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Abstract

We observe that the field of complex and p–adic numbers, the ring of n × n
matrices, the Euclidean spaces Rn (n > 1), and topological manifolds are models of
the notion of infinitesimal. These models do not satisfy the axioms of total order
and/or contain zero divisors. As a first consequence the notion of infinitesimal is
logically independent of the notions of zero divisor and total order. As second con-
sequence the notion of ultrafilter is not required for the definition of infinitesimal.
We define the notion of infinitesimal using the cofinite filter as in C. Schmieden
and D. Laugwitz [7]. We prove a translation theorem between expressions using
the ε – δ formalism and expressions using infinitesimals. The language employed
is many sorted. The language contains in addition to the basic carrier set (sort),
a function symbol intended to interpret the notion of size, absolute value, norm
or distance from 0, a unary predicate symbol to be interpreted the range of this
distance function, a binary symbol to be interpreted as addition in the range of
the metric, a constant symbol to be interpreted as zero as element of the range of
metric only, a symbol to denote the total order of the range of the metric function,
does not contain symbols to be interpreted as addition or multiplication or their
inverses.

Notation: The set of natural numbers ordered by the usual order (to be used
as index set for sequences) will be denoted by ω. The field of real numbers will be
denoted by R. The field of complex numbers will be denoted by C. The field of
p–adic numbers will be denoted by Qp. The set of n×n matrices with real numbers
as elements will be denoted by Rn×n. The set of Euclidean spaces of dimension n
over the real numbers will be denoted by Rn. The set of nonnegative real numbers,
intended to be the range of the absolute value functions, or norm, of distance of
an element from zero will be denoted by R+

0 . The end of proofs will be denoted by
2.

Keywords: infinitesimal, cofinite filter.
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1 Introduction

We start with the simplest possible definition of infinitesimal and give an argument
about the impossibility of certain constructions.

Definition 1 A positive real infinitesimal is less than any positive real number,
nonnegative and different than zero.

The standard argument about the inconsistency of the above definition is that
an infinitesimal cannot exist since any entity (entity meaning real number) less
than any positive real number and simultaneously non negative has to be zero. The
implicit assumption in the above argument is that an infinitesimal has the same
properties as a real number (satisfies the same axioms). The notion of infinitesimal
can be realized if we require that an infinitesimal is an entity of different nature
than a real number as C. Schmieden and D. Laugwitz [7] and A. Robinson [6]
have shown. Since an infinitesimal is an entity different than a real number an
infinitesimal cannot satisfy the same properties as a real number. We remark that
if the infinitesimals satisfy the same properties as the real numbers they are the
real numbers in the monadic second order language of ordered fields.

We review briefly the main points of interpretation of infinitesimals given by
A. Robinson. The realization of a (real) infinitesimal in the spirit of the work of A.
Robinson and W.A.J. Luxemburg employs the notion of an ultrafilter. The reasons
for using an ultrafilter are the following:

1. Elimination of zero divisors.

2. Establishment of total (field) order.

3. Use of classical two valued logic and Compactness Theorem.

4. Establishment of a transfer principle.

The reasons for the requirement that we have a total field order and nontrivial
zero divisors comes from the requirement that the infinitesimals should satisfy
the same laws as the real numbers. Historically either there were no other models
realizing the notion of infinitesimal at the time that the above statement was made
or the complex numbers were known. These reasons do no seem very well founded
if we consider C, Qp, Rn, Rn×n or topological manifolds where there exists a notion
of infinitesimal or elements being infinitesimally close to each other. The argument
following definition 1 suggests a flaw in the statement that the enlarged system
should satisfy the same laws as the real number system.

We note that Leibniz although mentioned that the laws satisfied the enlarged
system of numbers should be the same as the laws satisfied by the real numbers,
he mentioned that the introduction of infinitely small and infinitely big entities
was not satisfying the Archimedean axiom. In [6] A. Robinson p. 266–267 men-
tions the possibility that some form of the Archimedean axiom may be true or
may fail in a system containing infinitesimals depending on the exact formulation
of the Archimedean axiom. In A. Robinson p. 265 “J’ appele grandeurs incompa-
rables dont l’une multipliée par quelqe nombre fini que ce soit, ne saurait excéder
l’autre....”. It is also known that the Archimedean axiom has to be modified to be
valid in the extended system which contains infinitesimals.

