 1 0 1 1

1 1 1 1 1 1 1



, (2.5)

and β = (β0, . . . , β4, β12, β13). In the matrix W , the first column consists completely

of one, which should be the same for most list structures. The second to fifth columns

of the matrix are composed of exactly the latent capture histories. The last two

columns of W deal with the two list interactions. For example, the last history 1111

includes interactions between lists 1 and 2, and lists 1 and 3, thus the entries in the

last row and the last two columns of the matrix are all one. We use some examples

to show how the latent vector Z is related to the model parameters:

log (µ1000) = β0 + β1

log (µ1101) = β0 + β1 + β2 + β4 + β12

log (µ1111) = β0 + β1 + β2 + β3 + β4 + β12 + β13

(2.6)
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where µ1000, µ1101, and µ1111 denote the expectations of Poisson variables Z1000, Z1101,

and Z1111.

In our analysis, we apply a multinomial model to describe the latent vector Z, which

is consistent with the Poisson model of Sutherland and Schwarz (2005):

Z ∼ Multinomial (N ; π)

π = exp (Wβ)∑ exp (Wβ) .
(2.7)

The multinomial formulation above gives a natural way of estimating N and of

accounting for covariance between elements of Y , both of which have been problematic

for authors who used the Poisson formulation (e.g. Sutherland and Schwarz, 2005;

Lee, 2002). The probability vector π does not depend on the parameter β0, because

the first column of the matrix W consists completely of one-entries so that exp (β0)

cancels in the numerator and denominator of equation (2.7). For this reason, the

parameters θ that constitute π = π (θ) in our case include all components of β

except for the intercept β0, and thus the two models have the same number of

parameters to estimate: namely, (β0, θ) for the Poisson formulation, and (N, θ) for

the multinomial formulation. Note that we can also propose a different form for π

in terms of model parameters. However, neither the Poisson nor the multinomial

formulation for Z allows for ready inference based on the observable data Y = TZ,

because the probability mass function of Y is not known. We use this model in

Chapter 3 to compare our method with that of Sutherland and Schwarz (2005) for

drawing inference on (N, θ) based on Y .

2.2.6 Multi-Way Contingency Tables with Known Marginals

In social sciences, data from a survey or census are often presented in the form of

a multi-way contingency table with cell entries to be modelled by a multinomial

or Poisson model. However, it often arises that only partial information about the

table is available, for example, a subset of marginal totals, for reasons of participant
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privacy or reporting convenience (Dobra et al., 2006). In this context, LMMs can

be applied to model the incomplete data for inference on model parameters and

individual cell entries of the table, as proposed by Schofield and Bonner (2015).

We consider a contingency table of counts over a K-dimensional discrete random

vector ξ = (ξ1, . . . , ξK). Each ξk represents an observed variable such as level of

education or socio-economic class of a participant. For each k ∈ {1, . . . , K}, the

random variable ξk has Ik possible values, denoted by integers 1, . . . , Ik for convenience.

Let (i1, . . . , iK) or simply i1 . . . iK denote a single cell of the table, where ik is the

observation of ξk, and takes values from {1, . . . , Ik}. Each cell therefore represents

one unique combination of the K variables. It follows that the total number of cells

in the table is

m =
K∏

k=1
Ik. (2.8)

The cell i1 . . . iK has a non-negative integer cell entry Zi1...iK
that represents the

frequency of the random vector ξ being observed as (i1, . . . , iK), i.e., the number of

participants with this combination of observations. For simplicity, let Zj denote the

cell entry of the jth cell of the table for j = 1, . . . , m. The contingency table is an

m-dimensional vector consisting of all these cell entries: Z =
(
Z1...1, . . . , ZI1...IK

)
=

(Z1, . . . , Zm).

A marginal table is defined as a vector of summary statistics of the full table, which

can be obtained by summation over a subset of the K variables. Consider a subset

D =
{
ξd | d ∈ Ω

}
with Ω ⊆ {1, . . . , K}. The dimension of the marginal vector YD

corresponding to D is ∏d∈Ω Id, and this vector is obtained by summing over all

variables not included in D. To illustrate the definition, we consider an example

with K = 3 and D = {ξ1, ξ2}. In this case, we have a two-way marginal table of

dimension I1I2:

YD = Y{ξ1,ξ2} = (Z11+, . . . , ZI1I2+) , (2.9)
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where

Zi1i2+ =
I3∑

i3=1
Zi1i2i3 (2.10)

for i1 ∈ {1, . . . , I1} and i2 ∈ {1, . . . , I2}. For a set D that includes more variables

and for more complex tables, marginal tables can be defined analogously. Note that

if D′ ⊆ D is a subset of D, the marginal table YD′ can be obtained directly from the

marginal table YD.

It is straightforward to see that any marginal table can be expressed as a linear

transformation of the full table. If we consider several marginal tables YD1 , . . . , YDn

over subsets D1, . . . , Dn of the K variables, Y = (YD1 , . . . , YDn) can be written as a

linear transformation of the full table Z, so that Y = TZ, where T is a matrix that

consists completely of zero and one entries.

As with the formulation for multi-list studies, cell entries of the original table can be

modelled by Poisson or multinomial models, thus we can also use formulas (2.4) and

(2.7) to investigate inference problems for contingency tables with known marginal

totals. We can regard each variable ξk here as a “list” to apply those formulas. The

only difference is that N is no longer an unknown parameter to be estimated, as it

can be obtained by summing up any one of the n marginal tables. Thus this problem

differs from capture-recapture scenarios in which we seek to draw inference on N ,

but it still falls into the general class of LMMs.

2.3 Bayesian Inference

Currently, parameter estimation under LMMs relies mainly on a suite of Bayesian

MCMC methods (e.g., Bonner et al., 2016; Schofield and Bonner, 2015; Bonner and

Holmberg, 2013; McClintock et al., 2013; Link et al., 2010). The general principle of

these methods is to sample the latent vector z using an MCMC sampler instead of

enumerating all possible values. Before these methods were developed for LMMs,

MCMC methods were already well-established for the more general problem of
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sampling z in the presence of the linear constraint y = Tz, where z need not be

multinomial. This problem particularly arose in the context of sampling multi-way

contingency tables given fixed marginal totals (e.g. Dobra, 2012; Dobra et al., 2006;

Chen et al., 2006, 2005; Diaconis and Sturmfels, 1998). In this section, we briefly

summarise two MCMC methods for LMMs.

2.3.1 Bayesian Method for Model Mt,α

Link et al. (2010) first proposed a Bayesian MCMC method for model Mt,α, and

indicated that the method can be extended naturally to other LMMs. Given that

y = Tz with a known matrix T , their algorithm is to sample from the joint posterior

distribution [θ, z | y]. The notation [x] denotes fX (x), the density or mass function

of random variable X. Priors are given to θ, so that [θ | z] can be sampled without

difficulty. The main challenge of the algorithm lies in drawing samples from the full

conditional distribution [z | y, θ]. The algorithm of Link et al. (2010) for updating

the latent vector z is summarised as follows.

Algorithm 1 Bayesian MCMC method for model Mt,α (Link et al., 2010).
1: Choose an initial value z0 satisfying y = Tz0

2: for i = 1 to n do
3: for k = 1 to m do
4: Sample c from {−Ck, . . . , −1, 1, . . . , Ck} with equal probability
5: Let zcand = zi−1 + cbk with bk ∈ B = {b1, . . . , bm}
6: Calculate the Metropolis-Hastings ratio r = min

{
1,

[zcand|θ]
[zi−1|θ]

}
7: Accept zi = zcand with probability r; otherwise zi = zi−1

8: end for
9: end for

Note that the set B is a basis of ker (T ), the kernel (i.e., null space) of matrix T ,

so that every element of the feasible set A =
{
z | y = Tz

}
can be expressed as the

sum of one feasible solution plus a linear combination of basis elements. For model

Mt,α with K capture occasions, the cardinality m of the set B is 3K − 2K + 1. In

the algorithm, n is the number of iterations which should be sufficiently large to
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ensure the convergence of the Markov chain, and Ck is an integer selected by the

user. The algorithm therefore involves starting with one feasible solution z0, and

then repeatedly sampling random vectors from the null space of matrix T to be

added to z0, thereby generating new feasible solutions.

2.3.2 A More General Bayesian Method

Schofield and Bonner (2015) pointed out that Link et al. (2010)’s algorithm is at risk

of failing to obtain an irreducible Markov chain in some cases. The problem arises

from an incomplete specification for the set B in Link et al. (2010)’s algorithm. To

solve the problem, they suggested to use a Markov basis of the lattice kernel kerZ (T )

for the set B, where

kerZ (T ) = ker (T ) ∩ ZJ =
{
z ∈ ZJ | Tz = 0

}
. (2.11)

The advantage of a Markov basis over a simple basis was shown by Schofield and

Bonner (2015) using three examples, in which Link et al. (2010)’s algorithm may

fail to obtain an irreducible Markov chain. More details about these definitions in

algebraic statistics (e.g., Markov basis) can be found in Schofield and Bonner (2015).

Moreover, Schofield and Bonner (2015) changed the algorithm of Link et al. (2010)

by sampling a single value of k from {1, 2, . . . , m} instead of going through all the

m possible values, and sampling c from {−1, 1} instead of {−Ck, . . . , −1, 1, . . . , Ck}.

Their more general algorithm is shown below.

The two MCMC algorithms of Link et al. (2010) and Schofield and Bonner (2015)

are very elegant and general, but still have several disadvantages. First, they both

involve long computation times. For example, to fit a data set simulated from

model Mt,α with the settings N = 400, α = 0.90, and p = (0.3, 0.4, 0.5, 0.6, 0.7),

Link et al. (2010)’s method cost over half an hour. Computation time is typically

proportional to the square of the number of nonzero components of the observed
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data y (Bonner and Holmberg, 2013). Second, Markov bases are important for the

algorithm of Schofield and Bonner (2015), but constructing them is a considerable

challenge. Schofield and Bonner (2015) pointed out that the software 4ti2 they used

for Markov basis construction may fail for some capture-recapture models with even a

moderate number of capture occasions (say K > 5). Analytic computation of Markov

bases is also a challenge, since substantial knowledge of algebraic statistics is needed.

Third, one needs to check the convergence of Markov chains when implementing

these methods, but this might not be easy in some circumstances. A typical way of

doing this is to use the R package coda (Plummer et al., 2006), but this might fail to

work by crashing with an error when the length of the Markov chain is too large.

Algorithm 2 Bayesian MCMC method for all LMMs (Schofield and Bonner, 2015).
1: Choose an initial z0 satisfying y = Tz0

2: for i = 1 to n do
3: Sample k from {1, 2, . . . , m} with equal probability
4: Sample c from {−1, 1} with equal probability
5: Let zcand = zi−1 + cbk with bk ∈ B = {b1, . . . , bm}
6: Calculate the Metropolis-Hastings ratio r = min

{
1,

[zcand|θ]
[zi−1|θ]

}
7: Accept zi = zcand with probability r; otherwise zi = zi−1

8: end for

2.3.3 The multimark Package

The original method of Link et al. (2010) was adapted for the two-source model

by Bonner and Holmberg (2013) and McClintock et al. (2013), who also simplified

the original algorithm to make it more efficient. McClintock (2015) developed an R

package multimark implementing Bayesian inference to analyse capture-recapture

data consisting of up to two natural marks. multimark further improves the efficiency

of the MCMC algorithms of Bonner and Holmberg (2013) and McClintock et al.

(2013), by the use of parallel computing and C programming instead of R for core

algorithms. The package serves as a user-friendly software for practitioners. We
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describe the models that can be fitted via multimark here; for the use of the package,

refer to McClintock (2015).

Currently the package can fit a range of models, including the Cormack-Jolly-Seber

(CJS) model for open populations, and classical models for closed populations. We

focus on the closed population models that can be fitted by the package. The

latent vector Z for the two-source model follows a multinomial distribution: Z ∼

Multinomial (N ; π). In multimark, the jth component of π, i.e., the cell probability

of the latent history λj for j = 1, . . . , J , is πj = ∏K
t=1 πjt, where

πjt =



1 − pjt if λjt = 0

pjtδ1 if λjt = 1

pjtδ2 if λjt = 2

pjt (1 − δ1 − δ2) α if λjt = 3

pjt (1 − δ1 − δ2) (1 − α) if λjt = 4

(2.12)

with λjt denoting the capture code of the history λj on occasion t. Thus, pjt is

the overall probability of capture in this cell; conditionally on capture, δ1, δ2, and

1 − δ1 − δ2 are respectively the probabilities of capture by photograph only, genotype

only, or both; and conditionally on capture by both methods, α and 1 − α are the

probabilities of simultaneous or non-simultaneous capture. For example, when K = 3

the cell probability for the history λj = 012 is

πj =
3∏

t=1
πjt =

(
1 − pj1

)
pj2δ1pj3δ2. (2.13)

We can propose different models to describe pjt for all combinations of j = 1, . . . , J

and t = 1, . . . , K. Letting pjt = p yields the two-source model M0 that includes

parameters p, δ1, δ2, α, and N . If pjt = pt for all j = 1, . . . , J , this is the two-

source model Mt that includes parameters δ1, δ2, α, N , and p = (p1, . . . , pK). Some
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other models can also be fitted in multimark, for example, models incorporating

behavioural response to captures, and models with individual heterogeneity.

2.4 Alternative Methods in the Literature

For some models in the latent multinomial class, there are alternative estimation

approaches available, which are more efficient but less general compared with the

Bayesian methods. Yoshizaki et al. (2011) proposed a least-squares approach for

model Mt,α, although without supplying a variance estimator. Sutherland and

Schwarz (2005) applied a quasi-likelihood approach based on estimating functions for

fitting latent Poisson models in the context of multi-list studies. However, a general

non-Bayesian approach for all LMMs has not been accomplished previously.

2.4.1 Maximum Likelihood Estimation

Mathematically, a general likelihood function for LMMs can be written down easily

by summing up the multinomial probabilities of all feasible latent vectors z that are

compatible with the observed data y:

L
(
N, θ | y

)
=
∑
z∈A

P
(
z | N, θ

)
, (2.14)

where A =
{
z | Tz = y

}
. This looks promising, but it is computationally infeasible to

use this summed likelihood for estimation in practice, since specifying or enumerating

the set A is generally intractable except for trivial cases (Link et al., 2010; Yoshizaki

et al., 2009; Dobra et al., 2006; Sutherland and Schwarz, 2005). As a consequence,

fitting LMMs using maximum likelihood does not follow readily from equation (2.14).

Vale et al. (2014) derived an exact closed-form likelihood function for model Mt,α, and

showed that it can be computed efficiently, but commented that their formulation

does not generalise to other models in the LMM class. So far, model Mt,α is the only

LMM whose exact likelihood function is available by tractable computation. Thus
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we will use model Mt,α to demonstrate in Chapter 3 the performance of our proposed

method of likelihood approximation, by comparing inference under our approximate

likelihood function with that under the exact likelihood. For more details about the

exact likelihood formulation for model Mt,α, see Vale et al. (2014). Compared with

30 minutes required by the Bayesian method of Link et al. (2010) to fit the instance

of model Mt,α as mentioned in Section 2.3.2, Vale et al. (2014) reported fitting the

same model in 1.2 seconds using their exact likelihood computation.

2.4.2 Hybrid Approximation

Maximum likelihood is highly appealing for fitting LMMs because of its fast computa-

tional speed, as demonstrated in Vale et al. (2014). When exact likelihood functions

are difficult to specify, approximate likelihoods may be attainable for some models.

For example, Fewster et al. (in prep) proposed a hybrid density approximation

method to gain an approximate likelihood for the two-source model, which can then

be maximised as usual. Here we briefly describe this hybrid approximation method.

Fewster et al. (in prep) showed that the linear relationship Y = TZ for the two-source

model can be reformulated as

Y = (C, X) = (C, AU) , (2.15)

where C is a vector of counts of fully-observed histories and histories with zero count,

X is a vector of counts of all remaining histories, and the conditional distribution

of U given C is multinomial. The multinomial PMF of the vector C is known, so

finding the PMF of Y is equivalent to finding the PMF of X | C = AU | C, where

A is a submatrix of T .

Using the multivariate central limit theorem (CLT), the probability distribution of

the multinomial vector U can be approximated by a multivariate normal distribution.

Thus the distribution of X can also be approximated by a multivariate normal
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distribution, since normality is preserved under the linear transformation X = AU .

This looks promising, but it is not useful in practice. The reason is that the normal

approximation by CLT is only effective asymptotically as N → ∞, which means that

cell counts in U should be large, leading to large cell counts in X. However, in real

applications, many cells of X typically have small counts of 0, 1, 2, . . . , especially

when the number of capture occasions is high but capture probabilities are low.

In this context, the multivariate normal approximation cannot yield a satisfactory

approximation to the PMF of U , so the transformed normal approximation to the

PMF of X is also unsatisfactory.

Furthermore, Fewster et al. (in prep) proved that, if X ′ is a multinomial vector with

the same mean vector as X, the covariance matrix of X ′ is identical to that of X in

many entries but differs in some entries. These discrepancies are minor as long as the

cell probabilities of X are all small. This suggests that if X is entirely composed of

small counts, a multinomial approximation to X might be satisfactory. Simulation

studies showed that treating X as a pseudo-multinomial vector can generate unbiased

inference results with reasonable confidence interval coverage when most components

of X are sufficiently small, say less than five.

The multivariate normal approximation is effective when X contains only large

components, while the multinomial moment-based approximation is effective when

X consists only of small counts. The idea of the hybrid approximation method is to

combine the two approximations, such that large counts of X are dealt with by the

multivariate normal approximation, while small counts are handled by the pseudo-

multinomial approximation. This hybrid approximation was studied in extensive

simulation studies by Fewster et al. (in prep) and found to give negligible bias and

nominal confidence interval coverage across a wide range of scenarios.
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2.4.3 Hybrid Approximation compared with multimark

The development of the hybrid approximation method is not part of my original work,

but I have created an implementation in TMB (introduced in the next section), and

performed comparisons with the multimark package to verify the method. Imple-

menting the method in TMB is faster and more stable than native R implementations,

and more user-friendly than the previous implementation in ADMB (Fournier et al.,

2012).
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Fig. 2.2 Plots of estimates and 95% confidence intervals (or credible intervals) for
the parameter N obtained by multimark (dashed) and the hybrid approximation
approach (solid) for a range of settings under the two-source models M0 and Mt.
Each dot represents an estimate from one simulated data set. Horizontal lines across
the plots show the true values of N . The parameter δ1 is fixed at 0.4 for all scenarios.
The parameters (δ2, α) are set to (0.2, 0.1), (0.2, 0.5), (0.4, 0.1), and (0.4, 0.5)
respectively for scenarios 1, 2, 3, and 4.
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We present comparisons between the hybrid approximation and multimark by ap-

plying the two methods to simulated data with different parameter settings under

the two-source models M0 and Mt. It is impracticable to run a large number of

simulations since fitting one data set using multimark even in simple cases (e.g.,

K = 4 capture occasions) can cost over half an hour. Therefore, for each setting we

only generated one data set by simulation and calculated parameter estimates and

associated confidence intervals using the two methods. Fig. 2.2 shows our results

for 16 scenarios. We focus on the parameter N , which is of main interest in closed

capture-recapture studies. We can see from the interval plots that the point estimates

and confidence intervals of N from the two distinct approaches are always close to

each other. This provides evidence for the validity of both methods.

The primary motivation for developing the hybrid approximation method for the

two-source model was that it could be considerably faster than the Bayesian MCMC

algorithms (e.g., McClintock, 2015; Bonner and Holmberg, 2013; McClintock et al.,

2013). Computation times for fitting one data set using the multimark package for

each of eight scenarios are shown in Table 2.2. All of them are over 30 minutes. In

contrast, fitting one data set using the hybrid method cost less than one second in

each of the eight scenarios.

We conclude that approximating the likelihood has the potential to deliver infer-

ential performance that matches that of the Bayesian method, at a fraction of the

computational cost. We are therefore motivated to explore whether a more general

approximation method can be developed for all LMMs. This is the focus of Chapter

3. We will use the exact likelihood for Mt,α from Vale et al. (2014) and the hybrid

approximation for the two-source model from Fewster et al. (in prep) to validate the

new approximation developed there. The purpose of validating the hybrid approxima-

tion against multimark in this section was to confirm that the hybrid approximation

creates a suitable reference method against which our new method can be validated.
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Table 2.2 Estimates and 95% confidence intervals (credible intervals) for the parameter N under the two-source model
M0 obtained using multimark and the hybrid approximation method, for eight of the settings that are shown by interval
plots in Fig. 2.2. Computation times for the hybrid method in all eight scenarios were less than one second on a
customary laptop.

(N, p, δ1, δ2, α) N̂m CIm N̂h CIh CIm/CIh multimark time / min
(500, 0.1, 0.4, 0.2, 0.1) 481 [334, 701] 469 [327, 670] 1.07 37
(500, 0.1, 0.4, 0.2, 0.5) 502 [355, 718] 498 [349, 710] 1.00 35
(500, 0.1, 0.4, 0.4, 0.1) 475 [324, 708] 473 [321, 698] 1.02 36
(500, 0.1, 0.4, 0.4, 0.5) 463 [321, 678] 469 [321, 687] 1.00 33
(500, 0.4, 0.4, 0.2, 0.1) 482 [458, 510] 482 [457, 509] 1.00 40
(500, 0.4, 0.4, 0.2, 0.5) 480 [456, 508] 480 [454, 506] 1.00 35
(500, 0.4, 0.4, 0.4, 0.1) 475 [444, 509] 473 [443, 506] 1.03 38
(500, 0.4, 0.4, 0.4, 0.5) 474 [444, 508] 471 [441, 504] 1.02 35

N̂m: posterior mean of N from multimark; N̂h: estimate of N from the hybrid method; CIm: 95% credible interval for N from
multimark; CIh: 95% confidence interval for N from the hybrid method; CIm/CIh: ratio of the length of CIm to the length of
CIh.
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2.5 Introduction to TMB

This thesis focuses on maximum likelihood problems, so fast, accurate, and stable

optimisation algorithms are indispensable. We primarily rely on the R optimiser

nlminb for minimizing negative log-likelihood functions. Like most routines, the per-

formance of nlminb is enhanced if users supply explicit gradient functions along with

objectives, especially for complicated problems. However, symbolic differentiation is

almost impossible for complex likelihoods, for example, likelihoods for random-effect

models. The connection between our methods and random-effect models will become

clear later.

