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Abstract

This thesis is the beginning of research into indicated spatial processes for analysing complex

survey data. When modelling practical problems, it is widely accepted that a spatial process is

generally described by a random field. However, before survey methods can be applied, research

into the asymptotic properties of estimators, particularly estimators based upon random fields,

is essential.

In this thesis, we introduce a new survey sampling method which has a potentially wide applica-

tion, and is described by an indicated sampling method. This sampling strategy is appropriate

for setting up estimators such as Horvitz-Thompson estimator and others. We also introduce

some assumptions about the spatial structures of a population, developed from examining real

situations. Based on this method and these assumptions, we develop central limit theorems,

functional central limit theorems, and consistent estimators of variances on non-stationary de-

pendent random fields.

Since it is important to understand the asymptotics of a new complex survey method, for this

indicated sampling method, we consider central limit theorems with the assumption of condi-

tional independence properties. In some results, we assume the partial derivatives of functions

defining estimators are bounded. This assumption gives an opportunity to apply the Mean Value

Theorem to the consideration of asymptotics.

With our new insight into the factor md−1 in the assumptions of the central limit theorem,

Theorem 3.3.1, by Guyon in 1995, we see that this is essentially an estimation of the number of

the pairs which share the same dependencies. We therefore introduce a function h to stand for

the number of pairs with the same dependencies. Then, with an additional assumption on the

joint-blocks spatial structures, we prove the L2 consistency for the estimators of the variance of

the population. We then generalize the results on estimating the variance by Carlstein in 1986

and Fuller’s central limit theorem, Theorem 1.3.2, in his book in 2011.

It is rare to see functional central limit theorems on non-stationary dependent random fields.

This is because it is hard to verify the tightness in the high dimensional random fields. By

using two criteria introduced by Billingsley in 1968, one of which, Theorem 15.6, is rarely
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used by other scholars, in addition to the assumptions on the nested spatial structures and the

proper estimation of the fourth moment of the sample sum, we provide some original results

on functional central limit theorems, where the estimation of the fourth moment develops Rio’s

result, Theorem 2.1, in his report in 2013.
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Chapter 1

Introduction

Spatial statistics and asymptotics of survey data are extensive research fields with comprehen-

sive applications. Advanced complex survey techniques and modern data processing skills are

required to tackle many practical problems. The asymptotics studied in this thesis are a crucial

first step in performing complex surveys. This chapter mainly answers what and why questions

on the research presented in this thesis. An indicated sampling strategy is introduced for the

preparation of the discussion in the following chapters, which are mainly relative to how we

achieve the goals of asymptotics.

1.1 What is a survey? and Why asymptotics?

Nowadays it is a quite common idea to conduct a survey to effectively use the vast information

and data available, for all kinds of purposes. To keep the pace with the times, the definition

of survey was updated by Fritz Scheuren from the first version in 1980, to the second version

published in the American Statistical Association, 2004.

“Today the word ‘survey’ is used most often to describe a method of gathering

information from a sample of individuals.”

This is the definition used in his publication [65]. Scheuren suggests six stages for conducting

surveys, which are introduced by Blair et al in the book [6] and its older editions. The six stages

of a survey in [65] are adapted as a five-stage survey in [6], which is described in Figure 1.1.

There are four branches of survey design in the horizontal direction throughout five stages

in Figure 1.1: sample related, questionnaire related, operation plan related and analysis plan

related. Our research is with respect to the first and the last branches of “Design Survey” and

“Stage 5”.
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Figure 1.1: Five stages of a survey (Exhibit 3.1 in [6])

When we analysis data as per in the lowest branch and in Stage 5 (Figure 1.1), a basic setting

should be taken into account, i.e. the role of randomization in surveys. This mainly involves

two sampling strategies, a design-based strategy and a model-based strategy. In survey theory,

both require asymptotic properties to ensure that their estimated results reflect the population.

Therefore, in this case, the finite or infinite population from which the data derives is regarded

as the superpopulation1 in asymptotic statistics.

Generally speaking, the design-based strategy is based on a finite population for description

purposes. The population is considered as fixed and all the variation is from the sampling

mechanism. There is no randomization associated with the population.

The model-based strategy uses a superpopulation for the purpose of analysis. Here, the super-

population is modelled by random variables. Its variation is impacted by the model and the

sampling mechanism. The asymptotic properties of a model-based strategy are connected to its

infinite population.

Probability sampling plays an important role in finite population sampling (see [54]). Although

the model-based methods are based on statistical models, and the design-based methods are

based on probability sampling principles2, in most of the practical cases of complex surveys, we

have to introduce a suitable sampling design to an on-going model-based frame. On the other

hand, for a design-based frame, it is also possible to involve the modelled population or some

auxiliary information with randomization properties.

For more details of model-based and design-based methods we suggest the book [14] by Chambers

1 The superpopulation can be regarded as an infinite or finite population being generated theoretically from
an infinite population. For more details of this definition, we recommend some books such as [14], [26] and [44].

