
������

�����	
�

���	�

��	���

����� � �	�����

�������� ��	�
��	�� ���

���������

�������� ���	

����

���������� �	
������� �����

���������� �	 �������

�������� ��� �������

����
� �����
��

������� �������� �	 ����� ���

���������� �����

����������

	
��
� ����

����� �� ������� �
����
����
��

��������
� ������� �������

Games on Graphs: Automata, Structure, and
Complexity

Bakhadyr Khoussainov1 and Tomasz Kowalski2

1 Computer Science Department, The University of Auckland, New Zealand
bmk@cs.auckland.ac.nz

2 Japan Advanced Institute of Science and Technology, Japan
(on leave from Department of Logic, Jagiellonian University, Poland)

kowalski@jaist.ac.jp

1 Introduction and Basic Concepts

McNaughton in his known paper [7], motivated by the work of Gurevich and
Harrington [4], introduced a class of games played on finite graphs. In his paper
McNaughton proves that winners in his games have winning strategies that can
be implemented by finite state automata. McNaughton games have attracted
attention of many experts in the area, partly because the games have close
relationship with automata theory, the study of reactive systems, and logic (see,
for instance, [12] and [11]). McNaughton games can also be used to develop
game-theoretical approach for many important concepts in computer science
such as models for concurrency, communication networks, and update networks,
and provide natural examples of computational problems. For example, Nerode,
Remmel and Yakhnis in a series of papers (e.g., [8], [9]) developed foundations of
concurrent programming in which finite state strategies of McNaughton games
are identified with distributed concurrent programs.

McNaughton games are natural descriptions of reactive systems in which the
interaction between Controller (often referred to as Survivor) and Environment
(Adversary) are modelled as certain two-player games. Winning conditions in
these games can be thought of as specification requirements that Controller
must satisfy. Winning strategies for Controller are thus identified with programs
satisfying the specifications. Deciding whether or not Controller wins a given
game can be seen as answering the question whether or not a given specification is
realizable. If it is, then constructing the winning strategy amounts to synthesizing
a correct controller program. Further, minimalization of the memory size of the
winning strategy for Controller corresponds to the optimization problem of a
correct controller. Again, we refer the reader to [11] for more details.

Suppose you come across a McNaughton game. You will probably expect
that the particular structure of the underlying system and the specification of
winning conditions influence in some way the running times of algorithms that
decide the game. Such an expectation would be natural, for it is known that
many algorithms for deciding McNaughton games are not efficient and do not
explicitly exploit either the structure of the underlying graphs or the form of

2

winning conditions. An exception is Zielonka [13] that shows that winners of the
McNaughton games have finite state strategies that depend on nodes that are
called useful.

The main purpose of this paper is to pursue this line of investigation a little
further in a number of cases. In particular, we provide examples of classes of
games for which the algorithms that decide these games explicitly use the nodes
at which one of the players has more than one choice to make a move. We begin
with the following definition extracted from [7]:

Definition 1. A game Γ , played between two players called Survivor and Ad-
versary, is a tuple (S ∪ A, E, Ω), where:

1. The sets S and A are disjoint and finite, with S being the set of positions
for Survivor and A the set of positions for Adversary,

2. The set E of edges is such that E ⊆ (A×S)∪ (S ×A) and for all s ∈ S and
a ∈ A there are a′ ∈ A and s′ ∈ S for which (s, a′), (a, s′) ∈ E,

3. The set Ω of winning conditions is a subset of 2S∪A.

The graph G = (V, E), with V = S ∪A, is the system or the graph of the game,
the pair Ω is the specification, and each set U ∈ Ω is a winning set.

In game Γ , a play (from p0) is an infinite sequence π = p0, p1, . . . such
that (pi, pi+1) ∈ E, i ∈ ω. Survivor always moves from positions in S, while
Adversary from A. Define Inf (π) = {p | ∃ωi : p = pi}. Survivor wins the play
π if Inf (π) ∈ Ω; otherwise, Adversary wins π. We will refer to finite initial
segments of plays as histories. A strategy for a player is a rule that specifies the
next move given a history of the play. Let f be a strategy for the player and p
be a position. Consider all the plays from p which are played when the player
follows the strategy f . We call these plays consistent with f from p.

Definition 2. The strategy f for a player is a winning strategy from p if the
player wins all plays from p consistent with f . In this case the player wins the
game from p. To decide game Γ means to find the set of all positions, denoted
by Win(S), from which Survivor wins. The set Win(A) is defined similarly3.

From the definitions above it is clear that all graphs we consider are bipartite
and directed. It is customary in the context of games to refer to members of V
as nodes rather than as more graph-theoretical vertices. For a node v of a graph
G = (V, E), we write Out(v) = {b | (v, b) ∈} and In(v) = {b | (b, v) ∈ E}.
Usually nodes of set A are denoted by a, and of set S by s, possibly with indices.