Template Model Builder (TMB) is a fast and flexible R package to facilitate optimisation

for complex models with or without random effects (Kristensen et al., 2016). It

implements automatic differentiation, which repeatedly applies the chain rule to

the elementary functions comprising the likelihood, enabling it to calculate highly

accurate derivatives of user-defined functions to the same precision as symbolic

differentiation, but without needing to do any symbolic differentiation at all. It also

implements the Laplace approximation to facilitate fast computations of integrals

involved in random-effect models. The TMB package is used for most computations

involved in this thesis, and it is particularly valuable for our method of fitting LMMs,

so it deserves a brief introduction here. We mainly focus on the use of the package.

For more detail about automatic differentiation, refer to Griewank and Walther

(2008); the Laplace approximation will be described in Chapter 3.

2.5.1 Example

To use TMB to minimise a negative log-likelihood function, one needs to write the

objective function in a C++ template, while completing other steps in R such as data

processing. We demonstrate the use of TMB by fitting a simple linear regression model

to simulated data, an example taken from the package website https://github.
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com/kaskr/adcomp/tree/master/tmb_examples. For more examples, refer to this

website and Section 5 of Kristensen et al. (2016).

We consider the linear regression model Y = a + bX + ϵ, where ϵ follows a normal

distribution N
(
0, σ2

)
. Suppose that a sequence of data pairs (x1, y1) , . . . , (xn, yn) is

simulated from the model Yi = a + bXi + ϵi, where ϵ1, . . . , ϵn are independent and

identically distributed N
(
0, σ2

)
. The likelihood function for this example is

l (a, b, σ) =
(

1√
2πσ

)n

exp

− 1
2σ2

n∑
i=1

(yi − a − bxi)2

 . (2.16)

Our first step is to code the negative log-likelihood as a C++ function using the

template, which is named as “linreg.cpp”. The code is as follows.

#include <TMB.hpp>
template<class Type>
Type objective_function<Type>::operator() ()
{

DATA_VECTOR(y);
DATA_VECTOR(x);
PARAMETER(a);
PARAMETER(b);
PARAMETER(logSigma);
Type nll = -sum(dnorm(y, a+b*x, exp(logSigma), true));
return nll;

}

We explain this program line by line. The first four lines and the last line of the

program are standard, and should be the same in most cases. The first line of this

template is used to include the TMB macros. The following three lines are required

by the syntax of a C++ function template. Note that Type is a special type of C++

object defined by TMB that will be replaced by an automatic differentiation type for

numerical computations when the template is compiled (Kristensen et al., 2016).

The code DATA_VECTOR(y) declares that y is a data vector, and x is declared in

the same manner. Note that x and y should be passed from R. The following three
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lines use PARAMETER to declare scalar parameters a, b, and logSigma. If we have

parameter vectors to declare, PARAMETER_VECTOR should be used instead. A normal

PDF is given by the function dnorm, which is defined similarly to the corresponding

R function. The fourth argument true indicates that the logarithm of the density

will be returned, rather than the density itself. The template can be compiled and

linked from within R using the following code.

library(TMB)
compile("linreg.cpp")
dyn.load(dynlib("linreg"))
dat <- list(y=rnorm(10) + 1:10, x=1:10)
par <- list(a=0, b=0, logSigma=0)
obj <- MakeADFun(dat, par, DLL="linreg")
est <- nlminb(obj$par, obj$fn, obj$gr)
rep <- sdreport(obj)

The first line of the R program above loads the TMB package. Then the C++ template

is compiled and linked using functions compile and dyn.load through the following

two lines. The object dat is a list containing values to be delivered to the data objects

declared in the template. Note that the components of the list should have the same

names as the objects declared in the C++ code, namely y and x in this example.

Likewise, the values contained in par will be assigned to the declared parameters as

starting values for the optimisation. Then the function MakeADFun creates an object

obj that contains: (i) obj$par, the starting values for optimisation; (ii) obj$fn,

the negative log-likelihood function, (iii) obj$gr, the gradient function obtained

by automatic differentiation, and (iv) obj$he, a function to evaluate the Hessian

matrix of the objective. If some of the parameters are random effects that can be

integrated out using the Laplace approximation, we need to assign the parameter

names to the argument random of the function MakeADFun. For example, if we use

random=c("logSigma") in this problem, the parameter logSigma would be treated

as a random effect. Note that for models with random effects, obj$he is not available

at present.
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Background: Latent Multinomial Models

The last two lines of the program implement the R function nlminb to minimise

obj$fn, and use sdreport to return outputs, including parameter estimates, standard

errors, and the maximum gradient component to help diagnose whether convergence

has been achieved. Note that the ordering of the last two lines makes a difference

to the result of rep, although it appears that the second last line does not change

anything involving obj. To see this, we can regard TMB as an assistant of R. When

implementing nlminb to find parameter estimates, R needs to evaluate functions

obj$fn, obj$gr, and obj$he multiple times at a range of different parameter values;

however, these computations are done by TMB instead of R. TMB will remember the

values of parameters at which these functions are evaluated for the last time, thus

when nlminb obtains the parameter estimates, TMB also knows what the estimates

are, and stores them as part of the obj object. Then sdreport can be used to

summarise obj at the parameter estimates. If sdreport is called before nlminb is

used for optimisation, the function will return a summary of obj at the starting

values. Thus, the likelihood optimisation is carried out by native R functions, but

using TMB to create the gradient and Hessian functions and to evaluate each of these

throughout the optimisation.
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3
A New Approximate Likelihood Method

for Latent Multinomial Models

3.1 Overview

In this chapter, we aim to develop a novel approximate likelihood approach to address

the problem of parameter estimation for LMMs. We start by describing a likelihood

factorization for these models. Then we develop a saddlepoint approximation to the

factor of the likelihood that cannot be derived analytically. We then illustrate the

implementation of the proposed method in TMB. Finally, we apply the saddlepoint
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A New Approximate Likelihood Method for Latent Multinomial Models

method to the models introduced in Chapter 2, and compare its performance with

that of alternative estimation approaches where these are available.

3.2 Likelihood Factorization

In LMMs, given the observed vector y, the latent vector z generally has a substantial

number of feasible values; otherwise the summed likelihood function (2.14) could

be used for estimation. However, it is possible that the components of z can be

partially determined by the vector y. If Tij = 1 is the only nonzero entry in the ith

row of the matrix T , it follows that zj = yi. For example, we have z1...1 = y1...1 in

model Mt,α, and zλj
= yωi

in the two-source model if λj = ωi is a history containing

at least one simultaneous capture (i.e., a fully-observed history). Furthermore, if y

has a component yk observed to be zero so that 0 = yk = zl + zm, the components zl

and zm of z are known to be zero. In practice, it is commonplace that the vector y

has many components observed to be zero for model Mt,α and the two-source model,

especially when the number of capture occasions is high while capture probabilities

are low.

The examples above show the possibility that some components of z can be deter-

mined from the observed vector y. However, this does not necessarily happen for

all models. For example, ideally no cell entry of a multi-way table can be deduced

from a marginal table: this is often why marginal tables are reported, so that the

individual cell entries cannot be deduced because of privacy concerns (Dobra et al.,

2006). Even for a single model, the components of y that equal zero might not be

the same in different data realisations, so the components of z known to be zero will

differ according to the data.

The likelihood factorization we describe below is important for the validity of the

saddlepoint method, and can also improve efficiency. For models in which no

component of z can be determined from y, we can skip the factorization step
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3.2 Likelihood Factorization

and proceed directly to the last two paragraphs of this section. Reasons for the

factorization step will be given in more detail later.

Suppose we can determine a unique solution for R elements of z from the observed

vector y. We reorder the elements of vector z such that it can be written as

z = (v, u) , (3.1)

where v = (z1, . . . , zR) contains all verified elements of z, and u = (zR+1, . . . , zJ)

contains all remaining (unverified) elements. Accordingly, we reorder the elements of

π, and the columns of the matrix T . Then, we continue to use the equation y = Tz,

although z and T have been reordered.

We partition matrix T as

T =
[

B A

]
, (3.2)

where B is an I × R matrix that contains the first R columns of T , and A is an

I × (J − R) matrix that contains the remaining J − R columns. It follows that

y = Tz = Bv + Au, (3.3)

and thus

Au = y − Bv. (3.4)

For convenience, let x = y − Bv. Since y, v and B are all known, x is a known

vector. However, the equation Au = x generally has impractically many solutions

for u.
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The likelihood function for LMMs can be written as

L
(
N, θ | y

)
=

∑
z:T z=y

P (Z = z)

=
∑

u:Au=x

P
(
Z1:R = v

⋂
ZR+1:J = u

)
= P (Z1:R = v)

∑
u:Au=x

P
(
ZR+1:J = u | Z1:R = v

)
,

(3.5)

where random vector Z1:R contains the first R components of the multinomial vector

Z, and ZR+1:J contains all remaining components of Z.

By the multinomial marginal property, we have

P (Z1:R = v) = N !
z1! . . . zR! (N − v∗)!

 R∏
j=1

π
zj

j

1 −
R∑

j=1
πj

N−v∗

, (3.6)

where v∗ = ∑R
j=1 zj denotes the sum of all elements of vector v. Then our problem

reduces to finding ∑
u:Au=x

P
(
ZR+1:J = u | Z1:R = v

)
. (3.7)

Define Uv to be a random variable following the conditional distribution of ZR+1:J |

Z1:R = v. By the conditional property of multinomial distributions, we have

Uv ∼ Multinomial
(
Ñ ; π̃

)
, (3.8)

where Ñ = N − v∗ and

π̃ = 1∑J
j=R+1 πj

(πR+1, . . . , πJ) . (3.9)

It follows that the summed probability (3.7) is equivalent to

∑
u:Au=x

P (Uv = u) = P (AUv = x) . (3.10)
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3.2 Likelihood Factorization

Now, the problem reduces to finding P (AUv = x), where Uv is specified in (3.8)

and (3.9). Let X = AUv. Then the problem is solved if we can find the PMF of X

given a known matrix A and a multinomial distribution Uv of dimension J − R. For

brevity, we use U to replace Uv hereafter. In addition, we use π̃ = (π̃1, . . . , π̃H) to

replace the original formula (3.9), where H = J − R.

The matrix A is of dimension I × H; however, it is often not of full row rank, for

example, it may have some rows composed completely of zero entries (see Appendix

A for an example). For models where we skip the factorization step and work with

the original formulation y = Tz, we may find similarly that T is not of full row rank.

The saddlepoint method does not work properly in these cases; reasons will be given

in the following section. Thus, some tuning for the linear relationship x = Au or

y = Tz is necessary.

The strategy described below is based on the notation x = Au. We need to find

a submatrix comprising maximally independent rows of matrix A. To accomplish

this, we start by using the first non-zero row of matrix A as the submatrix, and

add other rows of A one by one into the submatrix to update it. Every time a new

row is added, we check the row rank of the new submatrix; this can readily be done

with the R function qr (QR decomposition). If the rank increases by one, we accept

the new row and update the submatrix; otherwise we reject it. Accordingly, we can

obtain a subset of vector x, which is linked to the full vector u by the submatrix.

For brevity, we still use the notations A and x to denote the submatrix and the

subvector. Assume matrix A is now of dimension L × H and vector x is of dimension

L, where L ≤ I. Note that this method does not influence estimation results since

the data points left out are redundant. This is analogous to the observation that the

last cell of a multinomial vector provides no further information if all other cells of

the vector are known.

43



A New Approximate Likelihood Method for Latent Multinomial Models

3.3 Saddlepoint Approximation Method

The saddlepoint method was first proposed by Daniels (1954) to pursue an approx-

imation to the PDF of the sum of independent and identically distributed (i.i.d)

random variables, when their moment generating function is known. The saddlepoint

approximation to the cumulative distribution function (CDF) of the sum of i.i.d

variables was introduced in Lugannani and Rice (1980). More details about the

derivation of the saddlepoint method can be found in Goutis and Casella (1999) and

Reid (1988). It is based on a Taylor expansion of the integrand in the inversion

formula used for converting a moment generating function to the corresponding

PDF. The Taylor expansion is taken about a ‘saddlepoint’, ŝ (w), specific to the

value w at which the probability density is to be evaluated. The use of an expansion

customized to each point w makes the approximation very accurate, but introduces

computational challenges. Butler (2007) provided a comprehensive review of the

theory related to the method, and demonstrated its practical value using some real

data examples at a more accessible level than previous texts.

Although the initial purpose of the saddlepoint method was to approximate densities

or distribution functions of sums of random variables, the same formulas can be

applied for any distribution. The approximation is particularly useful in cases

where exact distributions of random variables are intractable, but their moment

generating functions can readily be found, which is the case in our latent multinomial

scenario. The saddlepoint method has gained a range of applications in many

areas, including finite population models (Wang, 1993), confidence intervals for

bootstrapping (DiCiccio et al., 1992), generalised linear models (Strawderman et al.,

1996), and resampling methods (Davison and Hinkley, 1988).

In this section, we aim to provide a saddlepoint approximation to the PMF of

X = AU , where A is an L × H matrix, and U ∼ Multinomial
(
Ñ ; π̃

)
with π̃ =

(π̃1, . . . , π̃H). The derivation procedure below also applies to approximating the PMF
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3.3 Saddlepoint Approximation Method

of Y = TZ, where Z ∼ Multinomial (N ; π) if the likelihood factorization is not

needed.

The joint moment generating function (MGF) of X is

MX (s) = E
{

exp
(
sT X

)}
= E

[
exp

{(
AT s

)T
U
}]

= MU

(
AT s

)
, (3.11)

where MU is the joint MGF of U , and s = (s1, . . . , sL) takes values in RL for which

the expectation of exp
(
sT X

)
exists. Let t = AT s = (t1, . . . , tH) ∈ RH . Since U

follows a multinomial distribution, whose joint MGF is known, we have

MX (s) = MU (t) =


H∑

h=1
π̃h exp (th)


Ñ

(3.12)

and the cumulant generating function (CGF) of X, which by definition is the

logarithm of MX (s), is:

KX (s) = log MX (s) = Ñ log


H∑

h=1
π̃h exp (th)

 . (3.13)

Following the formula provided by Butler (2007), the saddlepoint mass function of

any random variable X is

f̃X (x) = 1
(2π)L/2 |K ′′

X (ŝ) |1/2
exp

{
KX (ŝ) − ŝT x

}
, (3.14)

where ŝ solves the saddlepoint equation

K ′
X (s) = x, (3.15)

and |K ′′
X (ŝ) | denotes the determinant of the matrix K ′′

X (ŝ). Thus, the saddlepoint

approximation offers a way of inverting the CGF to generate an approximate PMF

at any value of x.
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For the models discussed in this thesis, matrix T is composed of zero and one entries.

Then the support of X is X =
{
x ∈ NL | fX(x) > 0

}
. Let IX ⊆ RL denote the

interior of the convex hull of X . The saddlepoint mass function f̃X (x) is computable

for any vector x ∈ IX (Butler, 2007); however, it is only practically meaningful for

integer-valued vectors x ∈ IX ∩ X ⊆ NL. More properties of the saddlepoint method

are listed in Section 3.1 of Butler (2007); detailed discussions can be found in the

references therein.

The saddlepoint equation (3.15) can be expanded as

∂KX (s)
∂sl

= Ñ
∑H

h=1 Alhπ̃h exp (th)∑H
h=1 π̃h exp (th)

= xl, l = 1, . . . , L, (3.16)

where Alh, the entry in row l and column h of A, comes from the first-order derivative

of

th =
L∑

l=1
Alhsl (3.17)

with respect to sl. When the matrix A consists completely of non-negative entries,

the saddlepoint equation does not have a finite solution if any component of x equals

zero, because equation (3.16) demonstrates that the left-hand part of equation (3.15)

is positive for all entries. Matrix A consists of non-negative entries for all of the

models in this thesis. For this reason, in cases where y contains zeros we must use the

likelihood factorization described in Section 3.2 to ensure that x has no component

that equals zero, and therefore enable the saddlepoint method to be applied.

In most cases, the saddlepoint equation cannot be solved analytically. In practice we

regard it as an optimisation problem, whose solution can be obtained by numerical

methods, such as the Newton-Raphson method. The optimisation formulation is

described later in Section 3.4.2. The efficiency and accuracy of solving this inner

problem is important for maximum likelihood estimation using the saddlepoint mass

function (3.14), because each evaluation of the likelihood involves an optimisation to

find ŝ.
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3.3 Saddlepoint Approximation Method

Substituting equations (3.6) and (3.14) into equation (3.5) generates a complete

approximation to the likelihood L
(
N, θ | y

)
:

L̃
(
N, θ | y

)
= P (Z1:R = v) f̃X (x) , (3.18)

where P (Z1:R = v) is given by equation (3.6), and f̃X (x) approximates the second

factor in (3.5) via the formulation in (3.10).

Finally, we explain why we must ensure that matrix A is of full row rank, as mentioned

in Section 3.2. If the factorization is not needed, equivalently we must ensure that

matrix T is of full row rank. The derivation below for the case of x = Au also

applies to the case of y = Tz.

Butler (2007) pointed out that the CGF KX (s) must be a strictly convex function, to

ensure that the saddlepoint equation has a solution and the square root of |K ′′
X (ŝ) |

included in (3.14) is defined and strictly positive. It can be seen from the saddlepoint

equation (3.16) that if A is not of full row rank, ∂KX (s) /∂sl, l = 1, . . . , L are not

linearly independent, so that the Hessian matrix K ′′
X (s) is not of full rank. For

example, if the sum of the first row and second row of A equals the third row, then

the same linear relationship is inherited by the elements of K ′
X (s) according to

(3.16):
∂KX (s)

∂s1
+ ∂KX (s)

∂s2
= ∂KX (s)

∂s3
; (3.19)

thus the third row of K ′′
X (s) with elements ∂2KX(s)

∂s3∂sj
is also the sum of the first two

rows, so |K ′′
X (s) | = 0. The same applies to any linear relationship among the rows

of A. Thus A must have full row rank in order for the saddlepoint mass function to

be well defined, because |K ′′
X (ŝ) | = 0 appears in the denominator of (3.14). This

also implies A must have no rows consisting entirely of zero entries.
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3.3.1 Variance Estimation and Confidence Intervals

The maximum likelihood estimates
(
N̂ , θ̂

)
of the parameters (N, θ) are calculated

by minimising the negative logarithm of the approximate saddlepoint likelihood in

the usual manner:

− log L̃
(
N, θ | y

)
= − logP (Z1:R = v) − log f̃X (x) . (3.20)

We estimate the variances of the parameter estimates using the main diagonal of the

negative inverse of the Hessian matrix of the approximate log-likelihood function

evaluated at the maximum likelihood estimates.

Following Vale et al. (2014), lognormal confidence intervals and Normal confidence

intervals are calculated for N and θ respectively. For N , the 95% confidence interval

is given by
(
N̂/a, aN̂

)
, where

a = exp
µ0.025

√
log

{
1 + v̂ar

(
N̂
)

/N̂2
} (3.21)

with v̂ar
(
N̂
)

denoting the estimate of the variance of N̂ , and µ0.025 denoting the

upper 0.025 point of the Normal(0, 1) distribution. For any component θi of θ, the

95% confidence interval is
(
θ̂i − b, θ̂i + b

)
, where b = µ0.025

√
v̂ar

(
θ̂i

)
, and v̂ar

(
θ̂i

)
denotes the estimate of the variance of θ̂i.

3.4 Implementation in TMB

The saddlepoint approximation is a powerful tool in approximating complicated

distributions; however, to our knowledge it has not yet contributed greatly to

statistical inference in practice. This might be partially due to the fact that specialised

software is needed for computation.
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3.4 Implementation in TMB

The approximate negative log-likelihood function (3.20) consists of two parts. The

first part, − logP (Z1:R = v), is a straightforward function and can be easily coded

using TMB. The difficulty lies in the second part, − log f̃X (x), which cannot be handled

directly because of the inner optimisation problem it involves. This optimisation

complicates the characterisation of the objective function in terms of elementary

functions, as required for automatic differentiation to be performed. In this section,

we show how the TMB package is designed in such a way that we can overcome this

difficulty.

3.4.1 The Laplace Approximation

The Laplace approximation plays a significant role in TMB for fitting random-effect

models. It is also the key to our implementation of the saddlepoint method using the

TMB package. We give a brief introduction to the Laplace approximation following

Skaug and Fournier (2006) and Kristensen et al. (2016).

Suppose l (µ, γ) denotes the joint negative log-likelihood function of a statistical

model with random effects µ ∈ Rm and fixed parameters γ ∈ Rn. The maximum

likelihood estimate of γ can be obtained by maximising the marginal likelihood,

L (γ) =
∫
Rm

exp
{
−l (µ, γ)

}
dµ, (3.22)

which is a function of only the fixed model parameters after the random effects are

integrated out. However, calculating the integral is not easy, especially when the

dimension m of the random effects is high.