2 Please refer to the “Preface of Handbook 29A” by Danny Pfeffermann and C. R. Rao, on page vi, of [53].
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and Skinner, and papers such as the discussion on the evaluation of model-based inference and

design-based inference in [37], the comparison between model-based theory and design-based

theory with some examples in [64], and the discussion on the hybrid framework in [69]. In this

thesis we work with the superpopulation which is modelled by random variables. At the same

time, some auxiliary information is also taken into account in the sample design.

Asymptotic properties describe approximation of statistical procedures. A. W. van der Varrt

explained why asymptotic statistics in his book [70]:

“Why asymptotic statistics? The use of asymptotic approximations is twofold.

First, they enable us to find approximate tests and confidence regions. Second,

approximations can be used theoretically to study the quality (efficiency) of

statistical procedures”

There are many aspects of asymptotic statistics, such as the law of large numbers, central

limit theorems, functional central limit theorems, and both the efficiency and consistency of

estimators. Asymptotic normality is an extremely important property in this field. Therefore in

this thesis, we mainly consider central limit theorems (CLTs), functional central limit theorems

(FCLTs) and the consistency of the estimators of variance for general sampling strategies. All

results are based on spatial processes.

1.2 Spatial processes in complex surveys

A spatial process is the generalization of a 1-dimensional process. Since many practical problems

arise from high dimensional space, and a 1-dimensional space can be regarded as a degeneration

of high dimensional one, spatial processes are widely accepted in modelling problems. As a

further consideration, we endow a spatial process with dependent properties, which are more

general than independent assumptions in surveys. In this section, we give two examples. One is

used to show the potential dependence in practical problems, the other is a complex, multi-stage

survey.

Example 1: The Centers for Disease Control and Prevention (CDC) is an important institute

in the United States. It conducts many surveys each year. In 2017, the CDC produced the

result of a survey for the U.S. diabetes data (see [24]). The goal was to estimate the percentage

of adults at least twenty years of age with diagnosed diabetes. To map the percentages, three

years of data from the Behavioral Risk Factor Surveillance System and the U.S. Census Bureau

Population Estimates Program were used to improve the precision. In Figure 1.2, the gradually

changing colours imply there are dependencies between those counties, and these dependences

are likely related to the distance between geographical locations. This implies that if we take

this kind of spatial dependent structure into account, it will be possible to improve estimates
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Figure 1.2: Spatial correlation pattern in diabetes data [24]

and reduce cost.

Example 2: : The example which is used to illustrate a complex survey in space is the National

Health and Nutrition Examination Surveys (NHANES) conducted annually by the CDC in the

United States. Four things that NHANES 1999-2010 (see [75]) hoped to achieve are:

“To provide prevalence data on selected diseases and risk factors for the U.S.

population; To monitor trends in selected diseases, behaviors, and environ-

mental exposures; To explore emerging public health needs; To maintain a

national probability sample of baseline information on health and nutritional

status.”

Data on health, nutritional status, and health behaviours, were collected from across the popu-

lation of the United States. Three survey methods (in-person interviews, face-to-face interviews,

and physical examinations) were used in the participants homes and at a mobile examination

centre (MEC). Specifically, they administrated 48 items in a four part household interview,

gathered 17 variables from a medical examination, and conducted 2 extra interviews at a MEC.

There were four stages in the NHANES complex, multistage probability sampling design, where

the sample weights were also introduced. The first stage was the selection of primary sampling

units (PSUs). About 30 counties were selected out of about 3000 counties. The second stage

was the selection of segments within each PSU: All households in a relative small region were

selected into the sample. The third stage was the selection of specific households in each segment.

The last stage is the selection of individuals in a household. Then around 10,000 persons were

selected and visited in a 2-year survey.
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As it is shown in Figure A1 in Appendix, this kind of four stage sample design works through

three steps in NHANES 2011-2014 [36]. To achieve a broad description, the U.S. population was

arranged with domains and subdomains, i.e. for each sex-age group, there are four subdomains,

non-Hispanic Black persons, non-Hispanic non-Black Asian, Hispanic, and non-Hispanic White

and other, which is divided by non-low income group and low income group. To set up a

clustering criteria on dividing PSUs, the measure of size (MOS) of a PSU was introduced for a

self-weighting sample. The MOS of a PSU, which was indexed by h, was defined as

Mh =
∑
k

AkChk, Ak =
∑
l

rkl
C∗.kl
C∗.k.

,

where k was the race-Hispanic origin-income subdomain, l was the sex-age subdomain, Chk was

the most recent population estimate for race-Hispanic origin-income subdomain k in PSU h, rkl

was the sampling rate of persons in the (k, l)-th race-Hispanic origin-income-sex-age subdomain,

C∗.kl was the most recent projection of the 2008 total population count for race-Hispanic origin-

income-sex-age subdomain (k, l), C∗.k. was the most recent projection of the 2008 total population

count for race-Hispanic origin-income subdomain k. Then the criteria of separating PSUs into

certainty PSUs and noncertainty PSUs was 75% of the initial sampling interval, i.e. (see [36])

0.75

∑H
h=1Mh

60
,

where H was the number of PSUs in the whole sampling frame. Figure A2, in Appendix, shows

how this criteria works in conducting the survey in the first stage. Here we omit the details of

the rest of the first stage and the remaining three stages of the NHANES’ sample design.

