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These course notes were compiled for a series of lectures on Complexity
and Randomness at the University of Auckland, March 2003. We wish to
thank Cris Calude, Bakh Khoussainov, Andre Nies, and Ludwig Staiger for
hospitality and stimulating discussions.

Although this material contains more material than could be treated in 6
one-hour lectures, it is far from a complete overview of the subject. Planned
sections on the structure of ∆0

2, c.e. reals, computational depth, resource-
bounded measure, and learning theory were cancelled due to lack of space
and time. For a more comprehensive introduction to the subject the reader
is referred to Calude [3], Downey [7] (a preliminary version of a forthcoming
textbook by Downey and Hirschfeldt), and Li and Vitányi [30].

1 Introduction

1.1 Reals and Lebesgue measure

The topic of these notes is a mix of computability theory and measure theory.
Our computability theory notation generally follows Odifreddi [41, 42] and
Soare [48].

The Cantor space of all infinite binary sequences is denoted by 2ω. An
element X ∈ 2ω is called a real. The set of finite initial segments of reals is
denoted by 2<ω. The space 2ω is endowed with the tree topology, which has
as basic open sets

[σ] = {X ∈ 2ω : σ @ X},

where σ ∈ 2<ω. The uniform or Lebesgue measure on 2ω is defined as follows.
Every basic open set [σ] has the measure µ([σ]) = 2−|σ|, where |σ| denotes
the length of σ. (This corresponds to the length of the binary interval defined
by σ, or alternatively by the probability that an infinite sequence chosen by
random coin flips (whatever that may mean) ends up in [σ].) The Borel
subsets of 2ω are defined by closing the basic open sets under unions and
complements. The definition of the measure of basic opens extends in a
natural way to a measure for all Borel sets. This is the Borel measure on
2ω. Now if B ⊂ 2ω is a Borel set of measure 0, we think of B as being small,
and it is natural to consider all subsets of B to be small also. So we extend
the Borel measure by defining µ(A) = 0 whenever A ⊆ B for some Borel B
with µ(B) = 0. In this case we say that A is a null set. Now we say that A
is Lebesgue measurable if A = B 4 C is the symmetric difference of a Borel
B and a null set C, and in this case we define µ(A) = µ(B).

Now one may wonder which subsets of 2ω are Lebesgue measurable. This
turns out to be a difficult question, known as the measure problem. We will

1



say some words about it in section 1.4.

1.2 Martingales

A different treatment of measure is the one of Ville using martingales. A
martingale is a function d : 2<ω → R+ that satisfies for every σ ∈ 2<ω the
averaging condition

2d(σ) = d(σ0) + d(σ1). (1)

Similarly, d is a supermartingale if d satisfies

2d(σ) ≥ d(σ0) + d(σ1). (2)

A (super)martingale d succeeds on a set A if lim supn→∞ d(A�n) = ∞. We
say that d succeeds on, or covers, a class A ⊆ 2ω if d succeeds on every
A ∈ A. The success set S[d] of d is the class of all sets on which d succeeds.
Below we prove that the class of sets of the form S[d] coincides with the
class of Lebesgue null sets.

Lemma 1.2.1 Let d be a (super)martingale. For any string v and any

prefix-free set X ⊆ {x : v v x} it holds that 2−|v|d(v) ≥
∑

x∈X

2−|x|d(x).

Proof. It suffices to prove this for finite X (Bolzano-Weierstrass). Use
induction on the cardinality of X. The base step ‖X‖ = 1 is immediate
from (2). Suppose the lemma holds for all X of cardinality n. Let X be
prefix-free and of cardinality n+ 1. Choose w of maximal length such that
X ⊆ {x : w v x}. Then both X0 = {x ∈ X : w0 v x} and X1 = {x ∈ X :
w1 v x} have cardinality less than or equal to n. It follows by induction
hypothesis that

∑

x∈X

2|w|−|x|d(x) =
1

2

∑

x∈X0

2|w0|−|x|d(x) +
1

2

∑

x∈X1

2|w1|−|x|d(x)

≤
1

2
(d(w0) + d(w1))

≤ d(w).

Since any v with X ⊆ {x : v v x} satisfies v v w and by (2) it holds that
d(w) ≤ 2|w|−|v|d(v) the lemma follows by multiplying the above equations
with 2−|w|. �

The following result is sometimes called “Kolmogorov’s inequality for
martingales”.
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Lemma 1.2.2 (Ville [56]) Let d be a (super)martingale and define

Sk[d] =
{
X ∈ 2ω : (∃σ @ X)

[
d(σ) ≥ k

]}
.

Then µ(Sk[d]) ≤ d(λ)k−1.

Proof. Let X ⊆ Sk[d] be prefix-free such that µ(X) = µ(Sk[d]). By
Lemma 1.2.1 we have

k · µ(X) = k
∑

x∈X

2−|x| ≤
∑

x∈X

2−|x|d(x) ≤ d(λ).
�

Theorem 1.2.3 (Ville [56]) For any class A ⊆ 2ω the following statements
are equivalent:

(i) A has Lebesgue measure zero,

(ii) There exists a martingale that succeeds on A.

Proof. (i)⇒(ii). Suppose µ(A) = 0. Then there are open sets Uk ⊆ 2ω such
that A ⊆

⋂
k Uk and µ(Uk) ≤ 2−k. Define the martingales dk by

dk(σ) = µ(Uk|σ) :=
µ(Uk ∩ [σ])

µ([σ])
,

and define

d(σ) =

∞∑

k=0

dk(σ).

Then d(σ) ≤
∑

k 2|σ|−k < ∞ and d is a martingale because every dk is. If
A ∈

⋂
k∈ω Uk then for all k there exists σ @ A such that ∀i = 1 . . . k. dk(σ) ≥

1, hence d(σ) ≥ k, and thus A ∈ S[d].
(ii)⇒(i). Suppose that martingale d succeeds on A. Then by Lemma 1.2.2
the open sets Sk[d] defined there have measure smaller than d(λ)k−1, so A
has measure zero. �

1.3 Three elementary theorems

A measurable set A ⊆ 2ω has density d at X if

lim
n→∞

µ(A|X�n) := lim
n→∞

µ(A∩ [X�n])2n = d.

Define φ(A) = {X ∈ 2ω : A has density 1 at X}. Note that A has density 0
at each point of φ(A).

3



We now prove a classical theorem of Lebesgue. The proof is essentially
the proof given in Oxtoby [43, p17]. The proof below is somewhat simpler
because the basic open sets [x] have a more specific form than an arbitrary
real interval.

Theorem 1.3.1 (Lebesgue Density Theorem) If A is measurable then so
is φ(A), and µ(A4φ(A)) = 0.

Proof. It suffices to show that A − φ(A) is a null set since φ(A) − A ⊆
A− φ(A) and A is measurable. Define for every positive rational ε

Bε = {X ∈ A : lim inf
n→∞

µ(A∩ [X�n])2n < 1− ε}.

Then A−φ(A) =
⋃

ε Bε, hence it suffices to prove that every Bε is a null set.
Suppose for a contradiction that for B = Bε we have that the outer measure
µ∗(B) := inf{µ(U) : B ⊆ U ∧ U open} > 0. Then there exists G ⊇ B open
with µ(G)(1 − ε) < µ∗(B). Define

I = {x ∈ 2<ω : [x] ⊆ G ∧ µ(A∩ [x]) < (1− ε)2−|x|}.

Then
(i) for any X ∈ B, I contains X�n for some n, and
(ii) if {xi}i∈ω is a prefix-free set of elements of I then µ∗(B−

⋃
i[xi]) > 0.

The first statement holds since G is open and the second statement holds
because µ∗(B ∩

⋃
i[xi]) ≤

∑
i µ(A∩ [xi]) <

∑
i(1− ε)2−|xi| ≤ (1− ε)µ(G) <

µ∗(B).
Construct a sequence {xi}i∈ω as follows. Let x0 in I be arbitrary, and if

xi, i ≤ n are defined such that {x0, . . . , xn} is prefix-free, define xn+1 ∈ I
of minimal length such that the set {x0, . . . , xn+1} is again prefix-free.

Now let X ∈ B −
⋃

i[xi]. X exists by (ii). By (i), let x ∈ I be such
that X ∈ [x]. Let k be the smallest number with [x] ∩ [xk] 6= ∅. Note that
k exists because there are only finitely many y ∈ I of length shorter than
x, so either x = xk or xk @ x for some k. In both cases X ∈ [x] ⊆ [xk],
contradicting that X was not in

⋃
i[xi]. �

Next we prove a classical theorem from computability theory: Sacks’
theorem on the measure of upper cones.

Theorem 1.3.2 (Sacks [45]) For every noncomputable set A ∈ 2ω the upper
cone

A≤T = {B : A ≤T B}

has measure zero.
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Proof. Let A be an element of 2ω such that µ({B : A ≤T B}) 6= 0. Note that
this set is measurable hence must have positive measure. We will show that
A is computable. For two classes C and D define µ(C|D) = µ(C ∩ D)/µ(D)
and for a formula P write µ(P (B)) for µ({B ∈ 2ω : P (B)}). Since {B :
A ≤T B} =

⋃
e{B : A = {e}B} has positive measure there exists e ∈ ω

such that µ({B : A = {e}B}) > 0. It follows from Theorem 1.3.1 that there
is a point X ∈ 2ω such that A has density 1 at X. From this follows the
existence of a σ ∈ 2<ω such that µ(A = {e}B |[σ]) ≥ 3/4. Using σ we can
compute A as follows. For any x ∈ ω the sets Tn = {X A σ : {e}X (x)↓= n}
are uniformly c.e., so we can enumerate the Tn’s, Tn =

⋃
s Tn,s, until we find

n with µ(Tn,s) ≥ 3/4. Then A(x) = n. �

Next we prove Kolmogorov’s 0-1 law for measurable sets. As Sacks’
theorem above, it can be proved directly, but it also follows very quickly
from Lebesgues density theorem. (This was pointed out to us by Jack Lutz.)

Definition 1.3.3 E ⊆ 2ω is a tail set if A is closed under finite variances,
i.e., if v ∈ 2<ω and X ∈ 2ω are such that vX ∈ E then wX ∈ E for every
string w of length |v|.

Theorem 1.3.4 (Kolmogorov’s 0-1 law) If A ⊆ 2ω is a measurable tail set
then either µ(A) = 0 or µ(A) = 1.

Proof. Suppose µ(A) > 0. By Theorem 1.3.1, choose X ∈ A such that A
has density 1 at X. Let ε ∈ (0, 1) be arbitrary. Choose n large enough such
that µ(A ∩ [X�n])2n > 1 − ε. Because A is a tail set we then have that
µ(A ∩ [w])2n > 1 − ε for any w of length n. So µ(A) > 1 − ε. Since ε was
arbitrary it follows that µ(A) = 1. �

1.4 Measure and set theory

We do not give a full treatment of the measure problem here, but merely
make some remarks about it. First, it is well-known that under AC there are
nonmeasureable sets, using Vitali’s construction. Solovay [50] proved that,
assuming that there exists an inaccessible cardinal, there is a model of set
theory in which all sets of reals are Lebesgue measurable. More precisely,
Con(ZFC + ∃inaccessible) → Con(ZF + DC + all sets of reals measurable).