Define µ̂ (γ) to be the minimiser of l (µ, γ) with respect to µ, so that

µ̂ (γ) = arg min
µ

l (µ, γ) . (3.23)
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This minimisation is treated as an inner problem in TMB, and can be handled by the

classical Newton’s method. Then the Laplace approximation to L (γ) is

L ∗ (γ) = (2π)
m
2 det

{
H (γ)

}− 1
2 exp

{
−l (µ̂, γ)

}
, (3.24)

where H (γ) = H (µ̂, γ) = l′′
µµ (µ̂, γ) is the Hessian matrix of l (µ, γ) with respect to

µ and evaluated at µ̂. Maximising L ∗ (γ) is equivalent to minimising the negative

logarithm of L ∗ (γ), which is

− log L ∗ (γ) = −m

2 log(2π) + 1
2 log det

{
H (γ)

}
+ l (µ̂, γ) . (3.25)

Although the joint negative log-likelihood function l (µ, γ) is coded in the C++

function template, the MakeADFun function from TMB returns the objective (3.25) and

its gradient function, when µ is declared as a vector of random effects. Thus, TMB

has specific functionality for maximising expressions of the form (3.22) based on the

Laplace approximation.

3.4.2 Correspondence with the Saddlepoint Approximation

Starting from the saddlepoint mass function f̃X (x) in equation (3.14), some algebra

gives:

− log f̃X (x) = L

2 log(2π) + 1
2 log det

{
K ′′

X (ŝ)
}

− h (ŝ) , (3.26)

where

h (s) = KX (s) − sT x, (3.27)

and ŝ is the solution to

h′ (s) = K ′
X (s) − x = 0. (3.28)

According to Butler (2007), the Hessian matrix K ′′
X (s) with respect to s is positive

definite after applying the likelihood factorization described in Section 3.2. It follows

that finding ŝ is equivalent to minimising h (s) with respect to s.
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Thus, from equation (3.20) the full saddlepoint objective function that we wish to

minimise in TMB is:

− log L̃
(
N, θ | y

)
= − logP (Z1:R = v) + L

2 log(2π) + 1
2 log det

{
K ′′

X (ŝ)
}

− h (ŝ)

= L

2 log(2π) + 1
2 log det

{
K ′′

X (ŝ)
}

− g (ŝ, N, θ)

= L

2 log(2π) + 1
2 log det

{
K ′′

X (ŝ, N, θ)
}

− g (ŝ, N, θ) ,

(3.29)

where

g (ŝ, N, θ) = logP (Z1:R = v) + h (ŝ, N, θ) . (3.30)

Through equations (3.9) and (3.13), we have KX (s) = KX (s, N, θ) and thus

h (s) = h (s, N, θ). From equation (3.30), we have

g′′
ss (ŝ, N, θ) = h′′

ss (ŝ, N, θ) = K ′′
X (ŝ) (3.31)

and

ŝ (N, θ) = arg min
s

h (s, N, θ) = arg min
s

g (s, N, θ) . (3.32)

Equation (3.29) is exactly analogous to equation (3.25), with ŝ replacing µ̂, (N, θ)

replacing γ, and g (ŝ, N, θ) replacing l (µ̂, γ), except for two sign changes in the first

and third terms of equation (3.29).

Motivated by this similarity, we copied the source code of the function MakeADFun in

TMB, and changed the requisite two signs (see Appendix B for details). By declaring

vector s to be a vector of random effects, and defining our objective function to be

g (s, N, θ), we can therefore deploy the modified version of TMB to generate an efficient

optimisation of − log L̃ including a gradient function calculated using automatic

differentiation. Consequently, the inner optimisation problem for ŝ is entirely taken

care of by TMB.
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3.5 Method Validation using Model Mt,α

In this section, we provide an overall validation for the proposed method before

it is put into use. First, we assess the performance of the saddlepoint method for

parameter estimation by applying it to simulated data from model Mt,α, whose

exact likelihood formulation is available. Second, the computational speed of the

saddlepoint method for this model is compared with that of the Bayesian approach of

Link et al. (2010). Third, the performance of the saddlepoint method for likelihood

approximation is checked, by plotting the approximate log-likelihood curves against

the exact curves, which are available for model Mt,α from Vale et al. (2014).

3.5.1 Comparison with the Exact Likelihood

Recall that model Mt,α involves K capture occasions on a closed population of size

N , with capture probabilities p1, . . . , pK and probability α that an animal is correctly

identified on each capture.

We simulated data sets in R using every combination of parameter values chosen from

K ∈ {4, 6, 8, 10}, N ∈ {400, 1000}, α ∈ {0.8, 0.9, 0.95, 0.97}, and p1 = · · · = pK ∈

{0.1, 0.2, 0.3, 0.4}. We calculated maximum likelihood estimates and 95% confidence

intervals for the parameters using the saddlepoint method and the exact likelihood

function of Vale et al. (2014). The saddlepoint computation used TMB, and the exact

computation used ADMB (Fournier et al., 2012), which is a similar tool to TMB that

predated TMB’s development. For each setting, we generated 500 data sets, and found

the maximum likelihood estimates by both methods for each data set.

Figure 3.1 exhibits a comparison between parameter estimates obtained using the

two methods, in the setting of N = 400, α = 0.97, and p1 = · · · = p8 = 0.1. It shows

that the saddlepoint method consistently gives almost identical estimation results to

the exact likelihood function in this scenario. Estimates of p and α from the two

approaches are typically identical to four or five decimal places, while estimates of N
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Fig. 3.1 Scatter plots of parameter estimates from 500 simulations obtained using the
saddlepoint approximation method and the exact likelihood of Vale et al. (2014), in
the setting of N = 400, α = 0.97, and p1 = · · · = p8 = 0.1 under model Mt,α. Points
on straight lines across the plots indicate that estimates from the two approaches
are almost identical.

are typically identical to one or two decimal places. The two methods also produced

almost the same variances for the estimates, so confidence intervals for all parameters

from the two methods were almost identical. For all the other settings listed above,

as well as many others outside this range, we always obtained similar scatter plots

with the appearance of bold straight lines as shown in Fig. 3.1. Another example is

shown in Fig. 3.2. We have not observed any case where the two approaches yielded

noticeably different estimates or confidence intervals.

Average fitting time using the saddlepoint method for one simulated data set in the

setting of Fig. 3.1 was roughly 10 seconds on a customary laptop with a clock speed

of 1.3 GHz, while approximately 4 seconds was needed using the exact likelihood

function on the same machine. This is not surprising because every evaluation of the

saddlepoint likelihood function involves an optimisation problem, namely solving the
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Fig. 3.2 Scatter plots of parameter estimates from the saddlepoint approach and the
exact likelihood method for model Mt,α when N = 400, α = 0.8, and p1 = · · · = p8 =
0.4. Other details are the same as Fig. 3.1.

saddlepoint equation (3.15) numerically. Inspection of numerous results indicates

that the complexity of the optimisation problem is primarily determined by the

dimension of the vector x, which may increase when either K or pt increases. For

this reason, in the setting of Fig. 3.2, average fitting time for one data set increased

to 100 seconds, since capture probabilities in that case are much higher. However,

the performance of the saddlepoint method is still excellent.

3.5.2 Comparison with the Bayesian Approach

Although the saddlepoint method is slightly slower than the exact likelihood approach

of Vale et al. (2014) for model Mt,α, we anticipate it will be significantly faster than

the Bayesian method of Link et al. (2010). To demonstrate this, we use an example

from Link et al. (2010) with y = (54, 41, 35, 30, 24, 17, 29, 25, 17, 11, 20, 8, 15, 9,

17, 17, 11, 7, 13, 6, 9, 6, 11, 3, 7, 4, 8, 3, 5, 4, 6) for K = 5 capture occasions. This
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3.5 Method Validation using Model Mt,α

Table 3.1 Parameter estimates from the saddlepoint method and the Bayesian
method applied to the data set simulated by Link et al. (2010) under model Mt,α.
Note that Link et al. (2010)’s parameter estimates were posterior means.

Method N̂ (95% CI) α̂ p̂

Link et al. (2010) 399.4 (370, 432) 0.91 (0.302, 0.407, 0.499, 0.596, 0.704)
Saddlepoint approximation 397.9 (366, 433) 0.91 (0.302, 0.407, 0.500, 0.598, 0.706)

data set was generated using N = 400, α = 0.9, and (p1, . . . , p5) = (0.3, 0.4, 0.5, 0.6,

0.7) under model Mt,α.

Table 3.1 shows a comparsion between estimation results from the two approaches,

which are extremely close to each other. Note that the results from our method are

almost identical to those obtained by Vale et al. (2014). The saddlepoint method

cost 0.9 seconds on the 1.3 GHz laptop, while Link et al. (2010) indicated that the

Bayesian method cost over 30 minutes on a 3.8 GHz machine.

3.5.3 Evaluation of the Saddlepoint Approximation

Here, we investigate the performance of the saddlepoint approximation in reproducing

the likelihood curves for model Mt,α. This verification process is also based on

simulations. We first generated data sets by simulation using a broad range of

settings. For each setting, we made a comparison between exact and saddlepoint

log-likelihoods, which were both expressed only in terms of the parameter N , with

α, p1, . . . , pK fixed at their maximum likelihood estimates under the exact method.

A suite of examples with different settings is shown in Fig. 3.3.

From Fig. 3.3, and many similar plots that are not presented, we see that in most cases

the log-likelihoods obtained using the two methods do not match each other perfectly;

however, the two functions differ by an almost constant value. In different settings,

the constant may be different. This explains why the two methods generate almost

identical estimates and confidence intervals, as shown in the previous simulation

studies.
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Fig. 3.3 Saddlepoint log-likelihood curves (solid) shown against exact log-likelihood
curves (dashed) for model Mt,α. We used N = 400 and α = 0.97 for all six panels.
We set p1 = · · · = p4 to be 0.2, 0.3, and 0.4 for the three panels in the top row
(left to right), and p1 = · · · = p6 to be 0.2, 0.3, and 0.4 for the three panels in the
bottom row (left to right). Vertical lines show the positions of maxima under the
saddlepoint computation (solid) and the exact computation (dashed). These cannot
be distinguished easily because the saddlepoint estimates and the exact estimates of
N are extremely close to one another.
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3.6 Application to the Two-Source Model

The difference between the saddlepoint and exact log-likelihoods appears to decrease

when pt increases, or when the number K decreases while other parameters remain

the same. Each of these scenarios leads to an increase in the proportion of relatively

large components in the vector x. Inspection of numerous results indicates that if all

or most components of the vector x are greater than or equal to five, the saddlepoint

method yields an extremely good approximation to the exact likelihood function.

For example, the second and third panels from the left in the top row of Fig. 3.3

present two scenarios where all components of x are over five. When the number

of capture occasions increases, it is more difficult to observe a vector x with most

components larger than five, so differences between the two log-likelihoods are larger

for the three scenarios shown in the bottom row.

Therefore, we suggest that the saddlepoint method can be used with confidence

for parameter estimation under LMMs without any obvious concerns. However,

for approximation of the exact likelihood curves, it can be trusted only if most

components of the observed vector are relatively large.

3.6 Application to the Two-Source Model

3.6.1 Two-Source Model M0

We consider the simplest two-source model M0 for studying closed populations.

Suppose we use data from two protocols, photographs and genetic samples. In the

two-source model M0, capture probabilities for the five capture codes (0 – 4) remain

the same for all animals throughout all capture occasions.

We describe a mechanism here for simulating the model following Fewster et al. (in

prep). In practice, it is possible that within a single capture occasion, a particular

animal is encountered multiple times. For example, when surveying whales from

survey boats, one capture occasion might constitute a full day of survey effort, and

a “capture” is an approach of a whale sufficiently close to obtain a photograph or
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A New Approximate Likelihood Method for Latent Multinomial Models

DNA sample. Suppose the number of encounters for animal i = 1, . . . , N on any

occasion is a random variable Si that follows a Poisson distribution with mean ϕ,

i.e., Si ∼ Poisson (ϕ). For each encounter of an animal, the probability of getting a

photograph is x, and the probability of getting a genetic sample is y. We assume

that the two events are independent. For one animal and a single occasion, the

probability of obtaining a photograph is p = 1−exp (−ϕx), the probability of getting

a genetic sample is g = 1 − exp (−ϕy), and the probability of getting both samples

is η = 1 − exp (−ϕxy). We use θ = (p, g, η) to parametrize this model, where η is

constrained such that η < p and η < g. The two protocols have substantial overlap if

η is large relative to p or g. If η is very small, the two sources are almost independent

of each other. Probabilities for the capture codes 0, 1, 2, 3, and 4 within an occasion

are p0 = (1 − p) (1 − g) / (1 − η) , p1 = 1 − g − p0, p2 = 1 − p − p0, p3 = η, and

p4 = p + g − η − 1 + p0.

3.6.2 Simulation Study

Simulation results from the two-source model M0 in a number of settings are shown in

Figures 3.4 and 3.5. For each setting, two-source estimates of N using the saddlepoint

method to gain an approximate estimate are shown against estimates obtained using

data from each of the two protocols alone, which use straightforward maximisation

of the exact likelihood for single-source model M0. The boxplots in each scenario

show estimates of N from 500 simulations.

The figures reveal that the two-source model produces estimates of N with negligible

bias and approximately nominal confidence interval coverage for 95% confidence

intervals. From simulations in a broad range of other settings not shown here, we

always observe similar results. Applying model M0 to a single source of data also

generates almost unbiased estimation with similar confidence interval coverage. Using

genetic data only results in a slight positive bias to the results in these simulations,

because a low genetic capture probability g was used in all four scenarios. The
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3.6 Application to the Two-Source Model

advantage of applying the two-source model over analysing the two sources of data

separately is that it always yields better precision for N , which can be seen from the

smaller mean widths of the confidence intervals.

For each of the four simulation studies shown here, applying model M0 to photographic

samples yielded better precision for N than applying the model to genetic samples.

This is because we set the photograph capture probability p to be higher than the

genetic capture probability g, to test the estimation framework in an asymmetric

context.
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Fig. 3.4 Estimates of N from the two-source model M0 for the settings p = 0.2, g =
0.1, η = 0.05, K = 4, and N = 200 (left) or N = 1000 (right). The red horizontal
lines on each plot represent the true values of N . The black lines across each box
give the mean values of the 500 estimates. The quantity above and percentage below
each box indicate the mean width and coverage of nominal 95% confidence intervals.
The three boxes from left to right in each plot show the distributions of estimates of
N calculated in three different ways by fitting: the two-source model M0 to both
sources of data using the saddlepoint method to approximate the likelihood function;
model M0 to photographic samples only; and model M0 to genetic samples only.
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Fig. 3.5 Estimates of N from the two-source model M0 for the settings p = 0.04, g =
0.03, η = 0.01, N = 1000, and K = 8 (left) or K = 12 (right). Other details are the
same as those in Fig. 3.4.
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3.6 Application to the Two-Source Model

3.6.3 Comparison with the Hybrid Approximation

The previous simulation studies showed that the saddlepoint method can produce

reasonable estimation results for the two-source model M0. Here, we further verify

the method by comparing it with the hybrid approximation method described in

Section 2.4.2. Figures 3.6 and 3.7 serve as two examples of these comparisons.
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Fig. 3.6 Scatter plots of parameter estimates from 500 simulations calculated using
the saddlepoint method and the hybrid approximation method for the setting p =
0.04, g = 0.03, η = 0.01, N = 400, and K = 8. Points distributed on the red lines
indicate that estimates from the two approaches are practically identical.

From these two figures, we can see that the two methods consistently yield almost

identical estimates for all model parameters in the two scenarios. They also give

similar 95% confidence intervals for all parameters. Scatter plots using numerous
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other settings not presented here followed the same pattern in every case investigated.

Since the two methods are based on completely different density approximation

techniques, their close accordance presents strong evidence that we can trust both

approaches.
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Fig. 3.7 Scatter plots of parameter estimates from 500 simulations calculated using
the saddlepoint method and the hybrid approximation method for the setting p =
0.04, g = 0.03, η = 0.01, N = 400, and K = 12. Points distributed on the red lines
indicate that estimates from the two approaches are practically identical.

Using the setting of Fig. 3.7, the average fitting time for one data set using the

saddlepoint method is around 2 seconds, contrasting with 0.4 seconds required by

the hybrid approximation method. The saddlepoint method is slightly slower, but it

is still much faster than the Bayesian approach as implemented in multimark, which

always required over 30 minutes even when K = 4 (see Table 2.2). Moreover, the
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saddlepoint method fits all models in the latent multinomial class, while the hybrid

approximation is only suitable for the two-source model. Thus, while there is no

exact likelihood available for this model, we have shown that all these approaches

give consistent inference with each other, and that the saddlepoint method has the

advantage of offering both speed and generality.

3.7 Application to Multi-List Models

3.7.1 Example: Auckland Diabetes Study

We now demonstrate how the saddlepoint method can be used for other models in

the literature, for which there is no existing exact-likelihood approach as far as we

know. As an example, we consider multi-list data from a study for estimating the

prevalence of diabetes in Auckland, New Zealand (see Sutherland, 2003; Huakau,

2002, for more details). This is a four-list study with 1,276 general practitioner

records on list G, 1,297 pharmacy records on list P, 12,972 outpatient records on list

O, and 3,436 inpatient discharge records on list D. The list structure considered by

Sutherland and Schwarz (2005) to analyse these data is shown in Fig. 3.8.

List DList O

List G

List P

Fig. 3.8 List structure for the Auckland diabetes study data. Lines are drawn
between lists that share a common identification tag.

For this list structure, there are J = 16 latent capture histories, each of which is

presented in the form of λ = (λG, λP , λO, λD), where λi = 1 if the individual is on list
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Table 3.2 Estimates and standard errors of all model parameters except for N
for the Auckland diabetes study, obtained by the saddlepoint method and the
quasi-likelihood approach of Sutherland and Schwarz (2005).

βG βP βO βD βGP βGO

Sutherland and Schwarz (2005)
Estimate −3.76 −3.74 −1.01 −2.95 1.13 0.45
Standard error 0.14 0.14 0.14 0.11 0.10 0.10
Saddlepoint approximation
Estimate −3.76 −3.74 −1.00 −2.94 1.13 0.44
Standard error 0.14 0.14 0.14 0.11 0.10 0.10

i and λi = 0 if not, for i ∈ {G, P, O, D}. An individual with latent capture history

1011 is on lists G, O and D, but not on list P. The set of observable histories was

derived in more detail by Sutherland and Schwarz (2005), and is {01··, 0·1·, 0··1,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}. The observed data vector for this

list structure is y = (1183, 12265, 3276, 654, 51, 366, 91, 40, 4, 5, 14).

Sutherland and Schwarz (2005) selected the Poisson log-linear model β(6) = [GP =

OD][GO = GD = PO = PD] to describe the latent vector Z, because it yielded

the lowest QICu statistic (Pan, 2001). This model includes all possible first-order

interaction effects, but some of them are set to be identical for a more parsimonious

model. For example, the notation [GP = OD] means that the interaction effect

between lists G and P is set equal to that between lists O and D, i.e. βGP = βOD.

Thus the parameter vector for this model is β = (β0, βG, βP , βO, βD, βGP , βGO).

The estimate N̂ of the number of diabetes sufferers from the Poisson quasi-likelihood

approach of Sutherland and Schwarz (2005) is 45,853. Associated with the estimate

are three standard errors, 4530, 4343, and 4008, calculated in different ways (see

Sutherland and Schwarz, 2005, for more details). We apply the multinomial sad-

dlepoint method under the same model as described in Section 2.2.5 and obtain

a smaller estimate 43,422, with a similar standard error 4303. The two methods

yield slightly different estimates of the population size; however, they give almost
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identical estimates and standard errors for other model parameters that are shown in

Table 3.2. This provides some evidence for the validity of the two distinct methods.

Here we investigate the reason why the method of Sutherland and Schwarz (2005)

produces a larger estimate of N , while giving similar estimates to the saddlepoint

method for the other parameters. In the latent Poisson model of Sutherland and

Schwarz (2005), N is not an explicit parameter. It is instead estimated by

N̂ = exp
(
β̂0
)

+
I∑

i=1
Yi, (3.33)

where β̂0 is the estimate of β0, and exp
(
β̂0
)

is the estimate of Z1, the count of the

null history 0000. Note that the true parameter N is by definition the sum of all

components of the latent vector Z:

N =
J∑

j=1
Zj = Z1 +

J∑
j=2

Zj. (3.34)

However, some components of Z are not observable, for example, Z0101 and Z0000.

Thus, estimating ∑J
j=2 Zj using ∑I

i=1 Yi as in equation (3.33) is likely to make the

estimator (3.33) positively biased, since some components of Z are counted repeatedly

in ∑I
i=1 Yi.

3.7.2 Simulation Study

We conducted simulations to further demonstrate the performance of the saddlepoint

method applied to multi-list problems in a wider range of scenarios. We investigated

the list structure shown in Fig. 2.1, and explored different types of list dependence

following Sutherland and Schwarz (2005).

Firstly, the four lists were assumed to be strictly independent, so we considered

models including main effects only. This scenario is unlikely to occur in reality

but serves as a validation for the methodology. Secondly, we investigated scenarios
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with simple list dependence: for example, interactions were fitted between lists 1

and 2 and lists 1 and 3, while all other pairs of lists were independent. For this

case, the parameter vector is β = (β1, . . . , β4, β12, β13). Thirdly, scenarios with more

complicated list interactions were explored, for example, with dependence between

every pair of the four lists. The parameter vector β = (β1, . . . , β4, β12, . . . , β34)

contains 10 parameters.

Sutherland and Schwarz (2005) indicated that their method gave estimates with

negligible bias and high precision in the first two scenarios. In the third scenario,

their method produced positively biased estimates. By contrast, we found that the

saddlepoint method gave accurate inference in all scenarios we explored.

We present results for one setting of the third scenario to show our main results.