In NHANES, the geographical location of the population determines that a spatial process

should be a well-chosen model. Furthermore, it is reasonable that we make the following three

assumptions:

Firstly, the measurements of the sample are influenced by some random effects. For example,

the health issues, the sample was clearly affected by Mh. Mh was with respect to Chk, rkl, C
∗
.kl,

which were all related to income. Therefore if we imagine a low-income leads a low nutrition

status, it is plausible the sample is driven by incomes to some extent. Furthermore, NHANES

1999–2010 [75] has shown whether an MEC can move in could be decided by the traffic and

community status. It also implies the measurements could be affected by some other random

factors.

Secondly, the sample of the population is affected by some random information. For example,

we suppose a person, i, is indicated by a random variable Ri, i.e. Ri decides whether i will be

observed. The probability of P(Ri = 1) could be related to the incomes since the MOS was

designed to reflect two groups of non-low income and low income.
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Lastly, it is reasonable to make an assumption on dependence, which could be similar to that

shown in Figure 1.2. We can endow some potential dependence between PSUs, between strata,

or even between persons and the measurements. For example, the people could have the same

health problems if they live closed to each other.

1.3 An indicated sampling strategy

Using a grid index

Throughout this thesis, we assume that all sample points are located in a grid space, which is a

spatial process indexed by high dimensional integer points. This assumption is widely accepted

in the research of random fields, and it is also technically supported by some computer software.

A method of transferring a real situation into a grid map is to use cartograms. For example,

in Figure 1.3, in the left graph, the dependences between these three points are described by

three numbers. Based on the dependences, the graph on the right is a cartogram, where the

dependences are represented by distances. Figure 1.4 is a cartogram, which is introduced on the

Figure 1.3: An illustration of the cartogram

website [49] and by the paper [27], where a complete rectangular grid of points is transformed

as a map. It means a two dimensional rectangular grid of points can be used to describe map

features by interpolating it into a cartogram.

The cartogram guarantees our basic abstraction for asymptotics is acceptable and practicable if

we use grid-indexed random fields to model populations.

Basic sampling methods in surveys

In general, there are four probability sampling methods: simple random sampling, systematic

sampling, cluster sampling, and stratified sampling. They are widely accepted in the first branch

in Figure 1.1. Sometimes we also use multi-stage sampling if a sampling procedure is divided

into more than one stage. In each stage, one of these sampling methods can be performed.
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Figure 1.4: A population cartogram of the United States [49]

Figure 1.5 exhibits four sampling methods. For a finite population, if we select persons with

equal probability, the sampling is simple random, see (a); if we chose persons equally spaced,

e.g. every second, as it is shown in (b), we call it systematic sampling method; if a population

is clustered, and we sample some of those clusters, then we call it cluster sampling, see (c); if a

population is stratified, for example in (d), where the population is divided into three stratum,

we select a suitable proportion of persons within each strata, we call this method stratified

sampling.

(a) Simple random sampling (b) Systematic sampling

(c) Clustering sampling (d) Stratified sampling

Figure 1.5: Four sampling methods for finite populations

In Figure 1.5, the size of the finite population is N = 8, and the sample size is n = 4. Let the

selection probability of the person xi be πi = 1
2 for all i = 1, · · · , 8. If the sample is as (a), say

persons 1 4 6 8 are selected as a sample, then the population mean may be estimated by

mn =
1

N
(
x1

π1
+
x4

π4
+
x6

π6
+
x8

π8
) =

1

4
(x1 + x4 + x6 + x8).
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Similarly, we have mn = 1
4(x1 + x3 + x5 + x7), mn = 1

4(x1 + x2 + x3 + x4), and mn = 1
4(x2 +

x3 + x5 + x6) for the other three cases, (b), (c) and (d), in Figure 1.5.

The indicated sampling method

It is obvious that we can express the estimated mean of the above four cases with one form. In

fact, in most real cases, whether a sample point is observed could be affected by some auxiliary

information. Therefore, we introduce an indicated sampling strategy, which is related to the

following chapters.

Let random variables, Ri’s, be indexed by i ∈ {1, · · · , N}. We use Ri to indicate the sampling,

i.e. Ri = 1 implies the person i is selected into a sample; otherwise, Ri = 0. Specifically, we let

that Ri have Bernoulli distributions with two possible values, 0 and 1, for all i = 1, 2, · · · , N .

Thereafter RiXi expresses each person, Xi, is selected into a sample with a probability, say pi.

Then we have E(Ri) = pi, V ar(Ri) = pi − p2
i , for all i = 1, · · · , N . However we do not know

the correlations between Ri’s, because, at this moment, there is no more information that could

support the calculation of Cov(Ri, Rj).