Regarding the existence of zero divisors, the mathematical practice in Analysis
avoids the problem of the using nontrivial zero divisors (which they exist) by a
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suitable definition (definition 4). The issue of total order seems to be irrelevant with
the development of Analysis. As we will see there exist natural models satisfying
the definition of infinitesimal (or having points infinitesimally close to each other)
where there is no total order and there exist zero divisors.

The use of Classical logic is not necessary as we can have a constructive in-
terpretation of the notion of infinitesimal. This constructive interpretation of in-
finitesimals implicit in J. L. Bell [2] and suggested by P. Schuster will be discussed
in the future.

The construction given by A. Robinson avoids the problem of assuming that
an infinitesimal is a number (an object of the same status and nature as numbers)
by constructing infinitesimals as objects which are not real numbers but elements
of a more complicated nature. This construction contains the basic insight about
the nature of an infinitesimal. This insight presented by C. Schmieden and D.
Laugwitz [7] will be used and explained in the sequel.

The use of (non principal) ultrafilters makes possible the definition of a to-
tal order and the elimination of zero divisors in the development of infinitesimal
over the field of real numbers by A. Robinson as follows: A infinitesimal over the
real numbers is represented by a countable sequence of real numbers. Fix a non
principal ultrafilter over the set ω. Given two such sequences x = {xn | n ∈ ω},
y = {nn | n ∈ ω} we define x = y iff {n ∈ ω | xn = yn} belongs to the ul-
trafilter. We define the order and the rational operations modulo an element of
the ultrafilter. The above equivalence relation is compatible with the operations
and we obtain a field. For the definition of a total order, we partition the index
set ω into three sets A1 = {n ∈ ω | xn < yn}, A2 = {n ∈ ω | xn = yn},
A3 = {n ∈ ω | xn > yn}. Exactly one of the sets A1, A2, A3 will belong to the
ultrafilter and hence exactly one of the relations x = y, x < y, x > y will be true.
The above order is compatible with the field operations of the real numbers and
gives an ordered field. For the non existence on nontrivial zero divisors given a
sequence of real numbers x = {xn | n ∈ ω}, we partition the index set ω into two
disjoint sets B1 = {n ∈ ω | xn = 0}, B2 = {n ∈ ω | xn 6= 0}. Exactly one of the
sets B1, B2 will belong to the ultrafilter and hence either a sequence (infinitesimal)
will be equal to zero or all the terms that are equal to zero can be ignored and we
can invert a non zero element.

Regarding the existence of models satisfying the definition of infinitesimal which
models contain non trivial zero divisors and they lack a total order relation the
basic intuition are the Euclidean spaces and the rings of n×n matrices. In the rings
n×n matrices it is possible to define the notion of exponential of a matrix and other
algebraic or transcendental functions using power series by Taylor expansions.

We observe that whenever we have a Taylor series expansion there ought to be
some notion of infinitesimal. In particular we note the definition of the exponential
of a square matrix and a formula used for the inversion of a matrix under certain
constrains

eA =
∞∑

n=0

An

n!
,

1
1−A

=
∞∑

n=0

An. (1)

From the two above examples we observe that in the ring of n × n matrices
we have a notion of infinitesimal. The notion of infinitesimal is to be taken in the
sense that the sequences of the tails of the infinite sums in equation 1 i.e. the
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sequences

xk =
∞∑

n=k

An

n!
yk =

∞∑
n=k

An

are null sequences or are negligible in size no matter what is the order of mag-
nitude. Similar observations are true for geometric notions as infinitesimal angle,
infinitesimal length, infinitesimal area..