Fig. 3.9 shows that for each of the 10 parameters (excluding N), the two methods

both generate estimation results with negligible bias and almost the same values for

mean confidence interval width and confidence interval coverage for nominal 95%

confidence intervals. This means that the two approaches both perform well for

estimating these parameters. However, the saddlepoint method also gives estimates

for the parameter N with no bias and close to nominal confidence interval coverage

for 95% confidence intervals, while Sutherland and Schwarz (2005)’s method is

positively biased with very low confidence interval coverage. This could reflect a

similar situation to that seen in the Auckland diabetes study.
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Fig. 3.9 Distributions of parameter estimates from 1000 simulations obtained using
the saddlepoint approximation method (right-hand boxplots) and the quasi-likelihood
approach of Sutherland and Schwarz (2005). True parameter values are: N = 1000,
β1 = · · · = β4 = −1.5, and β12 = · · · = β34 = 1, and are shown by red horizontal
lines across the plots. Black horizontal lines across the boxes give the means of the
1000 estimates. Numbers above each box show the mean width of 95% confidence
intervals. Percentages below each box give percentage bias and coverage of 95%
confidence intervals.
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3.8 Application to Multi-Way Contingency Tables

3.8.1 Example: Czech Autoworkers Data

Finally we showcase the use of the saddlepoint method for drawing inference on

parameters underlying multi-way contingency tables when only certain marginal

totals are supplied.

We first consider a real data example in the form of a six-way contingency table

over six binary variables, each with two categorical levels, as shown in the left-hand

panel of Table 3.3. The data come from an epidemiological study involving 1841

workers from a Czechoslovakian car factory, to study potential factors associated with

coronary thrombosis (Edwards and Toma, 1985). This table was used by Dobra et al.

(2006) to demonstrate their Bayesian approach for inference on model parameters

underlying the table, as well as cell entries, given sets of marginal totals.

Assume that the information we are provided with about the original table is a set

of marginal totals

y =
(
y{A,B,C,D,F }, y{A,B,D,E,F }, y{A,B,C,E,F }

)
, (3.35)

which consists of three five-way marginal tables. For example, y{A,B,C,D,F } sums over

the two levels of variable E within each cell, leaving 25 cells representing all possible

combinations of the remaining factors A, B, C, D, and F .

To describe the original table, we consider a multinomial model incorporating all

possible first-order interactions and second-order interactions in addition to six main

effects. It is straightforward to see that the marginal vector y in (3.35) specifies all

possible one-way, two-way, and three-way marginal tables except for the three-way

marginal table y{C,D,E}, thus the data y are less than sufficient statistics for the

model we apply. Dobra et al. (2006) considered more complicated models in their

Bayesian framework, but the number of model parameters exceeded the number of
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independent observations contained in the data they used. For this reason, we do

not reproduce their models, so a direct comparison between the two approaches is

not available.

Note that likelihood factorization is not needed for applying the saddlepoint method

to the LMM for this problem. One reason is that in practice the vector y does not

contain any component equal to zero, because such entries would reveal multiple

zeros throughout the table and increase the risk of disclosing the raw data, which

might compromise participant privacy. Besides, marginal totals are sums of particular

components of the full table, so y does not have any component that can be observed

directly from the original table. Consequently, we apply the saddlepoint method

directly to approximate the density of Y = TZ.

We calculate estimates of the model parameters first, and then use them to estimate

cell entries of the original table. The 95% confidence intervals for all entries of

the table are presented in the right-hand panel of Table 3.3. We only present

integer-valued intervals which are practically meaningful, instead of the full-precision

real-valued intervals. It can be seen that all the true cell entries lie in the intervals we

obtained. Following Dobra et al. (2006), we consider the particular cell (1, 2, 2, 1, 1, 2),

whose true entry is one. This cell is marked by a box on the left and right panels

of Table 3.3. In general, small cell entries are harder to estimate accurately. Our

calculation gives a point estimate of 1.4 with 95% confidence interval [0, 3], which is

consistent with the true cell entry.
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Table 3.3 Czech autoworkers data from Edwards and Toma (1985) and 95% confidence intervals for all entries calculated
by the saddlepoint approximation method under a LMM.

B No Yes B No Yes
F E D C A No Yes No Yes A No Yes No Yes
Neg < 3 < 140 No 44 40 112 67 [26, 70] [21, 60] [93, 135] [54, 90]

Yes 129 145 12 23 [95, 152] [118, 170] [3, 21] [6, 31]
≥ 140 No 35 12 80 33 [8, 55] [0, 28] [60, 94] [15, 42]

Yes 109 67 7 9 [82, 141] [49, 91] [3, 18] [0, 23]
≥ 3 < 140 No 23 32 70 66 [3, 41] [9, 49] [50, 83] [47, 79]

Yes 50 80 7 13 [30, 76] [61, 107] [0, 17] [5, 28]
≥ 140 No 24 25 73 57 [6, 50] [6, 44] [58, 91] [46, 79]

Yes 51 63 7 16 [23, 72] [39, 82] [0, 13] [1, 23]
Pos < 3 < 140 No 5 7 21 9 [2, 11] [2, 11] [11, 24] [6, 16]

Yes 9 17 1 4 [5, 15] [10, 24] [0, 3] [0, 5]
≥ 140 No 4 3 11 8 [1, 6] [0, 5] [8, 20] [2, 11]

Yes 14 17 5 2 [8, 20] [10, 23] [1, 5] [0, 9]
≥ 3 < 140 No 7 3 14 14 [0, 8] [1, 9] [10, 24] [7, 16]

Yes 9 16 2 3 [4, 14] [9, 21] [0, 5] [1, 7]
≥ 140 No 4 0 13 11 [0, 5] [0, 5] [7, 19] [5, 15]

Yes 5 14 4 4 [3, 11] [7, 18] [0, 5] [1, 9]

A: smoker; B: strenuous mental work; C: strenuous physical work; D: systolic blood presure; E: ratio of β and α lipoproteins; F:
family anamnesis of coronary heart disease. Neg is short for negative, and Pos is short for positive.
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3.8.2 Simulation Study

For a simulation example, we consider a four-way contingency table over four binary

variables ξ1, . . . , ξ4. The model underlying the table incorporates 10 parameters,

including four main effects and six first-order interaction effects. Suppose we are

provided with marginal totals that are less than sufficient statistics for the model, for

example, y =
(
y{ξ1,ξ2,ξ3}, y{ξ2,ξ3,ξ4}

)
that omit the two-way marginal table y{ξ1,ξ4}.
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Fig. 3.10 Distributions of parameter estimates obtained using the saddlepoint
method for a four-way contingency table with true parameter values: N = 5000,
β1 = · · · = β4 = 1, and β12 = · · · = β34 = −2, which are shown by red horizontal
lines across the plots. Black horizontal lines across the boxes indicate the means
of the 1000 estimates. The quantity above each box shows the mean width of 95%
confidence intervals. Percentages below each box show percentage bias and 95%
confidence interval coverage respectively.

Distributions of parameter estimates are shown in Fig. 3.10. The saddlepoint method

produces roughly unbiased estimation with approximately nominal confidence interval

coverage for 95% confidence intervals for all model parameters. Note that the mean

width of the confidence intervals for the parameter β14 is much higher than that for

the other parameters. This is because the marginal table y{ξ1,ξ4} is not provided so

the data are less informative for this parameter. Moreover, estimation results for the

parameters related to variables ξ1 and ξ4 are also influenced. For example, the mean

width of confidence intervals for the parameter β23 is the smallest, and confidence
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intervals for parameters β2 and β3 are also narrower than those for β1 and β4 on

average.

We further estimated cell entries of the table using the parameter estimates obtained.

Consider the first cell entry Z1111 of the table as an example. Average percentage

bias and 95% confidence interval coverage for this entry were −1.02% and 93%

respectively.

3.9 Conclusions and Closing Remarks

We have developed a novel approximate likelihood approach based on the saddlepoint

method to address the problem of parameter estimation for LMMs. We have

demonstrated the validity of the method by comparing it with the exact likelihood

formulation for model Mt,α and the hybrid approximation method for the two-source

model, which itself was validated against the Bayesian approach in Chapter 2. We

further applied the method to two additional LMMs to investigate inference for multi-

list studies using incomplete list matching, and inference for multi-way contingency

tables given known marginals, which have previously been modelled by latent Poisson

models.

Note that in the real example and simulation study for multi-way contingency tables,

we always assume that less than sufficient statistics are provided. This is because

when sufficient statistics are available LMMs are not needed. Instead, a multinomial

model can be fitted. However, this provides another way to verify the saddlepoint

method. We found that if a set of marginal totals were provided that are sufficient

statistics for the model underlying the table, then fitting a LMM to the marginals

gave identical parameter estimates and confidence intervals to those obtained by

fitting a multinomial model to the full table. This is reasonable, because sufficient

statistics contain full information on the raw data. We do not present the results
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here, but this observation provides further evidence for the validity of the saddlepoint

approximation to LMMs for statistical inference.

Our two key motivations for developing the saddlepoint method were generality

and computational speed. The saddlepoint method is considerably faster than the

Bayesian approaches for LMMs (e.g., McClintock, 2015; Bonner and Holmberg, 2013;

McClintock et al., 2013; Link et al., 2010), and is more general than other alternatives

(e.g., Fewster et al., in prep; Vale et al., 2014; Sutherland and Schwarz, 2005). Most

inference results shown in this chapter are based on simulations. Two real examples,

the Auckland diabetes study and the Czechoslovakian workers data, show that the

proposed method can easily be applied for real data analysis.

The TMB package is vital for the computations involved in applying the saddlepoint

approximation method for maximum likelihood estimation. Motivated by the simi-

larities between the equations of the Laplace and saddlepoint approximations, we

illustrated how to make minor changes to the source code of TMB so that it can be

used conveniently for saddlepoint-based estimation. We considered a saddlepoint

approximation to the probability mass function of LMMs in this thesis; however, the

same modification of the TMB code could be applied to saddlepoint approximations

for any other models.

In the contexts of multi-list studies and multi-way contingency tables, many models

can be applied to describe the latent vector Z, as long as the number of model

parameters is no larger than the number of independent components of Y . Questions

of model selection arise in this situation. For example, Sutherland and Schwarz

(2005) selected a model including seven parameters for analysing the Auckland

diabetes data using the QICu statistic. Many other criteria for model selection

are well developed such as the Akaike information criterion (Akaike, 1974) and

Bayesian information criterion (Burnham and Anderson, 2003). Our investigation

of the saddlepoint likelihood for model Mt,α, compared against the exact likelihood

for this model, suggests that the saddlepoint likelihood may be suitable as a basis
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for the usual suite of likelihood-based model selection tools when most components

of the observed vector y are sufficiently large. The saddlepoint likelihood function

might otherwise need to be normalized if y contains many small components. See

Section 3.1 of Butler (2007) for more details about the normalization of saddlepoint

approximations. Full investigation of this is beyond the scope of this thesis.

The framework we have proposed for saddlepoint-based estimation may be suitable

for a much wider class of models, where the latent variable Z need not be multinomial,

as long as its moment generating function is efficiently computable. For example, Z

might follow a multivariate Poisson distribution (Dobra et al., 2006; Sutherland and

Schwarz, 2005; Lee, 2002). However, each different model class implies a different

saddlepoint approximation, which may have different properties from our LMM case,

so new approximations should be tested extensively by simulation, as we have done

for the multinomial case. It is particularly helpful if there is a specific model for

which the exact likelihood function is available for comparsion.
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4
Preliminaries: Models and Methods

4.1 Overview

In this chapter, we start by giving a brief introduction to linkage disequilibrium.

Then we describe the classical Wright-Fisher model in population genetics, and a

generalisation of it, namely the two-locus diallelic model that incorporates mutation

and recombination. In the following section, we introduce the diffusion approximation,

which is useful for studying genetic models in large populations. In the second half

of this chapter, we provide a review of Song and Song (2007)’s method to compute

the expectation of r2 at stationarity under the diffusion approximation. Finally, we

discuss the maximum entropy principle, and some related issues, including numerical
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solutions to maximum entropy problems and trust region optimisation methods. The

main purpose of this chapter is to present a review of models and methods related

to constructing the stationary distribution of r2.

4.2 Linkage Disequilibrium

Linkage disequilibrium (LD) refers to the non-random combination of alleles at two

or more loci in population genetics (Lewontin, 1964; Lewontin and Kojima, 1960). It

can be used for many purposes, for example, understanding the evolutionary history

of a species (e.g., Slatkin, 2008; Tishkoff et al., 1996), gene mapping in association

studies (e.g., Horikawa et al., 2000; Pritchard and Rosenberg, 1999), and detecting

recombination hotspots (e.g., Auton et al., 2014; Li and Stephens, 2003).

A range of statistics are defined for measuring LD in the literature (see Pritchard

and Przeworski, 2001; Jorde, 2000, for a review). The suitablity of each definition

depends on the context of specific problems. A popular and convenient measure of

LD is the squared correlation coefficient r2, which has been studied and applied in

many papers (e.g., Gupta et al., 2005; Mueller, 2004; Hill and Robertson, 1968).

Consider two biallelic loci with allele types A1 or A2 present at the first locus, and

B1 or B2 at the second locus. Let p1, p2, and p3 denote the frequencies of gametes

A1B1, A1B2, and A2B1. The LD measure r2 defined in terms of p = (p1, p2, p3) is

r2 = D2

p(1 − p)q(1 − q) , (4.1)

where
p = p1 + p2

q = p1 + p3

D = p1 − pq = p1 − (p1 + p2) (p1 + p3) .

(4.2)
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Thus, D measures the difference between the actual frequency of gamete-type A1B1,

and the frequency that would be obtained if the two loci were independent. The LD

measure r2 is then the square of the correlation coefficient between the indicator

random variables IA1 and IB1 :

r2 = corr2 (IA1 , IB1) = cov2 (IA1 , IB1)
var (IA1) var (IB1) . (4.3)

The distribution of r2 is influenced by many evolutionary factors, such as selection,

mutation, and recombination (Pritchard and Przeworski, 2001). Every pair of loci at

a particular generation time in a finite reproducing population generates a single

realisation of r2. The distribution of these r2 values across locus pairs encapsulates

information on the evolutionary factors acting on the population. Since it is possible

to generate sample observations of r2 at equilibrium, by observing sample correlations

between alleles at multiple locus pairs in a single generation, it is plausible that we

could estimate those evolutionary factors (parameters) from the data using maximum

likelihood. To accomplish this we need to find the probability distribution of r2 at

stationarity. This is a complex function of the parameters, which to our knowledge

has not been characterised before. So far, most research emphasis has focused on

exploring the expectation of r2 (Song and Song, 2007; Ohta and Kimura, 1969b; Hill

and Robertson, 1968) or its empirical distributions under different models (Hudson,

1985; Golding, 1984). As far as we know, no method has been proposed to obtain

the density function of r2 at stationarity.

In this project, our focus is to approximate the stationary PDF of r2, and then use

it for estimating evolutionary parameters such as mutation rate and recombination

rate from sample observations of r2. Models and methods related to this goal will be

introduced in this chapter.
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4.3 Models and Notation

4.3.1 Wright-Fisher Model

The Wright-Fisher model (Fisher, 1999; Wright, 1931) is an idealised stochastic model

to study genetic drift in population genetics. Genetic drift is a basic mechanism of

evolution, in which relative frequencies of different alleles or gametes for a population

vary from one generation to the next.

The original Wright-Fisher model is based on a series of ideal assumptions for

the population of interest: (1) individuals in the population are monoecious and

diploid; (2) mating between individuals is assumed to be random; (3) population

size is assumed to be a finite constant for all generations, which are discrete and

non-overlapping; (4) individuals are able to produce a large number of gametes,

each of which is equally likely to be inherited to the next generation; and (5)

other evolutionary factors including selection, mutation, and recombination are not

considered.

We first give an explanation of the terminology used in these assumptions. Individuals

are said to be diploid if they have two copies of each chromosome, one from each

parent. A monoecious individual has both male and female reproductive organs, so

that reproduction can be completed within one individual or between two individuals.

A gamete is a reproductive cell, such as a sperm or egg, that contains a single set

of chromosomes. Selection refers to a genetic process by which specific alleles or

genotypes are favoured over alternatives for reproductive success. Mutation and

recombination will be explained in the following section.

Consider a particular locus that possesses two possible alleles A and a. In genetics,

one locus simply represents a position on a chromosome. Define Xt to be the number

of copies of the allele A in generation t = 1, 2, 3, . . .. For a diploid population of N

individuals, there are 2N gametes in total in each generation. It follows that Xt

takes values from {0, 1, . . . , 2N}. Note that although a large number of gametes are
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produced, the model assumes that only 2N of them will be inherited to the next

generation. The 2N gametes are sampled randomly and independently from the

gamete pool.

Under the Wright-Fisher model, Xt+1 follows a binomial distribution:

Xt+1 ∼ Bin (2N ; pt+1) , (4.4)

where pt+1 = Xt/2N denotes the expected proportion of A in generation t + 1 and is

equal to the actual proportion of allele A in generation t. The one-step transition

probability of going from Xt = i to Xt+1 = j for i, j ∈ {0, 1, . . . , 2N} is

pij = P
(
Xt+1 = j | Xt = i

)
=
(

2N

j

)
pj

t+1(1 − pt+1)2N−j. (4.5)

It is clear that the stochastic process defined by the Wright-Fisher model is a discrete-

time, discrete-state Markov chain, because the distribution of Xt+1 is only determined

by the current state Xt without any reference to previous states.

For large t, the Wright-Fisher model is guaranteed to reach fixation, as there are

two absorbing states for the Markov chain, namely 0 and 2N , for which pii = 1

and pij = 0 for i ̸= j when i = 0 or 2N . This means that once an allele is lost in

some generation, it never returns. Thus the population will consist entirely of the

alternative allele and will not show any further genetic variation in future generations.

4.3.2 Two-Locus Diallelic Model

For a more realistic model that does not guarantee fixation in the long run, we

consider a generalisation of the original Wright-Fisher model, namely the two-locus

diallelic (TLD) model that incorporates mutation and recombination. More details

on this model, along with other generalisations of the Wright-Fisher model, are given

by Liu (2012) and references therein.
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In the TLD model, we consider two genetic loci, each of which possesses two possible

alleles. Let A1, A2 denote the two possible alleles for locus 1, and let B1, B2 denote

the two possible alleles for locus 2. There are four possible types of gamete, A1B1,

A1B2, A2B1, and A2B2, whose counts in generation t are Xt1, Xt2, Xt3, and Xt4,

where Xt1 + Xt2 + Xt3 + Xt4 = 2N . Since Xt4 can be derived using 2N to deduce

the other three counts, we use Xt = (Xt1, Xt2, Xt3) to denote the Markov chain

specified by the TLD model. Note that if gametic frequencies are of interest, we may

equivalently use Xt/2N to define the TLD model. We do not distinguish the two

definitions in this thesis.

The genotype of a diploid individual consists of two gamete-types, one on each

chromosome, so it is of the form AiBj/AmBn, where m, n, i, j ∈ {1, 2}. It follows

that there are 10 possible genotypes for the TLD model. Recombination refers to a

process in which two gametes exchange their alleles during meiosis. For example,

two gametes A1B1 and A2B2 generally lead to genotype A1B1/A2B2; however, in a

recombination event the positions of alleles B1 and B2 might be exchanged so that

genotype A1B2/A2B1 is generated. We define the recombination rate C between

these two loci to be the probability that an odd number of exchanges occurs. It is

clear that the parameter C varies between 0 and 0.5. When the two loci are very

close together, it is very unlikely that a recombination event will take place between

them, so the parameter C will be close to 0. For distant loci, C may approach 0.5.

In addition to recombination, endogenous and environmental factors may cause

alleles to change from one type to another. This process is called mutation. In the

TLD model, the same mutation rate µ is assumed for the alleles in both loci, that is

A1
µ

GGGGGBFGGGGG

µ
A2 and B1

µ
GGGGGBFGGGGG

µ
B2. (4.6)

Under the original Wright-Fisher model with independent loci, the expected compo-

sition of the four types of gametes in the next generation is only determined by the
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current composition. In the TLD model, the mutation rate µ and recombination rate

C also influence the expected counts of the four gamete-types in the next generation.

The one-step transition probability for this model was derived in detail by Liu (2012).

We only present the results here.

Suppose two states x = (x1, x2, x3) and y = (y1, y2, y3) are taken arbitrarily from

the state space of the model, i.e.,

S =
{
(s1, s2, s3) ∈ N3 | s1 + s2 + s3 ≤ 2N

}
. (4.7)

Assume x4 = 2N − x1 − x2 − x3 and y4 = 2N − y1 − y2 − y3. Then the one-step

transition probability of going from x to y is

pxy = P
(
Xt+1 = y | Xt = x

)
= (2N)!

y1!y2!y3!y4!
Φy1

1 Φy2
2 Φy3

3

1 −
3∑

i=1
Φi

y4

,
(4.8)

where

Φ1 = x1

2N
(1 − µ)2 +

(
x2

2N
+ x3

2N

)
µ (1 − µ) + x4

2N
µ2 − CD (1 − 2µ)2

Φ2 = x2

2N
(1 − µ)2 +

(
x1

2N
+ x4

2N

)
µ (1 − µ) + x3

2N
µ2 + CD (1 − 2µ)2

Φ3 = x3

2N
(1 − µ)2 +

(
x1

2N
+ x4

2N

)
µ (1 − µ) + x2

2N
µ2 + CD (1 − 2µ)2

(4.9)

and

D = x1

2N

x4

2N
− x2

2N

x3

2N
. (4.10)

The Markov chain defined by the TLD model is irreducible and aperiodic, thus

a unique stationary distribution π exists, which can be obtained by solving the

following equation:

πT (Σ − I) = 0, (4.11)
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where I is an identity matrix and Σ is the transition matrix of the Markov chain

that consists of all transition probabilities of the form (4.8). Once the stationary

distribution is known for the state space S consisting of vectors of gametic counts x,

the stationary distribution of gametic frequencies p = (p1, p2, p3) = x/2N follows

immediately. Then the distribution of r2 at stationarity can be constructed, where

r2 is defined in equations (4.1) and (4.2).

Solving the stationary distribution of the TLD model analytically is infeasible except

for trivial cases. Instead, it is common to solve equation (4.11) numerically. However,

even for a small population size, say N = 10, finding the stationary distribution

numerically generates a huge computational burden. This is due to the fact that

even a small population size generates a large state space S, so the matrix Σ is

of high dimension. As N increases, numerical methods rapidly lose both efficiency

and accuracy. An alternative normal approximation provides a possible solution to

the problem in some cases when N is very large; however, the performance of this

method is not stable and might change from case to case. The latter two approaches

to the problem were discussed by Liu (2012), including several examples.

