
CDMTCS

Research

Report

Series

Computational universes

Karl Svozil

University of Technology, Vienna

CDMTCS-216

May 2003

Centre for Discrete Mathematics and

Theoretical Computer Science



Computational universes

Karl Svozil∗

Institut für Theoretische Physik, University of Technology Vienna,

Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

Abstract

Suspicions that the world might be some sort of a machine or algorithm existing “in the mind” of some

symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms

of this idea never reached mainstream. Modern developments in physics and computer science have lent

support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world

view.
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I. HISTORICAL NOTES

In a broad context, the development of rationalism, the enlightenment and science can be per-

ceived as an awakening from the illusory world of the senses (Maya in Sanskrit); as a growing

awareness that ”facts” which once were perceived as self-evident turned out to be utterly wrong.

Humanity once took it for granted that it was located at the epicentre of the Universe. A closer

inspection revealed that there is no ground to claims of any preference in location: Earth is conve-

niently situated in a solar system of a remote part of our galaxy, which in turn is part of a group of

galaxies and of the physical Universe as we perceive it today. People also trusted that their bodies

are made-up of solid stuff. Later on they learned that, as their bodies consist of atomic and sub-

atomic “point” particles, things only appear to be solidly filled, but in another perspective, space

is “almost empty.” Time turned out to be relative to the motion of observers, and single “particles”

such as photons and neutrons, seemed to be at two or more spatial positions at once. On another

issue, people previously thought that they have been created in a different way than other species.

As it turned out, from a biological point of view, mankind evolved and spread just like locusts

and everyone else around. This is corroborated not only by phylogenetic evidence, but by analysis

of the very DNA code that constitutes the genetic heritage and blueprint of our ancestors and of

all living beings. Indeed, the DNA itself turns out to be a biochemical code running on cellular

computers to the effect of creating, maintaining and reproducing the organism of which it is a part.

Further disillusionments may lie ahead. Consciousness is still an “undiscover’d country,” and

maybe it is just a manifestation of neuronal brain functions. Or, consciousness may be just the

opposite: transcendental. Despite the achievements of Freud, certain dream phases are barely un-

derstood. Artists have speculated that we are ”fleshware” units inside of a simulation-computation-

game that appears gigantic or even infinite to us. Who knows, we might have even paid for to live

a life in the twenty-first century in a beyond fair. That is to say, we might be embedded in a literal

“game” that we chose to pass the time. To make things more realistic, all memories of the our life

in the beyond might have been erased from our immediate memories [118]. Maybe the “mean-

ing” of our world is rather trivial; like the simulation of marketing measures for a beyond world

[119]. As computers have begun to permeate our societies, it is no wonder that the “universe as

a computer” metaphor for the physical Universe has attracted increasing attention. Perhaps some

day our own technology could achieve such visions, and put it to our practical use [120].

In antiquity, Pythagoras (6th cent. B.C.)“considered numbers as the essence and principle of
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all things, and attributed to them a real and distinct existence; so that, in his view, they were the

elements out of which the universe was constructed”(from Bulfinch [1]). Plato’s (c. 427- c. 347

B.C.) emphasis in geometry, in particular his dictum“God geometrizes”[121] was interpreted

by Gauss (1777-1855) as“o theos arithmetizei,”or “God computes.”The vision of a clockwork

universe is probably best characterized by the (probably apocryphal) story, that when Laplace was

asked by Napoleon how God fitted into his secular system ofMécanique Ćeleste, he replied [2, p.

538], “I have no need for that hypothesis”[122].

In his famous lecture delivered before the International Congress of Mathematicians at Paris in

1900, Hilbert (1862-1943) enumerated twenty-three problems, among them the compatibility of

the arithmetical axioms (# 2), the mathematical treatment of the axioms of physics (# 6), and the

determination of the solvability of a diophantine equation (# 10) [123]. Gödel (1906-78), as well

as Turing (1912-54) contributed towards the (negative) solution of # 2 & # 10. They pursued a

formalization of mathematics by coding of axiomatic systems, either by the uniqueness of prime

factorization or by their representation as (universal) computer programs [124].

For the first time in human history, we are able to articulate precisely what we mean when dis-

cussing computations. Turing’s universal computer model is modelled after the syntax of everyday

pencil and paper operations which children learn at school. The paper lines are unwound into a

tape, and whatever rules there are for computing can be represented by the combination of tape,

finite memory and simple read-write operations of the Turing machine.

The notion of universal computation isrobust in the sense that any universal computer can

emulate any other universal computer (regardless of efficiency and overhead), so that it does not

really matter which one is actually implemented. In a sense, the entire class of universal computer

counts as a single computer, because they are all equivalent with respect to algorithmic emulation

of one another.

Robustness is a very important concept for the matter of computational universes, because it

is not really important on which particular models or hardware these universes are implemented;

they are all in the same equivalence class. Apart from the translation from one coding scheme

to another, each one of them is equivalent to the entire class. So, when it comes to their generic

properties, it is not really important whether automaton universes are modelled to be Cellular

Automata, Turing Machines, colliding billiard balls [3], or biological substrates. All of this means

that one is free to choose whatever computational model suits best the particular purpose one has

in mind.
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Gödel, Tarski, Turing and Chaitin, among others, revealed that, stated pointedly, mathematical

“truth” extends formal “provability.” Mathematics is incomplete, and there always will be true

theorems about a particular formal system of axioms (sufficiently rich to contain arithmetic), such

as consistency, which are not provable “from within” that system [125].