We observe that in geometric constructions e.g. in calculation of areas, volumes,
length of a curve there is no operation of addition or of multiplication of the
geometric entities. The difference between a circle and a sequence of inscribed
or circumscribed polygons that approximate the area of the circle is a geometric
representation of an infinitesimal. In such a geometric representation there is no
natural notion of addition or multiplication of these geometric concepts or as total
operations. The operator of addition or multiplication is defined among numbers
representing these entities (sum of areas, lengths, measure etc). The multiplication
is a scalar multiplication. Moreover this geometric association and intuition existed
in the form of the method of exhaustion since Archimedes.

We give an alternative definition of infinitesimal which uses a different language
than the language used in definition 1 and takes into account expressions similar
with the expressions in equation 1.

Definition 2 An infinitesimal is a non zero entity which has size less than the
size of any other entity.

For the case that there is no zero element in the structure as in topological
manifolds we have the following variant.

Definition 3 Two elements of a structure are infinitesimally close if their distance
is positive and less than any real number.

Henceforth we will use definition 2 or for topological manifolds we will use the
variant definition 3. The language used in definition 1, in definition 2 and in defini-
tion 3 of an infinitesimal does not include any symbol for addition, multiplication,
subtraction, additive or multiplicative inverse, and there is no statement about a
total order in any of the definitions.

We note that any of the above definitions does not restrict an infinitesimal
to be something which will be only in an extension of the field of real numbers.
The order needed in definition 2 is not the field order of the reals or any order of
the structure, but the order of the range of the absolute value function or metric.
Definition 2 refers to absolute values, norms or distance from 0 to define the notion
of infinitesimal. The language required is a language containing a symbol of arity
one with intended interpretation size of, norm, distance from zero. Alternatively
we can use a two place function symbol to denote the distance of two elements
with range the set R0

+. Definition 2 requires a many sorted structure because of
the notion of size. One sort will be the set of entities that are the base set (one
instance being the ring of square matrices), and one more sort will be the positive
real numbers as the range of the function which determines the size, a constant
for 0, a symbol to be interpreted as addition in the range of metric and a symbol
for the relation less than in the range of the function size (norm, absolute value).
Definition 1 is a definition in the spirit of the of the Dedekind order completion
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of the rational numbers as an ordered field, which gives one possible definition
of the real number field. Definition 2 is in the spirit of the Cauchy completion
of the metric space of the rational numbers. The Cauchy completion allows a
generalization since it applies to to a variety of topological spaces. It allows also
the interpretation of smaller, bigger by the distance of elements form zero admitting
as particular models the field of the complex and p–adic numbers, the Euclidean
spaces and the ring of n × n matrices. The definitions of infinitesimals do not
characterize the model in the sense of stipulating a total order. The comparison
in the definition is among an infinitesimal and a object of the basic set and in a
specified order. As we see form definition 2 we need order to compare the sizes of
entities. We need order in the range of the metric, norm or distance function. We
need infinitesimals to express that some variable quantity (a process) approaches
some entity (a limit). The notion of infinitesimal is a topological notion and hence
not related to the notion of order or the real number system exclusively. The
notion of approximation is closely related with the notion of limit, is a topological
notion and as a topological notion no connection with order in a algebraic setting.
The notion of infinitesimal expresses the concept of being negligible at any order
of magnitude and this is the intuitive idea of a null sequence.

2 A genetic definition of infinitesimals

The construction presented in the sequel uses the notion of the cofinite filter only in
contradistinction with the construction given by A. Robinson where ultrafilters are
used. The notion of ultrafilter is used in order to preserve the first order properties
of the set of real numbers in an appropriate language and transfer them into the
product space. This ensures that extending the real numbers with infinitesimals
makes possible the development of Analysis using ultrafilters. As a substitute of
the transfer principle we prove a translation theorem between expression using
the ε–δ formalism and expressions using the term infinitesimal (theorem 3). This
translation theorem makes possible to develop Analysis using the term infinitesimal
in the language.

