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Abstract

For many–particle systems, quantum information in basen can be defined by
partitioning the set of states according to the outcomes ofn–ary (joint) observables.
Thereby,k particles can carryk nits. With regards to the randomness of single
outcomes, a context translation principle is proposed. Quantum randomness is
related to the uncontrollable degrees of freedom of the measurement interface,
thereby translating a mismatch between the state prepared and the state measured.

1 Information in many–particle quantum systems

The preparation of a single particlen–state quantum system in a single state constitutes
the operationalization of anit, or qunit. Likewise, the occurrence of an outcome of an
observable withn possible outcomes can be associated with accessing anit of informa-
tion. For a single particle observable, this is associated with choosing a vector from an
orthogonal basis ofn–dimensional Hilbert space. In the many–particle case, nits may
not only be localized at single particle observables, since due to entanglement, thenits
may be distributed over the particles by representing joint particle properties.

In what follows we shall review and extend formal generalizations [1, 2] of the sin-
gle particle two–state case to an arbitrary finite number of particles with an arbitrary
finite number of different measurement outcomes per particle. Thereby, we define a
‘nit’ as a radixn measure of quantum information which is based on state partitions as-
sociated with the outcomes ofn–ary observables. We shall demonstrate the following
property:k particles specify k ‘nits’ in such a way that k measurements of comeasur-
able observables with n possible outcomes are necessary to determine the information.
Stated pointedly,k particles can carry k nits.

Conceptually, such properties have been previously proposed by Zeilinger [3] as a
foundational principle for quantum mechanics. Zeilinger merely considered two–state
systems of two and three particles, yet an informal hint for higher–dimensional single
quantum systems is in footnote 6 of [3, p. 635]. There is a slight difference in the
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approach of Zeilinger and the author: whereas here the logico–algebraic properties are
studied ‘top-down’ by assuming Hilbert space quantum mechanics and arriving at the
foundational principle purely deductively, Zeilinger and Brukner [4] reconstruct certain
features of quantum physics by treating this principle ‘bottom–up’ as an axiom.

1.1 Definition

For a singlen–state particle, the nit can be formalized as a fine-grained partition ofn
orthogonal states; i.e., if the set of orthogonal states is represented by{1, . . . ,n}, then
the nit is defined by choosing one element of the set{{1}, . . . ,{n}}.

The generalization tok particles involves the construction ofk partitions of the
product states withn elements per partition in such a way that every single product state
is obtained by the set theoretic intersection ofk elements of all the different partitions.
That is, the partitions which properly represent the set of nits have to be defined to obey
the following properties: (i) every set theoretic intersection of single elements of thek
partitions, one element per partition, yields a single product state, and (ii) the union of
all these intersections obtained by (i) is just the set of product states. Every single such
partition can be interpreted as a nit. For their implementation, we shall adopt ann–ary
search strategy.

In the following, the standard orthonormal basis ofnk–dimensional Hilbert space
is identified with the set of statesS= {1,2, . . . ,nk}; i.e., (superscript ‘T ’ indicates
transposition) 1≡ (1, . . . ,0)T ≡| 11, . . . ,1k〉=| 11〉⊗· · ·⊗ | 1k〉, . . ., nk ≡ (0, . . . ,1)T ≡|
nk, . . . ,nk〉. Here, the single particle states are labelled by 11 throughnk, respectively.
Tensor product states are formed and ordered lexicographically (0< 1).

The nit operators are defined via diagonal matrices which containnk−1 equal
amounts ofn mutually different numbers such as different primesq1, . . . ,qn; i.e.,

F1 = diag(q1, . . . ,q1︸ ︷︷ ︸
nk−1 times

, . . . ,qn, . . . ,qn︸ ︷︷ ︸
nk−1 times︸ ︷︷ ︸

n0=1 times

),

F2 = diag(q1, . . . ,q1︸ ︷︷ ︸
nk−2 times

, . . . ,qn, . . . ,qn︸ ︷︷ ︸
nk−2 times︸ ︷︷ ︸

n1 times

),

...
Fk = diag(q1, . . . ,qn︸ ︷︷ ︸

nk−1 times

).