Now let’s go back to Figure 1.5 with indicator Ri’s. Since we assumed that the sample size is

n, we have to set
N∑
i=1

Ri = n. (1.1)

Then, with a suitable setting of the design, say N is even and n = 1
2N . The sample mean of the

first three cases can be expressed by

mn =

∑N
i=1Rixi∑N
i=1Ri

. (1.2)

For the stratified sampling method (d), the sample size is divided into several parts or strata. For

example, let us imagine we have m strata, s1, · · · , sm, within the sample, s, i,e, s1∪· · ·∪sm = s.

We let ∑
i∈s1

Ri = ni, · · · ,
∑
i∈sm

Ri = nm, where
m∑
i=1

ni = n. (1.3)

Then (1.1) is satisfied, and (1.2) holds for four cases in Figure 1.5.

Furthermore, to show (1.2) is feasible, we assume that the joint distribution of R1, · · · , RN is

given by

P(R1 = r1, · · · , RN = rN ) =

{ (
N
n

)−1
, if r1 + · · ·+ rN = n,

0, otherwise,

where ri ∈ {0, 1}. This means we have
(
N
n

)
possible cases satisfying r1 + · · · + rN = n. It also
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means there are
(
N
n

)
possible subsets T of {1, · · · , N}, such that Ri = 1 for all i ∈ T , where the

amount of the elements of T is |T |= n. Then for each sample, the estimated mean mn can be

represented by X̄ = 1
n

∑
i∈T Xi = 1

n(R1X1 + · · ·+RNXN ) with the probability
(
N
n

)−1
. We note

all
(
N
n

)
possible values of X̄ by X̄1, X̄2, · · · , X̄(Nn). Then the expectation of this estimator is

E(X̄) =

(
N

n

)−1

X̄1 + · · ·+
(
N

n

)−1

X̄(Nn) =
1

N

N∑
i=1

Xi.

This gives the unbiased property of this indicated estimation for case (a). For case (b), we define

Ri = 1 if i is odd, Ri = 0 if i is even, and for case (c), we define Ri = 1 if i = 1, 2, 3, 4, Ri = 0

if i = 5, 6, 7, 8. Then we will deduce the same result as in case (a). Similarly, for case (d), the

stratified sampling, let St and st be the sub-population and sub-sample in the t-th stratum, and

let Nt = |St| stand for the size of the sub-population, nt = |st| be the size of the sub-sample,

t = 1, · · · ,m. Let N = N1 + · · ·+Nm be the population total, n = n1 + · · ·+nm be the sample.

We suppose

P(i ∈ St) =
Nt

N
,

and

P

(
Ri = ri, i ∈ St

∣∣∣ N∑
i=1

ri = nt

)
=

(
Nt

nt

)−1

,

where t = 1, · · · ,m. We note that

X̄ =

m∑
t=1

Nt

N

1

nt

∑
i∈T∩St

Xi =

m∑
t=1

Nt

N

1

nt

∑
i∈st

Xi =

m∑
t=1

Nt

N

1

nt

∑
i∈St

RiXi,

where
∑

i∈St Ri = nt and the term
∑

i∈St RiXi has
(
Nt
nt

)
possible cases, and happens with the

probability
(
Nt
nt

)−1
. We use(∑

i∈st

Xi

)
1
,
(∑
i∈st

Xi

)
2
, · · · ,

(∑
i∈st

Xi

)
(Ntnt)

stand for those cases.

Therefore

E
(
X̄
)

=
m∑
t=1

Nt

N

1

nt
E

(∑
i∈St

RiXi

)

=
m∑
t=1

Nt

N

1

nt


(∑
i∈st

Xi

)
1

(
Nt

nt

)−1

+ · · ·+
(∑
i∈st

Xi

)
(Ntnt)

(
Nt

nt

)−1

︸ ︷︷ ︸
There are

(Nt
nt

)
terms


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=

m∑
t=1

Nt

N

1

nt

(∑
i∈St

Xi

)(
Nt

nt

)−1(Nt − 1

nt − 1

)

=
1

N

N∑
i=1

Xi.

The above discussion means that all of those four sampling methods can be described by using

indicators.

A general sampling strategy

To generalize the above indicated sampling strategy, we assume further that a sample point, Xi,

could be influenced by information Zi and εi, where i is generalized to Zd as well, i.e. i ∈ Zd.
Therefore Xi, Zi and εi are random fields.

We use the random field, which will be defined in the following chapter, to model the superpopu-

lation, i.e. the population is described by random variables in a spatial process. A function f(·)
is used to describe random effects from any aspects. We also introduce an indicating random

field to select observations.

Specifically, we set Yi = Rif(Zi, εi), where i ∈ Zd, Yi is the sample under a sampling method,

Zi and εi stand for some random effects, which could be white noise or any effects independent

of Zi’s. Here, Ri is as in (1.3), but the subscript is in Zd.

Let Zi be an m–dimensional random variable, Zi ∈ Rm. The function φ(·) stands for the density

function of the joint distribution of Zi’s, that is the marginal density function of Zi is φ(zi),

and similarly, φ(zi, zj) stands for the marginal density function of (Zi, Zj) and so on. In some

of the results within this thesis, we assume the probability distribution of Ri is related to Zi’s.