We now prove that under AD, the axiom of determinacy, every set of
reals is Lebesgue measurable. Since AD is game theoretic, it is natural to
use Ville’s game theoretic characterization of measure from Theorem 1.2.3.
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The proof below is a variant of the proof using Harringtons covering game
[14, p552], [37, p424], [18, p307].

Given a set A ⊆ 2ω, consider the following betting game G(A):

I : a0 a1 a2 . . .
II : (d(a00), d(a01)) (d(a0a10), d(a0a11)) . . .

Here every ai ∈ {0, 1}, so player I plays A = (ai)i∈ω ∈ 2ω, and for every n,
d(A�n) ∈ Q≥0, d(∅) = 1, and

d(A�n) ≥
d(A�n 0̂) + d(A�n 1̂)

2
(3)

Player I wins if A ∈ A and A 6∈ S[d] = {X : lim supn d(X�n) = ∞}.
A strategy for II is a martingale d : 2<ω → Q≥0.

Lemma 1.4.1 (Compare [14, p552]) (AD) When A ⊆ 2ω is such that every
measurable B ⊆ A is a null set, then A is also a null set.

Theorem 1.4.2 (AD) Every A ⊆ 2ω is measurable.

Proof. Since every A always has an outer measure we always have a mea-
surable X ⊇ A such that X − A does not contain any measurable subsets
of measure 0. By Lemma 1.4.1 it follows that X − A is null, hence A is
measurable, with measure µ(X ). �

Proof of Lemma 1.4.1. Let A ⊆ 2ω be as in the lemma.
Claim: I does not have a winning strategy for G(A).
Proof of claim: Suppose I does have winning strategy σ. Consider B =
{σ ∗ τ : τ is strategy for II }. Then B is measurable (being Σ1

1, cf. [14, Thm
94], [37, p301]. Alternatively, directly construct a martingale that succeeds
on B), and because σ is winning we have B ⊆ A. Hence by hypothesis
µ(B) = 0. By Theorem 1.2.3 there is a martingale d that wins on B, but
since such a d is a strategy that defeats σ this contradicts that σ is winning.

So by determinacy we have that II has a winning strategy. (AD says that
every Gale-Stewart game is determined. It is easy to see that this implies
also the determinacy of variants such as the betting game G(A) above.) But
such a strategy is a martingale that wins on A, so again by Theorem 1.2.3
we have that µ(A) = 0. �
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2 Random finite strings

According to classical probability theory, based on measure theory, every
real is just as probable as another one. Also, for a fixed length n, every
string of length n is just as probable as another. Yet we feel that there
are great qualitative differences between strings. E.g. the sequence 000 . . . 0
consisting of 100 zeros appears to us to be special among all strings of length
100. This is part of the motivation of introducing a complexity measure for
individual strings and reals. General introductions to this area are Calude
[3] and Li and Vitányi [30]. Our notation in this section mainly follows [30].2

2.1 Plain Kolmogorov complexity

Fix a universal Turing machine U . Given a string σ ∈ 2<ω, define the plain
Kolmogorov complexity of σ as

C(σ) = min{|τ | : U(τ) = σ}.

Basic facts of C:

• The choice of U matters only an additive constant in the theory.

• For all σ, C(σ) ≤ |σ|+O(1).

• We can define σ to be k-random if C(σ) ≥ |σ| − k. An easy counting
argument shows that random strings exist: Given length n, there are

n−k−1∑

i=0

2−i = 2n−k − 1

programs of length < n−k, so there are 2n−2n−k+1 k-random strings
of length n.

• For every k, the set of k-random strings is an immune Π0
1 set, i.e.

it does not contain any infinite c.e. subsets. Namely suppose it is
not immune. Then for every m we can compute a string ψ(m) with
C(ψ(m)) ≥ m. But then m ≤ C(ψ(m)) ≤ logm + O(1), which can
only be true for finitely many m, a contradiction.

2There are two traditions of notation in the theory of Kolmogorov complexity. One
is the C/K tradition which uses C to denote the plain Kolmogorov complexity and K
for the prefix-free complexity. The other tradition uses K and H. In these notes we will
follow the first tradition.

7



• As a corollary to the previous item we obtain

– C is not computable

– If m(x) = min{C(y) : y ≥ x}, then m is unbounded (because we
run out of short programs), but

– m grows slower than any partial recursive function (since other-
wise we could enumerate infinitely many high-complexity strings,
which is impossible by immunity, see above).

We would like to extend the definition of randomness for finite strings to a
definition for infinite strings. Naively, we could define a real A to be random
if and only if for some k every σ @ A would be k-random. However, such
reals do not exist! We see this using the following argument by Katseff [16].
Suppose A�m is the n-th binary string. Then from the length of A�n we can
recover A�m, which is of length log n. This gives

C(A�n) ≤ C(A�m+ 1 . . . n) ≤ n− log n+O(1).

Namely first generate C(A�m+1 . . . n). Compute n from its length n−log n.
Then recover A�m.

So we see that for any real A, infinitely often the length of A�n codes
extra information. Chaitin and Levin argued that only the bits of A should
count in measuring its complexity. This prompted them to introduce (dif-
ferent versions of) K, the prefix-free complexity of the next section.

2.2 Prefix-free complexity

Call a Turing machine T a prefix machine if dom(T ) ⊆ 2<ω is prefix-free. It
is easy to construct a universal prefix machine U :

U(〈m,σ〉) = Tm(σ),

for an effective enumeration T0, T1, . . . of all prefix machines. Here 〈m,σ〉
denotes a prefix encoding of the pair (m,σ).

Now we can define the prefix-free complexity of a string σ as

K(σ) = min{|τ | : U(τ) = σ}.

Basic facts of C:

• Again, the choice of U matters only an additive constant in the theory.
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• The prefix encoding σ̂ = 1|σ|0σ gives K(σ) ≤ 2|σ|+O(1).

• The prefix encoding |̂σ|σ gives K(σ) ≤ |σ|+ 2 log |σ|+O(1).

• Unlike C, K is subadditive:

K(x, y) := K(〈x, y〉) = K(x) +K(y) +O(1).

(Simply concatenate programs for x and y. Because the set of pro-
grams is prefix-free, we do not need a special encoding to separate
programs.)

• All facts about the computability of C and the immunity of the high-
complexity strings also hold for K.

• Almost all σ have high K-complexity. This counting argument (which
was easy for C) is now much harder! It will be proved in Theorem 2.6.3.

The naive approach to define a real to be random if and only if all its
initial segments have high Kolmogorov complexity, which failed for C, does
work for K, as we shall see in section 3.1.

2.3 Kraft inequality, Shannon-Fano code

In the following we will make extensive use of the next easy theorem. A
prefix code is a prefix-free subset of 2<ω. The elements of a prefix code are
its code words.

Theorem 2.3.1 (Kraft [22]) Let l1, l2, l3, . . . be a sequence of natural num-
bers, possibly with repetitions. Then there is a prefix code with the li as the
lengths of its code words if and only if

∑
i 2−li ≤ 1.

Proof. For the ‘only if’ direction, note that a prefix code corresponds with
an open subset of 2ω, and that

∑
i 2

−li is precisely the measure of this open
set, and hence bounded by 1.

For the ‘if’ direction, enumerate a set of code words as follows. Set off
intervals in 2ω of length li, going from left to right. If the sequence li is
nondecreasing, which we may assume here, then all these intervals are in
fact of the form [σ]. Choose the σ as code words. �

Chaitin [5] (see also [6, p113]) proved the following extension of Krafts
theorem: Let a c.e. set of requirements (xk, nk), k ∈ ω, be given. (Again
there may be repetitions.) We think of (xk, nk) as saying that we want a
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code word of length nk for xk. Then, if
∑

k 2−nk ≤ 1 one can construct
a prefix machine M whose domain is a prefix code that satisfies all the
requirements, i.e. such that for all x and n,

∣∣{σ : |σ| = n ∧ M(σ) = x}
∣∣ =∣∣{k : (xk, nk) = (x, n)}

∣∣. The enumeration of code words runs as follows.
Initially all code words in 2<ω are available. If a code word is enumerated, it
and all its prefixes and extensions become unavailable. Given code words of
lengths l1, . . . , ln, enumerate the lexicographically first available code word
of length ln+1. A full proof that in assigning code words one never runs out
of available strings (under the condition

∑
k 2−nk ≤ 1) is in Calude [3, p49

ff.].
The construction of M is sometimes referred to as “Chaitin-simulation”,

and the existence of M as the Kraft-Chaitin theorem.

Next we explain a similar result, the Shannon-Fano code [47]. (See also
[30, p63,p224].) The idea of the Shannon-Fano code is that symbols with
high probabilities receive short code words σ. The code word σ will be
defined by the largest binary interval included in the interval of length the
probability.

A discrete semimeasure is a function P : ω → R such that
∑

x P (x) ≤ 1.

Theorem 2.3.2 (Shannon-Fano code [47]) Given a discrete semimeasure
P on ω, there is a prefix code E such that for the x-th code word E(x) it
holds that |E(x)| ≤ − log P (x) + 2.

Proof. As in the proof of Krafts Theorem, set off intervals Ix of length P (x)
from left to right. Since the numbers − logP (n) need not be integers, we
cannot assume the n-th interval to be a binary interval. Let ix be the length
of the longest binary interval included in Ix. If there are 3 consecutive binary
intervals of size 2−n in Ix there is also a binary interval of size 2 · 2−n in it.
So ix ≥

P (x)
3 , hence − log ix ≤ − logP (x) + log 3 ≤ − log P (x) + 2. Now let

E(x) be the binary code word corresponding to the leftmost binary interval
of length ix. �

2.4 The universal semimeasure m

• Recall from the previous section that a discrete semimeasure is a func-
tion P : ω → R such that

∑
x P (x) ≤ 1.

• P0 is universal for a class of semimeasures M if P0 multiplicatively
dominates M: (∀P ∈M)(∃c > 0)(∀x ∈ ω)

[
P0(x) ≥ cP (x)

]
.
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• A Σ1-function is a function whose values are computably approximable
from below. E.g. −C and −K are Σ1-functions.

• There is a universal Σ1-semimeasure m (Zvonkin and Levin [60]):
Let P1, P2, . . . be an effective enumeration of all Σ1-semimeasures
(such an enumeration is easily seen to exist: Effectively enumerate
all Σ1-functions P , and redefine P to be constant 0 from a point
onwards if the sum

∑
x P (x) becomes to large), and define m(x) =∑

n 2−nPn(x). (We will construct universal objects in a similar way
in Theorem 3.2.1 and section 3.5.) An alternative definition for m is
m(x) =

∑
n 2−K(n)Pn(x).

• Of course we are using Σ1-semimeasures, since Σ1-measures P with∑
x P (x) = 1 are computable and the computable semimeasures have

no universal element. (This last fact can be proved by a direct di-
agonalization: Suppose P is universal. Build Q such that (∀c >
0)(∃x)

[
Q(x) > cP (x)

]
. This works because P (x) → 0.)

• We see that m is not computable and that
∑

xm(x) < 1.

2.5 A priori probability

• Let T be a prefix machine (see section 2.2). Define

QT (x) =
∑

T (σ)=x

2−|σ|,

the probability that T computes x. (We will have to say more about
such probabilities in section 3.3.)

• By taking for T a universal prefix machine U we obtain the universal
a priori probability QU (Solomonoff [49]).