As we have already said, McNaughton’s algorithm in [7] that decides games
is inefficient. In [8] Nerode, Remmel and Yakhnis improved the algorithm by
deciding any given game Γ in O(|V |!2|V ||V ||E|)-time which is, of course, still far
from being efficient. S. Dziembowski, M. Jurdzinski, and I. Walukiewicz in [2] in-
vestigated questions related to the size of memory needed for winning strategies.
3 Any McNaughton game Γ is a Borel game. Hence, by the known result of Martin

(see [6]), Γ is determined. Therefore Win(S) ∪ Win(A) = S ∪ A.

3

In particular, they prove that for each n there is a game Γ such that the size of
V is O(n) and the memory size for finite state winning strategies for these games
are at least n factorial. A related question is under which conditions—imposed
either on the specifications or on the systems—the games are decided efficiently
and the memory size for winning finite strategies are sufficiently small. While the
present paper has some bearing on the above question, it is also a continuation
of a research trend, which we briefly summarise in the next paragraph.

Dinneen and Khoussainov have used McNaughton games for modelling and
studying structural and complexity-theoretical properties of update networks
(see [1]). A game Γ is an update game if Ω = {V }. The system (V, E) is an
update network if Survivor wins the update game. Speaking informally, Survivor
is required to update (i.e., visit) every node of the system as many times as
needed. In [1] it is shown that update games can be decided in O(|V |(|V | +
|E|))-time. Update games have been generalized in [3] to games in which the
specification Ω contains more than one set. Namely, a game Γ is a relaxed update
game if U ∩ W = ∅ for all distinct U, W ∈ Ω. It is proved that there exists an
algorithm that decides relaxed update games in O(|V |2(|V |+ |E|)))-time. In [5]
Ishihara and Khoussainov study linear games in which Ω forms a linear order
with respect to the set-theoretic inclusion. They prove that linear games can
also be decided in polynomial time with parameter |Ω|.

Clearly, in the results above, all the constraints are specification constraints.
In other words, the games are described in terms of certain properties of spec-
ifications from Ω. In addition, the results as they stand—and most of their
proofs—do not explicitly show the interplay between the structure of the under-
lying systems (V, E), the running times of algorithms that decide games, and
the specifications in Ω. We try to bridge this gap by explicitly showing how
running times of algorithms that decide certain classes of games depend upon
the structure of the systems and specifications.

Here is a brief outline of the paper. In the next section, we introduce no-
choice games and present a simple algorithm that decides them in time linear on
the size of the game. We also provide a result that shows how the structure of the
no-choice games is involved in finding finite state winning strategies with a given
memory size. In Section 3 we revisit update games, and provide an algorithm
that explicitly uses information about the number of nodes at which Adversary
can make a choice, i.e., the members of A with at least 2 outgoing edges. In
Section 4, we consider games in which specifications in Ω are closed under union.
For such union-closed games we provide a decision algorithm whose running time
depends explicitly on some structural information about the underlying systems
of games. We note that the main result of this section can be obtained from the
determinacy result of Zielonka [13]. However, our proof is direct and simple and
does not need to employ the full strength of Zielonka’s determinacy theorem.
The final section discusses some issues for future work.

4

2 No-choice games

We start off with games where the structure of the system forces one of the
players to always make a unique choice at any given node of the player. Without
lost of generality we can assume that this player is Adversary. Formally:

Definition 3. A no-choice game is a McNaughton game Γ = (V, E, Ω) such
that for all a ∈ A, s1, s2 ∈ S if (a, s1), (a, s2) ∈ E then s1 = s2.

No-choice games are one player games, with Survivor as the sole player,
because Adversary has no effect on the outcome of any play. Below we provide
a simple procedure deciding no-choice games by using Tarjan’s algorithm that
detects strongly connected directed graphs4. The algorithm is simple but shows
a significant difference between times needed to decide McNaughton games in
general case and in case of no-choice games. The following is a simple observation.

Lemma 1. If X is a strongly connected component of G in a no-choice game
Γ = (V, E, Ω) and |X| > 1, then Out(a) ⊂ X for every a ∈ A ∩ X. �	

Let Γ = (S∪A, E, Ω) be a no-choice game. Call a winning set U ∈ Ω S-closed
if Out(a) ⊆ U for every a ∈ A ∩ U , and Out(s) ∩ U
= ∅ for every s ∈ S ∩ U .
Clearly, if π is a play won by Survivor in game Γ then Inf (π) must be S-closed.
Thus, the following lemma holds true:

Lemma 2. Survivor wins the no-choice game Γ if and only if Survivor wins the
game Γ ′ which arises from Γ by removing all not S-closed winning sets. �	