Wigner considered”the unreasonable effectiveness of mathematics in the natural sciences”

[4], which is usually taken for granted but which, upon inspection, seems unfounded. One obvi-

ous solution to this bewilderment seems to be the Pythagorean assumption that numbers are the

elements out of which the universe was constructed; and what appears to us as the laws of Nature

are just mathematical theorems or computations. Notice that, whereas Gödel once and for all set-

tled the question of a complete finite description of mathematics to the negative, the question of

whether or not a finite mathematical treatment of the axioms of physics exists (Hilbert’s problem

# 6) remains open.

Another thread was opened by Edward Moore. Puzzled by the quantum mechanical feature

of complementarity, Moore conceived a finite deterministic model of complementarity capable of

being run on a computer [5, 6]. This formalization of complementarity, not in terms of Hilbert

space quantum mechanics, but by constructive algebraic, even finitistic, means, may be perceived

as the continuation of the Turing program to formalize the notion of “algorithm” or “computation”

by conceptualizing it as a concrete machine model.

In another development, Von Neumann (preceded by Ulam [7]) constructed a two-dimensional

cellular array of finite deterministic automata which are connected to their neighbors such that

the state of each one of these automata is determined by the previous states of itself and of its

neigbors [8]. He was able to show that such cellular automata (CA) could not only be in the robust

class of universal computers, but that entities inside such arrays could reproduce themselves by

holding their own descriptional code and the algorithmic means to construct identical copies of

themselves.

Stimulated by Von Neumann’s concept of CA, Konrad Zuse, the creator of one of the first

general purpose digital computers, suggested to look into the idea that physical space itself might

actually be such a “calculating space” (“Rechnender Raum”) [9–11]. In this view, the physical

objects exist as computational entities immersed in such a computational medium. Zuse became

fascinated by the idea of going beyond quantum mechanics in discretizing physics [126], a vi-

sion he shared with the late Einstein [127] and many researchers, among others Fredkin, Toffoli,

Margolus, and Wolfram.
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Fredkin and Toffoli investigated reversible CA, in which the global temporal evolution can be

inverted uniquely. That is, any CA configuration has a unique predecessor and a unique successor.

Note that, if the evolution is a bijective map; i.e., is one-to-one for every single cell, then the global

array is a reversible CA as well. (The converse need not be satisfied.) For a concise account [128]

the reader is referred to the reviews by Toffoli & Margolus [12], Fredkin [13] and Wolfram [129].

In a reversible world, nothing is lost or gained; and all revelations are permutated back and forth.

In this sense, the very concept of question and answer, of problem and solution, of past, present

and future, and thus of a directed “lapse of time,” remains relative, subjective and conventional

[14].

II. INTRINSIC RANDOMNESS AND UNDECIDABILITY

Contemporary theoretical physics postulates at least three types of randomness: (i) the

“chaotic” randomness residing in the initial conditions, which are assumed to be “drawn” (via

the postulated axiom of choice) from a “continuum urn.” Almost all elements of the continuum

are nonrecursively enumerable and even random; i.e., algorithmically incompressible [15–17]; (ii)

the random occurrence of individual quantum events such as a detector click; (iii) complementar-

ity; i.e., the impossibility to measure two or more observables with arbitrary precision at once.

A. Computational complementarity

As already mentioned, Moore [5] invented (parts of) finite automata theory to formalize and

model physical complementarity. Research in this area became totally separated from its original

physical perspective and developed into a beautiful algebraic theory of its own [18]. Finkelstein

[19] rediscovered Moore’s paper and coined the term “computational complementarity.” Its con-

crete logico-algebraic structure has been investigated by the author in a series of papers with C. and

E. Calude, Khoussainov, Lipponen, Schaller and others [20–23], also in the context of reversible

computation [24, 25]. Automaton logic turns out to be logically equivalent [26] to generalized urn

models [27, 28], indicating that the associated logico-algebraic structure is more robust than could

be assumed from those single model types alone.

Arguably, the simplest automaton model featuring complementarity is a finite (Mealy) automa-

ton in which the sets contain three internal statesS= {1,2,3}, three input symbolsI = {1,2,3},
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and two output symbolsO = {0,1}. Let, for s∈ S, i ∈ I , the (irreversible “guessing”) output

function beλ(s, i) = δsi. The (irreversible) transition function just steers the automaton into a

state corresponding to the input symbol; i.e.,t(s, i) = i. The problem of finding an unknown ini-

tial state by analysis of experimental input–output sequences yields a partitioning of the internal

states{{1},{2,3}}, {{1,3},{2}}, and{{1,2},{3}}, according to the input 1, 2, and 3, respec-

tively. Every one of the partitions constitutes a Boolean algebra whose elements are comeasurable.

The pasting of these three Boolean algebras along their common elements (in this case just/0 and

{{1,2,3}}) yields a nonclassical, nondistributive logical structureMO3, which is also realized

by the algebra of propositions associated with the electron spin state measurements along three

different directions.

A systematic investigation shows that the logico-algebraic structures arising from computa-

tional complementarity are very similar to those encountered in quantum logics [23, Sec. 3.5.2].

In particular, any finite quantum (sub-)algebra can be represented as an automaton logic and thus

can be modelled with a finite automaton. Clearly, infinite quantum structures, such as the contin-

uous “Chinese lantern” latticesMOc involved in electron spin state measurements in continuous

directions, or quantum contextuality, cannot be modelled with a finite automaton.

Although computational complementarity will not be reviewed any further here, it should be

mentioned that Moore conceptualized input/output experiments on finite automata, making a dis-

tinction between “intrinsic” cases where only one automaton is available, and those in which an

arbitrary number of identical copies are accessible. In the latter case, there is no complementarity,

because after any experiment it is always possible to dispose of the used automaton and get a fresh

automaton copy for further experiment(s).