• QU is very important for learning theory. Solomonoff proposed to use
QU as a universal prior in Bayes’ rule:

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)
.

This may be seen as a solution to the old philosophical problem of
what to choose as a prior.

11



2.6 Coding, symmetry, and counting

The next theorem relates the subjects of the previous three sections:

Theorem 2.6.1 (Coding Theorem, Levin [29, 60], Chaitin [5]) Up to an
additive constant, for all x

− log m(x) = − logQU (x) = K(x).

Proof. To be provided during the course. �

Recall that K(x, y) is defined as K(〈x, y〉).

Theorem 2.6.2 (Symmetry of Information, Levin)

K(x, y) = K(x) +K(y|x,K(x)) +O(1).

Hence
K(x) +K(y|x,K(x)) = K(y) +K(x|y,K(y)) +O(1).

Proof. To be provided during the course. �

Theorem 2.6.3 (Counting Theorem, Chaitin [5])

(i) max
{
K(x) : |x| = n

}
= n+K(n) +O(1).

(ii)
∣∣{x : |x| = n ∧ K(x) ≤ n+K(n)−r}

∣∣ ≤ 2n−r+O(1), where the constant
O(1) does not depend on n and r.

Proof. To be provided during the course. �

3 Random infinite strings

3.1 Various approaches in historical order

Among the oldest definitions of randomness are the definitions saying that
a random sequence should have certain stochastic properties, such as be-
ing normal in the sense of Bernoulli. These approaches have been quite
important for the subject, and many interesting and deep theorems have
been proven about them, but we will not treat them here. For a discus-
sion of stochasticity properties see we refer the reader to Ambos-Spies and
Kučera [1].

Below, we restrict ourselves to those definitions of randomness that use a
constructive version of Lebesgue measure or that use a constructive version
of Ville’s game-theoretic martingale framework.

A ⊆ 2ω is a Σ0
1-class if there is a c.e. A ⊆ 2<ω such that A =

⋃
σ∈A[σ].

12



Definition 3.1.1 (Martin-Löf [35]) A set of reals A ⊆ 2ω is Martin-Löf
null (or Σ1-null) if there is a uniformly c.e. sequence {Ui}i∈ω of Σ0

1-classes
(called a Martin-Löf test) such that µ(Ui) ≤ 2−i and A ⊆

⋂
i Ui. A ∈ 2ω is

Martin-Löf random, or Σ1-random, if {A} is not Σ1-null.

Definition 3.1.2 (Schnorr [46]) A Schnorr test is a Martin-Löf test {Ui}i∈ω

with the additional property µ(Ui) = 2−i. Equivalently, the sequence of reals
µ(Ui) is a uniformly computable sequence of computable reals. A is Schnorr
null if A ⊆

⋂
i Ui for some Schnorr test {Ui}i∈ω, and A is Schnorr random

if {A} is not Schnorr null.

Definition 3.1.3 (Solovay [51]) A real A is Solovay random if for all uni-

formly c.e. sequences {Ui}i∈ω with
∞∑

i=0

µ(Ui) < ∞, A ∈ Ui for only finitely

many i. Note that the definition does not change if we replace the Σ0
1-classes

Ui by intervals [σi] here.

Definition 3.1.4 (Chaitin [5]) A real A is Chaitin random (or Kolmogorov-
Chaitin random) if there is a constant c such that K(A�n) ≥ n − c for
every n.

Definition 3.1.5 (Schnorr [46], Lutz [31, 32]) A real A is computably
random if there is no computable martingale succeeding on A.

There are more definitions of random reals in the literature (see e.g. [17,
26, 30, 57]), but we will not discuss these here. In the following, we will make
use of some of the above definitions in relativized form, though. Relativiz-
ing computable randomness to K, the halting set, yields ∆2-randomness,
and relativizing Schnorr randomness to K yields Schnorr ∆2-randomness.
Relativizing Martin-Löf’s Σ1-randomness to K yields Σ2-randomness.

In section 3.2 we will prove that a real A is Martin-Löf random if and
only if it is Solovay random if and only if it is Chaitin random. Also, we
will prove that the following sequence of measure zero notions is strictly
increasing in strength.

(i) Schnorr null

(ii) computably null

(iii) Σ1-null

(iv) Schnorr ∆2-null

13



(v) ∆2-null

(vi) Σ2-null

From the definitions it is immediate that (i)⇒(ii)⇒(iii). (ii) 6⇒(i) was proved
by Wang, (Theorem 3.2.8, see also Theorem 3.2.9), and (iii)6⇒(ii) follows
since the computable sets have Σ1-measure zero. (This does not immediately
imply that Σ1-randomness is different from computable randomness. This
will be proved in Theorem 3.2.7.) The strict implications (iv)⇒(v)⇒(vi)
follow from relativizing this. (iii)⇒(iv) follows because given a Martin-Löf
test {Ui}i∈ω, with K we can exactly compute µ(Ui) for every i, so {Ui}i∈ω

is automatically a K-computable Schnorr test. Finally, (iv)6⇒(iii) because,
as noted above, there are A ∈ ∆2 such that {A} is not Σ1-null, whereas
for every A ∈ ∆2 we have that {A} is mod-∆2-null. So (i)−(vi) is indeed a
sequence of notions of measure 0 increasing in strength.

A martingale characterization of Definition 3.1.2 will be given in sec-
tion 3.5.

3.2 Several equivalences and separations

We start off by giving some basic facts about Martin–Löf randomness. The
next theorem shows that there is a universal Martin-Löf null set:

Theorem 3.2.1 (Martin-Löf [35]) There exists a universal Martin-Löf test.
That is, there is a computable sequence of Σ0

1 classes U0,U1, . . . such that

• U0 ⊇ U1 ⊇ . . .

• ∀n (µ(Un) < 2−n)

• for any Σ0
1-approximable class A we have A ⊆

⋂
n Un.

Proof. Our presentation follows Kučera [23]. For every n construct a c.e.
set Un ⊆ 2<ω as follows. For every e > n, Un enumerates all the elements of
W{e}(e) (where we take this set to be empty if {e}(e) is undefined) as long
as µ(W{e}(e)) < 2−e. Define Un = Ext(Un). Then µ(Un) <

∑
e>n 2−e =

2−n, and if {e} defines a Martin-Löf test then for every n there exists by
padding i ∈ ω (in fact, infinitely many i) such that W{e}(i) ⊆ Un (if i > n
is an alternative code for e then W{e}(i) = W{i}(i) ⊆ Un), so

⋂
iW{e}(i) ⊆⋂

n Un. �

Definition 3.2.2 For every n, denote by Un the Σ0
1 class from the above

proof. Define Pn to be the complement of Un.

14



Define the left shift T : 2ω → 2ω by T (C)(n) = C(n+ 1). Let T k denote
the k-iteration of T .

Theorem 3.2.3 (Kučera) For every Σ1-random C there exists k ∈ ω such
that T k(C) ∈ P0.

Proof. For a set of initial segments Σ and a class A define ΣˆA = {σˆA :
σ ∈ Σ ∧ A ∈ A}, where σˆA denotes the concatenation of σ with the
characteristic sequence of A. Fix a c.e. set U0 that defines the Σ0

1 class U0.
By induction define U 1

0 = U0 and Uk+1
0 = U0ˆU

k
0 .

Now by q = µ(U0) < 1 there is an l ∈ ω such that ql < 1/2, so µ(Ukl
0 ) =

qkl < 2−k. It follows that the sequence

U0, U
l
0, U

2l
0 , . . .

constitutes a Martin-Löf test. Therefore, if C is Σ1-random then either
C 6∈ U0, i.e. C ∈ P0 and we are done, or for some k > 0 we have C ∈ U kl

0

and C 6∈ U
(k+1)l
0 . But the latter means that T k′(C) 6∈ U0 for some k′, so

T k′(C) ∈ P0. �

Theorem 3.2.4 (Solovay [51]) A ∈ 2ω is Solovay random if and only if it
is Martin-Löf random,

Proof. It is immediate from the definitions that every Solovay random real is
Martin-Löf random. For the other direction, suppose that X is Martin-Löf
random and that {In}n∈ω is a computable sequence of intervals such that
∞∑

n=0

|In| <∞. Without loss of generality,

∞∑

n=0

|In| < 1. Define

Vk =
{
Y : Y ∈ In for ≥ 2k many In

}
.

Then 2kµ(Vk) ≤
∑∞

n=0 |In| < 1. (It suffices to prove this for any finite
collection of In’s, with induction on the number of In’s.) It follows that
{Vk}k∈ω is a Martin-Löf test, and thus X 6∈

⋂
k Vk. �

Theorem 3.2.5 (Schnorr, see Chaitin [5]) A ∈ 2ω is Martin-Löf random
if and only if it is Chaitin random, i.e. there is a constant c such that
K(A�n) ≥ n− c for every n.

Proof. (Only if) Define Uk =
{
X : ∃n K(X�n) ≤ n − k

}
. That this is a

test follows from the Counting Theorem 2.6.3. Namely, by Theorem 2.6.3
we have for all n and k that

µ
({
X : K(X�n) ≤ K(n) + n− k

})
≤ 2−k+O(1),
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where the O(1) does not depend on n and k. Subtracting K(n) from k we
obtain,

µ
({
X : K(X�n) ≤ n− k

})
≤ 2−K(n)−k+O(1),

Hence µ(Uk) ≤ 2−k+O(1)
∑

n 2−K(n) ≤ 2−k+O(1), so {Uk}k∈ω is a test. So if
A is Martin-Löf random then there is k such that A 6∈ Uk.

(If) Suppose that {Uk} is a Martin-Löf test. Define

L =
{
|σ| − k : σ ∈ U2k, k > 1

}
.

L is c.e., and L satisfies Kraft:

∑

k>1

∑

σ∈U2k

2−|σ|+k =
∑

k>1

2kµ(U2k) ≤
∑

k>1

2k2−2k =
∑

k>1

2−k ≤ 1.

So by Kraft-Chaitin (page 9) there is a prefix code assigning strings of length
|σ| − k to σ, i.e. there is prefix-free machine T such that

KT (σ) ≤ |σ| − k

for all σ ∈ U2k, k > 1. Since K is additively optimal, if A ∈
⋂

k Uk then for
all k there is n such that A�n ∈ U2k, so

K(A�n) ≤ KT (A�n) +O(1) ≤ n− k +O(1). �

Recall that a real A is computably random if and only if there is no
computable martingale d such that lim supn d(A�n) = ∞. The next lemma
says that the definition does not change if we replace ‘limsup’ by ‘lim.’

Lemma 3.2.6 (Savings Lemma, Lutz) For every computable martingale d
there is a computable martingale d′ such that S[d] ⊆ {A : limn d

′(A�n) =
∞}.