Let Zi’s effect Ri in the following way:

P(Ri = 1|{Zt, t ∈ Dn}) = gi, (1.4)

whereDn ⊂ Zd is a finite subset of Zd, gi could be a function with respect to the subscript of Ri or

equivalently of Zi, therefore it is possible to force gi being a function of Zi, i.e. gi = g(Zi, i ∈ Dn).

Then we have

P(Ri = 1) =

∫
giφ(z)dz,

where dz =
∏
i∈Dn dzi, z is a generalized vector of {zi}i∈Dn , i.e. z = (zi,i∈Dn). For ri ∈ {0, 1},

we note that

P(Ri = ri|{Zt, t ∈ Dn}) = grii (1− gi)1−ri .

10



We assume Ri is conditionally independent given Zt, i.e.

P({Ri = ri, i ∈ Dn}|{Zt, t ∈ Dn}) =
∏
i∈Dn

P(Ri = ri|{Zt, t ∈ Dn}), (1.5)

then we have

P({Ri = ri, i ∈ Dn}) =

∫
(Rm)M

∏
i∈Dn

grii (1− gi)1−riφ(z)dz,

where M = |Dn| is the number of indices in Dn. This expression implies, with the previous con-

dition (1.5), we can find a consistent setting for the finite dimensional distribution of {Ri}i∈Dn .

It satisfies two consistency conditions in the Kolmogorov Existence Theorem, see Theorem 15.1.3

in [61] or Theorem A4 in Appendix. Therefore, we can conclude that the random field Ri satis-

fies (1.5). For the first condition (C1) in Theorem A4, it is satisfied automatically by the setting

of (1.5). For the second condition (C2), it is also satisfied, because we have

P(Ri = ri, Rj ∈ R) = P(Ri = ri, Rj = 1) + P(Ri = ri, Rj = 0)

=

∫∫
grii (1− gi)1−rigjφ(z)dz

+

∫∫
grii (1− gi)1−ri(1− gj)φ(z)dz

=

∫∫
grii (1− gi)1−riφ(z)dz

=

∫
grii (1− gi)1−riφ(z)dz

= P(Ri = ri),

and this can be easily generalized to a M–dimensional space for Zi, i ∈ Dn. For example, we

suppose Zi is a standard multivariate normal distribution in Rm. Let

gi = g(Zi) =
eZ
>
i β

1 + eZ
>
i β
,

where β ∈ Rm is a vector with the same dimensional of Zi’s. Then we have

P({Ri = ri, i ∈ Dn}) = (2π)−
mM

2 |Σ|−
1
2

∫
(Rm)M

∏
i∈Dn

gri(zi)(1− g(zi))
1−rie−

1
2
z>Σzdz,

where Σ is the covariance matrix of the multivariate normal distribution, |Σ| is the determinant

of Σ, and −1
2z
>Σz is a quadratic form in the vector z.

For convenience, sometimes we call f(Zi, εi) a focal random field, Zi and εi are extra random

fields. This focal random field is indicated by an indicating random field, Ri. The condition

(1.5) implies that one of the extra random fields, Zi, effects both the focal random field and the

indicating random field. In following chapters, with this condition, we will study the asymptotics

11



of the estimator in the form:

en =
∑
i∈Dn

Rif(Zi, εi),

where en stands for an estimator. Let a0, a1 ∈ R, and

ci =

{
a1, if Ri = 1,

a0, if Ri = 0,
i ∈ Dn.

Then the above estimator can be generalized by

en =
∑
i∈Dn

cif(Zi, εi).

Intuitively, these two estimators will share the same asymptotic properties. We will demonstrate

this in the following chapters.

In fact, there are many sampling strategies can be transformed into this indicated sampling

method with the above estimators.

Example 3: For sampling methods in Figure 1.5, if we let f(Xi) = Xi, a0 = 0 and a1 = 1
n with

the constraint of (1.1), then the estimator in (1.2) can be transformed into

mn =
N∑
i=1

cif(Xi).

Example 4: Similarly, if we suppose the population is a superpopulation in NHANES, then for

the first stage of the sample design, we can set indicating random variables, Ri’s, to indicate a

PSU or a part of divided certainty PSUs. Furthermore, by the previous discussion, we suppose

P(Ri = 1) = g(Zi), where Zi could be some random effects from MOS, incomes, community

status and/or traffic status. The dependence between Ri and Rj is relative to the corresponding

Zi and Zj to some extent. All the dependences between variables, e.g. between Zi and Zj ,

within the survey will not be affected by the sample design. This is because of all the possible

information that the dependences could depend on (e.g. MOS, incomes, the status of a com-

munity and/or the traffic situation) will not be influenced by the sample design. We can also

imagine that the focal random field is f(Zi, εi), where εi could be some other random effects or

white noise. It means the focal random field, the health issues of the population, is driven by

some random effects such as incomes, rural areas, community and traffic status, and so on. For

different strata, the design restricts the sample sizes which is similar to what is shown in (1.3).