The intrinsic, embedded, case is the one experienced in physics, because the observer cannot

escape and always is part of the (“Cartesian prison” [29, Meditation 5,15]) system. Due to re-

strictions in copying and cloning, it is not possible, for instance, to obtain an identical copy of a

single photon or electron in a nonclassical state. And only in the single automaton case there is

a chance to experience complementarity, for only in this case it may happen that, after answering

to some query, the automaton undergoes an irreversible transition, making it impossible for the

experimenter to probe a different observable (andvice versa). Reversibility does not change the

picture, since if both the observer and the observed object were immersed in a reversible environ-

ment, then the experiment could be “undone” and the original automaton state reconstructed only

at the price of loosing all the information gathered so far [30]. This is an analogue to the quantum

6



eraser experiment [31] and other setups (e.g., [32]) developed for demonstrating the feasibility of

a reconstruction of quantum states.

Bear in mind that complementarity is not only a feature of exotic finite models which were spe-

cially crafted for this particular purpose. Since these finite models represent a subset of objects that

can be simulated by any universal computer, such as a CA or a Turing machine, complementarity

is, in a sense, a generic and robust property of all computational universes.

B. Intrinsic undecidability

The quest to translate G̈odel-Turing type recursion theoretic undecidability into physics has a

long history. G̈odel himself did not believe that his results have any relevance for physics, at least

not for quantum physics [130]. Early on, Popper speculated about limits of forecast in the light of

these findings [33]. More recent undecidability results are based on physical configurations which

are provably unsolvable through the reduction to the halting problem (e.g., [34–36]).

Indeed, since the Turing machine is modelled after a paper and pencil real world scenario, uni-

versal computers can be embedded into certain physical systems capable of universal computation.

Undecidabilities can then be obtained almost as a “free lunch;” i.e., by reduction to the recursive

unsolvability of certain prediction problems, such as the halting problem.

So, why do people such as Casti [131], who had been very interested in the subject, consider

this issue as a “red herring?” Maybe because so far not a single problem of relevance in physics

not constructed for this particular purpose is provably undecidable.

C. Continuum versusdiscrete physics

The conceptualization of the number system—from just a few finger counts to the natural num-

bers, the integers, rationals, reals [37] and further on to complex numbers, quaternions and hy-

perreals is undoubtedly one of the most beautiful and greatest achievements of humanity. Nev-

ertheless, as more and more abstractions enter these great patterns of thought, one is compelled

to question their practical physical relevance. Clearly, for instance, infinite divisibility (from the

rational onwards) and continuity (from the reals onwards) find strong pragmatic justifications by

their applicability to almost all branches of theoretical physics, including quantum mechanics.

Even so, some doubts as to the appropriateness of transfinite concepts in physical modelling re-
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main [38]. Let us state the following correspondence principle between physical phenomena and

their models [39]:every feature of a computational model should be reflected by the capacity of

the corresponding physical system. Conversely, every physical capacity, in particular of a physical

theory, should correspond to a feature of an appropriate computational model.

Nature does not seem to allow Zeno squeezing [20, 24, 40–46] and other transfinite processes.

It could therefore be conjectured that, as physical systems do not possess adequate transfinite

capacities, only finite computational models ought to be acceptable for theoretical modelling. This

still admits universal computation and finite automata, but it wipes out classical, nonconstructive

continua.

Having said this, there may be some indication of absolute randomness involved in certain

quantum measurements, though. Suppose a single electron is prepared in a particular spin state

in one directionθp. Assume further that its spin state is not measured in this particular direc-

tion, but in another directionθm. Then quantum mechanics predicts that the probability that

identical spin states are measured is sin2[(θp− θm)/2]; for non-identical result the probability

is 1− sin2[(θp− θm)/2] = cos2[(θp− θm)/2] (classically, one would expect linear dependencies

on the measurement angles, such as|θp− θm|/π and 1− |θp− θm|/π, respectively). Moreover,

quantum mechanics postulates that these outcomes are stochastic and cannot be reduced to some

form of microscopic law governing the single measurement outcomes. Atθp−θm = π/2, a series

of such experiments, when coded into a 0,1-sequence, is postulated by the quantum mechanical

canon to render an algorithmically incompressible random sequence [47]; a fact which can be used

to construct a plug-in device [48]; just like another card which can be inserted into a computer and

facilitates the desired function, in this case the production of random data.

Here seems to be a physical source of absolute randomness [15–17] which appears almost to-

tally “free” of any computational costs. Just detune preparation and measurement to attain the goal

of a perfect random number generator. Indeed, this quantum postulate of microphysical random-

ness seems to be a remarkable fact, in particular since randomness is a valuable resource which,

in the context of universal computation, cannot be obtained “for nothing.” Although “almost all”

reals are random, it is hard (indeed impossible) to come by any concrete element with that prop-

erty. The closest one could get may be Chaitin’sΩ number, which is the Kraft sum of the length

of all prefix-free halting programs on some universal computer (see [15–17] for details). It is even

possible to write down a finite program for computing the first bits ofΩ, but for better precision

there is no computable radius of convergence certifying that a particular finite sequence is the
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starting sequence forΩ. In that respectΩ resembles Specker’s sequence of rational numbers with

non-recursive limit, or the Busy Beaver function [49–51].

So, is every electron a point particle capable of transfinite computations? While electrons do not

seem to possess any capacity of universal computation at all, they appear just to be perfect random

number generators. That is indeed amazing! Maybe we just have not listened carefully enough

when crafting the computational models appropriate for physics. Is Turin’s universal computer

model, appended with an additional “random oracle” plug-in, sufficient?