Let U ∈ Ω be an S-closed winning set. Consider the game Γ (U) whose graph
is the restriction to U of the graph of Γ , and whose set of winning conditions
Ω(U) is {U}. Define the graph G(U) = (V (U), E(U)), where V (U) = S ∩ U ,
and (x, y) ∈ E(U) if and only if x, y ∈ V (U) and (x, a), (a, y) ∈ E for some
a ∈ U ∩ A. Thus, in graph G(U) there is a path between nodes p and q if and
only if there is a finite play s1, a1, . . . , an−1, sn in Γ (U) such that p = s1 and
q = sn. The following is easy:

Lemma 3. Survivor wins Γ (U) iff the graph G(U) is strongly connected. �	
Now we are ready to prove the following theorem:

Theorem 1. There exists an algorithm that decides any given no-choice game
Γ = (V, E, Ω) in O(|Ω| · (|V | + |E|))-time.

Proof. Let p be a node in V . Here is a description of a desired algorithm:

1. If there is no S-closed U ∈ Ω then declare that Survivor loses.
4 A graph G = (V, E) is strongly connected if there is path between any two nodes

of the graph. Tarjan’s algorithm detects whether or not the graph G is strongly
connected in O(|V | + |E|)-time

5

2. If none of these graphs G(U) for S-closed U ∈ Ω is strongly connected, then
declare that Survivor loses.

3. Let X be the union of all S-closed U ∈ Ω such that the graph G(U) is
strongly connected. Check whether or not there is a path from p into X. If
there is no path from p into X then declare that Survivor loses. Otherwise,
declare that Survivor wins.

It takes linear time to perform the first part of the algorithm. For the second
part, use Tarjan’s algorithm for detecting strongly connected graphs. Namely,
for each S-closed set U apply Tarjan’s algorithm to check if G(U) is strongly
connected. Hence the overall running time for the second part is proportional
to |Ω| · (|V | + |E|). For the third part, constructing X and checking if there
is a path from p to X takes linear time. Thus, the algorithm runs at most in
O(|Ω| · (|E| + |V |)-time. The correctness of the algorithm is clear. �	

Thus, the proof of Theorem 1 shows that deciding no-choice games is essen-
tially dependent on checking whether or not the graphs G(U) = (V (U), E(U)),
where U is S-closed, are strongly connected. Therefore we single out the games
that correspond to winning a single set U ∈ Ω in our next definition:

Definition 4. A basic game Γ consists of a directed graph G and player
Survivor, where Survivor is the sole player.

Given a basic game Γ , a play from a given node v0 is a sequence π =
v0, v1, v2, . . . such that (vi, vi+1) ∈ E for all i ∈ ω. Survivor wins the play if
Inf(π) = V . Otherwise, Survivor looses the play. Thus, Survivor wins the basic
game Γ iff the graph G is strongly connected.

Let Γ be a basic game. Our goal is to find finite state strategies that allow
Survivor to win the game. For this, we need to formally define finite state strate-
gies. Consider an automaton A = (Q, q0, ∆, F), where V is the input alphabet,
Q is the finite set of states, q0 is the initial state, ∆ maps Q × V to Q, and F
maps Q × V into V such that (v, F (q, v)) ∈ E for all q ∈ Q and v ∈ V .

The automaton A induces the following strategy, called a finite state
strategy. Given v ∈ V and s ∈ Q, the strategy specifies Survivor’s next
move which is F (s, v). Thus, given v0 ∈ V , the strategy determines the run
π(v0,A) = v0, v1, v2, . . ., where vi = F (qi−1, vi−1) and qi = ∆(vi−1, qi−1) for
each i > 0. If Inf(π(v0,A)) = V , then A induces a winning strategy from v0.
When Survivor follows the finite state strategy induced by Adversary, we say
that A dictates the moves of Survivor. To specify the number of states of A
we give the following definition.

Definition 5. A finite state strategy is an n-state strategy if it is induced by
an n state automaton. We call 1-state strategies no-memory strategies.

The next result shows that finding efficient winning strategies in basic games
is computationally hard. By efficient winning strategy we mean an n-state win-
ning strategy for which n is small.

6

Proposition 1. For any basic game Γ , Survivor has a no-memory winning
strategy if and only if the graph G = (V, E) has a Hamiltonian cycle. There-
fore, finding whether or not Survivor has a no-memory winning strategy is NP-
complete.