The basic observation is that there exists a notion of infinitesimal in the sense
of definition 2 in the fields of the real, complex, p–adic numbers, Rn and the set
of n × n matrices and other structures. The argument is presented based on a
heuristic approach for the nature of an infinitesimal over some basic structure.
The argument takes account definition 2 using the notions of absolute value, size,
norm or any other notion of size or metric.

From the definition 2 we have that the infinitesimal may be represented by an
entity of dynamic nature. The characterization of dynamic is to be understood
in the sense that an infinitesimal incorporates the information that the size of the
infinitesimal is less than (in size, absolute value, norm) any other element and the
also the size of the infinitesimal has to be different (greater) than zero.

We can simplify the definition of satisfaction of the definition by noting that
for any entity x there exists a natural number nx such 1

nx
< |x| so that suffices

to find an element yx such that 0 6= |yx| < 1
nx

(separability of the range of the
metric). The above construction is possible in Qp Rn, C, Rn×n and topological
manifolds. We can identify the elements x with the constant sequence xn = x.
Collecting the information ynx in a countable sequence y = {ynx | n ∈ ω}, we have
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that ∀x 0 6= |ynx | < |x| or ∀x 0 6= |y| < |x| since ∀x 0 6= |ynx | < 1
nx

< |x|
where the interpretation of the symbol < in the expression 0 6= |y| < |x| is taken
as eventually less than.

From the above analysis we obtain the basic insight for the structure that will be
used to interpret the notion of infinitesimal. The carrier set A will be the Cartesian
product of the real complex or p–adic numbers, the ring of square matrices, the
Euclidean spaces etc over a countable index set (the set of natural numbers). In
the set A we can embed the set of real, complex and p–adic numbers, and the set of
n× n matrices, where an element x is represented by the constant sequence which
has every term equal to x. In order to define the operations we first define equality
using the cofinite filter i.e. for x = {xn | n ∈ ω}, y = {yn | n ∈ ω} define x = y
iff ∃m0 n > m0 → xn = yn. The inequality, absolute value and the appropriate
operations are defined in a similar manner using the cofinite filter.

According to the above definition the sequences

i =
{

1
n

∣∣∣∣ n ∈ ω

}
, i =

{
i

n

∣∣∣∣ n ∈ ω

}
, i = {pn|n ∈ ω} ,

i =
{[

1/n 0
0 1/n

]∣∣∣∣ n ∈ ω

}
, i =

{(
1
n

, . . . ,
1
n

)∣∣∣∣ n ∈ ω

}
,

are examples of infinitesimals for the real, complex, p–adic numbers, the n × n
matrices and the Euclidean spaces Rk. It is straightforward to show that in each
case we have for any element x of the above structures we have |x| > |i| 6= 0 where
the relation > is to be interpreted as less than in the range of the metric.

We have the following:

Proposition 1 There exist structures A realizing the notion of infinitesimal and
there is no total order in A.

Proof. Any of the following structures satisfies the conditions of the statement:
The fields of the complex and p–adic numbers. The ring of n×n matrices for n > 1,
the Euclidean spaces Rn, n > 1. 2

Proposition 2 There exist structures A realizing the notion of infinitesimal, mul-
tiplication is defined in A and A contains zero divisors.

Proof. The ring of n × n matrices for n > 1, satisfies the conditions of the
statement. 2

Proposition 3 There exist structures A realizing the notion of infinitesimal, and
there is no field multiplication defined as an operation among elements of A.

Proof. The Euclidean spaces Rn, the ring of n × n matrices for n > 1, the
unit circle and the unit square as topological manifolds satisfy conditions of the
statement. 2

Proposition 4 There exist structures A realizing the notion of infinitesimal,
which they do not have a operation of addition, multiplication and there is no
constant to be interpreted as zero in A.
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Proof. The unit circle, the unit square as a topological manifolds satisfies the
conditions of the statement. 2

We have the following statements which follow from the previous propositions:

Theorem 1 The notion of infinitesimal is logically independent from the notion
of total order, from the nonexistence of nontrivial zero divisors, from the notion
of addition, from the notion of multiplication and from the existence of zero as an
element of the structure.