In another scenario, an electron might just be coded to carry the answer to a single question;

e.g., related to its spin state in a particular direction. If requested to answer a different question,

such as about its spin state in a different direction, it might just churn out random nonsense [52]

according to Malus’ law [53, 54]. Or, it may need an interface, an environment or measurement

apparatus translating the observer’s question to the language (or question) understandable by the

object [25, 30], thereby introducing stochastic noise by uncontrollable macroscopic processes. So

far, these are all metaphysical speculations which need to be sorted out by operational means, i.e.,

by experiment.

D. Nonlocality & contextuality

Quantum nonlocality is a phenomenon which can be quite easily described, yet remains myste-

rious. Consider again the spin state measurements of electrons. Let us assume that it is possible to

produce two particles in a singlet state, such that, when their spin is measured along an arbitrary

but identical direction, their spin states are opposite. Now, consider the correlation of their spin

states when measured along arbitrary but different directions. As it turns out, if the directions

are different from 0 and from integer multiples ofπ/2 or π, the quantum correlations are either

weaker or stronger than the classical correlations. This is related to the difference of the aforemen-

tioned quantum probabilitiesversusthe classical ones. In terms of elementary physical events, one

obtains more or fewer joint clicks in the detectors measuring the spin states than would be con-

ceivable classically for any such state. The doctrine of “peaceful coexistence” between relativity

theory and quantum mechanics [55] assures that this feature cannot be used for faster than light

quantum signalling [56–58].

Can CA with local neighbourhood cell evolution reproduce quantum-type nonlocality? That

seems to be a hard problem, in particular if one clings to the idea of evolution functions which only
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depend on the neighbourhood, a property which surely seems to be a constituent element in the

definition of CA. Indeed, with regards to nonlocality, little convincing evidence and comfort has

been given so far by the CA community. Zuse mentions the chess metaphor of the bishop, a piece

which can move in single-colour diagonal direction only, thereby exerting a nonlocal influence

on the entire chessboard [11]. But how could the entire chessboard know of the bishop’s motion

if information can only propagate by one cell per time step? Considering quantized cells is no

solution, because the quantum nonlocalities introduced by proper normalization of the entire ray

wave function comes as no surprise [59]: quantum behaviour of a quantized system is indeed to

be expected.

Another, entirely different and radical possibility would be to give up the notion of “calculating

space” and consider a computational substratum which is nonlocal from the very beginning. In

this approach, the cellular space does not correspond to anything which is spatially extended from

a physical point of view, such as the tesselated configuration space Zuse had in mind. Rather, it

might be some kind of generalized phase space, in which physical states are discrete. This resem-

bles the “old” quantum mechanics of Planck and Einstein [132] and known as Bohr-Sommerfeld

“quantization.”

Contextuality is another controversial issue which is discussed in the quantum context [60].

One may argue that as it cannot be operationalized anyway, contextuality is a property of almost

pure theoretical value, such as counterfactuals or scholasticinfuturabilities. In continuum theory,

there are “exotic” ways to come by [61, 62], but this is no option for a discrete model. At first sight,

classical computers seem to be value definite and noncontextual, but a closer inspection reveals that

there are subtleties to be kept in mind. Value definiteness need not imply that an agent is prepared

to answeranyexperimental question. Indeed, in contradistinction to Kant’s transcendental ideal

[133], and scholastic, theological speculations whether or not the omniscience of God extends to

events which would have occurred if something had happened that did not happen, which have

been so powerfully formalized into a finitistic proof (cf. [63, p. 243] and [64, p. 179]), some

properties may not be properly definable for certain computational agents, and therefore may not

be operational. For example, if an agent trained to wash dishes is confronted with the task to write

a book on hiking trails in New Zealand’s Waitakere ranges, it will most certainly be at a complete

loss. Or an agent advised to direct some parties to a path on the right hand side when asked for

right or left, will most certainly be at a loss when asked whether to proceed up or down. The agent

simply would not be programmed and thus not be prepared to answer any type of question, but
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rather only a small selection from among all conceivable questions.

III. INTRINSIC, EMBEDDED OBSERVER MODE

Computational complementarity and undecidability in general are good examples of how the

science of systems may enter physics. Unless one accepts the concept of an “intrinsic embed-

ded mode,” computational complementarity disappears into thin air. And since system science

seems foreign to most physicists, it is hard to see if and when such concepts will be more broadly

comprehended.

As with all general concepts, it is hard to pinpoint when exactly the concept of an intrinsic

embedded observer was formulated for the first time [134]. Boskovich [65] around 1755 referred

to the fact that embedded observers cannot recognize an overall change (squeeze, dilatation and

contraction) of the system size [135]. More recently, Toffoli [66] discussed the role of the observer

in uniform systems. Embedded observers arethe big issue in relativity theory, because Einstein

insisted on operational methods available within the system only in defining clocks, length scales,

and when comparing them [136]. Rössler [67, 68] and the author [20, 69–72], independently

share similar concepts, although Rössler’s emphasis has been on the role of the interface between

observer and observed object [73] rather than on concrete examples of automaton logic or space-

time frames [137].

IV. SPACE TIME FRAMES OF INTRINSIC OBSERVERS

Relativity theory has altered the way we think of space and time from a formal point of view,

but the perception of space and time at large, and what meaning is ascribed to these notions,

has not changed too much: while pre-relativistic “Galilean” type thinking considered space and

time as absolute and immutable, nowadays this role is ascribed to the relativistic forms of space

time coordinates and their transformation laws. It is almost as if the attitude of the protagonists

remained the same, but their message changed slightly.