4.4 Diffusion Approximation

To facilitate computation of the stationary distribution of r2 under the TLD model

for large populations, we use the diffusion approximation, which is a well-established

technique in population genetics. For a review of the approach, refer to Kimura

(1964) and Watterson (1996). The application of the diffusion approximation has a

long history in this field and can be traced back to Fisher et al. (1922) and Wright

(1931).

The diffusion approximation is a mathematical technique that approximates a discrete

stochastic process using a diffusion process which is continuous in both space and

time. A diffusion process is a strong Markov process with a continous sample path
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(Glynn, 1990). A classical example of a diffusion process is Brownian motion (Doob,

1942). Diffusion processes have many convenient properties that discrete stochastic

processes do not possess. The underlying idea of the diffusion approximation is

similar to that of the central limit theorem which approximates an intractable sum

of random variables by a proper normal random variable under some conditions.

Models for genetic drift in population genetics are usually discrete Markov chains.

By diffusion theory, we can reformulate the time space and state space of the model,

to ensure that the gap between two successive time points or states is infinitesimal

when the population size N is sufficiently large. This can be achieved by establishing

links between the time and state units and the population size. For instance, we

can scale the discrete state space {0, 1, . . . , 2N} by a factor of (2N)−1, so that the

difference between two successive states is (2N)−1, which tends to 0 as N goes to

infinity. Likewise, we also scale the time space by the factor of (2N)−1, so that the

scaled time space is {0, δt, 2δt, . . .}, where δt = (2N)−1. In this case, the discrete

process can be regarded as a continuous one.

Associated with a diffusion process is typically a Kolmogorov equation (a partial

differential equation), and a diffusion generator. The solution of the Kolmogorov

equation is the stationary distribution of the diffusion process, but the equation is

notoriously difficult to solve. We will discuss this further in Chapter 6. Details on

the derivation of the diffusion approximation to the TLD model can be found in

established literature, for example, Kimura (1964), Ewens (2004), and Liu (2012). In

the remainder of this section, we focus on the diffusion generator of the TLD model,

which is particularly valuable for this project.

Ohta and Kimura (1969a,b) first showed that computing certain expectations at

stationarity can be greatly facilitated by the diffusion approximation for models in

population genetics. Song and Song (2007) extended the method of Ohta and Kimura

(1969b) to compute the expectation of r2 at stationarity. The diffusion generator
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used by Song and Song (2007) differs from that used by Ohta and Kimura (1969b)

by a factor of 2. In this thesis, we follow the formulation of Song and Song (2007).

Let Xt = (p, q, D)t denote the diffusion process corresponding to the TLD model.

Note that using parameters p, q, D as defined in equation (4.2) instead of the orig-

inal gametic frequencies p1, p2, p3 is more convenient for the calculation of certain

expectations. The diffusion generator for the TLD model is

L = 1
2p (1 − p) ∂2

∂p2 + 1
2
{
p (1 − p) q (1 − q) + D (1 − 2p) (1 − 2q) − D2

} ∂2

∂D2

+ 1
2q (1 − q) ∂2

∂q2 + D
∂2

∂p∂q
+ D (1 − 2p) ∂2

∂p∂D
+ D (1 − 2q) ∂2

∂q∂D

+ θ

4 (1 − 2p) ∂

∂p
+ θ

4 (1 − 2q) ∂

∂q
− D

(
1 + ρ

2 + θ
)

∂

∂D
(4.12)

where ρ = 4NC and θ = 8Nµ denote the population-scaled recombination rate and

mutation rate. Here, N should be interpreted as the genetic effective population size,

also called Ne.

The diffusion generator L is defined such that

∂

∂t
E
{
f (Xt)

}
= E

{
Lf (Xt)

}
, (4.13)

for any twice continuously differentiable function f that has compact support. Note

that at stationarity, E
{
f (Xt)

}
does not depend on the time parameter by definition,

so its rate of change on the left-hand side of (4.13) is zero. Thus, for any suitable

function f , and for Xt = (p, q, D)t distributed over the continuous state space

according to the stationary distribution π, we have

E
{
Lf (Xt)

}
= 0. (4.14)

Equation (4.14) is called the master equation, and it provides considerable power for

computing expectations of certain forms at stationarity for the TLD model.
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4.5 Analytic Computation of the Expectation of r2

In this section, we introduce the method of Song and Song (2007) for computing the

expectation of r2 at stationarity under the TLD model. Recall from equation (4.1)

that

r2 = D2

p (1 − p) q (1 − q) . (4.15)

The main strategy of Song and Song (2007)’s method is to write r2 as an infinite

sum of monomials in terms of (p, q, D), for which stationary expectations can be

computed using the master equation (4.14). We will extend this method in Chapter 5

to compute higher-order stationary moments of r2, and thereby construct the density

of r2 using the maximum entropy principle that we will introduce in Section 4.6.

Here, we describe Song and Song (2007)’s work only.

Since the infinite series ∑∞
k=0 yk converges to 1/(1 − y) for 0 < y < 1, we have the

following results for 0 < p, q < 1:

1
1 − p

=
∞∑

k=0
pk

1
p

=
∞∑

k=0
(1 − p)k

1
1 − q

=
∞∑

k=0
qk

1
q

=
∞∑

k=0
(1 − q)k .

(4.16)
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It follows that

r2 = D2

p (1 − p) q (1 − q)

= D2
(

1
p

+ 1
1 − p

)(
1
q

+ 1
1 − q

)

=
∞∑

m=0

∞∑
n=0

{
D2pmqn + D2(1 − p)mqn

+ D2pm(1 − q)n + D2(1 − p)m(1 − q)n
}

.

(4.17)

Because the TLD model treats all alleles A1, A2, B1, B2 identically with respect to

mutation, recombination, and drift, we must have:

E
(
D2pmqn

)
= E

{
D2 (1 − p)m qn

}
= E

{
D2pm (1 − q)n

}
= E

{
D2 (1 − p)m (1 − q)n

}
.

(4.18)

Thus it follows that

E
(
r2
)

= 4
∞∑

m=0

∞∑
n=0

E
(
D2pmqn

)
. (4.19)

The problem of calculating E
(
r2
)

therefore reduces to calculating E
(
D2pmqn

)
for

all pairs of non-negative integers m and n.

Before introducing Song and Song (2007)’s method of computing E
(
D2pmqn

)
, we

first use some examples to illustrate the procedure of calculating expectations using

the master equation.

If f (p, q, D) = D is used in the master equation (4.14), we obtain

Lf (p, q, D) = −D
(

1 + ρ

2 + θ
)

, (4.20)
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and therefore (4.14) gives E (D) = 0 at stationarity. If f (p, q, D) = pn is used, we

obtain

E (pn) =
(

θ/2 + n − 1
θ + n − 1

)
E
(
pn−1

)
. (4.21)

Since E
(
p0
)

= E (1) = 1, it follows that

E (pn) = θ/2
(
θ/2 + 1

)
· · ·

(
θ/2 + n − 1

)
θ (θ + 1) · · · (θ + n − 1) . (4.22)

The same formula also applies to E (qn). Similarly, inserting different forms of

f (p, q, D) such as pq, p2q, pq2, Dpn and Dqn into the master equation gives the

expectations of these items. See Song and Song (2007) for more details. These

preliminary expectations are needed in the algorithm below.

Computing E
(
D2pmqn

)
for all combinations of m and n requires more work. Since

E
(
D2pmqn

)
= E

(
D2pnqm

)
for the TLD model, we focus on expectations with m ≥ n.

For each pair of (m, n) where m ≥ n, inserting f (p, q, D) = Dkpm+2−kqn+2−k into the

master equation with k = 0, 1, . . . , n + 2 generates a system of n + 3 linear equations.

This system includes more than n + 3 unknown expectations, so it does not have a

unique solution unless the computations are carried out in a particular order. Song

and Song (2007)’s innovative idea was to specify an order of computation such that

the number of unknown expectations is reduced to n + 3 at every iterative step.

According to Song and Song (2007)’s algorithm, the computations are executed along

an increasing level of ℓ = m + n, while within each level the algorithm follows an

increasing order of n. The computation order is as follows:

(m, n) :
ℓ=0︷ ︸︸ ︷

(0, 0) →
ℓ=1︷ ︸︸ ︷

(1, 0) →
ℓ=2︷ ︸︸ ︷

(2, 0) → (1, 1) →
ℓ=3︷ ︸︸ ︷

(3, 0) → (2, 1) →
ℓ=4︷ ︸︸ ︷

(4, 0) → (3, 1) · · · .

(4.23)

When this order is followed, for a system of equations generated with a specific

pair (m, n), some expectations have already been derived in the preliminary exercise

above or can be obtained from the solutions of previous equation systems earlier in
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the ordering. Song and Song (2007) showed that each system of linear equations

then includes exactly n + 3 unknown expectations:

E
(
pm+2qn+2

)
, E

(
Dpm+1qn+1

)
, E

(
D2pmqn

)
, . . . , E

(
D2+npm−n

)
, (4.24)

one of which is the expectation E
(
D2pmqn

)
needed for the computation of E

(
r2
)

in (4.19). As byproducts, other expectations are found that are not needed for

computing E
(
r2
)
, but we find later that these can be used to compute higher-order

moments of r2. We will demonstrate this in Chapter 5.

In practice, we need to truncate the infinite sum (4.19) at some finite value to

compute E
(
r2
)
. Given a value of ℓ = m + n, the truncated summation

E
(
r2
)

ℓ
= 4

m+n=ℓ∑
m,n≥0

E
(
D2pmqn

)
(4.25)

serves as an approximation to E
(
r2
)
. As ℓ varies from 0 to ∞, we obtain a

monotonically increasing sequence of partial sums
{
E
(
r2
)

ℓ

}∞

ℓ=0
. Since E

(
r2
)

is

bounded, the convergence of the series is guaranteed. Practical results show that the

sequence converges quite fast as ℓ = m+n increases, although the rate of convergence

tends to be faster for smaller ρ and larger θ. Song and Song (2007) showed that for

all settings of ρ and θ, E
(
r2
)

ℓmax
serves as a good approximation to E

(
r2
)

when the

truncation level is ℓmax = 700.

Song and Song (2007)’s computation indicates that E
(
r2
)

is a function of ρ and θ

for the TLD model. It can also be readily seen that the stationary PDF of r2 is a

function of the same two parameters, although the function is complicated and does

not have an analytic formula or any approximations so far. Throughout, we maintain

the definitions of ρ and θ as the population-scaled recombination and mutation rates

under the TLD model: ρ = 4NC and θ = 8Nµ.
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4.6 Maximum Entropy Principle

In the previous section, we showed that E
(
r2
)

can be calculated using Song and

Song (2007)’s method. However, our interest is not just in E
(
r2
)
, but in the entire

stationary distribution of r2. We therefore wish to obtain an approximate density

function π
(
r2
)
. Here, we describe the maximum entropy (Maxent) principle, by

which density functions can be constructed based on known expectations and higher

moments.

The Maxent principle was first proposed by Jaynes (1957a,b), who specified the

correspondence between information theory and statistical mechanics. It is a powerful

tool for approximating the probability density or mass function of an unknown

distribution given limited information about it, for example a finite sequence of

moments of the distribution. The Maxent principle has gained a large number of

applications in many fields, such as ecology (Banavar et al., 2010; Phillips et al.,

2006), linguistics (Berger et al., 1996), econometrics (Wu, 2003; Zellner and Highfield,

1988), physics (Robert, 1991), and population genetics (Liu, 2012).

The term “entropy” has two related definitions in both thermodynamics and statistical

mechanics. There are many ways to understand the basic concept of entropy. In this

thesis, we follow the interpretation given by Shannon (1948a,b) in the context of

information theory, which is known as Shannon’s entropy or information entropy. In

this interpretation, entropy is used to measure probabilistic uncertainty. For example,

a random variable with more than one possible value has uncertainty associated with

it. By contrast, the entropy of a probability distribution with only one possible value

is zero.

Mathematically, the entropy of a probability distribution is defined to be the expec-

tation of the negative logarithm of the density function of the distribution. Given

certain information about an unknown distribution, the Maxent principle specifies a
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density that is compatible with the known constraints, while allowing for maximal

uncertainty (entropy) with regard to the unknown part of the distribution.

Suppose the true PDF π (x) of a continuous random variable X is unknown, but a

set of power moments mi = E
(
X i
)

, i = 0, 1, 2, . . . , n can be obtained. We aim to

find a density π̃n (x) that maximises the entropy of the distribution subject to the

constraints that E
(
X i
)

= mi for all i = 0, . . . , n. Denote Ω to be the support of

X. In this thesis, our focus is the squared correlation coefficient r2, thus we have

Ω = [0, 1] for the range of r2.

Constructing the Maxent density π̃n (x) is equivalent to finding the function π̃n that

maximises the entropy defined below:

I (π̃n) = −
∫

Ω
π̃n (x) log

{
π̃n (x)

}
dx (4.26)

subject to the moment constraints

mi =
∫

Ω
xi π̃n (x) dx for i = 0, 1, . . . , n. (4.27)

The Lagrange function corresponding to this constrained optimisation problem is

L = −
∫

Ω
π̃n (x) log

{
π̃n (x)

}
dx −

n∑
i=0

λi

(∫
Ω

xi π̃n (x) dx − mi

)
. (4.28)

By the Euler-Lagrange equation, the Maxent solution is (Liu, 2012):

π̃n (x) = exp
(
λ0 + λ1x + λ2x

2 + · · · + λnxn
)

, (4.29)

where the vector λ = (λ0, λ1, . . . , λn) solves the unconstrained minimisation problem

below:

arg min
λ


∫

Ω
exp

 n∑
i=0

λix
i

 dx −
n∑

i=0
λimi

 . (4.30)

92



4.6 Maximum Entropy Principle

This is the univariate maximum entropy principle for a continuous random variable,

as needed for our problem. The multivariate principle can be derived in a similar

manner (see Liu, 2012, for more details). Note that a more general Maxent density

formula can also be derived given a set of constraints of the form E
{
gk (X)

}
, where

gk are arbitrary functions for k = 1, 2, . . . , n, for which the expectations exist. For

more details about the Maxent principle, see Jaynes (1982) and Cover and Thomas

(2012).

4.6.1 Numerical Maximum Entropy Solution

It can be seen that finding the Maxent density (4.29) is equivalent to solving the

unconstrained optimisation problem (4.30). The problem does not have an analytic

solution for n ≥ 2, so numerical optimisation methods are generally used. However,

minimising (4.30) directly using current numerical methods is a substantial challenge,

especially when the number of moment constraints is large. In this section, we discuss

some strategies to address this problem following Liu (2012).

The first difficulty of the problem lies in calculating the definite integral involved in

the objective function of (4.30). When the number of moments used is large, it is

notoriously difficult to evaluate the integral with high accuracy because the order

of the polynomial ∑n
i=0 λix

i is high. The benefit of using more moments in Maxent

problems is that it can result in a more accurate approximation to the true density

function π (x), but this means that more computation time and computing power is

required.

A typical solution to the problem of integral evaluation is to use Gaussian-Legendre

quadrature to compute the integral numerically (see Hildebrand, 1987, for more

details). Gaussian-Legendre quadrature is an approach to approximating the definite

integral of a function h (z) defined over the interval [−1, 1] by summing up weighted

function values at a set of values of z. More specifically, using quadrature nodes zj
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and weights βj, where j varies between 1 and the total number of nodes, we have

∫ 1

−1
h (z) dz ≈

∑
j

βjh
(
zj

)
. (4.31)

In this thesis, we need quadrature nodes over [0, 1] rather than [−1, 1]. Gaussian-

Legendre quadrature nodes over [0, 1] can be obtained by a linear transformation of

the usual nodes. It is straightforward to see that

∫ 1

0
h (z) dz = 1

2

∫ 1

−1
h

(
1
2z + 1

2

)
dz

≈ 1
2
∑

j

βjh

(
1
2zj + 1

2

)
,

(4.32)

where zj and βj represent the usual weights and nodes. Then

β′
j = 1

2βj

z′
j = 1

2(1 + zj)
(4.33)

are weights and nodes for our problem over interval [0, 1]. Refer to Clason and von

Winckel (2012) and Liu (2012) for more details.

For our Maxent problem, suppose the Gaussian-Legendre quadrature nodes and

weights are xj and ωj. Let xi
j denote the jth node xj to the power of i. Using the

quadrature nodes and weights, the optimisation problem (4.30) reduces to

arg min
λ

∑
j

ωj exp
 n∑

i=0
λix

i
j

 −
n∑

i=0
λimi

 . (4.34)

However, this is an ill-posed problem due to the power moments involved inside the

objective function of (4.34). This is the second difficulty with using the Maxent

principle. When xj ∈ (0, 1), the term xi
j becomes exceedingly close to zero for a

large value of i, say 1,000. For this reason, many significant digits are required in the

computation; otherwise xj does not contribute to the result. However, the level of
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machine precision imposes a restriction on the number of digits. Consequently, the

use of Gaussian-Legendre quadrature nodes has not resolved the problem completely.

A typical solution is to transform the original power moments mi = E
(
X i
)

into

corresponding Chebyshev moments, and then apply the Maxent principle to the

shifted moments. See Wheeler et al. (1974) for more details about the transformation

between power moments and modified moments. Silver and Röder (1997) found

that using Chebyshev moments greatly improves the solvability of the optimisation

problem compared with the use of the original moments in Maxent problems. For more

studies of the Maxent principle using Chebyshev moments, refer to Bandyopadhyay

et al. (2005), Biswas and Bhattacharya (2010), and Liu (2012).

We first give the definition of the usual Chebyshev polynomial of the first kind, which

is expressed by a recurrence relation as below:

Tn+1(x) = 2xTn(x) − Tn−1(x), (4.35)

where x ∈ [−1, 1] and n ≥ 1 denotes the degree of the Chebyshev polynomial. In

addition, T0 (x) = 1 and T1 (x) = x. Since our problem is formulated over the interval

[0, 1], we need the shifted Chebyshev polynomial of the first kind, which is linked to

the usual polynomial by

T ∗
i (x) = Ti(2x − 1) for x ∈ [0, 1]. (4.36)

Let
{
mc

i | i = 0, 1, . . . , n
}

denote the set of shifted Chebyshev moments, where the

ith moment is defined by

mc
i = E

{
T ∗

i (X)
}

. (4.37)
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The numeric values of the shifted Chebyshev moments can be obtained from the

original moments mi = E
(
X i
)

(i = 0, 1, . . . , n), via the expression



mc
0

mc
1

...

...

mc
n


=



a00 a01 · · · · · · a0n

a10 a11 · · · · · · a1n

... ... . . . . . . ...

... ... . . . . . . ...

an0 an1 · · · · · · ann





m0

m1
...
...

mn


, (4.38)

where aij is the coefficient of the term xj in the formulation of T ∗
i (x). Let A

denote the (n + 1) × (n + 1) matrix in the equation above. The entries of matrix

A can be computed using equation (4.36) and the recurrence relation (4.35). We

use some examples to illustrate the computation. Because T0(x) = 1, we have

T ∗
0 (x) = T0(2x − 1) = 1, so a00 = 1 and a0j = 0 for j = 1, 2, . . . , n. Since

T ∗
1 (x) = T1 (2x − 1) = 2x − 1, it follows that a10 = −1 and a11 = 2 are the only two

non-zero entries in the second row of A.

After obtaining the set of shifted Chebyshev moments, we have the following modified

optimisation problem to replace problem (4.34):

arg min
λc

∑
j

ωj exp
 n∑

i=0
λc

iT
∗
ij

 −
n∑

i=0
λc

im
c
i

 , (4.39)

where T ∗
ij = T ∗

i (xj) and λc = (λc
0, λc

1, . . . , λc
n). Equation (4.39) is easier to solve using

numerical methods than equation (4.34). Then, we back-transform λc to obtain the

original vector λ by

λ = AT λc (4.40)

and substitute λ into (4.29) to obtain the Maxent density in its original form.

Note that the Maxent density using the shifted Chebyshev moments is

π̃c
n (x) = exp

{
λc

0 + λc
1T

∗
1 (x) + · · · + λc

nT ∗
n (x)

}
. (4.41)
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The two densities (4.29) and (4.41) provide the same Maxent approximation to the

true density of X given the n power moment constraints. It is more convenient to

use the density (4.41) in practice, since no back transformation is needed.

4.6.2 Trust Region Optimisation Method

The key to finding a numerical Maxent solution for the target density π (x) is solving

the optimisation problem (4.39). However, this can still be a computational challenge

even though the calculation has been greatly expedited using the shifted Chebyshev

moments and Gaussian-Legendre quadrature nodes. To tackle this problem, in

this thesis we use the trust region optimisation method following Liu (2012). This

method provides stable and fast computation for our problem. We do not describe

the algorithm here; see Fletcher (1987), Wright and Nocedal (1999), and Liu (2012)

for more details. An R package trust is also available (Geye, 2015). Note that the

TMB package can also be applied to this problem, and its performance is similar to

that of the trust region algorithm.