The requirement for the existence of zero is not necessary as an element of the
structure. The existence of zero is required as an element of the range of the
metric defined in the structure.

Corollary 1 The notion of infinitesimal is logically independent from the notion
of the field order.

Theorem 2 The notion of ultrafilter is not required for the interpretation of in-
finitesimals.

Propositions 1 and 2 entail that the mathematical reasons for the use of ul-
trafilters in the construction of infinitesimals, namely total order and elimination
of nonzero zero divisors are logically independent from the notion of infinitesimal.
Hence we can use the cofinite filter for giving a representation of infinitesimal which
is represented by a null sequence. The logical reason for the use of ultrafilters is
that we can use two valued logic and the Compactness theorem in order to obtain
a structure which has the same properties as the real numbers (in an appropriate
language). We prove a translation theorem (theorem 3) which is enough to develop
Analysis as usual in the monadic second order language of fields. The development
of Analysis incorporates the notion of infintesimal via a defintion. It is possible
and desirable as suggested by P. Schuster and will be discussed in the future to use
null sequences satisfying the principles of some form of Constructive Mathematics
and hence use some form of Logic suitable for Constructive Mathematics obtaining
constructive infinitesimals such as Intuitionistic Logic.

3 Infinitesimals over the real numbers

From the above we have a ring in the case of R, C, Qp, Rn×n, and a vector space
in the case of Rn where we can interpret the notion of infinitesimal. In essence the
present construction is a generalization of the concepts present in C. Schmieden
and D. Laugwitz [7]. At this point in order to define the multiplicative inverses
the solution given by A. Robinson in [6] is to use ultrafilters in order to ensure
that sequences which have infinitely many terms equal to zero are excluded. In
the above construction the definition used is the same as the definition used in
Analysis (definition 4) and carefully avoids this problem by requiring that the
sequences that will represent the infinitesimals have no term equal to zero (this
can be relaxed and require that sequences representing infinitesimals eventually
have no term equal to zero). This requirement is an inessential variant of the
definition of limit in Analysis is postulating as we will see in definition 4. It is
interesting that in most cases the discussion of the development of Calculus in the
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spirit on A. Robinson avoids the discussion of the concept of limit and starts the
development from the notion of continuity.

The interpretation of infinitesimals using the cofinite filter as null sequences
having no term equal to zero is in accordance with the practice in Analysis. We
quote from Spivak the following definition which is the definition of limit [8] (p. 84).

Definition 4 The function f approaches the limit l near a means: for every ε > 0,
there exists some δ > 0 such that for all x, if

0 < |x− a| < δ, then |f(x)− l| < ε.

We note the explicit use of the clause 0 < |x− a| which ensures that when we
translate in the language of sequences (using the Axiom of Choice) no term of the
sequence will be equal to the limit a.

Definition 4 takes into consideration that in the process of the evaluation of the
limit of some expression E (x) as the variable x approaches a, the value E (a) is
irrelevant, even E (x) may be undefined at a. In the case that a does not belong in
the domain of E taking x = a is impossible. This statement justifies the premise
0 < |x− a| < δ, which implies x 6= a, hence in the evaluation of limits there will be
non (nonzero) zero divisors. As a conclusion we avoid the use but not the existence
of zero divisors.

To further elucidate the above statement we briefly review the evaluation of
the limit lim

x→a

x2−a2

x−a . The expression x2−a2

x−a has a domain the set R \ {a}. Hence it
is not permissible to substitute the value of a for x in the evaluation of the above
limit. This last statement rules out nontrivial zero divisors in practice. Similar
observations apply in the evaluation of differentials, derivatives of any order, and
in similar situations in Euclidean spaces Rn, n > 1.

We also quote some relevant comments following the definition of continuity
from Apostol [1] p. 75:

We require that p will be an accumulation point of A to make certain that they
will be points sufficiently close to p with x 6= p.

The above statement translated in the language of sequences using the Axiom
of Choice allows to use the cofinite filter and rules out explicitly the use of zero
divisors as all the terms in any null sequences occurring have to be non zero.