(1)

‘diag(a,b, . . .)’ stands for the diagonal matrix witha,b, . . . at the diagonal entries. The
operators implement ann–ary search filter, separating the search space inton equal
partitions of states, such that successive applications of all such filters renders a single
state. In this simplest, nonentangled, case, the meaning of thei’th filter or nit operator
Fi , 1≤ i ≤ k, can be expressed as the proposition,‘the i’th particle is in state q1, . . . ,qn.’
The nit operators in equation (1) can be combined to a single measurement. The corre-
sponding ‘context operator’C = F1F2 · · ·Fk can be obtained by taking different prime
numbers as diagonal entries ofF1, . . . ,Fk (cf. examples below).
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There existnk! sets of nit operators, which are obtained by forming a(k× nk)–
matrix  q1 . . . q1 . . . qn . . . qn

. . .
q1 . . . qn . . . q1 . . . qn

 (2)

whose rows are the diagonal components ofF1, . . . ,Fk from equation (1), by permuting
its columns and finally reinterpreting the rows as the diagonal entries of the new nit
operatorsF ′

1, . . . ,F
′
k. This formal procedure is equivalent to permuting (the labels of)

the nk product states. One consequence of the rearrangement is the transition from
nonentangled eigenstates of the single particle states to entangled eigenstates thereof
(see example below). No straightforward meaning could be associated to the new nit
operators in this general case. Note that all partitions discussed so far are equally
weighted and well balanced, as all elements of them contain an equal number of states.

1.2 Examples: two three–state particle cases and entanglement

An example for the two three–state particle case has been enumerated in Ref. [2].
Recall that, in the simplest case, the two nit operators can be constructed according to
the scheme in equation (1) and represented by

F1 = {{1,2,3},{4,5,6},{7,8,9}} ≡ diag(a,a,a,b,b,b,c,c,c),
F2 = {{1,4,7},{2,5,8},{3,6,9}} ≡ diag(a,b,c,a,b,c,a,b,c). (3)

If, on the other hand,F2 = diag(d,e, f ,d,e, f ,d,e, f ) anda,b,c,d,e, f , are six differ-
ent prime numbers, then, due to the uniqueness of prime decompositions, the two trit
operators can be combined to a single ‘context’ operator

C = F1 ·F2 = F2 ·F1 = diag(ad,ae,a f,bd,be,b f,cd,ce,c f) (4)

which acts on both particles. AsC has nine different eigenvalues it separates the nine
product states completely and at once.

Just as for the two states per particle case [1], there exist 32! = 9! = 362880 per-
mutations of operators which are all able to separate the nine states. According to
equation (2), they are obtained by forming a(2×9)–matrix whose rows are the diag-
onal components ofF1 andF2 from equation (3) and permuting all the columns. The
resulting new operators are also valid trit operators; i.e., for every one of the new pair
of partitions (i) the set theoretic intersection of single elements of the two partitions,
one element per partition, is a single product state, and (ii) the union of all these inter-
sections obtained by (i) is just the set of product states. (For a proof recall that every
permutation amounts to a relabelling the product states.)

The complete set of 9!/(2 ·3! ·3!) = 5040 different two–trit sets can be evaluated
numerically; i.e., in lexicographic order,

{{{{1,2,3},{4,6,8},{5,7,9}}×{{1,4,5},{2,6,7},{3,8,9}}}, (5)

{{{1,2,3},{4,6,9},{5,7,8}}×{{1,4,5},{2,6,7},{3,8,9}}}, (6)
...
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trit 1 trit 2 trits 1&2

Figure 1: Two trits yield a unique tessellation of the two particle product state space.
The first and second single particle states are drawn horizontally and vertically, respec-
tively. Depicted are the first cases of equations (5)—(9).

{{{1,5,9},{2,6,7},{3,4,8}}×{{{1,6,8},{2,4,9},{3,5,7}}}, (7)
...

{{{1,6,9},{2,5,7},{3,4,8}}×{{1,7,8},{2,4,9},{3,5,6}}}, (8)

{{{1,6,9},{2,5,8},{3,4,7}}×{{1,7,8},{2,4,9},{3,5,6}}}}. (9)

A graphical representation of the state single particle state space tesselation is depicted
in figure 1.