Proof. Assume that the graph G has a Hamiltonian cycle v0, . . . , vn. Then
the mapping vi → vi+1(mod(n+1)) establishes a no-memory winning strategy
for Survivor. Assume now that in game Γ Survivor has a no-memory winning
strategy f . Consider the play π = p0, p1, p2, . . . consistent with f . Thus f(pi) =
pi+1 for all i. Since f is a no-memory winning strategy we have Inf(π) = V .
Let m be the least number for which p0 = pm. Then V = {p0, . . . , pm} as
otherwise f would not be a winning strategy, and hence the sequence p0, . . . , pm

is a Hamiltonian cycle. �	
It is not hard to see that there exists an algorithm running in O(|V |2)-

time that for any given basic game in which Survivor is the winner provides an
automaton with at most |V | states that induces a winning strategy (just check
if for all x, y ∈ V there are paths connecting x to y and construct a desired
automaton) . Therefore, the following seem natural: If a player wins the game at
all, then how much memory is needed to win the game? For a given number n,
what does the underlying graph look like if the player has a winning strategy of
memory size n? We will provide answers, however, we will not give full proofs.

Our goal is to analyze the case when n = 2, that is when Survivor has a 2-
state winning strategy, as the case for n > 2 can then be derived without much
difficulty. The case when n = 1 is described in Proposition 1. The case when
n = 2 involves some nontrivial reasoning.

Case n = 2. We are interested in graphs G = (V, E) such that |In(q)| ≤ 2 and
|Out(q)| ≤ 2 for all q ∈ V . A path p1, . . . , pn in graph G is called a 2-state path
if |In(p1)| = |Out(pn)| = 2 and |In(pi)| = |Out(pi)| = 1 for all i = 2, . . . , n − 1.
If a node q belongs to a 2-state path then we say that q is a 2-state node. A
node p is a 1-state node if |In(p)| = |Out(p)| = 1 and the node is not a 2-state
node. A path is a 1-state path if each node in it is a 1-state node and no node
in it is repeated.

We now define the operation which we call Glue operation that applied to
finite graphs produces graphs. By a cycle we mean any graph isomorphic to
({c1, . . . , cn}, E), where n > 1 and E = {(c1, c2), . . . , (cn−1, cn), (cn, c1)}. As-
sume that we are given a graph G = (V, E) and a cycle C = (C, E(C)) so that
C∩V = ∅. Let P1, . . ., Pn and P ′

1, . . ., P ′
n be paths in G and C, respectively, that

satisfy the following conditions: 1) The paths are pairwise disjoint; 2) Each
path Pi is a 1-state path; 3) For each i = 1, . . . , n, we have |Pi| = |P ′

i |. The
operation Glue has parameters G, C, P1, . . ., Pn, P ′

1, . . ., P ′
n defined above. Given

these parameters the operation produces the graph G′(V ′, E′) in which the paths
Pi and P ′

i are identified and the edges E and E(C) are preserved. Thus, one can
think of the resulted graph as one obtained from G and C so that the paths Pi

and P ′
i are glued by putting one onto the other. For example, say P1 is the path

p1, p2, p3, and P ′
1 is the path p′1, p

′
2, p

′
3. When we apply the operation Glue, P1

7

and P ′
1 are identified. This means that each of the nodes pi is identified with the

node p′i, and the edge relation is preserved. Thus, in the graph G′ obtained we
have the path {p1, p

′
1}, {p2, p

′
2}, {p3, p

′
3}. It is easily checked that in the resulting

graph G′ each of the paths Pi is now a 2-state path.

Definition 6. A graph G = (V, E) has a 2-state decomposition if there is
a sequence (G1, C1), . . ., (Gn, Cn) such that G1 is a cycle, each Gi+1 is obtained
from the Gi and Ci, and G is obtained from Gn and Cn by applying the operation
Glue.

An example of a graph that admits a 2-state decomposition can be given by
taking a union C1,. . ., Cn of cycles so that the vertex set of each Ci, i = 1, . . . , n−1,
has only one node in common with Ci+1 and no nodes in common with other
cycles in the list.

Definition 7. We say that the graph G = (V, E) is an edge expansion of
another graph G′ = (V ′, E′) if V = V ′ and E′ ⊆ E.

The following theorem provides a structural characterization of those strongly
connected graphs which Survivor can win with 2-state winning strategies.

Theorem 2. Survivor has a 2-state winning strategy in a basic game Γ =
(G, {V }) if and only if G is an edge expansion of a graph that admits a 2-state
decomposition.

3 Update Games Revisited

Recall that a game of type Γ = (V, E, {V }) is called an update game; and Γ
is an update network if Survivor wins the game. In this section all the games
considered are update games. Our goal here is twofold. On the one hand, we
describe a decomposition theorem for update networks. For a full proof of this
theorem we refer the reader to [1]. On the other hand, we provide a new algorithm
for deciding update networks so that the algorithm runs in linear time on the
size of the graph given a certain set of of Adversary nodes as a parameter.
More formally, let Γ = (V, E, {V }) be an update game. Let C be the set of all
Adversary’s nodes a such that |Out(a)| > 1. In other words, C contains all nodes
at which Adversary has a choice of at least two different moves. We provide an
algorithm deciding update games, so devised that its running time shows what
role the cardinality of C plays in the decision procedure. Namely, our algorithm
depends on the parameter |C| and runs in the time k · (|V | + |E|), where k
depends on |C| linearly.