Relativity theory, as introduced by Einstein, at least in the first, cinematic, part of the seminal

1905 paper [74], is conceived as a strictly operational theory for embedded, intrinsic observers.

Those observers are bound to use the methods and capabilities of the system of which they are an

integral part; and they cannot resort to an extrinsic, “God’s eye” overview of it. But operationalism

11



is not enough to create space-time frames. What is also needed (but seldom mentioned although

implicitly assumed) are conventions for measuring time and space, and for comparing those scales

at different locations and different times in co-moving and other experimental configurations. In-

deed, the International System of units outrightly declares a previously experimental physical fact

to be convention. The speed of light is assumed to be constant for all reference frames. With

the mild side assumption of the one-to-oneness (invertibility) of space-time transformation, this

convention declares the preservation of light cones, and thus, by the preservation of set theoretic

intersections of light cones such as time- space- and lightlike onedimensional subspaces, results

in affinity and linearity of the transformation laws. From this point of view, the Lorentz trans-

formation are a geometric statement, and not a physical statement. In geometry, this is known as

Alexandrov’s theorem [75–81].

So, in a sense, this is the big picture. If one requires invariance of some “fundamental” speed

and bijectivity of the transformation laws, then the Lorentz-type transformation laws containing

that “fundamental” speed follow. Thereby, it makes no difference whether the associated observers

are embedded in the “real” Universe, in a CA, or in a plum pudding; as long as these conditions

and conventions are met, then Alexandrov’s theorem certifies that the geometry is a relativistic

one. For discrete models, these results will always be only approximations which are valid down

to scales where the discreteness becomes important.

Where is all the physics gone? The answer to this question is that the physics is in the in-

variance with respect to any such Lorentz-type transformations. For example, clocks governed by

electromagnetic phenomena will be showing the “right” time in all frames if the “fundamental”

speed is chosen to be the speed of light. Sound clocks tick invariantly in the respective system

if the “fundamental” speed is the speed of sound. Scales are invariant if the forces stabilizing

that scales are electromagnetic ones and the “fundamental” speed is again chosen to be the speed

of light. So, with these new conventions, the invariance of certain length [82] and time scales,

corresponding to the relativistic form invariance of the laws governing them, becomes a physical

statement [82–85].
The following is an example [86] of an Einstein synchronisation by clocks generating radar
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coordinates in a one-dimensional CA with the following evolution rules.

ϕ(>, ,X)→>, ϕ(X, ,<)→<, ϕ( , , )→ , ϕ(X, ,>)→ , ϕ(<, ,X)→ ,

ϕ( ,>, )→ , ϕ( ,<, )→ , ϕ( ,>, I)→<, ϕ(I ,<, )→>, ϕ(>, I ,X)→∗,

ϕ(<,∗,X)→ I , ϕ(X,<,∗)→ , ϕ(∗,1,X)→ 2, ϕ(∗,2,X)→ 3, ϕ(∗,3,X)→ 4,

ϕ(∗,4,X)→ 5, ϕ(∗,5,X)→ 6, ϕ(∗,6,X)→ 7, ϕ(∗,7,X)→ 8, ϕ(∗,8,X)→ 9,

ϕ(∗,9,X)→ 0, ϕ(∗,0,X)→ 1, ϕ(0, ,X)→ , ϕ(1, ,X)→ , ϕ(2, ,X)→ ,

ϕ(3, ,X)→ , ϕ(4, ,X)→ , ϕ(5, ,X)→ , ϕ(6, ,X)→ , ϕ(7, ,X)→ ,

ϕ(8, ,X)→ , ϕ(9, ,X)→ , ϕ(X,∗,0)→∗, ϕ(X,∗,1)→∗, ϕ(X,∗,2)→∗,

ϕ(X,∗,3)→∗, ϕ(X,∗,4)→∗, ϕ(X,∗,5)→∗, ϕ(X,∗,6)→∗, ϕ(X,∗,7)→∗,

ϕ(X,∗,8)→∗, ϕ(X,∗,9)→∗, ϕ(X,1,X)→ 1, ϕ(X,2,X)→ 2, ϕ(X,3,X)→ 3,

ϕ(X,4,X)→ 4, ϕ(X,5,X)→ 5, ϕ(X,6,X)→ 6, ϕ(X,7,X)→ 7, ϕ(X,8,X)→ 8,

ϕ(X,9,X)→ 9, ϕ(X,0,X)→ 0, ϕ(X, I ,0)→ I , ϕ(X, I ,1)→ I , ϕ(X, I ,2)→ I ,

ϕ(X, I ,3)→ I , ϕ(X, I ,4)→ I , ϕ(X, I ,5)→ I , ϕ(X, I ,6)→ I , ϕ(X, I ,7)→ I ,

ϕ(X, I ,8)→ I , ϕ(X, I ,9)→ I , ϕ(X, I ,0)→ I , ϕ(X, I ,X)→ I , ϕ(∗, ,X)→ ,

ϕ( , , I)→ , ϕ(I , , )→ , ϕ(I ,>, )→ , ϕ( ,<, I)→ .

(1)

Here,X stands for any state except the ones already specified. These rules look a little bit “murky,”

but they can be simulated by any universal CA and they serve their purpose to demonstrate clock

synchronization procedures. (Actually, this pattern was generated automatically by a CA simulator

from the above rules.)