4.7 Stationary Distribution for the TLD Model

The diffusion approximation approach greatly improves the possibility of finding

the stationary distribution for genetic models. Here, the genetic models in question

represent diffusion processes corresponding to the original discrete Markov chain

models. For example, the stationary distribution of a single-locus model with

mutation was found under the diffusion approximation by Wright (1968). The

stationary distributions for certain multi-locus models without linkage are also

available (Wright, 1949, 1937). For a summary of genetic models whose stationary

distributions are computable under the diffusion approximation, see Section 3.2 of

Liu (2012).
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More recently, Liu (2012) approximated the stationary distribution of the TLD

model parameterised in terms of p = (p1, p2, p3) by applying a three-dimensional

Maxent approach to a set of moments of the form E
(
pi1

1 pi2
2 pi3

3

)
, where i1, i2, and

i3 are non-negative integers. To prove the accuracy of the multivariate Maxent

approach, Liu (2012) computed the expectation of r2 for different settings of ρ and θ

using his Maxent density π̃ (p):

E
(
r2
)

=
∫

Ω
r2 (p) π̃ (p) dp, (4.42)

and compared the results with those obtained by Song and Song (2007). Liu (2012)

pointed out that the multivariate Maxent approach loses accuracy for some settings of

ρ and θ, for which the density function has sharp edges. Incorporating more moments

could address this problem; however, computing time increases rapidly when the

number of moments increases. Therefore, the accuracy of the multivariate Maxent

approach is limited by current computing power. By contrast, the accuracy and

computability of a univariate Maxent approach is shown in Liu (2012) by constructing

the Maxent density of a single-locus model whose exact distribution is available for

comparison.

The work of Liu (2012) provides the first method for generating the stationary

distribution π
(
r2
)

in the literature, as far as we know. However, it is based

on the three-dimensional Maxent solution for π̃ (p) = π̃ (p1, p2, p3), which creates

a massive computational burden, firstly to find the moments E
(
pi1

1 pi2
2 pi3

3

)
, and

secondly to optimise the equivalent of (4.39) using a three-dimensional quadrature

and multivariate Chebyshev polynomials. Liu (2012) performed computations on

a high-performance computing cluster, and each setting of (ρ, θ) still required over

24 hours to compute π̃ (p1, p2, p3) using 40 CPUs. To apply Liu (2012)’s method

for parameter estimation using sample data on r2, we would need to construct

this three-dimensional density π̃ (p1, p2, p3) repeatedly for numerous values of (ρ, θ),

and use it to generate the univariate density π
(
r2
)

by integration, so each single
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4.7 Stationary Distribution for the TLD Model

likelihood evaluation would take over 24 hours on a parallel cluster. The method is

therefore computationally impracticable.

In the following chapter, we will develop a new method to calculate the stationary

PDF of r2 directly using the univariate Maxent approach. Under our new approach,

estimating mutation and recombination parameters by maximum likelihood using

sample data on r2 will become computationally feasible, and computation times will

be reduced to a few minutes per likelihood evaluation on a single customary laptop.
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5
A New Method for Estimating Mutation

and Recombination

5.1 Overview

In this chapter, we first develop an extension to the original method of Song and Song

(2007) that will enable us to compute higher-order moments of r2 at stationarity.

Then a more general and efficient approach based on a model reparametrization is

proposed. Using these methods, we calculate a substantial sequence of moments

of r2, and use it to construct the stationary distribution π̃
(
r2
)

under the Maxent

principle. We show how this Maxent density of r2 can be used for maximum likelihood
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estimation of mutation rate and recombination rate using sample observations of r2.

We also showcase other quantities of interest such as the variance of r2, which was

first computed by Liu (2012). We demonstrate the performance of the new method by

simulation studies and real data analysis. Our method differs from that of Liu (2012)

because we create a direct computation of E
{(

r2
)i
}

for i = 1, 2, 3, . . ., and use these

moments to construct the univariate Maxent density π̃
(
r2
)
. By contrast, Liu (2012)

derived moments E
(
pi1

1 pi2
2 pi3

3

)
and used these to construct the three-dimensional

Maxent density π̃ (p1, p2, p3), from which π̃
(
r2
)

could be obtained by integration.

5.2 Moment Problem: Method I

We take the computation of E
(
r4
)

as an example to illustrate how to extend Song

and Song (2007)’s method to compute higher-order moments of r2 at stationarity.

Although the derivation process below focuses on E
(
r4
)
, it can be extended naturally

to other moments.

We showed in equation (4.17) that

r2 = D2
∞∑

m=0

∞∑
n=0

{
pmqn + (1 − p)mqn + pm(1 − q)n + (1 − p)m(1 − q)n

}
. (5.1)

It follows that

r4 = D4
∞∑

m=0

∞∑
n=0

{
pmqn + (1 − p)mqn + pm(1 − q)n + (1 − p)m(1 − q)n

}

×
∞∑

k=0

∞∑
l=0

{
pkql + (1 − p)kql + pk(1 − q)l + (1 − p)k(1 − q)l

}

=
∞∑

m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

{
D4pm+kqn+l + D4pm(1 − p)kqn+l + · · ·

+ D4pk(1 − p)m(1 − q)n+l + D4 (1 − p)m+k (1 − q)n+l
}

.

(5.2)
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We do not write down all 16 monomials in the formula above, but they are all of the

same form D4pw(1 − p)xqy(1 − q)z with w, x, y, z being either zero or expressed in

terms of m, n, k, and l. Therefore E
(
r4
)

can be expressed as an infinite sum of 16

expectations of the form E
{
D4pw(1 − p)xqy(1 − q)z

}
for all combinations of m, n, k,

and l. We will show that the 16 expectations can be divided into four groups, each

of which contains four expectations that are identical to each other.

By the symmetry of the TLD model, we can exchange p and 1 − p, and likewise q

and 1 − q. Thus,

E
(
D4pm+kqn+l

)
= E

{
D4(1 − p)m+kqn+l

}
= E

{
D4pm+k(1 − q)n+l

}
= E

{
D4(1 − p)m+k(1 − q)n+l

}
.

(5.3)

Similar relationships hold for the other 12 expectations. It follows that

E
(
r4
)

= 4
∞∑

m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

[
E
(
D4pm+kqn+l

)
+ E

{
D4pm(1 − p)kqn+l

}
+ E

{
D4pm+kqn(1 − q)l

}
+ E

{
D4pm(1 − p)kqn(1 − q)l

} ]
.

(5.4)

Since m, n, k and l are arbitrary non-negative integers, we can exchange the positions

of m and n, and the positions of l and k, which we do in the first line below. Then

applying the symmetry of p and q in the second line yields

∞∑
m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

E
{
D4pm(1 − p)kqn+l

}
=

∞∑
m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

E
{
D4pn(1 − p)lqm+k

}
=

∞∑
m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

E
{
D4pm+kqn(1 − q)l

}
.

(5.5)

Thus, equation (5.4) can be simplified to

E
(
r4
)

= 4
∞∑

m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

[
E
(
D4pm+kqn+l

)
+ 2E

{
D4pm(1 − p)kqn+l

}
+ E

{
D4pm(1 − p)kqn(1 − q)l

} ]
.

(5.6)
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By the following binomial expansions,

(1 − p)k =
k∑

i=0
(−1)i

(
k

i

)
pi and (1 − q)l =

l∑
j=0

(−1)j

(
l

j

)
qj, (5.7)

we have

E
{
D4pm(1 − p)kqn+l

}
=

k∑
i=0

(−1)i

(
k

i

)
E
(
D4pm+iqn+l

)
(5.8)

and

E
{
D4pm(1 − p)kqn(1 − q)l

}
=

k∑
i=0

l∑
j=0

(−1)i+j

(
k

i

)(
l

j

)
E
(
D4pm+iqn+j

)
. (5.9)

Then the final formula for computing E
(
r4
)

becomes

E
(
r4
)

= 4
∞∑

m=0

∞∑
n=0

∞∑
k=0

∞∑
l=0

{
E
(
D4pm+kqn+l

)
+ 2

k∑
i=0

(−1)i

(
k

i

)
E
(
D4pm+iqn+l

)

+
k∑

i=0

l∑
j=0

(−1)i+j

(
k

i

)(
l

j

)
E
(
D4pm+iqn+j

)}
.

(5.10)

It can be seen that all expectations involved in equation (5.10) are of the same form

E(D4pxqy) with x, y ∈ {0, 1, 2, . . .}. Note that in Song and Song (2007)’s original

method, inserting f (p, q, D) = Dγpα+2−γqβ+2−γ with γ = 0, 1, ..., β + 2 into the

master equation (4.14) of the TLD model leads to a system of β + 3 linear equations

with β + 3 unknown expectations to be solved, where α, β, and γ are non-negative

integers. When α, β ≥ 2, we saw in (4.24) that the β + 3 unknown expectations of

the system include E(D4pα−2qβ−2), which is needed for calculating E
(
r4
)

in (5.10).

As for the calculation of E
(
r2
)
, we specify a truncation level ℓmax = m + n + k + l

to obtain an approximation to E
(
r4
)
, namely

E
(
r4
)

ℓmax
= 4

ℓmax∑
m,n,k,l≥0

{
E
(
D4pm+kqn+l

)
+ 2

k∑
i=0

(−1)i

(
k

i

)
E
(
D4pm+iqn+l

)

+
k∑

i=0

l∑
j=0

(−1)i+j

(
k

i

)(
l

j

)
E
(
D4pm+iqn+j

)}
.

(5.11)
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We used ℓmax = 700 following Song and Song (2007), but found that our calculation

was rather slow. This is not surprising, because there is a huge number of possible

combinations of (m, n, k, l) that sum to 700 or less. More importantly, for each

combination of (m, n, k, l), considerable computation is required for summing up the

last two terms on the right-hand side of equation (5.11).

To improve the efficiency of the algorithm, we split the expectations constituting

E
(
r4
)

ℓmax
into two parts, such that

E
(
r4
)

ℓmax
= E1 + E2, (5.12)

where

E1 = 4
ℓmax∑

m,n,k,l≥0
E
(
D4pm+kqn+l

)
(5.13)

and

E2 = 4
ℓmax∑

m,n,k,l≥0

{
2

k∑
i=0

(−1)i

(
k

i

)
E
(
D4pm+iqn+l

)

+
k∑

i=0

l∑
j=0

(−1)i+j

(
k

i

)(
l

j

)
E
(
D4pm+iqn+j

)}
.

(5.14)

Calculating E1 with ℓmax = 700 is fast. The main difficulty of the algorithm lies in

computing E2 using a large truncation level ℓmax. The accuracy of the approximation

increases as the truncation level increases, but a higher truncation level demands a

longer computation time.

To address this problem, we apply different truncation levels for computing E1 and E2.

We find empirically that the sequence of E2 with different truncation levels converges

very quickly as the truncation level increases, although the rate of convergence

depends on the value of θ. It can be seen from Fig. 5.1 that when θ is large (say

θ = 10.0), the value of E2 remains stable after the truncation level reaches 20. When

θ is small (say θ = 0.1), a truncation level of 100 is sufficiently large for an accurate

approximation. Therefore, we use 100 as the truncation level to calculate E2.
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Adopting the strategy described above makes the computation faster and somewhat

practicable. The computing time for E
(
r4
)

for one pair of ρ and θ is approximately

30 minutes on a customary 1.3 GHz laptop. Fig. 5.2 shows the performance of the

method for computing E
(
r4
)

in a variety of scenarios.

106



5.2 Moment Problem: Method I

0 20 40 60 80 100

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

θ = 10.0

Truncation Level

E
2

ρ = 0.0
ρ = 1.0
ρ = 2.0
ρ = 5.0
ρ = 10.0
ρ = 20.0

0 20 40 60 80 100

0.
00

00
0.

00
10

0.
00

20
0.

00
30

θ = 0.1

Truncation Level

E
2

ρ = 0.0
ρ = 1.0
ρ = 2.0
ρ = 5.0
ρ = 10.0
ρ = 20.0

Fig. 5.1 Plots of level-truncated approximations to E2 given different truncation
levels ℓmax ∈ [0, 100] for various ρ and θ.
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Fig. 5.2 Plots of level-truncated approximations to E
(
r4
)

for various ρ and θ. The
truncation level for E2 is set to be 100, contrasting with 700 for E1.
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5.3 Moment Problem: Method II

The method discussed above provides a satisfactory solution to the computation of

E
(
r4
)
. We find that it is also effective for computing low-order moments of r2, such

as E
(
r6
)

,E
(
r8
)

, and E
(
r10
)
; however, it is very slow and becomes problematic

when the order of the moment to be computed increases. In this section, we describe

a more general and efficient approach based on a reparametrization of the model.

This idea was proposed by my co-supervisor J. Goodman.

First, we reparametrize the TLD model. Let

u = 1 − 2p and v = 1 − 2q. (5.15)

By the fact that 0 < p, q < 1, we have −1 < u, v < 1 and thus 0 ≤ u2, v2 < 1. Since

p = (1 − u)/2 and q = (1 − v)/2, we have

p (1 − p) = 1 − u2

4 (5.16)

and

q (1 − q) = 1 − v2

4 . (5.17)

Note that ∂/∂p = −2∂/∂u and ∂/∂q = −2∂/∂v. Then the diffusion generator (4.12)

of the TLD model in terms of the new parameters (u, v, D) can be written as

L = 1
2
(
1 − u2

) ∂2

∂u2 + 1
2
(
1 − v2

) ∂2

∂v2 + 1
2

{
1
16
(
1 − u2

) (
1 − v2

)
+ Duv − D2

}
∂2

∂D2

+ 4D
∂2

∂u∂v
− 2Du

∂2

∂D∂u
− 2Dv

∂2

∂D∂v
− 1

2θu
∂

∂u
− 1

2θv
∂

∂v

− D

(
1 + 1

2ρ + θ

)
∂

∂D
.

(5.18)
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The definition of r2 in terms of the new parameters is

r2 = D2

p (1 − p) q (1 − q) = 16D2

(1 − u2) (1 − v2) . (5.19)

For 0 < u2, v2 < 1, we have

1
1 − u2 =

∞∑
k=0

u2k and 1
1 − v2 =

∞∑
l=0

v2l. (5.20)

Substituting equation (5.20) into (5.19) yields

r2 = 16
∞∑

k=0

∞∑
l=0

D2u2kv2l, (5.21)

so that

E
(
r2
)

= 16
∞∑

k=0

∞∑
l=0

E
(
D2u2kv2l

)
. (5.22)

Similar expressions can be derived for computation of other moments of r2. For the

moment of r2 of order M = 1, 2, . . ., we obtain from (5.21),

E
(
r2M

)
= E

16M

 ∞∑
k=0

∞∑
l=0

D2u2kv2l

M


= 16M
∞∑

k1=0
· · ·

∞∑
kM =0

∞∑
l1=0

· · ·
∞∑

lM =0
E
{
D2Mu2(k1+···+kM )v2(l1+···+lM )

}
.

(5.23)

Note that in the equation above the value of the expectation

E
{
D2Mu2(k1+···+kM )v2(l1+···+lM )

}
(5.24)

only involves the two sums K = k1 + · · ·+kM and L = l1 + · · ·+ lM , regardless of their

compositions. Given a positive integer K, the number of all possible non-negative

and integer-valued vectors (k1, . . . , kM) satisfying K = k1 + · · · + kM is

NK,M =
(

K + M − 1
M − 1

)
. (5.25)
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To see this, we consider an example. Suppose K + M − 1 bubbles are placed in

line. The number of ways of choosing M − 1 of the bubbles is NK,M . The M − 1

selected bubbles partition the remaining K bubbles into M groups, whose counts

are k1, . . . , kM respectively. Thus the number of different ways to write a positive

integer K as the sum of M non-negative integers is therefore NK,M as shown in

equation (5.25). Similarly, the number of ways to write L = l1 + · · · + lM is

NL,M =
(

L + M − 1
M − 1

)
. (5.26)

Thus equation (5.23) can be simplified to

E
(
r2M

)
= 16M

∞∑
K=0

∞∑
L=0

(
K + M − 1

M − 1

)(
L + M − 1

M − 1

)
E
(
D2Mu2Kv2L

)
. (5.27)

The problem of computing the moment of r2 of order M therefore reduces to

computing expectations of the form E
(
D2Muivj

)
for all combinations of non-negative

even numbers i and j. To compute these expectations, we follow the procedure

of Song and Song (2007)’s original algorithm described in Section 4.5, but use

parameters u and v to replace parameters p and q respectively, and use the new

diffusion generator (5.18) to replace the original generator (4.12). For example,

we can see from (4.24) that if m and n are both even numbers that are large

enough, the n + 3 expectations contain expectation E
(
D4um−2vn−2

)
for computing

E
(
r4
)
, expectation E

(
D6um−4vn−4

)
for computing E

(
r6
)
, and other expectations

for computing higher-order moments of r2.

Setting ℓmax = 2(K + L) = 700 as the truncation level, we use

E
(
r2M

)
ℓmax

= 16M
ℓmax∑

K,L≥0

(
K + M − 1

M − 1

)(
L + M − 1

M − 1

)
E
(
D2Mu2Kv2L

)
(5.28)

as an approximation to E
(
r2M

)
. With this reparametrized formulation, our method

costs roughly 100 seconds to compute M (say M = 20) moments of r2 simultaneously,
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and the computation time remains almost the same if more moments are computed.

Song and Song (2007)’s method requires a similar amount of computation time;

however, their method only gives E
(
r2
)
, whereas ours gives E

(
r2M

)
for all M =

1, . . . , 20 simultaneously.

5.4 Variance of r2 in the TLD Model

The method based on the reparametrization (D, u, v) is general and efficient, so it is

the primary method we use for computing moments of r2 in this thesis. To test our

computation, we compute a series of moments of r2 for various values of ρ and θ.

Results for E
(
r2
)

from our method are identical (to eight decimal places) to those

obtained by Song and Song (2007); see Table 1 in their paper or Table 4.2 in Liu

(2012) for details. This provides evidence for the validity of our proposed method,

since the two methods adopt different parameters and diffusion generators.

In this section, we focus on V
(
r2
)
, the variance of r2, which might be of interest in

some contexts. This can be computed from our method using the first two moments

of r2, via

V
(
r2
)

= E
(
r4
)

−
{
E
(
r2
)}2

. (5.29)

As far as we know, V
(
r2
)

in the TLD model has previously only been obtained by

Liu (2012); however, Liu (2012) indicated that his computation was not satisfactory

for small θ due to limitations of computing power. Liu (2012)’s method involved

finding the Maxent density π̃ (p1, p2, p3) and integrating with respect to this density

to find V
(
r2
)
; whereas our method for V

(
r2
)

is analytic and does not involve any

density approximation or numerical optimisation or integration; only solutions of

systems of linear equations.

Table 5.1 and Fig. 5.3 provide a comparison of V
(
r2
)

between our new analytic

method and Liu (2012)’s multivariate Maxent approach. When θ is large, say θ > 1,

the difference between the two sets of results is negligible; however, when θ is small,
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5.4 Variance of r2 in the TLD Model

the difference tends to be larger. Note that for the setting of ρ = 20 and θ = 0.6, the

two methods give noticeably different results, producing the outlier shown in Fig. 5.3.

This appears to be a typo or other error in Liu (2012). Based on Table 5.1, it can be

seen that the variance of r2 is a strictly decreasing function of ρ if θ is fixed. The

results of Liu (2012) also mirror this pattern, except for the sole setting of ρ = 20

and θ = 0.6, so we presume this to be an error. When ρ is fixed, V
(
r2
)

typically

increases to a peak, and then declines again as θ increases.
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Table 5.1 Comparison of V
(
r2
)

between the proposed analytic method and Liu (2012)’s Maxent method.

ρ θ

0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0
(a) Results of the analytic method II using truncation level ℓmax = 700
0.0 0.006202 0.016378 0.03133 0.03739 0.03826 0.03673 0.02426 0.01166 0.00685 0.00452 0.003200
1.0 0.003478 0.009620 0.01972 0.02473 0.02629 0.02603 0.01893 0.00992 0.00608 0.00410 0.002952
2.0 0.002329 0.006563 0.01388 0.01786 0.01940 0.01957 0.01521 0.00855 0.00542 0.00374 0.002732
5.0 0.001101 0.003137 0.00680 0.00896 0.00998 0.01032 0.00895 0.00581 0.00400 0.00291 0.002203

10.0 0.000555 0.001567 0.00335 0.00440 0.00491 0.00511 0.00474 0.00349 0.00263 0.00203 0.001610
20.0 0.000264 0.000727 0.00150 0.00191 0.00210 0.00216 0.00204 0.00168 0.00139 0.00115 0.000969
(b) Results of Liu (2012) using a three-dimensional Maxent approach
0.0 0.005934 0.015332 0.02908 0.03516 0.03711 0.03569 0.02436 0.01175 0.00687 0.00454 0.003212
1.0 0.003226 0.008784 0.01805 0.02248 0.02500 0.02526 0.01902 0.00999 0.00612 0.00413 0.002963
2.0 0.002119 0.005896 0.01350 0.01653 0.01837 0.01897 0.01531 0.00862 0.00544 0.00377 0.002743
5.0 0.000972 0.002723 0.00609 0.00812 0.00943 0.00993 0.00905 0.00587 0.00404 0.00293 0.002213

10.0 0.000487 0.001292 0.00295 0.00388 0.00459 0.00476 0.00482 0.00356 0.00266 0.00206 0.001619
20.0 0.000241 0.000626 0.00136 0.00272 0.00198 0.00209 0.00211 0.00174 0.00142 0.00117 0.000976
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Fig. 5.3 Variances of r2 computed by the proposed analytic method under various
settings shown against the results obtained by Liu (2012). Points on the red lines
indicate that results from the two approaches are identical. The outlier in the panel
for ρ = 20 probably results from a typo in Liu (2012).
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5.5 Maxent Density of r2

We have shown that it is feasible in both efficiency and accuracy to compute a finite

sequence of moments of r2 without knowing its underlying probability distribution.

The moments obtained can be used to construct the density function of r2 via the

univariate Maxent approach. In general, the larger the number of moments used, the

closer is the Maxent density to the true density function of r2. However, incorporating

more moments incurs a larger computation time, since the complexity of solving the

unconstrained optimisation problem (4.39) increases. One important purpose of this

project is to apply the Maxent density of r2 for parameter estimation, so we need

consider both efficiency and accuracy of the proposed method.

5.5.1 Sequential Updating Method

To decide the most appropriate number of moments that should be used for con-

structing the Maxent density of r2, we propose a criterion based on the sequential

updating method of Wu (2003). Instead of taking into account all the moments

available simultaneously, this criterion proposes that we incorporate the moments one

by one from lower to higher order, and update the Maxent density of r2 sequentially

until some threshold of accuracy is reached.