Let Γ = (V, E, {V }) be an update game. For any s ∈ S define Forced(s) =
{a ∈ As | |Out(a)| = 1}. Thus, Forced(s) is the set where Adversary is ‘forced’ to
move to s. Note the following two facts. If Γ = (V, E, {V }) is an update network
then for every s ∈ S the set Forced(s) is not empty. Moreover, if |S| ≥ 2, then
for every s ∈ S there exists an s′
= s and a ∈ Forced(s) such that (s′, a) ∈ E.
An important definition is now this:

8

Definition 8. In a game Γ , a forced cycle is a cycle (ak, sk, . . . , a2, s2, a1, s1)
such that ai ∈ Forced(si) and si ∈ S.

Forced cycles have even length, and are fully controlled by Survivor. Using
the facts above one now can show that any update network Γ with |S| > 1 has
a forced cycle of length ≥ 4. The lemma below tells us that forced cycles can be
used to reduce the size of the underlying graph and obtain an equivalent game.

Lemma 4. Let Γ be an update game with a forced cycle C of length ≥ 4. We
can construct a game Γ ′ with |V ′| < |V | such that Γ is an update network iff Γ ′

is one.

Proof (sketch). We construct the graph (V ′, E′) for Γ ′. Consider C =
(ak, sk, . . . , a2, s2, a1, s1). For new vertices s and a define S′ = (S\{s1, . . . , sk})∪
{s} and A′ = (A \ {a1, . . . , ak}) ∪ {a}. The set E′ of edges consists of all the
edges in E but not the edges in C, edges of the type (s, a′) if (si, a

′) ∈ E, or
(a′, s) if (a′, sj) ∈ E, or (s′, a) if (s′, ak) ∈ E for some si, sj , ak ∈ C. We also
put (a, s) and (s, a) into E′. Thus, the cycle C has been reduced. It is routine
to show that Γ is an update network iff Γ ′ is one. The idea is that Survivor
controls C fully.

The operation of producing Γ ′ from Γ and forced cycle C is called the con-
traction operation. In this case we say that Γ is an admissible extension
of Γ ′. Thus, for Γ ′ to have an addmisible extension Γ ′ must possess a forced
cycle of length 2. Clearly, there are infinitely many admissible extensions of Γ ′.

Definition 9. An update game Γ = (G, {V }) has a forced cycle decomposi-
tion if there exists a sequence Γ1, . . ., Γn such that |S1| = 1, |Out(s1)| = |A1|,
where S1 = {s1}, and each Γi+1 is an admissible extension of Γi, and Γn = Γ .
The sequence Γ1, . . ., Γn is called a witness for the decomposition.

Using the lemma and the definition above one can prove the following theo-
rem. The theorem gives us a complexity result one the one hand, and a descrip-
tion of update networks on the other (see [1]).

Theorem 3. There exists an algorithm that given a game Γ decides in O(|V ||E|)
time whether or not the game is an update network. Moreover, an update game
Γ is an update network if and only if it has a forced cycle decomposition.

Now we show how the set C = {a ∈ A | |Out(a)| > 1} can be used to decide
update games. Our algorithm shows that if the cardinality of C is fixed then
update games can be decided in linear time.

Let X be a subset of V in a game Γ = (G, Ω). The graph GX is defined as
the subgraph of G whose vertex set is V \X. We begin with the following simple
lemma.

Lemma 5. Assume that C is a singleton and C = {a}. If Survivor wins Γ then
In(a)
= ∅ and Out(a) is contained in a strongly connected component of G{a}.

9

Proof. It is clear that In(a)
= ∅ as otherwise a would not be visited infinitely
often in each play. Assume now that no strongly connected component of G{a}
contains Out(a). There are x, y in Out(a) such that the graph G{a} does not
contain a path from x into y. Consider the strategy that dictates Adversary to
always move to x from the node a. Then, for any play π consistent with this
strategy, Inf (π) does not contain y. Hence, Survivor cannot win Γ .

We will generalize the lemma above to the case when the cardinality of C is
greater than 1. In other words, Adversary has more than one node at which a
choice can be made. Let a1, . . . , an be all the nodes from C.

Lemma 6. Assume that Survivor wins Γ . Then the following two properties
hold true:

1. Each set In(ai) is not empty for i = 1, . . . , n.
2. There is an element b ∈ C such that Out(b) is contained in a strongly con-

nected component of GC .

Proof. The first property is clearly true as otherwise Survivor could not win the
update game Γ . We show how to prove the second property.

Take a1. Assume that no strongly connected component of GC contains
Out(a1). Then there are x1 and y1 in Out(a1) such that GC does not contain a
path from x1 to y1. We make the following claims:

Claim 1. There is an i > 1 such that for every z ∈ Out(ai) there is a path
from z to y1 in the graph GC .