Proof. Without loss of generality suppose d(λ) = 1. Define d′ by using the

same betting percentages
d(σi)

d(σ
, i ∈ {0, 1}, at every point in the tree, but

by letting d′ save one dollar every time its value becomes bigger than 2, and
use the other dollar for betting. If d becomes infinitely large, d′ will become
bigger than 2 infinitely often, since it is using the same betting strategy, and
hence d′ will be saving infinitely many dollars. �

Theorem 3.2.7 (Schnorr [46, Satz 7.2]) There is a computably random real
that is not Martin-Löf random.
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Proof. We follow some notes of Lutz and Gasarch from around 1991. This
proof is essentially the same as Schnorr’s proof. We use Lemma 3.2.6 saying
that that randomness using “lim sup” in the definition of success of a mar-
tingale is equivalent to randomness defined using just “lim”. Let Un be a
sequence of c.e. open sets such that Un ⊇ Un+1 and ML-RANDc =

⋂∞
n=0 Un

(see Theorem 3.2.1). Let d0, d1, d2, . . . be a (necessarily noneffective) enu-
meration of all computable martingales d such that d(λ) = 1. We construct
A ∈ compRAND \ML-RAND as a union of initial segments A =

⋃∞
k=0wk.

We define wk and numbers lk with the properties
(i) wk @ wk+1,
(ii) [wk] ⊆ Uk,
(iii)

∑k
j=0 2−ljdj(wk) ≤ 1− 2−k.

Item (ii) guarantees that for every k it holds that A ∈ Uk, hence A 6∈
ML-RAND, and item (iii) guarantees that limn→∞ dj(A�n) < ∞ for every
j, so A ∈ compRAND.

Define lk and wk with induction as follows. Let l−1 = 0 and w−1 = λ.
Suppose that lk and wk satisfying (i), (ii), and (iii) are defined. Let lk+1 =
|wk|+ k + 2 and define d̃ =

∑k+1
j=0 2−ljdj . Then

d̃(wk) ≤ 1− 2−k + 2−lk+1dk+1(wk)

≤ 1− 2−k + 2−lk+12|wk|

= 1− 2−k + 2−(k+2)

< 1− 2−(k+1).

By direct diagonalization there exists Y ∈ [wk] ∩ COMP such that d̃(w) ≤
1 − 2−(k+1) for every w with wk v w @ Y . Because Y ∈ COMP ⊆
ML-RANDc ⊆ Uk+1 and this last set is open there exists wk @ wk+1 @ Y
such that [wk+1] ⊆ Uk+1. This wk+1 clearly satisfies (i), (ii), and (iii). �

Theorem 3.2.8 (Wang [58]) There exists a Schnorr random real that is
not computably random.

Theorem 3.2.9 (Terwijn [53]) There exists a subset A of COMP such that
A has computable measure 0 but not Schnorr measure 0.

Proof. For every number n = 〈e, f〉 recursively define a set of numbers
{〈yn

m, z
n
m〉 : m ∈ ω} as follows. Let yn

0 = zn
0 = n. If 〈yn

m−1, z
n
m−1〉 is defined

let 〈yn
m, z

n
m〉 be the smallest number such that yn

m ≥ zn
m, and

2yn
m−1+1 < ϕf,yn

m
(zn

m)↓ (4)
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if this exists and let 〈yn
m, z

n
m〉 be undefined otherwise.

Call a number 〈e, f〉 a Schnorr-test if ϕe is a martingale with ϕe(λ) = 1 and
ϕf is a monotonic unbounded function. For every Schnorr-test n = 〈e, f〉
define a computable set An that escapes n: Let An�n = ∅�n and define
An(n) = 1, so that 0n1 @ An and the number n is coded in this way into
the initial segment of An. Since ϕe is a martingale and ϕf is unbounded
we can recursively define the rest of An as follows. Given An�yn

m−1, define
An�yn

m to be the (lexicographically) first string σ of length yn
m such that

(An�yn
m−1)1 v σ and

(∀j)[ yn
m−1 < j < |σ| − 1 → ϕe(σ�j) ≥ ϕe(σ�j + 1) ] (5)

i.e. the martingale ϕe does not grow along σ. For every An defined in this
way we have

ϕe(An�yn
m) ≤ ϕe((An�yn

m−1)1) (ϕe does not grow)

≤ 2yn
m−1+1 (∀w(ϕe(w) ≤ 2|w|))

< ϕf,yn
m

(zn
m)↓ (by (4))

≤ ϕf (yn
m) (yn

m ≥ zn
m and ϕf is monotone)

Thus, by (5) we have

(∀i > n)[ ϕe(An�i) < ϕf (i) ],

and hence A〈e,f〉 6∈ Sϕf
[ϕe]. Now define A = {An : n is a Schnorr-test}

Then there is no Schnorr-test 〈e, f〉 such that A ⊆ Sϕf
[ϕe], and hence A

is not Schnorr null. On the other hand, A does have computable measure
zero. Namely, define a computable martingale d that succeeds on A as
follows. Let d(λ) = 1, and for w = 0n1v define d(w1) = 2d(w) if and
only if |w| ∈ {yn

m : m ∈ ω}, and d(w1) = d(w) otherwise. In any case
define d(w0) = 2d(w)− d(w1), so that d is a martingale. Note that the sets
{yn

m : m ∈ ω} are computable uniformly in n: to test whether a number
k is one of the numbers yn

m we only have to perform the finite number of
computations ϕf,k(l), where n = 〈e, f〉 and l ≤ k. So d is indeed computable.
Also, A ⊆ S[d] because if An ∈ A then the set {yn

m : m ∈ ω} is infinite. �

3.3 Chaitins Ω

Let U be a universal prefix machine (see section 2.2). Chaitin defined the
real

Ω :=
∑

U(σ)↓

2−|σ|.
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Note that the definition of Ω depends on the choice of U . We state some
interesting facts about Ω.

• Note that Ω =
∑

x∈ω QU (x), see section 2.5.

• From its definition it is immediate that Ω is a c.e. real. Furthermore,
0 < Ω < 1, because U halts on some, but not on every program.

• Ω is sometimes called “the number of wisdom”, because it has the
property that Ω�n can compute whether U(σ) ↓ for all σ with |σ| ≤ n.
To see this, first note that

Ω�n ≤ Ω ≤ Ω�n+ 2−n. (6)

Given σ of length ≤ n, compute s such that Ωs > Ω�n. Then, if
Us(σ) ↑, U will not halt on σ at a stage later than s, because σ
would contribute an extra amount of 2−|σ| ≥ 2−n to Ω, which would
contradict the upper bound (6).

• Ω is incompressible in the sense of Chaitin (Chaitin random, see Def-
inition 3.1.4), hence Σ1-random. To see this, let φ be a computable
function such that for all n, φ(Ω�n) = x, with K(x) ≥ n. Such φ exists
by the previous item: any x not among all the U(σ) ↓ with |σ| < n
will do. Then

K(Ω�n) ≥ K(φ(Ω�n))− c ≥ n− c

for some constant c depending only on φ.

• By the previous items, Ω can be seen as a very compact version of
the halting problem K. Its first 10,000 bits contain a solution to all
interesting open problems in mathematics that can be formulated as
an effective search problem, such as Goldbachs conjecture (every even
n > 2 is the sum of two primes).

• However, to compute these solutions would take an unreasonable am-
ount of time: To compute as above from Ω�n which σ, |σ| < n, have
U(σ) ↓, would take time t(n), where t is a function growing faster than
any computable function.

More on Ω-numbers in section 3.4.
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3.4 Complexity of Σ1-random sets

In this section we will say a few words on the complexity of Martin-Löf
random sets. Recall that a set A is low if A′ ≤T K⊕A, i.e. the jump of A is as
low as possible. The Low Basis Theorem of Jockusch and Soare [41, Theorem
V.5.32] says that every nonempty Π0

1-class (i.e. a class that consists of the
infinite branches of a computable tree) contains a low set. Now consider
the first level U0 of the universal Martin-Löf test, see Theorem 3.2.1. The
complement P0 of U0 is a nonempty Π0

1-class consisting purely of Σ1-random
sets. Therefore, by the Low Basis Theorem we have that there is a low Σ1-
random set.3 However, there are no Σ1-random sets of low c.e. degree, by
the following theorem.

Theorem 3.4.1 (Kučera [23, p249]) Let A be c.e., A <T K. Then ≤TA
has Σ1-measure 0. Equivalently, A does not bound a Σ1-random set.

Recently Kučera and Slaman [24] characterized the Σ1-random sets of c.e.
degree exactly in terms of Solovay reducibility, see also Downey’s survey
paper [7]: A real is an Ω-number if it is equal to Chaitins Ω from section 3.3
for some choice of a universal prefix machine (see also section 2.2). Chaitin
and Solovay both showed that Ω-numbers are random. By Theorem 3.4.1
these are all T -complete c.e. reals. A real A is Ω-like if it has a universal ap-
proximation, which is the same as saying that A is Solovay-complete for all
c.e. reals. Any Ω-number is Ω-like (Solovay), and Calude, Hertling, Khous-
sainov, and Wang [4] proved that any Ω-like real is an Ω-number. Finally,
Kučera and Slaman [24] showed that every Σ1-random c.e. real is Ω-like,
thus proving that the random c.e. reals are precisely the Solovay-complete
ones.

We will come back to Theorem 3.4.1 in section 4.4.

3.5 Martingales and orders

Martingales are a convenient way of introducing various effective measures
by varying the complexity of the martingales. This approach was first taken
by Schnorr, and later applied with much success in complexity theory by
Lutz.

Next we discuss Σ1-martingales. Recall that a Σ1-function is a function
whose values are computably approximable from below.

3Nies [38] observed that the Low Basis Theorem actually gives a super low Σ1-random
set. A set A is superlow if A′

≤tt K. That there are Σ1-randoms tt-below K, but none
that are btt-below K was observed in Terwijn [53].
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It is often convenient to have all martingales be Q-valued. Namely, by
identifying Q with ω in an appropriate way, one can then directly speak
about computability, without having to use approximations. However, for
Σ1-martingales d, if d(λ) ∈ Q then in particular d(λ) is computable, but
this implies that all of d is computable. So either one uses Σ1-martingales
with values in R, or one relaxes the martingale property (1) to the su-
permartingale property (2).

Schnorr proved the following effective version of Ville’s Theorem 1.2.3:

Theorem 3.5.1 (Schnorr [46, Satz 5.3]) A ⊆ 2ω is Martin-Löf null if and
only if there is a Σ1-supermartingale d such that A ⊆ S[d].

Proof. This is a direct effectivization of the proof of Theorem 1.2.3. Note
that d in the proof of Theorem 1.2.3 is a Σ1-martingales if the Uk are uni-
formly c.e. Since in general d cannot be computable, by the discussion above
this implies that d(λ) cannot be a computable real. �

Now Σ1-supermartingales are Σ1 objects, so it comes as no surprise that
we can effectively list all of them in an enumeration d0, d1, . . . The sum
d =

∑
i 2−idi is then again a Σ1-supermartingale, and the success set S[d]

is the maximal Martin-Löf null set, so d is a universal Σ1-supermartingale.
(Alternatively, we could have used the existence of a universal Martin-Löf
test, Theorem 3.2.1.)

We now give a characterization of the Schnorr null sets in terms of mar-
tingales.

Definition 3.5.2 (Schnorr [46]) An order is a nondecreasing unbounded
function h : ω → ω. (N.B. An “Ordnungsfunktion” in Schnorr’s terminology
is always computable, whereas we prefer to leave the complexity of orders
unspecified in general.) For a martingale d and an order h we define

Sh[d] := {X : lim sup
n→∞

d(X�n)

h(n)
≥ 1}.