In general, the permutations transform nonentangled states into entangled ones.
Consider, for the sake of detail, the ‘(counter)diagonal’ set of trits listed in equation (7),
which is induced by the permutation whose cycle form is (1)(2,5,6,7,3,9,8,4). If the
same two particle(3×3) product state space representation is used as in figure 1, then
the trits just correspond to the completed diagonal and counterdiagonals; i.e., if the
single particle states are labelled bya1,b1,c1 anda2,b2,c2, respectively, then the new
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trit eigenstates{|ψ1〉, |ψ2〉, |ψ3〉} and{|ψ4〉, |ψ5〉, |ψ6〉} are

|ψ1〉 = 1√
3
(|a1a2〉+ |b1b2〉+ |c1c2〉)≡ 1√

3
(1,0,0,0,1,0,0,0,1)T ,

· · ·
|ψ6〉 = 1√

3
(|c1a2〉+ |b1b2〉+ |a1c2〉)≡ 1√

3
(0,0,1,0,1,0,1,0,0)T .

(10)

The associated trit operators are representable byF1 = diag(a,c,b,b,a,c,c,b,a) and
F2 = diag(d,e, f ,e, f ,d, f ,d,e), respectively; with differenta = d, c = e, andb = f ;
or, alternatively, with mutually different numbersa,b,c,d,e, f . With respect to the
original single particle states, the trit eigenstates (10) are entangled.

1.3 Inverse problems

Consider the related dual or inverse problem: suppose that a complete set of orthonor-
mal statesS′ is given; what is the minimal set of comeasurable queries necessary to
separate any single one of these states from the other ones? To answer this question,
the unitary transformationU connecting the set of orthogonal statesS′ with the standard
orthonormal Cartesian basisScan be used to transform the nit operators in equation (1)
into their appropriate form.

For two-state systems labelled by ‘+’ and ‘−,’ the method can for instance be
applied to a set of orthonormal base states of eight dimensional Hilbert space which
contains the W–state introduced in [5] and discussed in [6].

|φ1〉= |+++〉
|φ2〉= 1√

3
(|++−〉+ |+−+〉+ |−++〉)

|φ3〉= 1√
2
(−|++−〉+ |−++〉)

|φ4〉= 1√
6
(−|++−〉+2|+−+〉− |−++〉)

|φ5〉= 1√
3
(|+−−〉+ |−+−〉+ |−−+〉)

|φ6〉= 1√
2
(−|+−−〉+ |−−+〉)

|φ7〉= 1√
6
(−|+−−〉+2|−+−〉−|−−+〉)

|φ8〉= |−−−〉

(11)

Consider the unitary transformationUW given by

UW =



1 0 0 0 0 0 0 0
0 1√

3
− 1√

2
− 1√

6
0 0 0 0

0 1√
3

0 2√
6

0 0 0 0

0 1√
3

1√
2

− 1√
6

0 0 0 0

0 0 0 0 1√
3

− 1√
2

− 1√
6

0

0 0 0 0 1√
3

0 2√
6

0

0 0 0 0 1√
3

1√
2

− 1√
6

0

0 0 0 0 0 0 0 1


. (12)
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By construction, when applied to the vectors of the standard orthonormal Cartesian ba-
sis,UW yields the states enumerated in equation (11). The corresponding bit operators
F1, F2, F3 and the context operatorC are

F1 = UW ·diag(2,2,2,2,3,3,3,3) ·UW†
= diag(2,2,2,2,3,3,3,3) ,

F2 = UW ·diag(5,5,7,7,5,5,7,7) ·UW†
,

F3 = UW ·diag(11,13,11,13,11,13,11,13) ·UW†
,

C = F1F2F3 = UW ·diag(110,130,154,182,165,195,231,273) ·UW†
.

(13)

Note that, if instead of the prime numbers 2, 5, 11 and 3, 7, 13, we would have used 1
and 0, respectively, projection operators would have resulted, but this strategy can only
be applied in the binary case [1].

2 Information of single quantum systems

Having defined nits for the many–particle case, let us now turn our attention to ome
of the mysterious and puzzling issues of quantum mechanics: the postulated random-
ness of certain measurement outcomes introduces an irreducible element of acausality
into theory. Quantum randomness is accompanied by other principal limits of op-
erationalization and rational decidability, such as complementarity and contextuality.
Encouraged by the conference agenda and by many inspiring discussions with Profes-
sor Greenberger, let us raise a speculative and even controversial topic and explore the
randomness encountered in single and many–particle quantum systems when there is a
nit mismatch between the states prepared and the states measured.