In order to prove the claim assume that for each ai, i > 1, there is a zi

such that there is no path from zi into y1 in the graph GC . Define the following
strategy for Adversary. Any time when a play comes to ai, i > 1, move to zi. At
node a1 move to x1. It is not hard to see that in any play π consistent with this
strategy the node y1 does not belong to Inf (π). This contradicts the fact that
Survivor wins Γ . The claim is proved.

Without loss of generality we can assume that a2 satisfies the condition of
the claim above. If Out(a2) is contained in a strongly connected component then
the lemma is proved. Otherwise, there are x2, y2 ∈ Out(a2) such that the graph
GC does not have a path from x2 to y2. We now prove the following.

Claim 2. There is an i with 1 ≤ i ≤ n such that for every z ∈ Out(ai) there
is a path from z to y2 in the graph GC . Moreover, for any such i it must be the
case that i > 2.

Assume that a1 satisfies the claim. Then in GC there is a path from x1 to
y2. Since a2 satisfies Claim 1, in GC there is a path from y2 to y1. Then, the
path from x1 through y2 to y1 is in GC as well. This is excluded by our initial
assumptions about a1. Thus, i
= 1. Certainly a2 cannot satisfy Claim 2 either.
Then, we complete the proof of Claim 2 by repeating the argument we employed
to prove Claim 1.

Now, repeating inductively the above reasoning, and suitably renumbering
nodes, we may assume that the sequence a1, . . . , aj has the following properties:

10

1. In each Out(ak), k = 1, . . . , j − 1, there are xk, yk such that the graph GC

contains no path from xk to yk.
2. For all z ∈ Out(ak) with k = 2, . . . , j there is a path from z to yk−1 in the

graph gC .
3. {a1, . . . , aj} ⊆ C.

Now, if the set Out(aj) is not contained in a strongly connected component
of GC then there is an a ∈ C such that for all z ∈ Out(a) there is a path from
z to yj . Otherwise, one can again show that Adversary wins the game by never
moving to yj . Indeed, the assumptions above guarantee that all paths from xj to
yj go through an Adversary’s node. Therefore Adversary can avoid visiting the
node yj . This, however, contradicts the assumption that Survivor wins the game.
Moreover, as above, it can be shown that a
∈ {a1, . . . , aj}. It follows that j < n.
Thus, we can conclude that there is an i ≤ n such that Out(ai) is contained in
a strongly connected component . The lemma is proved. �	

By virtue of the lemma above we can pick an a ∈ C such that Out(a) is
contained in a strongly connected component of GC ; denote the component by
Xa. We construct a new update game Γ ′ = (V ′, E′, {V ′}) as follows:

1. V ′ = (V \ Xa) ∪ {s}, where s is a new Survivor’s node.
2. E′ = (E∩V ′2)∪{(s, a) | ∃t ∈ Xa((t, a) ∈ E}∪{(a, s) | ∃t ∈ Xa((a, t) ∈ E)}.

We refer to Γ ′ as the reduced game. The following lemma shows the use of
reduced games.

Lemma 7. Survivor wins the game Γ if and only if Survivor wins Γ ′.

Proof. Let f be Survivor’s winning strategy in Γ . We describe Survivor’s win-
ning strategy f ′ in Γ ′ obtained by simulating f . When the play takes place
outside {s}, then f ′ mimics the moves dictated by f for nodes outside Xa.
When the play arrives at s then Survivor scans f forward up to the nearest
point where f leaves Xa. Obviously such a point exists. Suppose f does so by
requiring a move to a node y
∈ Xa. Then in the game Γ ′ Survivor also moves
to y. It is not hard to see that f ′ thus described is indeed a winning strategy.

Now assume that f ′ is Survivor’s winning strategy in Γ ′. We describe Sur-
vivor’s winning strategy f in Γ by simulating f ′. When the play takes place
outside Xa then f mimics f ′. When the play arrives at Xa, the strategy f tells
Survivor to:

1. visit each node of Xa, then
2. find node y to which Survivor moves in game Γ ′ from node s according to

strategy f ′, then
3. find x ∈ Xa such that (x, y) ∈ E, and move to x inside Xa, then, finally,
4. from x move to y.

It is clear that f thus described is well-defined, i.e., Survivor can do what f
requires. That f is indeed a winning strategy is not hard to see either. �	

11

Assume that an a ∈ C is such that Out(a) is contained in a strongly con-
nected component Xa. Consider the reduced game Γ ′, and its underlying graph
G′ = (V ′, E′). The natural mapping h : V → V ′ defined by putting h(v) = s for
all v ∈ Xa, and h(v) = v otherwise, satisfies the following properties:

1. h is onto;
2. for all x, y ∈ V , (x, y) ∈ E and x, y
∈ Xa implies that (h(x), h(y)) ∈ E′;
3. X is a strongly connected component of GC if and only if h(X) is strongly

connected component of G′
C .