Define the moments of r2 of order up to n that are computable using our method to

be {
mi | mi = E

(
r2i
)

, i = 1, 2, . . . , n
}

. (5.30)

If the first k moments, mi for i = 1, 2, . . . , k, are used, the solution of (4.39) is a

(k + 1)-dimensional vector λc
k, from which λk = (λ0, λ1, . . . , λk) can be obtained by

the linear transformation (4.40). The Maxent density of r2 in this case is given by

(4.29) as

π̃k

(
r2
)

= exp
(
λ0 + λ1r

2 + · · · + λkr2k
)

. (5.31)
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5.5 Maxent Density of r2

Using this Maxent density of order k, the moment of r2 of order k+1 can be predicted

by

m̃k+1 =
∫ 1

0
xk+1π̃k (x) dx. (5.32)

The difference between the predicted moment m̃k+1, based on the kth-order approxi-

mation π̃k, and the true moment mk+1, from the analytic computation, serves as an

indicator to decide whether more moments are needed. If m̃k+1 is very close to mk+1,

this suggests that almost all information contained in mk+1 is already provided by

the first k moments. Thus there is no need to incorporate the moment mk+1. We

use the percentage bias bk defined below to measure the difference between mk+1

and m̃k+1:

bk = m̃k+1 − mk+1

mk+1
× 100%. (5.33)

Note that bk can be regarded as an indicator of the performance of using moments

of order up to k to construct the density of r2. In general, bk tends towards zero as

k increases. In our computation, we first set a threshold for bk at a small percentage,

say 1%. Starting with k = 1 moment, we increase k by one at each step until bk is

found to be under the threshold. We then use the Maxent density π̃k as our final

estimate.

The optimisation problem (4.39) becomes very sensitive to the starting value of

λc when the number of moments incorporated is large. To deal with this problem,

we adopt the strategy proposed by Wu (2003). When k = 1, we use λc∗
1 = (0, 0)

as the starting value for finding λc
1. When k ≥ 2, we use λc∗

k =
(
λc

k−1, 0
)

as the

starting value for finding λc
k. In this case, the solution of the optimisation problem

can generally be obtained within a small number of iterations.

5.5.2 Results

The performance of the sequential updating method is shown in Fig. 5.4. In the two

scenarios, the indicator bk approaches zero as the number of moments k increases.
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Fig. 5.4 Relationship between the percentage bias bk and the number of moments
used, k, for (ρ, θ) = (10, 1) (left) and (ρ, θ) = (0, 0.1) (right).

The rate of convergence depends on the values of ρ and θ. For example, b4 is almost

zero when (ρ, θ) = (0, 0.1), while for (ρ, θ) = (10, 1), it is clearly larger than zero.

By the sequential updating method, we can construct the Maxent density of r2 for

any setting of (ρ, θ). For the problems we consider in this chapter, the number of

Gaussian-Legendre quadrature nodes used for numerical integration is set to be 1,000.

Fig. 5.5 presents Maxent densities of r2 for four different scenarios. Here, we use

1% as the threshold to decide when to terminate the sequential updating algorithm.

A smaller threshold means that more moments will be incorporated. Computation

time for constructing the Maxent density of r2 for one pair of (ρ, θ) is roughly two

minutes on a customary laptop.
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Fig. 5.5 Maxent density functions of r2 for four different settings of ρ and θ,
constructed using moments of order up to n. The horizontal axis is confined to the
interval [0, 0.1] for clarity, although the support of r2 is [0, 1].
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5.6 Maximum Likelihood Estimation

Since the stationary distribution of r2 can now be constructed for any combination of

ρ and θ, the likelihood function for any ρ and θ can be approximated by the Maxent

density π̃k

(
r2; ρ, θ

)
, where k, the number of moments used, depends on the values

of ρ and θ. In this section, we demonstrate how to use the Maxent density of r2 to

estimate ρ and θ from simulated data using maximum likelihood.

5.6.1 Rejection Sampling

The Maxent density of r2 we construct is based on the diffusion approximation, so the

population size N needs to be sufficiently large for this approximation to be reasonable.

For this reason, it is infeasible to simulate the discrete TLD model directly due to

the enormous state space S ⊂ N3 as shown in equation (4.7). Adequate sampling of

such a large state space at equilibrium is computationally impracticable. As far as

we know, it is also difficult to sample from the diffusion process corresponding to

the TLD model. Since the Maxent density of r2 for any pair of (ρ, θ) is obtained, we

instead generate samples of r2 directly from this distribution by rejection sampling.

Rejection sampling is a general and flexible method for generating independent

observations from an arbitrary probability distribution in Rn for n = 1, 2, . . .. We

briefly describe the method following Gilks and Wild (1992).

Algorithm 3 Rejection sampling method
1: for i = 1 to m do
2: Sample y from the distribution of Y
3: Sample u from the Uniform(0,1) distribution
4: Calculate the ratio r = f (y) /

{
cg (y)

}
5: Accept y as a sample if u < r; otherwise reject y
6: end for

Suppose we aim to draw a sample of observations from a random variable X with

density f (x). Sampling from X is difficult, but it is straightforward to sample from

another variable Y with density g(y). It is required that there exists a constant
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c such that f (x) ≤ cg (x) holds for all values of x taken from the support of X.

The basic rejection sampling method is shown in Algorithm 3. In the algorithm, m

denotes the number of iterations, which should be a sufficiently large integer set by

the user to ensure that the sample generated is large enough. For our problem, we

use the Uniform(0, 1) distribution for Y and use the maximum value of π̃k for c.

The performance of this approach will be demonstrated in simulation studies shown

below.

5.6.2 General Procedure

Here, we describe a general procedure for simulating data and estimating parameters

using the Maxent density of r2. Suppose we conduct simulations using the setting

(ρ0, θ0). The procedure consists of four parts.

1. Specifying the Maxent density of r2

We first compute the first n = 20 moments of r2 for the setting (ρ0, θ0). Then we

implement the sequential updating method of Section 5.5.1 to construct the Maxent

density of r2. Suppose k0 moments are selected, and the corresponding Maxent

density is π̃k0

(
r2; ρ0, θ0

)
.

2. Generating observations of r2

We generate a sample of independent observations of r2 from the density π̃k0

(
r2; ρ0, θ0

)
using the rejection sampling method. Let

{
r2

1, r2
2, . . . , r2

K

}
denote the sample, where

K is the sample size.

3. Specifying the log-likelihood function

The true log-likelihood function is

l (ρ, θ) =
K∑

i=1
log π

(
r2

i ; ρ, θ
)

. (5.34)
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During the process of maximum likelihood estimation, this log-likelihood function

needs to be evaluated multiple times at a range of different pairs
(
ρj, θj

)
with

j = 1, 2, . . .. For each
(
ρj, θj

)
, we follow the same procedure as in step 1 to find

the Maxent density π̃kj

(
r2; ρj, θj

)
, which is an approximation to the exact density

π
(
r2; ρj, θj

)
. Then the Maxent log-likelihood function evaluated at

(
ρj, θj

)
is

l∗
(
ρj, θj

)
=

K∑
i=1

log π̃kj

(
r2

i ; ρj, θj

)
. (5.35)

4. Calculating maximum likelihood estimates

We use the R optimiser nlm to find the estimates of (ρ, θ). Variance estimates and 95%

confidence intervals are obtained using the inverse Hessian matrix as in Section 3.3.1.

5.6.3 Simulation Study

To show the performance of the maximum likelihood approach described above, we

conducted simulation studies in a number of settings.

As an example, we used (ρ0, θ0) = (10, 1). To make the algorithm faster, we used 5%

as the threshold for terminating the sequential updating algorithm (see Section 5.5.1).

We found that the percentage bias b5 for the prediction of the sixth moment was

under 5%, so we used moments of order up to five to construct the Maxent density

of r2, i.e. π̃5
(
r2; ρ0, θ0

)
. Then we generated a sample of 10,000 observations of r2

from the density function π̃5
(
r2; ρ0, θ0

)
using the rejection sampling method. The

raw data are shown in Fig. 5.6, from which we can also see the good performance of

the rejection sampling method.

From the sample data, the estimates of the parameters were
(
ρ̂, θ̂

)
= (9.86, 1.03)

with 95% confidence intervals (9.32, 10.40) for ρ̂ and (0.99, 1.06) for θ̂. The results

have reasonably good precision for both parameters. On a customary 1.3 GHz laptop,

the computation took approximately 25 minutes to generate the data and obtain the

maximum likelihood estimates, so the approach is also feasible in terms of efficiency.
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Fig. 5.6 Histogram of sample data of r2 generated by the rejection sampling method
from the Maxent density π̃5

(
r2; ρ0, θ0

)
when ρ0 = 10 and θ0 = 1. The green solid

curve on the plot represents the true Maxent density π̃5
(
r2; ρ0, θ0

)
. The dashed curve

represents the Maxent density constructed using the estimates
(
ρ̂, θ̂

)
= (9.86, 1.03).

We repeated the procedure above 100 times. Inference results are shown in Fig. 5.7.

It can be seen that our method yields approximately unbiased estimation for both

parameters with satisfactory confidence interval coverages for 95% confidence inter-

vals.

We also conducted simulation studies using another setting of (ρ0, θ0) = (5, 1).

Results shown in Fig. 5.8 indicate that the method has a similar performance in this

case. However, both parameters are estimated with lower precision, indicating that

the influence of ρ and θ on the distribution of r2 becomes more subtle as ρ decreases,

corresponding to more distant loci or smaller population sizes.
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5.7 Application to 1000 Genomes Data

Simulation studies have shown that the proposed maximum likelihood approach

using the Maxent density of r2 performs well for estimating mutation rate and

recombination rate from sample data of r2. In this section, we apply the method to

analysis of real data taken from the 1000 Genomes Project (1000 Genomes Project

Consortium, 2015, 2012, 2010).

The 1000 Genomes Project is an international research consortium that aims to

generate a detailed description of genetic variation for humans, by applying DNA

sequencing to a sample of individuals from a variety of populations in the world. The

project consisted of three phases and has now been completed. See 1000 Genomes

Project Consortium (2012, 2010) for outputs of the first two phases of the project.

Here, we focus on data from the last phase, in which DNA sequences were obtained

from 2,504 individuals from five super-populations, namely Africa (AFR), East Asia

(EAS), Europe (EUR), South Asia (SAS), and the Americas (AMR) (1000 Genomes

Project Consortium, 2015). The original data can be found and downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

The data are presented in the form of variant call format (VCF) files. It is problematic

to use R to process the data due to the large size of the data files. Instead, we use

the software package VCFtools developed by Danecek et al. (2011). For instructions

on implementing the software, see https://vcftools.github.io/index.html.

5.7.1 Data Generation

We use data from the 1000 Genomes Project to generate samples of r2. These

data supply raw gamete-types, not just genotypes, so the sample value of r2 can

be calculated directly from the sample equivalent of equations (4.1) and (4.2). To

make our analysis reliable and useful, we need to follow a few rules when generating

samples.
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Firstly, we use data from a single chromosome and a single population. This is

easy to achieve because the data are saved into different VCF files according to

which chromosome they are taken from. Extracting data of individuals from the

same population is straightforward using VCFtools; see Appendix C for the code to

complete this operation.

Secondly, we focus on pairs of biallelic loci, each with minor allele frequencies of at

least 5%. This is common practice in genetic studies and can also be achieved easily

via VCFtools.

Thirdly, our method gives one estimate of (ρ, θ) from one sample of r2, so we require

that the underlying parameters ρ and θ for all observations in the sample should

be the same, in other words that the sample is generated from a distribution of r2

with the same value of (ρ, θ). Biologically, mutation rate might or might not remain

the same for alleles on the same chromosome, while recombination rate between two

genetic loci certainly depends on the distance between them. Our analysis assumes

that mutation rate is constant and that distance is the only factor that influences

recombination. Therefore we choose numerous pairs of loci each with spacing d

within the pair, where d is measured in base pairs (bps). Each pair of loci at spacing

d generates one sample observation of r2, where this is the square of the empirical

correlation between the allele in locus 1 and the allele in locus 2 of the pair, and the

correlation is taken across all people in the sample from the target population.

Finally, the loci we choose should be close to each other on the chromosome, because

recombination rate varies along the chromosome even for a fixed d, and there might

exist recombination hotspots. A recombination hotspot is a region on a chromosome

within which the recombination rate is much higher than that of its surrounding

regions (Auton et al., 2014; Jeffreys et al., 2001). To satisfy this condition, we

first select a value of d and then search for pairs of loci each with spacing d that

are located within a single “zone”, where we define a zone to be a region of the
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Fig. 5.9 Plots of maximum likelihood estimates and 95% confidence intervals for
parameters ρ and θ in five different zones on chromosome 19 for the AFR population.
In the plots, one Mb represents one million base pairs. The left and right panels
show estimates of ρ and θ respectively.

chromosome of length l ≥ d. We select zones arbitrarily, with a view to comparing

estimated recombination rate along the length of the chromosome.

In practice, the SNP data available are from loci with irregular spacing, so to generate

sufficiently large samples for analysis we need to use an interval for the within-pair

distance between loci instead of a single value, such as (d − ∆d, d + ∆d). Here, ∆d is

a small distance compared with d, so that all pairs of loci with spacing in this interval

can be regarded as having approximately the same within-pair distance. Thus we

extract data for analysis by searching for all pairs of loci in the raw data using

parameters (d, ∆d, l), which are all measured in bps: see Appendix C for details.

5.7.2 Results

For an example, we use data from chromosome 19, and focus on population AFR

to show the performance of the proposed method. We search for pairs of loci using

the settings (d, ∆d, l) = (5000, 100, 5000) and require each zone to contain at least

40 pairs of loci for useful inference. We hoped to find more locus pairs for each zone,

but unfortunately it is hard to find pairs that meet all of our requirements. With 40

pairs of loci, we obtain sample data
(
r2

1, . . . , r2
40

)
for each zone.
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Fig. 5.9 shows our estimation results from the five zones that fulfilled our requirements.

The parameter estimates are very imprecise, and mostly have wide confidence intervals.

This can be explained by the small sample sizes of only 40 observations per zone.

To make more precise inference, we relax the requirement that all pairs of loci need

be located within a focused zone, and select pairs of loci that have approximately

the same within-pair distance from throughout a whole chromosome. Figures 5.10

and 5.11 present eight scenarios with d = 50, 000 and d = 100, 000 in which Maxent

maximum likelihood densities of r2 have a moderate, although not wholly satisfactory,

fit to the sample data. 95% confidence intervals for these cases are much narrower

than those obtained in the example above. The sample data consistently exhibit a

slightly steeper decline than the fitted curves, calling into question whether the TLD

model under the diffusion approximation with a single (ρ, θ) per sample is wholly

adequate for these data.

128



5.7 Application to 1000 Genomes Data

Population: EUR; Chromosome: 21

r2

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40

ρ̂ = 0.34 (0.05, 0.63) 

θ̂ = 1.10 (1.05, 1.15) 

Population: SAS; Chromosome: 21

r2

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40 ρ̂ = 1.16 (0.82, 1.50) 

θ̂ = 1.04 (1.00, 1.09) 

Population: AFR; Chromosome: 22

r2

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40
50

60 ρ̂ = 2.73 (2.38, 3.09) 

θ̂ = 0.57 (0.55, 0.58) 

Population: AMR; Chromosome: 22

r2

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40

ρ̂ = 0.96 (0.63, 1.29) 

θ̂ = 0.93 (0.89, 0.96) 

Fig. 5.10 Histograms of sample observations of r2 shown against fitted Maxent
densities. In each of the four scenarios, we use pairs of loci with spacing d = 50, 000
bps from the whole chromosome, and apply a leeway of ∆d = 5 bps. Sample sizes
are 3329 (top left), 3507 (top right), 6255 (bottom left), and 3567 (bottom right)
respectively for the four scenarios.
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Population: AFR; Chromosome: 21
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Fig. 5.11 Histograms of sample observations of r2 shown against fitted Maxent
densities. In each of the four scenarios, we use pairs of loci with spacing d = 100, 000
bps from the whole chromosome, and apply a leeway of ∆d = 5 bps. Sample sizes
are 3441 (top left), 1838 (top right), 3407 (bottom left), and 1883 (bottom right)
respectively for the four scenarios.

130



5.8 A Different Inference Problem

5.8 A Different Inference Problem

The application of the proposed maximum likelihood approach in estimating the

scaled mutation rate θ and recombination rate ρ from sample data of r2 in the

previous section is somewhat compromised by the difficulty of finding sufficiently

many locus pairs with common spacing d which are located in a focused region of the

chromosome and satisfy our requirements for minor allele frequency. In this section,

we describe how we might use the method to draw inference from data in a more

achievable setting.

We reformulate the recombination rate C using Haldane’s mapping function (Haldane,

1919) such that

C = 1
2
{
1 − exp (−2m)

}
, (5.36)

where m is measured in centimorgans. In genetics, one centimorgan (cM) is a unit

for measuring genetic distance, defined such that recombination occurs at a rate of

0.01 per cM on average in a single generation. It is different from the base pair unit

we used in the last section, which measures physical distance. The number of base

pairs that one cM corresponds to is not constant, but depends on the positions of

the target loci on their chromosomes and on other factors such as sex. It has been

found that one cM corresponds to roughly one million bps on average for humans.

We define m = αd for this inference problem. Our interest lies in how the value of α

varies along a chromosome. By equation (5.36), we have

ρ = 4NC = 2N
{
1 − exp (−2αd)

}
, (5.37)

where N denotes the genetic effective population size (Ne), which is assumed to

be known in this context. The inference problem now corresponds to estimating

parameters α and θ using the proposed method.
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For a single pair of loci that are distance d0 apart, the true density of r2 in terms

of α and θ can be written as π
(
r2; d0, α, θ

)
, which corresponds to π

(
r2; ρ0, θ

)
,

where ρ0 = 2N
{
1 − exp (−2αd0)

}
. The procedure for finding maximum likelihood

estimates of α and θ is almost the same as that for estimating ρ and θ described in

the last section. Note that the requisite data are now of the form
(
d, r2

)
, not just r2.

Suppose a sample of data is
{(

d1, r2
1

)
,
(
d2, r2

2

)
, · · · ,

(
dK , r2

K

)}
. The log-likelihood

function is

l (α, θ) =
K∑

i=1
log π

(
r2

i ; di, α, θ
)

, (5.38)

where for each di we may use a different number of moments to reconstruct the

Maxent density of r2, namely π̃ki

(
r2; di, α, θ

)
.

Computing time for this inference problem is highly dependent on the number

of different distances among (d1, . . . , dK), because for a single evaluation of the

log-likelihood function l (α, θ), we need to construct a different Maxent density

π̃ki

(
r2; di, α, θ

)
for each distinct value of di. Note that the size of the sample within

each value of di has negligible impact on computing time.

5.9 Conclusions and Closing Remarks

In this chapter, we first proposed a fast and general method to compute a finite

sequence of moments of r2 at stationarity by generalising the method of Song and

Song (2007). Then we constructed the density function of r2 from the moments

obtained using the univariate Maxent approach. As far as we know, we are the first

to achieve this. We demonstrated that the Maxent density of r2 can be used to draw

inference on mutation and recombination parameters from simulated or real data.

The Maxent approach performs well in both efficiency and accuracy for constructing

the density of r2 for specific valus of (ρ, θ). Applying the Maxent density to real data

for estimating ρ and θ by maximum likelihood has been proved feasible, although the

performance relies heavily on the size of samples. Simulation studies indicated that
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if sufficiently large samples are provided, the Maxent maximum likelihood approach

can yield precise estimation results.

In practice, it is difficult to acquire sufficent data for inference on (ρ, θ). We proposed

a different form of inference in Section 5.8 that imposes fewer restrictions on the

data required. However, estimating (α, θ) becomes very slow when the sample data

has a large number of different values of d, because each evaluation of the likelihood

function involves constructing a density of r2 for each distinct value of d. This

problem could be addressed by using more computing power (say computer clusters)

and parallel computing. Another issue for this model is that the genetic effective

population size N needs to be known or estimated independently.

To summarise, we have provided a novel method for estimating mutation and recombi-

nation parameters in population genetics. We made assumptions that recombination

is only influenced by the distance between a pair of loci, while mutation remains the

same for all loci in the sample. These assumptions might be questionable in practice,

but we have shown that the method itself has a promising performance if sufficiently

many samples can be obtained that meet these requirements. Note that we are the

first to offer this link from the distribution of r2 to inference on real data. Our aim

is to show how this can be done, rather than to provide a definitive data analysis.

Song and Song (2007) mentioned that although mutation is assumed to be sym-

metric and recurrent for the TLD model, their method of calculating E
(
r2
)

can be

generalised to models with different mutation structures. Song and Song (2007) also

commented that their method might be generalised to genetic models with natural

selection. Our method is based on that of Song and Song (2007), so it is likely that

it too has wider applicability than the TLD model alone.
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6
A Numerical Approach to the Kolmogorov

Equation

6.1 Kolmogorov Forward Equation of the TLD Model

As mentioned in Chapter 4, each diffusion process has associated with it a Kolmogorov

forward equation, which is typically a partial differential equation (PDE). The solution

of the equation is the stationary distribution of the diffusion process. However, solving

PDEs analytically is intractable in most cases. Alternative numerical methods for

solving PDEs are widespread; see Boitard and Loisel (2007) for an example in
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population genetics. In this chapter, we consider a numerical approach to solving

the Kolmogorov equation of the diffusion process corresponding to the TLD model.

Instead of the parameters (p, q, D) used in the last two chapters, in this chapter we

use gametic frequencies p = (p1, p2, p3) following Liu (2012). For convenience, we

use π to replace π (p), the stationary distribution of the TLD diffusion model. In

addition, any function g (p) with argument p will be replaced by g in this chapter.