Assume two clocks at two arbitrary pointsA andB in the CA which are “of similar kind.” At

some arbitraryA-time tA a ray goes fromA to B. At B it is instantly (without delay) reflected atB-

timetB and reachesAagain atA-timetA′. The clocks inAandBaresynchronizedif tB−tA = tA′−tB.

The two-ways ray velocity is given by 2|AB|/(tA′− tA) = c, where|AB| is the distance betweenA

andB. In Fig. 1(a), an example of synchronization between two clocksA andB is drawn.

What happens with the intrinsic synchronization and the space-time coordinates when ob-

servers are considered which are in motion with respect to the CA? For simplicity, suppose a

constant motion ofv automaton cells per time cycle. With these units, the ray speed isc = 1, and

v≤ 1. There are numerous ways to simulate sub-ray motion on a CA. In what follows, the case

v = 1/3 will be studied in such a way that every three CA time cycles the walls, symbolised byI,

move one cell to the right.

Notice that two clocks which are synchronized in a reference frame which is at rest with respect

to the CA medium arenot synchronizedin their own co-moving reference frame. Consider, as an

example, the CA drawn in Fig. 1(b). (Strictly speaking, the CA rule here depends on a two-

neighbor interaction.) FortA = 1, tB = 4, tA′ = 5, and 4−1 6= 5−4, if the first clock is corrected

to make up for the different time of ray flights as in Fig. 1(c),tA = 2, tB = 4, tA′ = 6, and 4−2 =

6−4. Then, this correction amounts to an asynchronicity of the two ray clocks with respect to the

13



clock1 A B clock2 clock1 A B clock2 clock1 A B clock2

______I>__I0__I>______I__I>__I0______ __I>_I0__I___<___I__I>_I0________________ __I>_I1__I___<___I__I>_I0________________

______I_>_I0__I_>_____I__I_>_I0______ __I_>I0__I__<____I__I_>I0________________ __I_>I1__I__<____I__I_>I0________________

______I__>I0__I__>____I__I__>I0______ __I_<*0__I_<_____I__I_<*0________________ __I_<*1__I_<_____I__I_<*0________________

______I__<*0__I___>___I__I__<*0______ ___I>_I1__I>______I__I>_I1_______________ ___I>_I2__I>______I__I>_I1_______________

______I_<_I1__I____>__I__I_<_I1______ ___I_>I1__I_>_____I__I_>I1_______________ ___I_>I2__I_>_____I__I_>I1_______________

______I<__I1__I_____>_I__I<__I1______ ___I_<*1__I__>____I__I_<*1_______________ ___I_<*2__I__>____I__I_<*1_______________

______I>__I1__I______>I__I>__I1______ ____I>_I2__I__>____I__I>_I2______________ ____I>_I3__I__>____I__I>_I2______________

______I_>_I1__I______<*__I_>_I1______ ____I_>I2__I___>___I__I_>I2______________ ____I_>I3__I___>___I__I_>I2______________

______I__>I1__I_____<_I__I__>I1______ ____I_<*2__I____>__I__I_<*2______________ ____I_<*3__I____>__I__I_<*2______________

______I__<*1__I____<__I__I__<*1______ _____I>_I3__I____>__I__I>_I3_____________ _____I>_I4__I____>__I__I>_I3_____________

______I_<_I2__I___<___I__I_<_I2______ _____I_>I3__I_____>_I__I_>I3_____________ _____I_>I4__I_____>_I__I_>I3_____________

______I<__I2__I__<____I__I<__I2______ _____I_<*3__I______>I__I_<*3_____________ _____I_<*4__I______>I__I_<*3_____________

______I>__I2__I_<_____I__I>__I2______ ______I>_I4__I______>I__I>_I4____________ ______I>_I5__I______>I__I>_I4____________

______I_>_I2__I<______I__I_>_I2______ ______I_>I4__I______<*__I_>I4____________ ______I_>I5__I______<*__I_>I4____________

______I__>I2__I>______I__I__>I2______ ______I_<*4__I_____<_I__I_<*4____________ ______I_<*5__I_____<_I__I_<*4____________

______I__<*2__I_>_____I__I__<*2______ _______I>_I5__I___<___I__I>_I5___________ _______I>_I6__I___<___I__I>_I5___________

______I_<_I3__I__>____I__I_<_I3______ _______I_>I5__I__<____I__I_>I5___________ _______I_>I6__I__<____I__I_>I5___________

______I<__I3__I___>___I__I<__I3______ _______I_<*5__I_<_____I__I_<*5___________ _______I_<*6__I_<_____I__I_<*5___________

______I>__I3__I____>__I__I>__I3______ ________I>_I6__I>______I__I>_I6__________ ________I>_I7__I>______I__I>_I6__________

______I_>_I3__I_____>_I__I_>_I3______ ________I_>I6__I_>_____I__I_>I6__________ ________I_>I7__I_>_____I__I_>I6__________

______I__>I3__I______>I__I__>I3______ ________I_<*6__I__>____I__I_<*6__________ ________I_<*7__I__>____I__I_<*6__________

______I__<*3__I______<*__I__<*3______ _________I>_I7__I__>____I__I>_I7_________ _________I>_I8__I__>____I__I>_I7_________

______I_<_I4__I_____<_I__I_<_I4______ _________I_>I7__I___>___I__I_>I7_________ _________I_>I8__I___>___I__I_>I7_________

______I<__I4__I____<__I__I<__I4______ _________I_<*7__I____>__I__I_<*7_________ _________I_<*8__I____>__I__I_<*7_________

______I>__I4__I___<___I__I>__I4______ __________I>_I8__I____>__I__I>_I8________ __________I>_I9__I____>__I__I>_I8________