Therefore, the sample mean is expressed as

mn =

m∑
j=1

nj
n

∑
i∈sj Rif(Zi, εi)∑

i∈sj Ri
=
∑
i∈Dn

Rif(Zi, εi)

n
,

12



where Dn ∈ Zd is the index of the superpopulation, the subsets of Dn, s1, · · · , sm are used to

describe m strata of PSUs in the first stage, s1 ∪ · · · ∪ sm = Dn, n is the design required sample

size, nj is the required sample size within stratum j,
∑

i∈sj Ri = nj and
∑

i∈Dn Ri =
∑m

j=1 nj =

n. If we follow the same setting of ci in Example 3, the sample mean of the current example

can be given by

mn =
∑
i∈Dn

cif(Zi, εi).

Example 5: Let’s suppose the selection probability of f(Zi, εi) is πi = P(Ri = 1), which is

driven by Zi, e.g. it is defined as in (1.4), then the total of the sample can be estimated by a

Horvitz-Thompson estimator,

Tn =
∑
i∈Dn

Rif(Zi, εi)

πi
=
∑
i∈Dn

Ri
f(Zi, εi)

P(Ri = 1)
.

Again, if we define f̃(Zi, εi) = f(Zi,εi)
P(Ri=1) , then the estimator Tn is also in the form of

Tn =
∑
i∈Dn

Rif̃(Zi, εi).

Example 6: Let DN ⊂ Zd be the finite population, A = {i ∈ DN : Ri = 1}. Then the sample

mean and the population mean are

x̄ =
1

|A|
∑
i∈A

xi and x̄N =
1

|DN |
∑
i∈DN

xi

respectively. If we further set a0 = − 1
|DN | and a1 = 1

|A| −
1
|DN | , then the estimator of the

difference of these two means is in the form of

eN = x̄− x̄N =
∑
i∈DN

cixi.

The rest of this thesis will contribute to the asymptotics of estimators under the indicated sam-

pling strategy, where some reasonable conditions will be introduced for dependent populations,

and the feasibility of the conditions will be discussed.

1.4 Assumptions on spatial structures

Many asymptotic results are based on assumptions that are convenient for the proofs. For

example, the relationship between sample points, sampled clusters, or sampled strata in spatial
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structures, are assumed to exhibit either an i.i.d property, the non-identical but independent

distributions property, the stationary property, the Markov property, or the Martingale property,

and so on. These properties are realistic for solving practical problems.

However, there are many more practical problems that cannot be described by these properties.

For example, in [45], Lumley and Scott claimed that, based on the practical data set, the stroke

death rates of NHANES (1996) had a complex spatial correlation structure. This correlation

structure is similar to that of Example 1 in Section 1.2. In another work [46], Lumley and Scott

noted that “for future research that it would be valuable to have sampling asymptotics better

founded in the spatial structure of populations, not only for a better match to reality but also

because it could simplify the development of Donsker-type theorems, uniform tail bounds, and

other machinery of modern mathematical statistics”.

Practically, we introduce three basic assumptions on spatial structures. The first assumption is

on the dependence. We assume the correlations can be described by mixing coefficients. This

represents a major relaxation of the assumption of independence. The second assumption is

on the divided population, i.e. a random field is assumed to be divided into joint blocks. This

assumption is clarified and used in Chapter 4. The third assumption is that we assume the

sample regions are nested. This assumption is introduced and mainly used in Chapter 5.

1.5 Outline of this thesis

In order to have asymptotics for our general sampling strategy, we introduce preliminary defi-

nitions, properties of random fields, and properties of strong mixing dependence in Chapter 2.

We prepare some lemmas on the relationship between strong mixing coefficient of the indicated

sample and the coefficients of indicating random field and the extra random fields. We introduce

an equivalent definition of the strong mixing coefficient in the first lemma. We also introduce a

new definition on the strong mixing coefficient between two random fields. Then the last lemma

implies that the strong mixing coefficient of a focal random field can be estimated by the strong

mixing coefficients of the extra random fields and the strong mixing coefficient between them.

Strong mixing describes the kind of dependence that often occurs in practice.

Chapter 3 is devoted to setting up conditions for the asymptotic properties of complex surveys.

Two main aspects are considered in this chapter. One is the conditional independence, i.e. given

limited information within one extra random field, the focal random field and the indicating

random field have some independent properties. The other is that extra random fields and the

indicating random field satisfy strong mixing conditions simultaneously. Moreover, some other

developments are considered to prove CLTs for some specific complex surveys.

Chapter 4 gives some results on L2–consistent estimators of the variance of the total for the
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dependent survey data. We develop Carlstein’s results of [13] and Fuller’s Theorem 1.3.2 of [26]

into dependent non-stationary random fields, with the uniform integrability assumption and

the assumption on the smooth property of the function which specifies the focal random fields.

These results also work for indicated focal random fields.