The Kolmogorov forward equation of the TLD model was derived by Ewens (2004)

and Liu (2012) in detail. We follow the work of Liu (2012), in which the Kolmogorov

equation is written as

−
3∑

i=1

∂

∂pi

(Mi π) + 1
2

3∑
i=1

∂2

∂p2
i

(Vi π) +
2∑

i=1

3∑
j>i

∂2

∂pi∂pj

(
Wij π

)
= 0, (6.1)

where
M1 = −2θp1 + θp2 + θp3 − ρD

M2 = θ − 3θp2 − θp3 + ρD

M3 = θ − θp2 − 3θp3 + ρD

D = p1 − p2
1 − p1p2 − p1p3 − p2p3

Vi = pi (1 − pi)

Wij = −pipj.

(6.2)

Note that the parameters ρ and θ used here differ from those used in Song and Song

(2007) by factors of 1/4 and 1/8 respectively because of the different scales adopted

in deriving the diffusion processes. For example, (ρ, θ) = (5, 1.25) in this chapter is

equivalent to (20, 10) in the last two chapters.
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The Kolmogorov equation (6.1) can be expanded as

0 = 1
2

3∑
i=1

Vi
∂2π

∂p2
i

−
2∑

i=1

3∑
j>i

pipj
∂2π

∂pi∂pj

+
3∑

i=1
(1 − 4pi − Mi)

∂π

∂pi

+ (8θ + ρ − 6)π,

(6.3)

which is a three-dimensional PDE with variable coefficients. More details regarding

this calculation can be found in Appendix D.

6.2 A Finite Difference Method

Finite difference methods (FDMs) are numerical methods for solving differential

equations (ordinary or partial) in computational mathematics. The central idea

of FDMs is to discretize the domain of objective functions and then approximate

derivatives using finite differences. A system of difference equations can then be

generated. Solving the system of equations gives approximations to the true values

of the objective function evaluated at a series of discrete points of its domain. See

Iserles (2009) and Smith (1985) for a comprehensive review of FDMs.

To illustrate the procedure of applying FDMs, we consider a simple example. Suppose

f (x) is a differentiable function defined on [0, 1] and the value of f (0) is known, say

f (0) = 1. We consider a FDM to solve the ordinary differential equation

f ′ (x) = f (x) − 2x

f (x) . (6.4)

First, we select a set of discrete points xi = x0 + ih, i = 1, 2, . . . , n from [0, 1] where

x0 = 0. Note that the step size h = xi+1 − xi should be sufficiently small to ensure

the accuracy of the method. The first-order derivative f ′ (xi) is approximated by

the backward difference:

f ′ (xi) ≈ f (xi) − f (xi−1)
h

. (6.5)
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Substituting this into (6.4) yields

f (xi) = f (xi−1) + hf (xi) − 2hxi

f (xi)
, i = 1, 2, . . . , n. (6.6)

Solving the n difference equations in (6.6) gives approximate values of f (xi) for

i = 1, . . . , n.

Note that to apply the FDM, it is necessary to know the value of f (x0), which is

called the boundary condition; otherwise the system of difference equations does

not have a unique solution. In some contexts, finding boundary conditions is a

considerable challenge.

For our problem, the domain of the density function π is

Ω =
{
(p1, p2, p3) ∈ R3 | p1 + p2 + p3 ≤ 1; p1, p2, p3 ≥ 0

}
. (6.7)

We use the same step size h = 1/n for all three dimensions to discretize the domain

Ω, where n ∈ N is a sufficiently large integer. Then our FDM considers the values

of π evaluated at points
(
p1i, p2j, p3k

)
= (ih, jh, kh), where i, j, k are non-negative

integers satisfying i + j + k ≤ n. For clarity, we use πijk to replace π
(
p1i, p2j, p3k

)
,

in other words, the value of the function π evaluated at point
(
p1i, p2j, p3k

)
.

An explicit Euler-centered difference scheme (Iserles, 2009) is used to approximate

both the first-order and second-order derivatives of π. Suppose each derivative is
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evaluated at the point
(
p1i, p2j, p3k

)
. Then we have the results below:

∂π

∂p1
≈ πi+1jk − πi−1jk

2h

∂π

∂p2
≈ πij+1k − πij−1k

2h

∂π

∂p3
≈ πijk+1 − πijk−1

2h

∂2π

∂p2
1

≈ πi+1jk − 2πijk + πi−1jk

h2

∂2π

∂p2
2

≈ πij+1k − 2πijk + πij−1k

h2

∂2π

∂p2
3

≈ πijk+1 − 2πijk + πijk−1

h2

∂2π

∂p1∂p2
≈ πi+1j+1k − πi+1j−1k − πi−1j+1k + πi−1j−1k

4h2

∂2π

∂p1∂p3
≈ πi+1jk+1 − πi+1jk−1 − πi−1jk+1 + πi−1jk−1

4h2

∂2π

∂p2∂p3
≈ πij+1k+1 − πij+1k−1 − πij−1k+1 + πij−1k−1

4h2 .

(6.8)

Substituting these finite differences into equation (6.3) yields a system of difference

equations:

0 =
{
2V1 + 2h (1 − 4p1 − M1)

}
πi+1jk −

{
2V1 − 2h (1 − 4p1 − M1)

}
πi−1jk

+
{
2V2 + 2h (1 − 4p2 − M2)

}
πij+1k −

{
2V2 − 2h (1 − 4p2 − M2)

}
πij−1k

+
{
2V3 + 2h (1 − 4p3 − M3)

}
πijk+1 −

{
2V3 − 2h (1 − 4p3 − M3)

}
πijk−1

− p1p2
(
πi+1j+1k − πi+1j−1k − πi−1j+1k + πi−1j−1k

)
− p1p3

(
πi+1jk+1 − πi+1jk−1 − πi−1jk+1 + πi−1jk−1

)
− p2p3

(
πij+1k+1 − πij+1k−1 − πij−1k+1 + πij−1k−1

)
− 4

{
V1 + V2 + V3 − h2 (8θ + ρ − 6)

}
πijk,

(6.9)

where all coefficients in these equations are evaluated at point
(
p1i, p2j, p3k

)
.

139



A Numerical Approach to the Kolmogorov Equation

Table 6.1 Comparison of π evaluated at various points of ∆ by the FDM and the
Maxent approach of Liu (2012) for (ρ, θ) = (5, 1.25). The mean relative difference
given by |FDM − Maxent|/Maxent × 100% for all points in ∆ is 1.03%.

Point (×10−5) FDM Maxent Relative Difference (%)
(9.5, 9.5, 2.0) 8.0056 8.0110 0.067
(9.5, 9.5, 2.5) 8.0013 8.0067 0.068
(9.5, 9.5, 3.0) 7.9970 8.0025 0.069
(9.5, 9.5, 3.5) 7.9927 7.9983 0.070
(9.5, 9.5, 4.0) 7.9885 7.9941 0.070
(9.5, 9.5, 4.5) 7.9843 7.9889 0.070
(9.5, 9.5, 5.0) 7.9801 7.9857 0.070
(9.5, 9.5, 5.5) 7.9760 7.9815 0.069
(9.5, 9.5, 6.0) 7.9719 7.9773 0.068
(9.5, 9.5, 6.5) 7.9678 7.9731 0.066

6.3 Preliminary Results

To apply the FDM described above, we need to find boundary conditions for the TLD

problem, namely the values of π evaluated at the boundary points of the domain

Ω. Unfortunately, it is not clear how to do this without using an existing solution

for π, which defeats the objective of using this method to gain a new, independent

approximation to π. The only existing formulation of π (p1, p2, p3) is due to Liu

(2012). Thus, we use Liu (2012)’s approximation to π (p1, p2, p3) to calculate the

boundary conditions required to enable us to solve the finite difference equation (6.9).

The value of n must be sufficiently large to ensure the accuracy of the FDM, so

considerable computing time and power is needed, especially because π can have a

very spiked shape. Here, we only test the method on a subset of the domain Ω to

check its performance. Specifically, we consider a cube

∆ = [0, 0.0001] × [0, 0.0001] × [0, 0.0001], (6.10)

which is a subset of the domain Ω. We use n = 20 in this example to evenly discretize

each dimension of ∆. Values of π on the boundary of ∆ are evaluated using Liu
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(2012)’s Maxent approach, while values of π evaluated at the interior points of ∆ are

computed using both the FDM and Liu (2012)’s approach.

A comparison of the results from the two approaches is shown in Table 6.1 for

selected interior points. The two methods give very similar interior values for π,

which presents some evidence of the validity of each calculation. However, the FDM

does not offer a satisfactory standalone approach for constructing π, due to the

unknown boundary conditions and enormous computational demands.
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7
Conclusions and Future Work

7.1 Conclusions

In this thesis, we have demonstrated the power of probability density approximation

for parameter estimation using maximum likelihood, by investigating two specific

problems of real interest arising in very different contexts. Two distinct approximation

techniques, the saddlepoint approximation and the maximum entropy principle, as

well as the diffusion approximation, have been applied to solve the two problems.

In the first project, we derived a general approximate likelihood function for latent

multinomial models using the saddlepoint approximation method. The accuracy of

the proposed method for parameter estimation was demonstrated by applying it to
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model Mt,α, whose exact likelihood function is available for comparison. We further

compared the method with the hybrid approximation method for the two-source

model. Point estimates and 95% confidence intervals of model parameters obtained

by the two methods were consistently close to one another. We then applied the

method to another two latent multinomial problems in the contexts of multi-list

studies and multi-way contingency tables. The performance of the method was

illustrated by simulation studies and real data examples.

In the second project, we constructed the density function of r2 using the univariate

Maxent approach from a series of its moments, which can be obtained under the

diffusion approximation without knowing the distribution of r2. As a byproduct,

we created a fast, analytic computation of the variance of r2, which was previously

only available via an extremely lengthy computation derived by Liu (2012). We

then used this Maxent density of r2 to estimate the evolutionary parameters ρ and θ

from sample observations of r2. The performance of this method was illustrated by

simulation studies. We also applied the method to analysis of real data from the 1000

Genomes Project. The precision of the maximum likelihood estimates was highly

dependent on the size of the sample; a larger sample generated narrower confidence

intervals for both parameters.

7.2 Future Work

Based on the work of this thesis, there are various projects that could be undertaken

in the future. We briefly describe some ideas here. For convenience, we use θ here

to denote the parameter vector of a model, noting that we previously used (N, θ) for

this purpose when studying latent multinomial models (LMMs).

In the first project, we showed that the saddlepoint approximation to the PMF of

model Mt,α does not have a good match to the true mass function in most cases (see

Fig. 3.3). This might be due to a missing normalisation constant for the saddlepoint
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mass function f̃X (x) as shown in equation (3.14), in which case f̃X (x) is not strictly

a valid probability density function because

c =
∑
x∈X

f̃X (x) ̸= 1, (7.1)

where X denotes the support of X. The normalised density f̃X (x) /c might provide

a better match with the true PMF; however, calculating (7.1) is not straightforward

as far as we know. We showed that using the unnormalised density f̃X (x) performs

extremely well for parameter estimation in LMMs, but we do not know if the excellent

performance of the saddlepoint method can be assumed to apply in other modelling

contexts. While the saddlepoint is known to be a powerful technique for density

approximation, its performance for maximum likelihood estimation depends upon

maintaining uniformly good performance throughout a subspace of the parameter

space close to the parameter estimates θ̂, or at least for any approximation errors to

be negligible with respect to the location and curvature of the minimum negative

log-likelihood. This appeared to be the case for model Mt,α based on Fig. 3.3:

although the height of − log L̃ (θ) was not accurate, the minimum and curvature

were accurate so θ̂ and v̂ar
(
θ̂
)

were very accurate.

It is possible that problems might occur for other models, rendering the saddlepoint

approximation unsuitable for estimation purposes, especially if the error term depends

on the parameters θ over which the likelihood is to be maximised. A possible solution

is to derive a second-order saddlepoint mass function for LMMs or other models

of interest. See Sections 3.4.4 and 3.4.5 of Butler (2007) for an introduction to

high-dimensional saddlepoint approximations. It is shown in Butler (2007) that the

normal-based saddlepoint approximation that we used can be significantly biased

when approximating a multinomial mass function, but that a second-order saddlepoint

approximation greatly improves the performance of the method. Deriving the exact

form of the second-order saddlepoint approximation to the PMF of LMMs is not
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straightforward, but the second-order approach serves as a possibility that is worth

exploring if needed.

In the genetics project, we assumed symmetric and reversible mutation for the TLD

model, but our method of calculating moments of r2 can be generalised naturally

to models with different mutation patterns. The method should also be applicable

to models incorporating selection as mentioned by Song and Song (2007). Once

the moments of r2 (or other random variables of interest) are obtained, the process

of constructing the PDF using the Maxent principle is generally applicable to any

model.

In Chapter 6, we presented some preliminary work for finding a numerical solution

to the Kolmogorov equation of the TLD model. This is the most direct way to

investigate the stationary distribution of the model, and was indeed the starting

point of this PhD project. However, we did not explore it further because our aim

was to use the distribution for data analysis, which is computationally impracticable

using this method. If the stationary distribution itself is of primary interest, the

finite difference method is certainly a plausible option. Finding boundary conditions

is the greatest challenge in applying the finite difference method to this problem.

Boitard and Loisel (2007) proposed some approximation strategies to address the

boundary problem for another two-locus model. It might be possible to develop

similar methods for the TLD model.
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A
An Example of Likelihood Factorization

for LMMs

We consider model Mt,α with K = 2 capture occasions as an example to illustrate

the procedure of likelihood factorization described in Section 3.2.

We have shown in Chapter 2 the relationship y = Tz in this case is
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y01

y10

y11

 =


0 1 1 0 0 1 0 1 1

0 0 0 1 0 1 1 1 1

0 0 0 0 1 0 0 0 0





z00

z01

z02

z10

z11

z12

z20

z21

z22



. (A.1)

Suppose y = (y01, y10, y11) = (0, 7, 1). From y01 = 0, we find that z01 = z02 = z12 =

z21 = z22 = 0. In addition, z11 = y11 because history 11 is fully-observed. In this

case, the vector of verified elements is v = (z01, z02, z11, z12, z21, z22) = (0, 0, 1, 0, 0, 0),

and the unverified vector is u = (z00, z10, z20).

Now, we reorder the elements of z and T as follows:


y01

y10

y11

 =


1 1 0 1 1 1 0 0 0

0 0 0 1 1 1 0 1 1

0 0 1 0 0 0 0 0 0





z01

z02

z11

z12

z21

z22

z00

z10

z20



. (A.2)
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It follows that

B =


1 1 0 1 1 1

0 0 0 1 1 1

0 0 1 0 0 0

 , (A.3)

and

A =


0 0 0

0 1 1

0 0 0

 . (A.4)

Then we have

x = y − Bv =


0

7

1

−


1 1 0 1 1 1

0 0 0 1 1 1

0 0 1 0 0 0





0

0

1

0

0

0



=


0

7

1

−


0

0

1



=


0

7

0

 .

(A.5)

Here, x contains two zero elements, and matrix A contains two rows composed

completely of zero entries. In practice, we need to remove the two zero components

of x and the two zero rows of A to make the saddlepoint approximation work.
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B
R Code for Implementing TMB to Fit

LMMs

Here, we attach the key code for fitting LMMs via the TMB package. We first copy

the source code of TMB. The required function for modification is function h inside

the function MakeADFun. We only need to modify two lines of the original h function

to obtain the correct formulation for our problem. Let my.MakeADFun be the name

of the new MakeADFun function. We use my.MakeADFun to deliver the saddlepoint

PMF for LMMs.

Below is the code of the new h function. The two lines that have been modified

(with comments) can be found easily.

153



R Code for Implementing TMB to Fit LMMs

h <- function(theta=par, order=0, hessian, L, ...)
{

if(order==0){
## When order==0, function h represents the negative
## log-likelihood function (3.29), which is the objective for minimisation.
logdetH <- 2*determinant(L)$mod
## We modify the line below by changing the first sign to -
## and the third to +.
ans <- -f(theta,order=0)+.5*logdetH+length(random)/2*log(2*pi)
if(LaplaceNonZeroGradient){

grad <- f(theta,order=1)[random]
ans-.5*sum(grad*as.numeric(solve(L,grad)))

} else
ans

}
else if(order==1){

## When order==1, function h represents the gradient of
## the negative log-likelihood function (3.29).
if(LaplaceNonZeroGradient)

stop("Not correct for LaplaceNonZeroGradient=TRUE")
e <- environment(spHess)
solveSubset <- function(L).Call("tmb_invQ",L,PACKAGE="TMB")
solveSubset2 <- function(L).Call("tmb_invQ_tril_halfdiag",L,PACKAGE="TMB")
ihessian <- solveSubset2(L)
## Profile case correction (1st order case only)
if(!is.null(profile)){

perm <- L@perm+1L
ihessian <- .Call("tmb_sparse_izamd", ihessian, profile[perm],

0.0, PACKAGE="TMB")
}
lookup <- function(A,B,r=NULL){

A <- tril(A); B <- tril(B)
B@x[] <- seq.int(length.out=length(B@x))
if(!is.null(r)){

B <- .Call("tmb_half_diag", B, PACKAGE="TMB")
B <- tril(B[r,r,drop=FALSE])+tril(t(B)[r,r,drop=FALSE])

}
m <- .Call("match_pattern", A, B, PACKAGE="TMB")
B@x[m]

}
if(is.null(e$ind1)){

if (!silent) cat("Matching hessian patterns... ")
iperm <- invPerm(L@perm+1L)
e$ind1 <- lookup(hessian,ihessian,iperm)
e$ind2 <- lookup(hessian,e$Hfull,random)
if (!silent) cat("Done\n")
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}
w <- rep(0,length=length(e$Hfull@x))
w[e$ind2] <- ihessian@x[e$ind1]

## We modify the line below by changing the sign of
## as.vector(f(theta,order=1)) to -.
(-1) * as.vector(f(theta,order=1))+
.Call("EvalADFunObject", e$ADHess$ptr, theta,

control=list(
order=as.integer(1),
hessiancols=as.integer(0),
hessianrows=as.integer(0),
sparsitypattern=as.integer(0),
rangecomponent=as.integer(1),
rangeweight=as.double(w),
dumpstack=as.integer(0),
doforward=as.integer(1)

),
PACKAGE=DLL)

}## order==1
else stop(sprintf("’order’=%d not yet implemented", order))

} ## end{h}
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C
Introduction to VCFtools

Implementing VCFtools to extract sample data of r2 from original genotype data

from the 1000 Genomes Project is straightforward. We use the one-line command

below.

./vcftools --gzvcf chr21.vcf.gz --hap-r2 --maf 0.05 --keep AMR

--ld-window-bp 100000 --out outfile

Here, chr21.vcf.gz is the name of the VCF file containing data for human chro-

mosome 21. This can be downloaded from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/. The option --hap-r2 indicates that data on r2

will be computed on the phased genotype data. Note that for these data we know
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Introduction to VCFtools

Table C.1 Sample output data from VCFtools. Here, POS1 and POS2 represent the
positions of two loci on chromosome 21 (CHR). N_CHR represents the total number
of chromosomes from the sample. It follows that there are 347 (694/2) individuals
for the AMR sample. R.2 represents the observation of r2. D and Dprime are not
needed for our analysis.

CHR POS1 POS2 N_CHR R.2 D Dprime
21 9411410 9411500 694 0.16455 0.10129 0.40799
21 9411410 9411602 694 0.00848 −0.02114 −0.14430
21 9411410 9411645 694 0.17882 0.10506 0.45596
... ... ... ... ... ... ...

how genotypes are organised into haplotypes for each person in the sample: in

other words, we know the gamete-type frequencies. The option --maf 0.05 sets the

minor allele frequency to be at least 0.05. Option --keep AMR indicates that the

computation is focused on individuals from population AMR (Americans). AMR is

the name of a text file we create that contains IDs of individuals from the AMR pop-

ulation. See the website ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/integrated_call_samples_v3.20130502.ALL.panel for information on

the population each individual belongs to. Option --ld-window-bp 100000 indi-

cates that we consider pairs of loci with spacing less than or equal to 100,000 base

pairs. --out outfile specifies the output data file.

Importing the output data file into R, we obtain a large table, as shown in Table C.1.

We extract data of r2 from the table after setting values for parameters (d, ∆d, l).

Consider (d, ∆d, l) = (5000, 100, 10000) for an example. The first row of Table C.1

gives an observed value 0.16455 of r2 for two loci that are 90 (POS2 − POS1) base

pairs apart. Thus, we do not use this observation since 90 is not in the interval

(4900, 5100). Let
{
r2

1, . . . , r2
n

}
denote all observations of r2 for pairs of loci that have

within-pair distances between 4900 and 5100 base pairs. Each of the observations

corresponds to two loci. We write simple code to find a set of observations for

which all loci are located in a zone with a length of l = 10, 000 base pairs on the

chromosome.
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D
Simplification of the Kolmogorov Equation

of the TLD Model

Here, we present the calculation for simplifying the Kolmogorov forward equation (6.1)

of the TLD model.

First, we have

−
3∑

i=1

∂

∂pi

(Mi π) = −
3∑

i=1

(
∂Mi

∂pi

π + ∂π

∂pi

Mi

)

= (8θ + ρ) π −
3∑

i=1

∂π

∂pi

Mi.

(D.1)
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Simplification of the Kolmogorov Equation of the TLD Model

In addition, we have

1
2

3∑
i=1

∂2

∂p2
i

(Vi π) = 1
2

3∑
i=1

(
∂2Vi

∂p2
i

π + 2∂Vi

∂pi

∂π

∂pi

+ ∂2π

∂p2
i

Vi

)

= −3π +
3∑

i=1

∂π

∂pi

(1 − 2pi) + 1
2

3∑
i=1

∂2π

∂p2
i

Vi

(D.2)

and
2∑

i=1

3∑
j>i
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(
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= − 3π − 2
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pi

∂π
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−
2∑

i=1

3∑
j>i

pipj
∂2π
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(D.3)

Substituting equations (D.1), (D.2), and (D.3) into (6.1) yields equation (6.3).
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