From the above discussion we see that we can use the cofinite filter and avoid the
use of zero divisors which are not logically related with the notion of infinitesimal.
In other words the working Analyst works with sequences (uses the cofinite filter)
and avoids the existence of zero divisors by using an appropriate definition.

As further support of the above observation we note that in the expression
defining the derivative i.e.

lim
x→x0

f(x)− f(x0)
x− x0

,

the fact that we have a null sequence (infinitesimal) present in the denominator
suggests that we should be able to invert null sequences (by some method taking
as a simple solution to require that no term will be equal to zero) and hence null
sequences (infinitesimals) are not zero divisors. As further support of the above
remarks we quote from A. Robinson [6] (p. 1) “For any positive number ε there
exists a positive number δ such that∣∣∣∣f (x)− f (x0)

x− x0
− a

∣∣∣∣ < ε
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for all x such that 0 < |x− x0| < δ.”
This last clause 0 < |x− x0| < δ, ensures that we avoid the zero divisors

whenever they might occur. From the above quotations from Analysis we conclude
than in Analysis the problem of the existence of (non zero) zero divisors was
addressed and solved during the early stages of the development of Calculus.

We note also that in the case of occurrence of the division we can reformulate
the expressions without the division operation.

We give an example of of eliminating division in the definition of the notion of
differential of a function f : Rm → Rn. The linear transformation T : Rm → Rm

is called the differential of f at a ∈ Rm if there is a function K : Rm → Rn which
satisfies ||f (a + h)−f (a)−Th|| = |K (h)| ||h||, with lim

h→0
K (h) = 0 (A. Taylor and

W. Man [9]). This formula is an alternative of the expression

lim
x→x0

||f (x)− f (x0)−A (x− x0) || = 0.

As we see when we eliminate division we can substitute x = a which in the presence
of division may give rise to a zero divisor, but the formula is trivial.

In Euclidean spaces Rn the division for the evaluation of derivatives is not
division among elements of the space Rn but among elements of the metric space
(quotients of size, norms). In these cases we try to determine the rate of change
using the notion of size of an element, not the elements themselves.

The above allows the interpretation of infinitesimals using the cofinite filter and
the notion of the cofinite filter is used to formulate the notion of limit, derivative,
differential, integral in all Euclidean spaces, the complex and p–adic numbers.

The fact that we can interpreted infinitesimals using only the cofinite filter
makes the development of Non Standard Analysis to coincide with the develop-
ment of Analysis via an easy translation theorem (theorem 3 which uses the Axiom
of Choice). One more consequence of the above remarks we can interpret infinites-
imals according to C. Schmieden and D. Laugwitz [7].

Regarding the field of real numbers we see from the above that it is possible
to define the notion of infinitesimal using the notion of the cofinite filter and
obtain a structure which extends the real numbers, it fails to be a field and has
no natural field order. In such an extension it is possible to develop Analysis as
usual. This formulation is in accordance with the actual practice of Analysis and
Numerical Analysis and the content of Non Standard Analysis according to the
above interpretation is the same as the content of ordinary Analysis.

We have the following main theorem which is the analogue of the transfer
principle in Non Standard Analysis:

Theorem 3 Every theorem of Analysis which uses the ε – δ formalism can be
translated to a statement where we employ null sequences which have no term
equal to zero which represent infinitesimals and conversely.

Proof. Translate the ε – δ expression to expressions which use sequences and
conversely. 2

One consequence is that under the interpretation of infinitesimals presented
here the methods and the content of Non Standard analysis and Analysis are the
same. The above theorem can be seen as a completeness – correctness characteri-
zation since it shows that the two formulations the one that uses infinitesimals and
the one that uses sequences (or ε – δ expressions) are the same.
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The above theorem can be seen as a weak translation theorem. The construc-
tion does not imply that we have any kind of elementarily equivalent structure with
the field of real numbers in some language, the Compactness Theorem is not used.
The representation of infinitesimals by null sequences which uses the cofinite filter
is an extension of Analysis by a definition. We see the requirement of elementarily
equivalence as strong requirement. Furthermore the Compactness Theorem is ap-
plied in a language that is not the usual language for the development of Analysis.
The usefulness of the above interpretation of infinitesimals over the real numbers
system is that we can express the notion of approximation of a real number by
some entity which is familiar to the working mathematician. The language used to
define an ultrafilter is considerably more complex than the language used to define
the cofinite filter.