In Chapter 5, we provide an upper bound for the absolute covariance of two complex-valued

random variables, with their quantile functions. We also generalized Rio’s result, in [57], on the

upper bound of the fourth moment of the sample sum. All the results are under the Skorohod

topology in space D, where the tightness, uniformly integrable and asymptotic independent

increments are considered for the random elements sequence whose normalized time dependent

summation converges weakly to a Brownian motion. Based on these results of functional central

limit theorems, the convergence of the sequence of random elements on the indicated focal

random fields are shown to hold.

Materials which are used but are not quite central to the logic of this thesis are presented in the

Appendix.
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Chapter 2

Random fields

A random field is a generalization of a random process where the index set has dimension greater

than one. Let {Xi} be a collection of random variables. If the index satisfies i ∈ Zd, where

d > 1, we say that the Xi’s constitute a random field. Sometimes we use the notation X to stand

for the random field, or use {Xi}i∈Zd and Xi∈Zd to emphasize the index set. In this chapter, we

will introduce random fields with strong mixing properties and prepare some basic results for

the following chapters.

2.1 Strong mixing dependence

It is widely accepted that independence is a special case of dependence for random variables.

Dependence is more comprehensive than independence in modelling real situations. There are

many ways to describe the dependence between variables in a random field. Typically, we can

assume the random field has some dependence properties, such as the Markov property, the

martingale property and the stationary property. There are many results that follow from these

assumptions on random fields. For Gaussian Markov random fields, we recommend the book

[63], which provides the comprehensive account of the properties of Gaussian Markov random

fields. For martingale random fields, because the spatial structure in a martingale random field

has no completed order like a line, it is not very productive as a research field. However, for

some specific orders, it will be very helpful to have asymptotics on martingale random fields,

such as the paper [74] with the partial order and the work [17] with the lexicographic order.

Sometimes a stationary property is added to martingale random fields for proving asymptotics,

see [2]. For random fields with the stationary property, we suggest some books, such as [40],

[41] and [42].

Mixing properties are a kind of weak dependence on random fields. There are mainly five
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definitions of mixing; α-mixing, β-mixing, φ-mixing, ψ-mixing and ρ-mixing, as discussed by

Paul Doukhan in [19]. weaker than others. This means that if the correlation can be bounded

by α-mixing it can be bounded by others. Therefore, throughout this thesis, we use α–mixing

to describe the dependence on random fields.

The α-mixing property is sometimes also called strong mixing. It was first introduced by Murray

Rosenblatt in [60] in 1956. Based on the strong mixing dependence, there are many results on

asymptotics, e.g. for CLTs, see [7], [10], [47] and [30]which have stationary assumptions, [21] for

triangular array settings, and [73] considered linear processes; for FCLTs, see [20], [48], [52] and

[59] which have stationary assumptions, [1] for triangular array settings,[32] for one dimensional

non-stationary random processes; for the estimation of covariance, see [58]. For basic properties

of strong mixing, we recommend the survey paper by Richard Bradley [8] and the updated

version [11] in 2005.

Let i, j ∈ Zd, i.e. i = (i1, i2, · · · , id) ∈ Zd and j = (j1, j2, · · · , jd) ∈ Zd. We define the distance

between i and j as

d(i, j) =

d∑
s=1

|is − js|.

Let Λ1,Λ2 be subsets of Zd. We call Xi∈Λ1 and Xi∈Λ2 blocks in the random field Xi∈Zd . Let

σ(Xi∈Λ1) and σ(Xi∈Λ2) be sigma fields generated by Xi∈Λ1 and Xi∈Λ2 respectively. We define

dist(Λ1,Λ2) as the shortest distance between two sets Λ1 and Λ2. We use dist(Λ1,Λ2) to stand

for the distance between two blocks, Xi∈Λ1 and Xi∈Λ2 . For the special case of ∅ being one or both

of those two sets, we take the distance as zero, i.e. dist(∅,Λ2) = dist(Λ1, ∅) = dist(∅, ∅) = 0.

For each subset, Λ ⊂ Zd, we define the size of Λ as the cardinality, |Λ|= #(Λ), i.e. the number

of the elements in Λ. It is obvious that the union and the intersection of Λ1 and Λ2 satisfy

|Λ1 ∪ Λ2|= |Λ1|+|Λ2|−|Λ1 ∩ Λ2|.

Definition 2.1. A strong mixing coefficient between two blocks within a random field is defined

by a function with respect to the distance between the blocks, and the size of the blocks,

specifically,

αk,l(m) = sup{|P(A ∩B)− P(A)P(B)|: A ∈ σ(Xi∈Λ1), B ∈ σ(Xi∈Λ2),

k = |Λ1|, l = |Λ2|, dist(Λ1,Λ2) ≥ m},
(2.1)

where the supremum is taken over A, B, Λ1 and Λ2.

In this thesis we also use αXk,l(m), or αk,l(X;m), to stand for the strong mixing coefficient of the

random field Xi∈Zd . We note that, for any specific index sets Λ1 and Λ2, |Λ1|= k, |Λ2|= l, we

define

α|Λ1|,|Λ2|(m) = sup
A,B
{|P(A ∩B)− P(A)P(B)|: A ∈ σ(Xi∈Λ1), B ∈ σ(Xi∈Λ2), dist(Λ1,Λ2) ≥ m}.
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Since this supremum is taken over only A and B, we have

α|Λ1|,|Λ2|(m) ≤ αk,l(m).