______I_>_I4__I__<____I__I_>_I4______ __________I_>I8__I_____>_I__I_>I8________ __________I_>I9__I_____>_I__I_>I8________

______I__>I4__I_<_____I__I__>I4______ __________I_<*8__I______>I__I_<*8________ __________I_<*9__I______>I__I_<*8________

______I__<*4__I<______I__I__<*4______ ___________I>_I9__I______>I__I>_I9_______ ___________I>_I0__I______>I__I>_I9_______

______I_<_I5__I>______I__I_<_I5______ ___________I_>I9__I______<*__I_>I9_______ ___________I_>I0__I______<*__I_>I9_______

______I<__I5__I_>_____I__I<__I5______ ___________I_<*9__I_____<_I__I_<*9_______ ___________I_<*0__I_____<_I__I_<*9_______

______I>__I5__I__>____I__I>__I5______ ____________I>_I0__I___<___I__I>_I0______ ____________I>_I1__I___<___I__I>_I0______

______I_>_I5__I___>___I__I_>_I5______ ____________I_>I0__I__<____I__I_>I0______ ____________I_>I1__I__<____I__I_>I0______

______I__>I5__I____>__I__I__>I5______ ____________I_<*0__I_<_____I__I_<*0______ ____________I_<*1__I_<_____I__I_<*0______

______I__<*5__I_____>_I__I__<*5______ _____________I>_I1__I>______I__I>_I1_____ _____________I>_I2__I>______I__I>_I1_____

______I_<_I6__I______>I__I_<_I6______ _____________I_>I1__I_>_____I__I_>I1_____ _____________I_>I2__I_>_____I__I_>I1_____

______I<__I6__I______<*__I<__I6______ _____________I_<*1__I__>____I__I_<*1_____ _____________I_<*2__I__>____I__I_<*1_____

______I>__I6__I_____<_I__I>__I6______ ______________I>_I2__I__>____I__I>_I2____ ______________I>_I3__I__>____I__I>_I2____

______I_>_I6__I____<__I__I_>_I6______ ______________I_>I2__I___>___I__I_>I2____ ______________I_>I3__I___>___I__I_>I2____

______I__>I6__I___<___I__I__>I6______ ______________I_<*2__I____>__I__I_<*2____ ______________I_<*3__I____>__I__I_<*2____

______I__<*6__I__<____I__I__<*6______ _______________I>_I3__I____>__I__I>_I3___ _______________I>_I4__I____>__I__I>_I3___

______I_<_I7__I_<_____I__I_<_I7______ _______________I_>I3__I_____>_I__I_>I3___ _______________I_>I4__I_____>_I__I_>I3___

(a) (b) (c)

FIG. 1: Synchronization by ray exchange (a) in a system as rest with respect to a CA; (b) ray exchange with

synchronization defined by (a); (c) synchronization in co-moving frame.

“original” CA medium.
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V. NOW WHAT?

Despite all these efforts, including those of the author presented above, the computational ap-

proach to understanding universes has so far resulted in little or no phenomenological impact;

not to speak of any “killer application”—a problem of physics that yields to this analysis but no

other—which would make the few critics and the many hesitant researchers listen to the subject.

Large segments of theoretical physics nowadays in other areas such as string theory or quantum

gravity appear to be in the very same position, but this is big comfort. In search for applications

of the idea of computational universes let us shortly discuss some of the predictions of the subject

and their possible empirical validation or falsification.

A. New range of phenomena

With regards to the logical order of propositions, there may exist phenomena perceivable by

intrinsic, embedded observers which cannot happen according to quantum mechanics but are re-

alizable by finite automata. The simplest case is characterized by a Greechie hyperdiagram of

triangle form, with three atoms per edge. Its automaton partition logic is given by

{{{1},{2},{3,4}},{{1},{2,4},{3}},{{1,4},{2},{3}}}. (2)

A corresponding Mealy automaton is〈{1,2,3,4},{1,2,3},{1,2,3},δ = 1,λ〉, whereλ(1,1) =

λ(3,2) = λ(2,3) = 1, λ(3,1) = λ(2,2) = λ(1,3) = 2, andλ(2,1) = λ(4,1) = λ(1,2) = λ(4,2) =

λ(3,3) = λ(4,3) = 3.

Figure 2 depicts the Greechie and Hasse diagrams of this propositional structure.

The physical interpretation of Eq. (2) is the following: there exist six observables{1}, {2},

{3}, {1,4}, {2,4}, and{3,4}; i.e.,{3,4} corresponds to“ the system is in state3 or in state4.”

They are grouped into three partitions of{1,2,3,4}, such that within each group the observ-

ables are comeasurable. For instance, in the automaton example enumerated above, the experiment

with the input of symbol 2 differentiates between{1,4}, {2}, {3} and all properties obtained by

forming the logical “or” operation, such as{2,3}. But the experiment does not reveal all conceiv-

able propositions, such as{1,2}. Another experiment with the input of symbol 3 does, but cannot

reveal other properties, such as{1,4}. Because of this complementarity, the propositions are

nonclassical, in particular they do not obey the distributive law: since{1,3}∨{2,3}= {1,2,3,4},

{1,2,4}∧ ({1,3}∨{2,3}) = {1,2,4}∧{1,2,3,4} = {1,2,4}
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FIG. 2: a) Greechie and b) Hasse diagram of a logic featuring complementarity which is not a quantum

logic but which is embeddable in a Boolean logic.

= ({1,2,4}∧{1,3})∨ ({1,2,4}∧{2,3}) = {1,2}.