These observations together with Lemma 6 yield that if Survivor wins Γ ′

then there is an a ∈ C such that Out(a) is contained in a strongly connected
component of G′

C . Moreover, by Lemma 7, we can reduce the sizes of strongly
connected components to singletons one by one always arriving at an equivalent
game. This amounts to a proof of the following lemma.

Lemma 8. If Survivor wins the update game Γ then for any a ∈ C the set
Out(a) is contained in a strongly connected component of GC . �	

Now we are ready to prove a theorem.

Theorem 4. There exists an algorithm that, given an update game Γ with |C| =
n, decides whether or not Γ is an update network in running time proportional
to n · (|V | + |E|).

Proof. Our procedure uses Tarjan’s algorithm. We describe the basic steps of
our procedure. Its correctness follows from previous lemmas.

1. If C = ∅ then apply Tarjan’s algorithm to see if G is strongly connected. If
G is strongly connected then Survivor wins; otherwise Adversary wins.

2. Find all strongly connected components, X1, . . . , Xm, of GC by using Tar-
jan’s algorithm.

3. If for some a ∈ C the set Out(a) is not contained in one of the strongly
connected components X1, . . . , Xm, then Adversary wins.

4. Construct the graph G(C) = (V (C), E(C)) as follows:

(a) V ′ = (V \ ⋃
a∈C Xa) ∪ {s1, . . . , sk}, where each si is a new Survivor’s

node, and k = |C|.
(b) E′ = (E∩V ′2)∪⋃k

i=1{(si, a) | ∃t ∈ Xai
((t, ai) ∈ E}∪⋃k

i=1{(a, si) | ∃t ∈
Xai

((a, t) ∈ E)}.
5. If Survivor wins the no-choice game Γ (C) = (G(C), {V (C)}) then Survivor

wins the game Γ . Otherwise, Adversary is the winner.

It is not hard to see that the algorithm runs in the time required. �	

12

4 Union-Closed Games

In this section we focus on union-closed games, that is the games in which the
specification set Ω is closed under the set-theoretic union operation. Structurally,
it is a natural property, and we will use it in an essential way in the algorithm
deciding these games.

Let Γ be a union-closed game. Consider a ∈ A such that |Out(a)| > 1. Let
S0 and S1 be pairwise disjoint nonempty sets that partition Out(a). We define
two games Γ0 and Γ1, where Vi = V , Ωi = Ω, and Ei = E \ {(a, s) | s ∈ Si}.
In other words, in game Γi, moves of Adversary at node a are restricted to Si.
Here is the main theorem from which we will deduce an algorithm for deciding
union-closed McNaughton games.

Theorem 5. Let Γ be a union-closed game. Survivor wins the game Γ from p
if and only if Survivor wins each of the games Γ0 and Γ1 from p.

Proof. We need to prove the nontrivial direction. Let f0 and f1 be winning
strategies of Survivor in games Γ0 and Γ1, respectively. We construct the follow-
ing strategy f for Survivor in the original game Γ . Survivor that begins its play
by first emulating f0. Assume that p, p1, . . . , pn, a is the history of the play so
far, and Survivor is emulating the strategy fε, where ε ∈ {0, 1}. Now consider
Adversary’s move from a. There are two cases.
Case 1. Adversary moves into Sε. In this case, Survivor emulates fε until a is
reached again.
Case 2. Adversary moves into S1−ε by choosing an s ∈ S1−ε. In this case, Sur-
vivor scans the history h = p, p1, . . . , pn, a, s and “projects” it into the game
Γ1−ε. The “projection” is obtained from h by forgetting all the detours that
belong to the game Γε. More formally, Survivor does the following:

– scans h from the beginning up to the first appearance of a followed by a
t ∈ Sε;

– keeps scanning h up to the next appearance of a (there must be such, because
h ends with a followed by s
∈ Sε);

– forms h′ by identifying the two appearances of a in the the sequence a, s, . . . , a
and cutting off everything in between;

– repeats the procedure until the end of h.

The “projection” h′ obtained this way will be a history of a play from Γ1−ε.
The next move of Survivor then coincides with the move of Survivor in the game
Γ1−ε required by the the winning strategy f1−ε for the next step after h′.