The cofinite filter can be defined by Π2 sentences which makes possible a con-
structive interpretation. The above quantifier complexity of the definition of an
infinitesimal is the same complexity as most of the notions of Analysis. The real
number that is approximated using th notion of infinitesimal can represent the
integral, the derivative, length of curve, work of a force etc. These notions (where
applicable) can be defined in a straightforward manner using expressions where
converging sequences occur in the appropriate structures (fields of the complex
and p–adic numbers etc).

We can see the ε, δ development of Calculus as a quantitative version of the
development which uses infinitesimals. The development of Calculus using in-
finitesimals can be regarded as a qualitative version of Calculus. These two version
quantitative and qualitative are equivalent as we see from theorem 3.

We proceed to define some notions of Analysis in the spirit of the above expo-
sition.

Definition 5 Let x ∈ R, x = lim
n→∞

xn if and only if the sequence x − xn is an
infinitesimal.

As a consequence of the above definition of the limit it is possible to express all the
definitions of Analysis that involve the notion of limit (i.e. derivative, differential,
integral, Taylor and Mac Laurent expansion, length of curves etc) in a manner that
uses the notion of infinitesimal as defined above. The standard definitions that use
the notion of convergence (or null sequence) can be interpreted as definitions that
use infinitesimals and vice versa. The logical complexity of the expressions that
are used is not increasing.

Definition 6 Let f : [a, b] → R. The real number a is the derivative of f at
x0 ∈ [a, b] iff for any infinitesimal i the quantity f(x0+i)−f(x0)

i − a is infinitesimal.

The definition of the integral requires some technical elaboration. The integral of
a function should be defined as the limit of the sums of products. Each product
represents the size of a rectangle such that the bases of the rectangles tend to zero
(i.e. the sequence of the lengths is infinitesimal). As the notion of limit can be
expressed using the notion of infinitesimal we have the following definition.

Definition 7 Let f : [a, b] → R be a function and [c, d] ⊆ [a, b]. Let Pn = {x0 =
c < x1 < . . . < xn = d} be a (finite) partition of the interval [c, d]. For such a
partition let d (Pn) = max{|xi+1 − xi|}. The number A is the integral of f over
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the interval [c, d] iff for any infinitesimal I for any sequence of partitions {Pn}
of [c, d] such that {d (Pn) |n ∈ ω} ≤ I, and for any ξi ∈ [xi, xi+1] the quantity
n−1∑

0
f (ξi) (xi+1 − xi)−A is infinitesimal.

It would be interesting to see applications of the above method in the following
sense. “One might express the hope that some branches of modern Theoretical
Physics, in particular those afflicted with divergence problems, night be treated
with profit by Non–standard Analysis.” (A. Robinson [6], p. 5).

We also give the following theorem as an application which is inspired by a
theorem of A. Kock [4].

Theorem 4 A function f : [a, b] → R is continuous at a point x0 then f (x0)
equals the average of the values of the function over any infinitesimal around x0.

Proof. For any sequence {xn | n ∈ ω} that converges to x we have that
lim

n→∞
x1+x2+···+xn

n = x (Cesaro limit). Since the function f is continuous for any

infinitesimal (null sequence) I = {x0 − xn | n ∈ ω} around x0 that lim
n→∞

f (xn) =

f (x0). 2

Geometrically in the case of the real numbers we can represent the infinitesimals
as a cone in a plane that contains the real line, with apex at zero and the cone
does not contain the line that corresponds to the real numbers. In the case of the
complex numbers similarly we can represent the infinitesimals as a cone with apex
at zero and not containing the complex plane.
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