Schnorr pointed out that the rate of success of a Σ1-martingale d can be
so slow that it cannot be computably detected. Thus rather than working
with Σ1 null sets of the form S[d] with d ∈ Σ1, he worked with null sets of
the form Sh[d], where both d and h are computable. He showed that these
null sets are the same as the Schnorr null sets from Definition 3.1.2. For the
proof of this, we isolate the following lemma, which will also be useful later
on when we discuss Hausdorff dimension.
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Lemma 3.5.3 Suppose that f is a computable order and that {Un}n∈ω is a
Martin-Löf test, where the Un are defined by prefix-free sets Un ⊆ 2<ω, such
that ∑

σ∈Un

2−|σ|2f(|σ|) ≤ 2−n.

Then there is a Σ1-martingale d such that
⋂

n Un ⊆ S2f(n) [d]. Furthermore,
if {Un}n∈ω is a Schnorr test then d is a computable martingale.

Proof. Define

dk(σ) =





2f(|τ |) if τ @ σ and τ ∈ Uk,∑

στ∈Un

2−|τ |2f(|στ |) otherwise.

One can easily verify that dk is a martingale. Note that the expression∑
στ∈Un

2−|τ |2f(|στ |) is like the µ(Uk|σ) used in the proof of Theorem 1.2.3,

except that now every στ ∈ Uk counts for 2−|τ |+f(|στ |) rather than just 2−|τ |.
Again we define the sum martingale

d(σ) =

∞∑

k=0

dk(σ).

Note that dk(λ) =
∑

τ∈Uk
2−|τ |2f(|τ |) ≤ 2−k by assumption, so d(λ) ≤∑

k 2−k is finite, and hence by the martingale property all d(σ) are finite.
The computability claims on d are easily verified. (Note that, given σ, there
can be only finitely many Uk σ can be in.) Finally, note that if σ ∈ Uk then
dk(σ) ≥ 2f(|σ|). So if A ∈

⋂
k∈ω Uk then A ∈ S2f(n) [d]. �

Theorem 3.5.4 (Schnorr [46, Satz 9.4, 9.5]) A ⊆ 2ω is Schnorr null if and
only if there are computable d and h such that A ⊆ Sh[d].

Proof. (Only if) Let {Vn}n∈ω be a Schnorr test. By Lemma 3.5.3 it suffices
to show that there are a computable order f and a Schnorr test {Un}n∈ω

such that
⋂

n

Vn ⊆
⋂

n

Un and
∑

σ∈Un

2−|σ|2f(|σ|) ≤ 2−n. (7)

Let V ⊆ 2<ω be prefix-free and computable such that [V ] =
⋃

n Vn. (V
exists because {Vn}n∈ω is a Schnorr test.) Construct f computable order
such that ∑

σ∈V, |σ|≥n

2−|σ| ≤ 2−2f(n).
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Then

∑

σ∈V, f(|σ|)=m

2−|σ|2f(|σ|) ≤ 2m
∑

σ∈V, f(|σ|)=m

2−|σ|

≤ 2m2−2m

= 2−m,

so
∑

σ∈V 2−|σ|2f(|σ|) ≤
∑

m 2−m is finite. Let g be computable such that

∑

σ∈V, |σ|≥g(n)

2−|σ|2f(|σ|) ≤ 2−n,

and define Un =
{
σ ∈ V : |σ| ≥ g(n)

}
. Then the Un define a Schnorr test

Un with the properties (7).
(If) Let the Σ0

1-classes Uk be defined by the sets of strings

Uk =
{
σ : |σ| minimal such that d(σ) ≥ h(|σ|) ∧ d(σ) ≥ 2k

}
.

Then µ(Uk) ≤ 2−k and µ(Uk) is computable: To compute it to within preci-
sion 2−r, compute n such that h(n) ≥ 2rd(λ). Let An = Uk −{σ : |σ| > n}.
Then σ ∈ Uk −An =⇒ d(σ) ≥ h(|σ|) ≥ h(n) ≥ 2rd(λ), so µ(Uk−An) ≤ 2−r

by Ville’s Lemma 1.2.2. �

3.6 A sufficient condition for computable randomness

The material in this section is taken from Terwijn [53]. For notational
convenience, in this section we denote the initial segment of length n of an
infinite sequence x ∈ 2ω by xn. We abbreviate the phrases ‘infinitely often’
and ‘almost everywhere’ by ‘i.o.’ and ‘a.e.’, respectively.

Ko [21] investigated the relations between polynomial time and space
bounded versions of Martin-Löf randomness. His notion of pspace-random-
ness is obtained by defining a sequence to be non-pspace-random if it is
covered by a pspace-computable Martin-Löf test sufficiently fast. The extra
condition on the speed with which the set is covered is necessary, since oth-
erwise the defined notion equals that of Martin-Löf. The following sufficient
condition for pspace-randomness was proved by Ko.

Theorem 3.6.1 (K.-I. Ko [21]) Let p be a polynomial. Let C s denote the
s-space bounded generating complexity. If for all polynomials q it holds that
Cq(xn) > n− p(log n) a.e. then x is pspace-random.
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We now turn our attention to computable randomness. The next lemma
is analogous to [30, Claim 2.2, p122], with the time bounded Kolmogorov
complexity instead of the plain Kolmogorov complexity.

Lemma 3.6.2 For any infinite sequence x ∈ 2ω the following are equivalent:

(i) For every computable function t there is a constant c such that
Ct(xn) ≥ n− c for infinitely many n.

(ii) For every computable function t there is a constant c such that
Ct(xn|n) ≥ n− c for infinitely many n.

Proof. The implication from (ii) to (i) is trivial since always C t(x|n) ≤
Ct(x). For the other implication note that

C2t(xn) ≤ Ct(xn|n) + 2 · C t(n− Ct(xn|n)) +O(1).

For if we have a minimal program p that generates xn given n, and a program
q for n−C t(xn|n), then we can reconstruct n from the length of p together
with q. If p and q run both in time t then this new program takes time
2t+O(1).

Now fix any computable t. From (i) it follows that infinitely often n−c ≤
C2t(xn) for some constant c. For all the n for which this holds we then have

n− c ≤ Ct(xn|n) + 2 · C t(n− Ct(xn|n)) +O(1)

≤ Ct(xn|n) + 2 · |n− C t(xn|n)|+O(1).

Hence n− C t(xn|n) ≤ 2 · |n− C t(xn|n)| +O(1), but this is only possible if
n− Ct(xn|n) is bounded, i.e. for the infinitely many n such that the above
inequalities hold we must have that n−C t(xn|n) ≤ c′ for some constant c′. �

Proposition 3.6.3 For any sequence x ∈ 2ω and any superlinear com-
putable time bound t it holds that C t(xn) ≤ n− log n infinitely often.

The unbounded version of Proposition 3.6.3 prevents a definition of random-
ness like: “An infinite sequence x is random if there is a constant c such that
for all n it holds that C(xn) ≥ n− c.” (This was discussed in section 2.)

Schnorr’s characterization of Martin-Löf randomness (Theorem 3.2.5)
was obtained by considering prefix-complexity instead of plain Kolmogorov
complexity. We now give an ‘infinitely often’ criterion for computable ran-
domness. Since we use ‘i.o.’ rather than ‘a.e.’ we have no need for prefix-
complexity at this point.
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Theorem 3.6.4 Let x be an infinite sequence. If for every computable func-
tion t there is a constant c such that it holds that infinitely often C t(xn) ≥
n− c then x is computably random.

Proof. We prove this by contraposition. Suppose that x is a sequence that
is not computably random. By Lemma 3.6.2 it suffices to prove that there is
a computable t such that for every constant c it holds that C t(xn|n) ≤ n− c
a.e. First we prove that for every constant c there exists a computable
function t such that C t(xn|n) ≤ n− c a.e. At the end of the proof we show
that this proof can be made uniform. Fix c and let d be a computable
martingale such that x ∈ S[d] and d(λ) = 1. Without loss of generality we
may assume that d(xn) ≥ 2c a.e. n. By Lemma 1.2.2 we have that

µ({w ∈ 2<ω : w of minimal length such that d(w) ≥ 2c}) ≤ 2−c. (8)

Let M be a machine that, given i and n, outputs the i-th initial segment w
of length n with d(w) ≥ 2c, or outputs zero if such w does not exist. Let
tc(i, n) be the number of computation steps in the computation M(i, n). Fix
n such that d(xn) ≥ 2c. Let i be such that xn is the i-th string w of length
n with d(w) ≥ 2c. Note that by (8) there can be at most 2−c/2−n strings w
of length n with d(w) ≥ 2c, so i ≤ 2n−c, and thus |i| ≤ n− c. Therefore,

Ctc(xn|n) ≤ |i|+ C(c) + C(d) + |M |

≤ n− c+ log c+ C(d) + |M |

Here by C(d) we mean the Kolmogorov complexity of a program for the
computable martingale d. So for every c there is a computable function tc
such that C tc(xn|n) ≤ n− (c− log c− b) a.e., where b = C(d)+ |M |. Hence,
given a constant c′ we can choose c so large that c− log c− b ≥ c′ to obtain
Ctc(xn|n) ≤ n− (c− log c− b) ≤ n− c′ a.e.

It is now easy to see that the above construction can be done uni-
formly, yielding a function t that works for all c. We simply set t(i, n) =
maxc≤n tc(i, n) and note that this t majorizes every tc. �

Lathrop and Lutz proved the following two results relating computable
randomness and Kolmogorov complexity. The first result shows that com-
putably random sequences have very high time-bounded Kolmogorov com-
plexity, and the second result shows that this is no longer true in the absence
of time bounds.

Theorem 3.6.5 (Lathrop and Lutz [28]) Suppose that x ∈ 2ω is computably
random and that t, g : ω → ω are computable functions with g nondecreasing
and unbounded. Then K t(xn) > n− g(n) for infinitely many n.
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Call a sequence x ∈ 2ω ultracompressible if for every nondecreasing un-
bounded computable function g : ω → ω it holds that K(xn) < K(n)+ g(n)
for almost every n.

Theorem 3.6.6 (Lathrop and Lutz [28]) There exists a computably random
sequence x that is ultracompressible.

It would be interesting to find a precise characterization of the notion of
computable randomness in terms of Kolmogorov complexity.

4 Hausdorff dimension

4.1 Classical Hausdorff dimension

First we repeat the definition of classical Hausdorff dimension [12]. For
comments and discussion the reader can consult e.g. Falconer [11].

Definition 4.1.1 • C ⊆ 2<ω is an n-cover if σ ∈ C → |σ| ≥ n.

• C covers A ⊆ 2ω if A ⊆
⋃

σ∈C [σ].

• Define Hε
n(A) := inf

{∑

σ∈C

2−ε|σ| : C is n-cover of A
}

.

• Define Hε(A) := limn→∞Hε
n(A). This is the ε-dimensional outer

Hausdorff measure of A.

Lemma 4.1.2 There exists ε ∈ [0, 1] such that

• ∀ε′ > ε. Hε′(A) = 0,

• ∀ 0 ≤ ε′ < ε. Hε′(A) = ∞.

Proof. First note that for all n and δ > 0,

Hε+δ
n (A) = inf

{∑

σ∈C

2−ε|σ|2−δ|σ| : C n-cover of A
}

≤ inf
{

2−δn
∑

σ∈C

2−ε|σ| : C n-cover of A
}

= 2−δnHε
n(A).