2.1 Amazing single particle quantum systems

Consider simple quantum mechanical preparation procedures, such as the preparation
of electrons in pure spin states along a particular direction realizable by a Stern–
Gerlach device. Let us assume that we have prepared or ‘programmed’ the electron
spin to be in the ‘up’ state along ourz–axis. Then, by convincing ourselves that, when
measured alongz, the electron spin is always ‘up,’ we decide to ask the electron a
‘complementary’ question, such as,“what is the direction of spin along the x–axis
perpendicular to the z–axis?’According to the quantum canon, in particular quantum
complementarity, the electron is totally incapable of ‘storing’ precisely more than one
bit of information about its spin state in a particular direction; especially it does not
store a second bit of information about its spin state in any perpendicular direction
thereof. So, when interrogated about issues it was not at all prepared to answer, it is at
a complete loss of providing such information.

In this respect, the electron is like an input/output automaton accepting only se-
quences of strings consisting of the symbol ‘a,’ being confronted with the symbol ‘b.’
Indeed, to ridiculously overextend the ‘Copenhagen interpretation’ to this automaton
case, it would not make much sense to push the word ‘ab’ onto the automaton and
watch its behaviour, since such a behaviour property does not exist. The query seems
to be an absurd one in the sense of nonexistence of these properties.
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Hence, quantum analogies with deterministic agents seem to end when considering
what happens in the case of absurd queries. Deterministic agents are incapable of
handling improper input, on which they offer no answer at all. The electron, on the
contrary, seems to provide an answer, albeit an irreducibly random one. (In this case it
behaves just like most Viennese when asked about a location they do not know: they
are just too embarrassed to confess their ignorance, so they will send the questioner out
into arbitrary directions;)

Thus, from the computational point of view, electrons are amazing little gadgets:
they are incapable of adding two plus two, let alone universal computation; yet in terms
of algorithmic information theory [7, 8], any humble electron seems to possess super–
Turing computation powers. To be more precise: according to the ‘creed’ canonized
by some ‘quantum council,’ the occurrence of certain individual quantum events are
believed to be totally unpredictable, unlawful, acausal, and thus independent of past,
present and future states of the system and of its surroundings, such as the measure-
ment interface, in any algorithmically meaningful way1. As a consequence, with high
probability, algorithmically incompressible sequences can be generated from quantum
coin tosses [9, 10]. Summing up, in terms of spin, electrons seem to specialize in two
antithetical tasks, and in nothing else: being prepared to issue a deterministic answer
when asked a proper question; and tossing more or less fair coins if asked improper
questions.

2.2 Quantum randomness through context translation

We propose that the discrepancies of the seemingly inconsistent computational powers
of single quantum systems, such as the electron spin, can be overcome by the assump-
tion that it is not the electron which is the source of random data, but the measurement
apparatus and the environment of the measurement interface in general which serves
as a‘context translation’of an improper question to a proper one, thereby introducing
noise. The noise might originate from the many uncontrollable degrees of freedom
of the measurement interface, from the complex physical behaviour of the measure-
ment apparatus, and from the observer in general. The particular type of symmetries
involved here seem to restrict the probabilities to Malus’ law [11].

Let us consider possibilities to test and refute this context translation by the inter-
face. One operationalization would be the ‘cooling’ of the interface to produce a de-
crease of responsiveness of the measurement device. It is to be expected that the ability
to translate the measurement context decreases as the temperature is lowered and the
many degrees of freedom which makes the measurement device quasi–classical are
frozen. This may also affect time resolution. In this scenario, in the extreme case of
zero temperature, the context translation might break down entirely, and no discrimi-
nation between states could be given in the mismatch configuration: The measurement
device does not produce an answer to an improper question.

For a concrete example, consider a calcite crystal and polarization measurements
of single photons prepared in a linear polarization state along a single axis. If the con-

1We use the word ‘creed’ here because this claim cannot be operationalized, since it is impossible to de-
vise a test against all algorithmic laws. The ‘quantum council’ has been orchestrated by Bohr and Heisenberg
and adopted by the majority of physicists; with irritating exceptions such as Schrödinger and Einstein.
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text translation hypothesis were correct, the ability of an improperly adjusted calcite
crystal to analyze the polarization direction of photons would be diminished as it as
well as the successive counters get cooler. Close to zero temperature, for the mismatch
configuration, there would not be any polarization detection at all; the incoming photon
would not get scattered and would remain at its original path. As improbable as this
scenario might appear, it is not totally unreasonable or inconsistent and should be ex-
perimentally testable (e.g., see reference [12] for a theory and [13, 14] for experimental
determinations of birefringence in high–temperature ranges).