This strategy is a winning strategy. Indeed, consider a play π consistent with
this strategy. If after a certain history h of π Adversary always moves to Sε from
a then the play π′, obtained from π by removing the initial segment h, is a play
in Γε. Then, Survivor wins π by resorting to the strategy fε after h has been com-
pleted. By symmetry, Survivor also wins any play π in which Adversary almost
always moves to S1−ε. Assume that Adversary switches infinitely often from S0

13

to S1 and back during the play. Then π can be written as π = α1β1α2β2 . . .,
where π1 = α1α2 . . . is a play in Γ0 consistent with f0 and π2 = β0β1 . . . is a
play in Γ1 consistent with f1. Therefore, Inf (π) = Inf (π1) ∪ Inf (π2). Since f0

and f1 are winning strategies for Survivor, we must have Inf (π1), Inf (π2) ∈ Ω.
By union-closedness, we get Inf (π) ∈ Ω. Thus, f is the winning strategy for
Survivor as required. �	

As a corollary we obtain a complexity-theoretic result for deciding union-
closed games. To formulate it, we need yet another definition.

Definition 10. Let Γ = (V, E, Ω) be a game. An instance of Γ is any game
Γ ′ = (V ′, E′, Ω′) such that V ′ = V , Ω′ = Ω, and E′ ⊂ E such that for every
a ∈ A the set Out(a) with respect to E′ has cardinality 1.

Now we can state:

Theorem 6. Let Γ = (V, E, Ω) be a union closed game. Let a1, . . . , ak be all
nodes in A such that ni = |Out(ai)| > 1, i = 1, . . . , k. Then the following is
true:

1. Survivor wins Γ if and only if Survivor wins every instance of Γ .
2. Deciding the game Γ takes O(n1 · . . . · nk · |Ω| · (|V | + |E|)-time.

Proof. Part 1 follows from Theorem 3. Part 2 follows from Theorem 1, the first
part of the theorem, and the fact that there are exactly n1 · . . . · nk instances of
Γ . �	
Corollary 1. If Survivor looses a union-closed game then Adversary has a no-
memory winning strategy.

Proof. By the theorem above, Adversary wins an instance of the game. Such
an instance is itself a no-choice game in which Adversary wins, and the strategy
naturally derived is a no memory strategy. �	

We note that the corollary above can be obtained from the known determi-
nacy result of Zielonka [13]. However, our proof is direct and simple and does
not need to employ the full strength of Zielonka’s determinacy theorem.

5 Concluding Remarks

In this paper we have shown that McNaughton games can be studied by exploit-
ing the relationship between specifications and the structure of the underlying
graphs. This seems to be a natural approach if one wants to find efficient algo-
rithms for deciding different classes of McNaughton games and have practical
implementations of winning finite state strategies. The ideas presented in this
paper can clearly be generalized and produce new algorithms for deciding Mc-
Naughton games. For example, we plan to investigate the question how the
cardinality of the set at which Adversary has more than one choice to make a
move can affect the complexity of decision algorithms for McNaughton games.

14

References

1. M. J. Dinneen and B. Khoussainov. Update networks and their routing strategies.
In Proceedings of the 26th International Workshop on Graph-Theoretic Concepts in
Computer Science, WG2000, volume 1928 of Lecture Notes on Computer Science,
pages 127–136. Springer-Verlag, June 2000.

2. S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How Much Memory Is Needed
to Win Infinite Games? in Proceedings of Twelfth Annual Symposium on Logic in
Computer Science (LICS 97), p.99-118, 1997.

3. H.L. Bodlaender, M.J. Dinneen and B. Khoussainov. On Game-Theoretic Models of
Networks, in Algorithms and Computation (ISAAC 2001 proceedings), LNCS 2223,
P. Eades and T. Takaoka (Eds.), p. 550-561, Springer-Verlag Berlin Heidelberg 2001.

4. Y. Gurevich and L. Harrington. Trees, Automata, and Games, STOCS, 1982, pages
60–65.

5. H. Ishihara, B. Khoussainov. Complexity of Some Infinite Games Played on Finite
Graphs, Proceedings of the 28th international workshop on graph-theoretic methods
in computer science, WG 2002, Czech republic. to appear.

6. D. Martin. Borel Determinacy. Ann. Math. Vol 102, 363-375, 1975.
7. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65:149–184, 1993.
8. A. Nerode, J. Remmel, and A. Yakhnis. McNaughton games and extracting strate-

gies for concurrent programs. Annals of Pure and Applied Logic, 78:203–242, 1996.
9. A. Nerode, A. Yakhnis, V. Yakhnis. Distributed concurrent programs as strategies

in games. Logical methods (Ithaca, NY, 1992), p. 624–653, Progr. Comput. Sci.
Appl. Logic, 12, Birkhauser Boston, Boston, MA, 1993.

10. R.E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Computing
1:2, p. 146-160, 1972.

11. W. Thomas. On the synthesis of strategies in infinite games. in: STACS 95 (E.W.
Mayr, C. Puech, Eds.), Springer LNCS 900, 1-13, 1995.

12. M. Vardi. An automata-theoretic approach to linear temporal logic. Proceedings of
the VIII Banff Higher Order Workshop. Springer Workshops in Computing Series,
Banff, 1994.

13. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200, 135-183, 1998.