Now suppose that Hε(A) <∞. Then Hε+δ
n (A) ≤ lim

n→∞
2−δnHε

n(A) = 0. �

The ε from Lemma 4.1.2 is called the Hausdorff dimension of A:
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Definition 4.1.3

dim(A) := inf{ε : Hε(A) = 0}

4.2 Effectivizations of Schnorr and Lutz

We now discuss effectivizations of Hausdorff dimension. Recall from sec-
tion 3.5 the null sets of of the form Sh[d]. Schnorr also addressed null sets
of the form Sh[d] with h(n) = 2εn, ε ∈ (0, 1], of exponential order. Although
he did not make explicit reference to Hausdorff dimension, it turns out that
the theory of Hausdorff dimension can be cast precisely in terms of such null
sets of exponential order.

Lutz constructivized Hausdorff dimension in [33, 34], using what he
called s-gales (a generalization of martingales). Let s ∈ [0,∞). An s-gale is
a function d : 2<ω → R+ that satisfies the averaging condition

2sd(w) = d(w0) + d(w1) (9)

for every w ∈ 2<ω. Similarly, d is an s-supergale if (9) holds with≥ instead of
equality. The success set S[d] is defined exactly as was done for martingales
in section 1.2.

Although Theorem 4.2.1 shows that we do not really need s-gales for the
treatment of Hausdorff dimension, it will be convenient to use them at some
points.

Theorem 4.2.1 For any class A the following are equivalent:

(i) A has dimension α (as defined in Definition 4.1.3),

(ii) α = inf
{
s ∈ Q : ∃d s-(super)gale

(
A ⊆ S[d]

)}
.

(iii) α = inf{s ∈ Q : ∃d (super)martingale (A ⊆ S2(1−s)n [d] )}.

Proof. For the equivalence of (ii) and (iii), note that d′ is an s-gale if and only
if d(w) = 2(1−s)|w|d′(w) is a martingale. For s′ < s we have 2(1−s′)n > 2(1−s)n

so

S2(1−s′)n [d] ⊆ S
[ d

2(1−s)n

]
⊆ S2(1−s)n [d]. (10)

Now the equivalence of (ii) and (iii) is immediate.
The equivalence of (i) and (ii) is due to Lutz [33, Theorem 3.6]. This

proof is similar to the proof of Theorem 3.5.4.
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Note that the implication (i)=⇒(iii) follows from Lemma 3.5.3, with
f(n) = (1 − s)n. So we see that the theory of (effective) Hausdorff dimen-
sion falls out as a special case of Schnorr’s treatment of effective measure
theory. �

Theorem 4.2.1 motivates the following definition:

Definition 4.2.2 For a complexity class C, A has C-dimension α if

α = inf{s ∈ Q : ∃d ∈ C ( d supermartingale and A ⊆ S2(1−s)n [d] )}.

4.3 Picture of implications

The relations between these notions are as follows:

∆2-random
⇓

Schnorr ∆2-random =⇒ ∆2-dimension 1
⇓ ⇓

Σ1-random =⇒ Σ1-dimension 1
⇓

computably random

=
⇒

⇓
Schnorr random =⇒ computable dimension 1

No other implications hold than the ones indicated. The strictness of the im-
plications was discussed in section 3.1. That there are no more implications
between the first and the second column follows from the next proposition.
The strictness of the two implications in the second column follows by sim-
ilar means. (It is easy to see (cf. [34]) that COMP has Σ1-dimension 0, but
is not computably null, so in particular COMP has computable dimension
1. Also, Lutz [34] has shown that there are sets in ∆0

2 of any Σ1-dimension
α, but it is elementary that every set in ∆0

2 has ∆0
2-dimension 0.)

Proposition 4.3.1 There are sets A such that A is not Schnorr random
and A has ∆2-dimension 1.

Proof. Let R be ∆2-random, and let D = {2x : x ∈ ω} be an exponen-
tially sparse computable domain. Then A = R ∪D is not Schnorr random,
since no Schnorr random contains an infinite computable subset, and no
∆2-martingale can succeed on A exponentially fast. �

Clearly, the “∆2-dimension 1” in Proposition 4.3.1 can be improved to “∆n-
dimension 1” by the same proof, if one is considering higher orders of ran-
domness.
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4.4 Σ1-Dimension

Write µε(C) :=
∑

σ∈C 2−ε|σ|. Note that since Hε
n is monotone in n,

Hε(A) = 0 ⇐⇒ (∀δ > 0)(∀n)(∃C n-cover )
[
µε(C) < δ

]

⇐⇒ (∀n)(∃C n-cover )
[
µε(C) < 2−n

]

⇐⇒ (∀n)(∃C cover )
[
µε(C) < 2−n

]
.

Definition 4.4.1 Let ε ∈ (0,∞). An ε-test is a uniform sequence of Σ0
1-

classes {Un}n∈ω such that for all n and every prefix-free C ⊆ Un it holds
that µε(C) < 2−n.

An ε-test {Un} with A ⊆
⋂

n Un shows that Hε(A) = 0 in an effective way.

Theorem 4.4.2 (Calude, Staiger, Terwijn) For any class A ⊆ 2ω the fol-
lowing three statements are equivalent:

(i) α is minimal such that for all ε > α there is an ε-test {Un}n∈ω such
that A ⊆

⋂
n Un.

(ii) Lutz’s definition of constructive dimension [34]: α = inf{s ∈ Q : ∃d ∈
Σ1 ( d s-supergale and A ⊆ S[d] )},

(iii) A has Σ1-dimension α (as defined in Definition 4.2.2), i.e. α = inf{s ∈
Q : ∃d ∈ Σ1 ( d supermartingale and A ⊆ S2(1−s)n [d] )},

Proof. (i)=⇒(ii). Suppose {Un}n∈ω is an ε-test. Let Un,t be the computable
approximation of Un at stage t, and define

dn,t(σ) := max
{
2(1−ε)|σ|µε(C|σ) : C ⊆ Un,t prefix-free

}
.

Then one can easily check that for each n and t, dn,t is a martingale. Define

dn(σ) := lim
t→∞

dn,t(σ),

d(σ) :=

∞∑

n=0

dn(σ).

Then d(σ) < ∞ for every σ since d(λ) ≤
∑

n dn(λ) ≤
∑

n 2−n and d is a
martingale. Note that d is Σ1. Now if σ ∈ Un then dn(σ) ≥ 2(1−ε)|σ|, so if
A ∈

⋂
n Un then A ∈ S2(1−ε)n [d].

(ii)=⇒(i). Suppose d is a Σ1-(super)martingale. Fix ε0. For every ε > ε0
we define an ε-test {Un} such that

⋂
n Un ⊇ S2(1−ε0)n [d]
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Fix k ≥ d(λ). Define

Un :=
{
σ : d(σ) ≥ 2(1−ε)|σ|2nk

}
.

Note that if A ∈ S2(1−ε0)n [d] then for all ε > ε0 we have lim sup
n→∞

d(A�n)

2(1−ε)n
= ∞,

so A ∈
⋂

n Un. We claim that the Un form an ε-test. Namely, let C ⊆ Un be
prefix-free. Then by Lemma 1.2.2 we have

2nk · µε(C) = 2nk
∑

σ∈C

2−ε|σ| ≤
∑

σ∈C

2−ε|σ| d(σ)

2(1−ε)|σ|

≤
∑

σ∈C

2−|σ|d(σ) ≤ d(λ) ≤ k,

so µε(C) ≤ 2−n.
For the equivalence of item (ii) and (iii) see Theorem 4.2.1. �

We now give an explicit construction of a universal ε-test {U ε
n}n∈ω for the

sets of Σ1-dimension less or equal to ε. The definition is a straightforward
modification of Martin-Löfs universal Σ1 null set, Theorem 3.2.1. That a
universal ε-test exists follows implicitly also from the analyses of Schnorr [46]
and Lutz [34], but below it will be convenient to have the explicit formulation
presented here.

Theorem 4.4.3 For every ε ∈ Q there exists a universal ε-test. That is,
there is a computable sequence of Σ0

1 classes Uε
0 ,U

ε
1 , . . . such that

• Uε
0 ⊇ Uε

1 ⊇ . . .

• for every n and every prefix-free C ⊆ U ε
n it holds that µε(C) < 2−n

• for any class A of Σ1-dimension ≤ ε we have A ⊆
⋂

n U
ε
n.

Proof. This is very similar to the proof of Theorem 3.2.1. For every n
construct a Σ0

1-class U
ε
n as follows. For every e > n, U ε

n enumerates all the
elements ofW{e}(e) (where we take this set to be empty if {e}(e) is undefined)
as long as for every prefix-free C ⊆W{e}(e) it holds that µε(C) < 2−e. Then
if C ⊆ Uε

n is prefix-free we have µε(C) <
∑

e>n 2−e = 2−n, and if {e} defines
an ε-test then for every n there exists by padding i ∈ ω (in fact, infinitely
many i) such that W{e}(i) ⊆ Uε

n (if i > n is an alternative code for e then
W{e}(i) = W{i}(i) ⊆ Uε

n), so
⋂

iW{e}(i) ⊆
⋂

n U
ε
n. �

The following analogue of Theorem 3.2.3 can also be proven, with a similar
proof:
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Theorem 4.4.4 For every A of Σ1-dimension > ε there exists k ∈ ω such
that T k(A) ∈ Pε

0 .

Now we come back to Theorem 3.4.1 that stated that for an c.e. Turing-
incomplete set A, ≤TA has Σ1-measure 0.

The idea of the proof of Theorem 3.4.1 is the following. First, any Σ1-
random set is effectively bi-immune. Second, with any effectively immune
set one can compute a fixed point free function (FPF for short, f is FPF if
for all x, Wx 6= Wf(x)). The Arslanov completeness criterion (see e.g. [41])
says that a c.e. set is Turing complete if and only if it can compute a FPF
function. So if the c.e. set A bounds a Σ1-random set it follows that A is
Turing complete.

We now want to strengthen Theorem 3.4.1 from Σ1-measure 0 to Σ1-
dimension 0. Note that this is stronger since there are sets A such that {A}
has Σ1-dimension 1 but Σ1-measure 0.4

Lemma 4.4.5 Suppose A has Σ1-dimension > 0. Then A can compute a
fixed point free function.

Proof. For any e let e0 and e1 denote codes (defined in some canonical way
from e) such that We = We0 ⊕We1 .

Fix ε ∈ (0, 1). Let f(n) = n/ε. Define

Be,n =
{
σ : |σ| = f(n) ∧ (∃s)

[
We0,s�f(n) = σ ∧We1,s�f(n) = σ

]}

Here σ denotes the complement of σ. That is, Be,n contains all long strings
σ (of length f(n)) for which the c.e. set We provides its f(n) bits. That is,
there can be at most one σ in Be,n. Be,n is an n cover since |σ| = f(n) ≥ n,
and

µε(Be,n) =
∑

σ∈Be,n

2−ε|σ| ≤ 2−εf(n) = 2−n, (11)

so Be,n is an ε-test. Suppose now that A has Σ1-dimension > ε. Then by
Theorem 4.4.3 there is a k such that A 6∈ U ε

k . For every e we can effectively
find g(e) > k such that ϕg(e)(j) is a code of Be,j for every j. By (11) the sets
Be,j form an ε-test and by the definition of U ε

n in the proof of Theorem 4.4.3
we have Be,g(e) ⊆W{(g(e)}(g(e)) ⊆ Uε

g(e) ⊆ Uε
k , so A 6∈ Be,g(e).