3 Final remarks

We have presented a formalization of nits for the many-particle case. The present
analysis is ‘top–down,’ in that it is based on the standard formalism of Hilbert space
quantum mechanics. From this point of view, Zeilinger’s foundational principle, which
is intended as a ‘bottom–up’ principle, is corroborated by the fact that, quantum me-
chanically, with the nits properly defined via state partitions,k elementary systems can
carry k nits. By this we mean thatk mutually commuting measurements of (joint or
single particle) observables withn possible outcomes are necessary to determine the
information encoded in a quantum system completely.

We have also proposed a testable principle of context translation for the case of
a mismatch between state preparation and measurement. With regards to this, let us
mention some amusing quasi–classical analogues. Suppose, for instance, that you have
just trained your refrigerator to tell you whether or not it has enough milk for breakfast.
Then, if you asked the fridge whether there is enough butter in it, maybe the best an
intelligent program could do would be to guess the answer on the basis of correlations
of previous filling levels of milk and butter and give a stochastic answer based on that
sort of probabilities. Yet the fridge might be at a complete loss if confronted with the
question whether or not there is enough oil in the car’s engine. If pressed hard, it might
toss a more or less fair coin and tell you some random answer, if capable of doing so.

Instead of a refrigerator, let us consider generalized urn models [15, 16, 17] of the
following form. Suppose an urn is filled with black balls with coloured symbols on
them, say blue and yellow. Suppose further you have a couple of colour glasses of
exactly the same colour. Now if you draw a ball and look at it with such a coloured
eyeglass, you will only be able to perceive the symbols in that particular colour, and
not the other one(s). Conversely, If you take another eyeglass, you will see the symbols
painted in that other colour. A lot of fancy games can be played with generalized urn
models; in particular complementarity games. (Formally, just as quantum mechanics,
their propositional structure is nonboolean; i.e., nondistributive and thus nonclassical
[18], and turns out to be equivalent to automaton partition logic [17]. All finite quan-
tum subalgebras are realized by these logics [18, Section 3.5.3].) Consider a simple
question: suppose that we are dealing with a two–colour model, say blue and yellow,
yet we pretend to look at the balls with a different colour, say green. What will happen?
Well, there are two cases, depending on the setup. If our paints and filters are almost
monospectral, we shall see only black balls, because those balls were not prepared to
give us ‘green’ answers. However, if the spectra of the paint and the filter are broadened
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as usual, the original yellow and blue symbols will both appear green (albeit darker and
with less contrast than in the ‘true’ colours). If we expected a single unique symbol,
we may be puzzled to see two symbols, and we might wonder what the ‘message,’ the
‘information’ encoded in the ball is. This occurs because of a mismatch between the
original ‘information’ prepared, and the ‘information’ requested by the observer.

The above models may be amusing anecdotes, but are there any relevant connec-
tions with quantum physics? And if so, are the analogies superfluous? There is an obvi-
ous difference: The above examples are quasi–classical; at any time the observer may
switch from intrinsic to extrinsic mode by leaving the incomplete knowledge stand-
point inside the Cartesian prison [19, Sect. 1.9]. For instance, an observer may just
look up the oil level, or take off the coloured eyeglasses. The difference between in-
trinsic and extrinsic standpoint is a system science issue [20, 21]. In contrast, quantum
mechanics does not offer such an escape from any sort of ‘Cartesian prison.’ It also
seems to imply that there is nothing to escape to, since, by the various variants of the
Kochen–Specker theorem (e.g., [22, 23, 18]) and bounds on classical probabilities by
the Boole–Bell conditions of possible classical experience (e.g., [24, 25]), there are
certain properties whose mutual existence is inconsistent. But maybe we are just too
unimaginative to envision the thousands of possible options which we have (cf. Refs.
[26, 27] for two conceivable alternatives)? Only future will tell, hopefully.
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