This humble propositional structure is thus non-classical, but quite remarkably it also can-

not be realized by quantum mechanics. The complementary groups are interlocked in a triangle

form, which is forbidden by the Hilbert space based algebraic structure of quantum mechanics: In

analogy to Kochen and Specker [87], we denote by the symbol “⊥” the binary relation of comea-

surability. Any sequencing of observables such as

{1} ⊥ {3,4} ⊥ {2} ⊥ {1,4} ⊥ {3} ⊥ {2,4} ⊥ {1}

(with {1} 6⊥ {1,4} 6⊥ {2,4} and so on) cannot occur in quantum mechanics. Hence, if this propo-

sitional structure is experienced in some physical setup, then quantum mechanics is not an appro-

priate theoretical representation for it. Computational universes would be a natural candidate.

B. Coarse grained structure of digital space

Already Zuse mentioned that, if space is tesselated, then this tesselation will eventually show

up; either by some anisotropy or by a fundamental length scale. No indication is given exactly

when this granularity should show up; and problems abound [88]. By the way, there is no guaran-

tee that space and time will be organized as a regular lattice; it may rather resemble a huge pile of

more or less randomly and densely packed sand and stabilized by whatever forces there are.
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In view of the mild discreteness of quantum mechanics already mentioned earlier (only an

integer number of quanta per field node), it might well be that we have already unravelled the

fundamental discreteness; but not in the properties where we had expected them. So, maybe the

field nodes or phase space are more fundamental than the frames of space and time that we use to

define those fields. In this idealistic picture, space and time may be convenient constructions of

our minds to sort out the evolution of field modes.

C. Exotic probabilities

One approach to the formalism is that anything which is not forbidden explicitly is realized

[138]. As Gleason’s theorem strongly ties quantum probabilities to Hilbert space, there may be

non-classical and non-quantum probabilities which can be modelled with automaton or general-

ized urn models.

Let us consider again spin state measurements on electrons modelled by two-dimensional

Hilbert space entities. The associated algebra of propositions consists of (the horizontal sum

of) Boolean sublattices 22 which are pasted together [89] at their extreme elements. In this case,

Gleason’s theorem does not apply. By taking the algebraic structure and the set of dispersion free

(two-valued) states alone, there exists the possibility of nongleason type probability measures.

These measures have singular, separating distributions and thus can be embedded into “classical”

Boolean algebras such as generalized urn und automaton partition logics. One particular example

is represented in Figure 3. Its probability measure isP(xi
−) = 1 andP(xi

+) = 1−P(xi
−) = 0 for

ac a
p1
− p1

+

a ac
p2
− p2

+

L(x1) L(x2)

ac a
p3
− p3

+

ac a
pn
− pn

+

L(x3) L(xn)
· · ·

FIG. 3: Example for a nongleason type probability measure forn spin one-half state propositional systems

L(xi), i = 1, · · · ,n which are not comeasurable. The superscripti represents theith measurement direction.

The concentric circles indicate the atoms with probability measure 1.

i = 1, . . . ,n. The associated automaton models are straightforward. Every such dispersion free

state is obtained by associating with it a particular automaton state. Whether or not such probabil-

ity distributions exist for fundamental processes is an open question. For spin state measurements
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FIG. 4: Greechie diagram of the Wright pentagon [27]. Filled squares indicate probability1
2.

of the electrons, this does not seem to be the case, but again the question of state preparation may

be essential here.

Another more exotic example of a suborthoposet which is embeddable into the three-

dimensional real Hilbert latticeC(R3) and can also be realized by generalized urn models and finite

automata has been given by Wright [27]. Its Greechie diagram of the pentagonal form is drawn

in Figure 4. Wright showed that the probability measureP(ai) = 1
2, P(bi) = 0, for i = 0,1,2,3,4,

as depicted in Figure 4, is no convex combination of other pure states; and furthermore, that it

does not correspond to any Gleason type measure allowed as quantum probability. In this sense,

it is a “stranger-than-quantum probability.” And although automata and generalized urn models

ass well as quantum system with this pentagonally interlocking algebraic structure of propositions

exist, no realizable probability measure on it is of the form of Wright’s measure defined above.

The reason for this is the impossibility to represent it as a convex combination of other dispersion

free two-valued states.

D. “Tuning” reality

If the physical phenomena are the intrinsic view of a mathematical or computational universe,

then any attempt to render, manipulate and change certain phenomena could be interpreted as “re-

programming.” In fact, reprogramming or “tuning” [139] reality may be a powerful new metaphor

hitherto foreign to theoretical physics. Again, one should keep in mind that this is highly specula-

tive.
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E. Against odds

Let me again emphasise that discrete or algorithmic physics may be utterly non mainstream

and off-topic, as competing with ”traditional” continuum physics is hard. For instance, note the

fabulous coincidence between the theoretical and the experimental values of the anomalous mag-

netic moment of the Muonaµ,t = 11659177(7)×10−10 andaµ,e = 11659204(7)(5)×10−10 [90].

Or take the neutron double slit experiments [91] which show a wonderful agreement of theory and

experiment.

Yet, despite all these difficulties, discrete computational physics certainly represents an interest-

ing, speculative and challenging research area. Many ideas from system science, interface design,

to dualism (e.g., the Eccles Telegraph) enter. The issue has metaphysical connotations. It is for

instance quite likely that a demiurge would create an ”atomistic” world such as ours, in which an

immense (to us) number of identical gaming pieces come together to form a universe and which

are constantly rearranged to form rich and varied and seemingly complex patterns. Or there is just

one consistent Universe of Mathematics, and this is the the physical Universe we are living in.
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