4This can be proved by a direct construction, but it also follows from the fact that
the class of reals of dimension 1 is properly Π0

3 in the arithmetical hierarchy of reals
(Theorem 5.2.3), whereas the class of Σ1-random reals is Σ0

2 (Theorem 5.1.3). Since the
latter is included in the former, they cannot be equal.
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Now we use this to construct a fixed point free function h ≤T A: Given
e, let h(e) be a code such that Wh(e)0 = A�f(g(e)) and Wh(e)1 = A�f(g(e)).
Then Wh(e) 6= We for every e, for if Wh(e) = We then A�f(g(e)) ∈ Be,g(e). �

Theorem 4.4.6 Let A be c.e., A <T K. Then ≤TA has Σ1-dimension 0.

Proof. Suppose ≤TA does not have Σ1-dimension 0. Then by Theorem 4.4.3
there exists B ≤T A such that {B} does not have Σ1-dimension 0. By
Lemma 4.4.5 B can compute a fixed point free function, so by Arslanov’s
completeness criterion A is Turing complete. �

Since by the low basis theorem there are low Σ1-random sets, and since
there exist high incomplete c.e. sets, we now have both examples of low
sets for which ≤TA has Σ1-dimension 1, and of high sets for which ≤TA has
Σ1-dimension 0. The same examples show that there are low sets for which
dimΣ1(

≤mA) is maximal and high sets for which dimΣ1(
≤mA) is minimal.

4.5 Relation with Kolmogorov complexity

In this section we prove a relation between Σ1-dimension and the prefix-free
Kolmogorov complexity. Similar results relating Kolmogorov complexity
and classical Hausdorff dimension were proven by Cai and Hartmanis, Levin,
Ryabko, and Staiger. See Lutz [34] for a discussion of these results.

We use the following lemma for s-gales, the proof of which is completely
analogous to the one of Lemma 1.2.1.

Lemma 4.5.1 (Lutz [34]) Let d be an s-(super)gale. For any string σ and
any prefix-free set X ⊆ {τ : σ v τ} it holds that

2−s|σ|d(σ) ≥
∑

τ∈X

2−s|τ |d(τ).

Theorem 4.5.2 (Levin [60], Lutz [34], Mayordomo [36], Staiger [52]) For
any A ∈ 2ω,

dimΣ1(A) = lim inf
n→∞

K(A�n)

n
.

Proof. (≥) This direction was first proved by Lutz. Let α = dimΣ1(A).
Clearly if α = 1 then the statement is true, so assume that α < 1. Fix
α < s < t < 1, s, t ∈ Q. By Theorem 4.4.2 there is an s-gale d such that
A ∈ S[d]. Fix a rational r ≥ d(λ). Let

B = {σ : d(σ) > r},
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and denote by Bn be the strings of length n in B. Bn is prefix-free, so by
Lemma 4.5.1

d(λ) ≥
∑

σ∈Bn

d(σ)2−sn ≥ d(λ)|Bn|2
−sn,

hence |Bn| ≤ 2−sn. Since Bn is c.e. we have for every σ ∈ Bn,

K(σ) ≤ sn+K(n) +O(1). (12)

Since t > s there is n0 such that for all n ≥ n0,

K(n) ≤ (t− s)n+O(1) (13)

(Recall the bound K(n) ≤ 2 log n from section 2.2.) Because A ∈ S[d] we
have A�n ∈ Bn for infinitely many n. For these n, (12) and (13) together
give

K(A�n) ≤ tn,

and hence lim infn→∞
K(A�n)

n
≤ t ≤ α.

(≤) This direction was proved in Mayordomo [36]. As Staiger pointed
out in [52], the result already quickly follows from results in [60] and [34].

Let t > s > lim infn→∞
K(A�n)

n
be rationals. Define

B = {σ : K(σ) ≤ s|σ|},

and let Bn be the strings of length n in B. Then |Bn| ≤ 2sn−K(n)+c for some
constant c by a version of the Counting Theorem 2.6.3.

Define d : 2<ω → R+ by

d(σ) = 2(t−s)|σ|
( ∑

στ∈B

2−s|τ | +
∑

ρ∈B,ρ(σ

2(s−1)(|σ|−|ρ|)
)
.

(Compare this definition of d to the proof of Lemma 3.5.3.) Then d is a
Σ1-t-gale: First, d is Σ1 function because B is c.e. Second, d(λ) is finite:
d(λ) =

∑
στ∈B 2−s|τ | ≤

∑
n |Bn|2

−sn ≤
∑

n 2−K(n)+c ≤ 2c. Finally, one can
check (by a tedious checking of cases) that d has the t-gale property.

Now if σ ∈ B then d(σ) ≥ 2(t−s)|σ|. Because s > lim infn→∞
K(A�n)

n
there

are infinitely many n with A�n ∈ B, hence A ∈ S[d] and dimΣ1(A) ≤ t. The
result follows since t was arbitrary. �

5 The complexity of randomness and dimension

The material in this section in based on Hitchcock, Lutz, and Terwijn [13].
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5.1 Category Methods

Recall that a class C is meager if it is included in a countable union of
nowhere dense subsets of 2ω, and comeager if its complement C is meager.
The following lemma (implicit in Rogers [44, p 341]) will be useful:

Lemma 5.1.1 If C ∈ Σ0
2 and C is dense then C is meager.

Proof. Suppose that C =
⋃

nXn, Xn closed. Since C is dense, Xn contains
no basic open set, hence Xn is nondense (i.e. its closure contains no basic
open set), and C is a countable union of nondense sets. �

As a warm-up we give a short proof of Shoenfields result that COMP is
not a Π0

3-class.

Theorem 5.1.2 (Shoenfield [44, p344]) COMP is a Σ0
3-class, but not a Π0

3-
class.

Proof. Clearly COMP ∈ Σ0
3. Suppose for a contradiction that COMP is Σ0

3.
Then there is a uniform sequence of Σ0

1-classes On,m such that COMP =⋃
n

⋂
mOn,m. Without loss of generality On,m ⊇ On,m+1 for all n,m. Now

COMP is meager because it is countable, so COMP is comeager, so there is
an n such that

⋂
mOn,m is not nowhere dense, hence dense in some interval

[σ]. Then every On,m, m ∈ ω, is dense in [σ]. Now it is easy to construct a
computable set (starting with σ) in

⋂
mOn,m, contradicting that

⋂
mOn,m ⊆

COMP. �

The class R of Σ1-random sets can also easily be classified with category
methods:

Theorem 5.1.3 (folk) The class of Σ1-random sets R is a Σ0
2-class, but not

a Π0
2-class.

Proof. Analogous to the proof in Rogers [44, p 341] that {X : X finite} is
a Σ0

2-class but not a Π0
2-class: Both R and its complement are dense, so by

Lemma 5.1.1, R is meager. If R were a Π0
2-class, its complement would also

be meager, contradicting that 2ω is not meager. �
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5.2 Classification of the sets of dimension α

Σ0
1 and Π0

1 denote the levels of the classical Borel hierarchy. Recall that a
class A Wadge reduces to a class B if there is a continues function f : 2ω →
2ω such that X ∈ A ⇔ f(X) ∈ B.

For every k > 0 define the computable order hk(n) = 2
1
k
n. Let d be

a universal Σ1-supermartingale (see section 3.5). By Lutz [34] d(s)(w) =
2(s−1)|w|d(w) is a universal Σ1-s-supergale. Hence

⋃

s∈Q<1

S[d(s)] =
⋃

s∈Q<1

S2(1−s)n [d] =
⋃

k>0

Shk
[d]. (14)

The first equality uses that Shk
[d] ⊆ S[d/hk+1].

Lemma 5.2.1 Every Shk
[d] is a comeager Π0

2-class.

Proof. Shk
[d] ∈ Σ0

2 and Shk
[d] is dense. Now apply Lemma 5.1.1. �

Lutz [33, 34] defines the sets of constructive dimension 1 as

DIM1 = {X ∈ 2ω : no Σ1-s-supergale, s ∈ R<1, succeeds on X}.

Note that for s′ > s every s-gale is an s′-gale, so if X ∈ co-DIM1 there is
always some s′-gale that succeeds on X with s′ ∈ Q<1. Hence in classifying
DIM1 we can confine our attention to s-gales with s ∈ Q. By (14) we have
co-DIM1 = {X : ∃s ∈ Q<1(X ∈ S[d(s)])} =

⋃
k>0 Shk

[d]. So by Lemma 5.2.1,

DIM1 is meager (it is contained in the meager set Shk
[d]) and co-DIM1 is

comeager. Since every Shk
[d] is a Π0

2-class we have that co-DIM1 is a Σ0
3-

class, and hence:

Proposition 5.2.2 DIM1 is a meager Π0
3-class.

A simple category argument shows that DIM1 is not a Π0
2-class: Otherwise

co-DIM1 would be Σ0
2, and by Lemma 5.1.1 we would have that co-DIM1

were meager, contradicting Lemma 5.2.1. We now prove that DIM1 is Π0
3-

complete under Wadge reducibility. In particular, DIM1 is not a Σ0
3-class.

Theorem 5.2.3 DIM1 is not a Σ0
3-class. Hence it is properly Π0

3.
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Proof. One could prove this by reducing a known Π0
3-complete class to

DIM1, e.g. the class of sets that have a limiting frequency of 1’s that is 0
(this class was proved to be Π0

3-complete by Ki and Linton [20]), but is just
as easy to build a direct reduction from an arbitrary Π0

3-class.
Let d be the universal constructive supermartingale. Note that we have

S2n [d] ( . . . ( S
2

1
k

n [d] ( S
2

1
k+1

n [d] ( . . . ( DIM1.

Let
⋃

k

⋂
sOk,s be a Σ0

3-class. Without loss of generality Ok,s ⊇ Ok,s+1 for
all k,s. We define a continuous function f : 2ω → 2ω such that

∀k

(
X ∈

⋂

s

Ok,s ⇐⇒ f(X) ∈ S
2

1
k

n [d]

)
(15)

so that we have

X 6∈
⋃

k

⋂

s

Ok,s ⇐⇒ ∀k
(
f(X) 6∈ S

2
1
k

n [d]
)

⇐⇒ f(X) ∈ DIM1.

The image Y = f(X) is defined in stages, Y =
⋃

s Ys, such that every initial
segment of X defines an initial segment of Y .

At stage 0 we define Y0 to be the empty sequence.
At stage s > 0 we consider X�s, and for each k we define tk,s to be the

largest stage t ≤ s such that X�s ∈ Ok,t. (Let tk,s = 0 if such a t does not
exist.) Define k to be expansionary at stage s if tk,s−1 < tk,s. Now we let
k(s) = min{k : k is expansionary at s}. There are two substages.

Substage (a). First consider all strings σ extending Ys−1 of minimal

length with d(σ) ≥ 2
1

k(s)
|σ|

, and take the leftmost one of these σ’s. Such σ’s
exist because S

2
1

k(s)
n [d] is dense. If k(s) does not exist let σ = Ys−1.

Substage (b). Next consider all extensions τ w σ of minimal length such
that d(τ�i) ≤ d(τ�(i − 1)) for every |σ| < i < |τ |, and d(τ) ≤ |τ |. Clearly
such τ exist, by direct diagonalization against d. Define Ys to be the leftmost
of these τ . This concludes the construction.

So Ys is defined by first building a piece of evidence σ that d achieves

growth rate 2
1

k(s)
n

on Y and then slowing down the growth rate of d to
the order n. Note that f is continuous. If X ∈

⋃
k

⋂
sOk,s, then for the

minimal k such that X ∈
⋂

sOk,s, infinitely many pieces of evidence σ

witness that d achieves growth rate 2
1
k
n on Y , so Y 6∈ DIM1. On the other

hand, if X 6∈
⋃

k

⋂
sOk,s then for every k only finitely often d(Ys) ≥ 2

1
k
|Ys|
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because in substage (a) the extension σ is chosen to be of minimal length,
so Y 6∈ Shk

[d]. Hence Y ∈ DIM1. �

From Theorem 5.1.3 and Theorem 5.2.3 the following result follows,
which can also be proved by a direct construction:

Corollary 5.2.4 (Lutz [34]) R is a proper subset of DIM1.

One can check that for computable real α with 0 < α < 1, the above
results also hold for DIMα (the sets of Σ1-dimension α): DIMα is a proper
Π0

3-class. This requires only slight changes to the proof of Theorem 5.2.3.
Since DIM≥α (the sets of Σ1-dimension ≥ α) is in Π0

3, follows that it is also
properly Π0

3, and hence that DIM<α = 2ω − DIM≥α is properly Σ0
3. Other

classifications of dimension classes can be found in [13].

5.3 The complexity of classes of random sets

Recall definitions of Schnorr randomness and computable randomness from
section 3.1. We denote the class of Schnorr random sets by S.

Theorem 5.3.1 The class of Schnorr random sets S is properly Π0
3.

Proof. First note that S ∈ Π0
3: A ∈ S if and only if for every pair of codes e

and f , either the e-th partial computable function ϕe is not a computable
order (i.e. is not total or decreases at some point), or ϕf is not a computable
martingale (i.e. is not total or violates the martingale property at some
point), or A 6∈ Sϕe [ϕf ], and that every one of these options is Σ0

2.
The rest of the proof resembles that of Theorem 5.2.3. Fix a (noncom-

putable) sequence of computable martingales {dk}k∈ω and a sequence of
computable orders {hk}k∈ω such that

(i) A ∈ S ⇐⇒ ∀k(A 6∈ Shk
[dk]).

(ii) Shk
[dk]− Smin{hj :j<k}[

∑
j<k dj ] is dense for every k.

The dk can be defined by taking appropriate sums of computable martin-
gales, such that every S[d], d computable, is included in some S[dk], and
for the hk one can take any family of computable orders such that every
computable order h dominates some hk. (Of course the dk and hk cannot
be uniformly computable families, but that is of no concern to us.)
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Let
⋃

k

⋂
sOk,s be a Σ0

3-class. We define a continuous function f : 2ω →
2ω such that

∀k

(
X ∈

⋂

s

Ok,s ⇐⇒ f(X) ∈ Shk
[dk]

)
(16)

so that by (i) we have X 6∈
⋃

k

⋂
sOk,s ⇐⇒ f(X) ∈ S, and S is Π0

3-complete.
As in the proof of Theorem 5.2.3 we define the image Y = f(X) in

stages. Every time we find a new piece of evidence that X ∈
⋂

sOk,s, at
stage s say, we build a piece of evidence that Y ∈ Shk

[dk] by choosing an
appropriate finite extension at stage s. Such an extension can be found by
(ii). The rest of the proof is identical to that of Theorem 5.2.3. �

With only some obvious changes one can prove

Theorem 5.3.2 The class of computably random sets is properly Π0
3.

Proof. Note that X is computably random if and only if for every e, ϕe is
not a computable martingale or X 6∈ S[ϕe], so the class is Π0

3. That it is
properly Π0

3 is actually easier than the proof of Theorem 5.3.1 since we only
need the sequence {dk} and not the {hk}. �

5.4 An extension of the effective Borel hierarchy

The complexity of DIMα, the Schnorr random sets S, and the computably
random sets in the effective hierarchy corresponds exactly with their com-
plexity in the Borel hierarchy, which is why we were able to use (noncom-
putable) continuous reductions to classify them. For COMP, the class of
computable sets, this is not the case, since COMP ∈ Σ0

3 ∩Σ0
2, but COMP

could be classified using category methods. (The Σ1-random sets can be
classified with both methods.) For some classes, however, we need other
methods to classify them. An example of this, namely the class of 1-generic
sets, is given below. Other examples can be found in [13]. As it turns out,
we need a slight extension of the effective hierarchy to classify a number
of natural randomness and dimension classes. We first give this extended
definition.

Let C be a class of predicates. The ordinary definitions of Σ0
n and Π0

n

use computable predicates. If instead predicates from C are used, we denote
them by Σ0

nC] and Π0
n[C].

Definition 5.4.1 • A ∈ Σ0
1[C] if there is P ∈ C such that

A ∈ A ⇐⇒ (∃σ @ A)[σ ∈ P ].
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• A ∈ Π0
1[C] if A ∈ Σ0

1[¬C], where P ∈ ¬C if and only if P ∈ C.

• In general, for n > 1, A ∈ Σ0
n[C] if A is a C-effective union of Π0

n−1[C]
classes, i.e. if there is a Π0

n−1[C]-class B ⊆ 2ω × ω such that A =⋃
n∈ω

{
X : (X,n) ∈ B

}
.

• A ∈ Π0
n[C] if A ∈ Σ0

n[¬C].

Below we will be interested in the case where C is either Σ0
1 or Π0

1. We make
the following basic observations:

• For every n we have

Σ0
n ⊆ Σ0

n[Σ0
1] ⊆ Σ0

n+1, (17)

Π0
n ⊆ Π0

n[Π0
1] ⊆ Π0

n+1. (18)

• If n is odd we have Σ0
n[Σ0

1] = Σ0
n and Π0

n[Π0
1] = Π0

n.

• If n is even, the inclusions from (17) and (18) are strict, as we will
prove in Proposition 5.4.2 below.

• Adding more than one quantifier does not make sense: e.g. Π0
3[Σ

0
3] =

Π0
3[Σ

0
1].

Proposition 5.4.2 The inclusions from (17) and (18) are strict.

Here’s an example: The class of 1-generic sets. Recall that X is 1-generic
if

(∀e)(∃σ @ X)
[
{e}σ(e) ↓ ∨ (∀τ A σ)[{e}τ (e) ↑]

]

From this definition it is immediate that 1-generic is in Π0
2[Π

0
1], and that it

is in Π0
2. Below we show that it is not Π0

2. So this is an example where our
one-extra-quantifier hierarchy makes sense.

Note that using computable continuous reductions does not help in clas-
sifying 1-generic: Suppose that X ∈ 2ω iff f(X) is 1-generic, for some com-
putable f . Note that if X is computable then also f(X) is. But this is
impossible, because there are no computable 1-generics. So we see that an
“easy” class like 2ω does not Wadge reduce via a computable reduction to
a “difficult” class like the 1-generic sets.

Also note that we may use category theory to conclude that the class of
1-generic sets is not Σ0

2, by Lemma 5.1.1.

39



Now we show, using an ad-hoc argument, since there seems not to be
any systematic way of doing it, that 1-generic is not Π0

2. Suppose it is, X 1-
generic iff (∀n)(∃m)

[
RX(n,m)

]
, R computable predicate that uses X as an

oracle. Since the 1-generic sets are dense, also
{
X : (∀n)(∃m)

[
RX(n,m)

]}
is

dense. But then we can easily construct a computable element of it, using a
computable finite extension argument. (Given σ and n, search for extension
such that Rσ(n,m) for some m. Such extension will be found by density. If
extension is found, take it. Proceed to n+ 1.)

In conclusion, we see that the class of 1-generic sets is in Π0
2[Π

0
1] ∩Π0

2 \
(Σ0

2 ∪Π0
2).

6 Relativized randomness and lowness properties

In this section we briefly discuss relativized randomness and lowness prop-
erties for classes of random sets.

In computability theory a set A is called low if for A′, the halting problem
relativized to A, it holds that A′ ≤T ∅′, that is, if the complexity of the
halting problem does not increase when relativized to A. In complexity
theory, if a class C has a definition that relativizes, a set A is called low for
C if C = CA. So the low sets from computability theory are those that are
low for the class of sets that are Turing complete for ∆0

2.
Relativized randomness was studied by several authors, including van

Lambalgen [27] and Kautz [17]. The definition of e.g. Σ1-random relative
to A is obtained by reading everywhere in Definition 3.1.1 “A-computable”
instead of “computable.” That is, a sequence is Martin-Löf random relative
to A if there is no uniformly A-computably enumerable sequence of open
Un’s with µ(Un) ≤ 2−n that cover the sequence.

M. van Lambalgen and D. Zambella asked whether there exist noncom-
putable sets A such that every Σ1-random set is already Σ1-random relative
to A. (The question is first explicitly stated in Zambella [59].) Note that
every computable set is low for the Σ1-random sets. This question was
raised in the context of a comparison between randomness properties in
classical dynamic systems (specifically, Bernoulli sequences) and recursion
theoretic randomness. A result of Kamae [15] showed that the infinite bi-
nary sequences that have no information about Bernoulli sequences (normal
sequences) are precisely the sequences with zero entropy. The question was
whether a similar characterization exists for sets that have no information
about Martin-Löf random sequences. This motivated the question whether
every set that is low for the Σ1-random sets has to be computable. The next
theorem gives a negative answer:
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Theorem 6.0.3 (Kučera and Terwijn [25]) There exists a noncomputable
c.e. set that is low for the Σ1-random sets.

Kučera and Terwijn left open the question about the exact complexity that
such low sets may have. In particular they asked if there are examples
outside of ∆0

2. It was also noted by Downey et al. [9] that the construction
of Theorem 6.0.3 bares much resemblance to that of a K-trivial set, i.e. a
set A such that K(A�n) ≤ K(n) +O(1) for every n. K-trivial sets are sets
that are as nonrandom as possible in the sense of prefix complexity. Nies
[39] clarified the situation by proving that these notions coincide, which by
a result of Chaitin implies in particular that every low for Σ1-random set is
in ∆0

2.
Terwijn and Zambella gave an exact characterization of the sets that are

low for the notion of Schnorr-null in terms of the notion of traceability. A
sets A is computably traceable if the values of the functions that A computes
can be well-approximated by finite sets of a computably bounded size. The
computably traceable sets are a strict subset of the sets of hyper-immune
free degree, and there exist noncomputable examples of them.

Theorem 6.0.4 (Terwijn and Zambella [55]) A set A is low for the notion
of Schnorr-null if and only if it is computably traceable.

Theorem 6.0.4 implies that there are uncountably many low for Schnorr-
random sets, and that they are all outside of ∆0

2 (except the computable
ones, of course). Note that this radically differs from the situation for the
Martin-Löf random sets, where the low sets all had to be inside of ∆0

2.
Finally, for the notion of computable randomness (see Definition 3.1.5)

lying in between Martin-Löf and Schnorr randomness, Nies [40]) proved that
there are no nontrivial low sets at all:

Theorem 6.0.5 (Nies [40]) Every set that is low for the computably random
sets is computable.

So we see that for these three notions of randomness the situation of the
existence of low sets is completely different.
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