In this thesis, strong mixing coefficients are assumed to be vanishing as the distance goes to

infinity. If αk,l(m)→ 0 as m→∞, then the process is called a strong mixing process.

If the distance is not involved, or the distance is not taken into account in some cases, for X

and Y , we can also define strong mixing coefficient for them, i.e.

α(X,Y ) = sup
A,B
{|P(A ∩B)− P(A)P(B)|: A ∈ σ(X), B ∈ σ(Y )}.

Figure 2.1: Simulation of random fields with 100× 100 grids

Figure 2.1 is the simulation of a Gaussian random field with an exponential covariance function.

It is an example of sim.rf function in fields package [51] on CRAN website. It illustrates that a

random field is related to Figure 1.2 and Figure 1.4 in Chapter 1. If the boundary of domains

is clarified, and the dependence is fitted, in practice, Figure 1.2 will be transformed into a

cartogram map, which can be used to describe a random field with dependence.

Following from the fact that if X and Y are random variables, then (X,Y ) is a random vector,

(Xi, Yi)i∈Zd is also a random field provided that Xi and Yi are random variables.

Definition 2.2. The strong mixing coefficient within a combined random field can be described

by

α
(X,Y )
k,l (m) = sup{|P(A ∩B)− P(A)P(B)|: A ∈ σ((Xi, Yi)i∈Λ1), B ∈ σ((Xi, Yi)i∈Λ2),

|Λ1|= k, |Λ2|= l, dist(Λ1,Λ2) ≥ m}.
(2.2)

Similarly, let f be a measurable function from random fieldsXi∈Zd and Yi∈Zd to a field f(Xi, Yi)i∈Zd .
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Let f(Xj , Yj) ∈ Rk, B be a Borel set of B, which is the class of Borel sets of Rk. Then, for any

event ω of the whole space Ω of (Xj , Yj), we have

{ω : f(Xj , Yj) ∈ B} = {ω : (Xj , Yj) ∈ f−1(B)} ∈ σ(Xj , Yj), (2.3)

which implies f(Xi, Yi) is also a random variable. Therefore f(Xi, Yi)i∈Zd is a random field. The

strong mixing coefficient of f(Xi, Yi)i∈Zd can be noted by α
f(X,Y )
k,l (m).

The following theorem provides an equivalent definition of strong mixing coefficients.

Theorem 2.1. Let H[0, 1] be a class of measurable functions taking values in [0, 1]. Let Xi∈Zd

be a random field, Λ1,Λ2 ⊆ Zd, h1 and h2 be two measurable functions of Xi∈Λ1 and Xj∈Λ2

respectively. Then we have

sup
h1,h2∈H[0,1]

|Cov(h1(Xi∈Λ1), h2(Xi∈Λ2))|= sup
A1∈σ(Xi∈Λ1

),A2∈σ(Xi∈Λ2
)
|P(A1 ∩A2)− P(A1)P(A2)|.

(2.4)

Proof. We note that A1 ∈ σ(Xi∈Λ1) is equivalent to saying there exists a Borel set B1 such that

A1 = {Xi∈Λ1 ∈ B1}. Similarly, we have B2 such that A2 = {Xj∈Λ2 ∈ B2} ∈ σ(Xi∈Λ2).

On one hand, let 1A be an indicator function of an event A, i.e.

1A =

{
1, if A happened,

0, otherwise.

We have

sup
A1,A2

|P(A1 ∩A2)− P(A1)P(A2)| = sup
A1,A2

|Cov(1A1 ,1A2)|

≤ sup
0≤h1,h2≤1

|Cov(h1(Xi∈Λ1), h2(Xj∈Λ2))| ,

where h1 and h2 are measurable functions.

On the other hand, using the idea in the Proof of Theorem 1.1 in [57], we set

Y1 = h1(Xi∈Λ1), Y2 = h2(Xj∈Λ2).

We note that, for any Borel set B of R, we have {ω : h1(Xi∈Λ1) ∈ B} ∈ σ(Y1) and

{ω : h1(Xi∈Λ1) ∈ B} ⊆ {ω : Xi ∈ h−1
1 (B)} ∈ σ(Xi∈Λ1),

i.e. σ(Y1) ⊆ σ(Xi∈Λ1). Similarly we have σ(Y2) ⊆ σ(Xj∈Λ2). We also note that, 0 ≤ h1, h2 ≤ 1
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implies 0 ≤ Y1, Y2 ≤ 1, and

Y1 =

∫ 1

0
1{Y1>y1}dy1, Y2 =

∫ 1

0
1{Y2>y2}dy2.

Using Fubini’s Theorem, we have

Cov(Y1, Y2) =

∫ 1

0

∫ 1

0
Cov(1Y1>y1 ,1Y2>y2)dy1dy2.

Then we have

|Cov(Y1, Y2)| =

∣∣∣∣∫ 1

0

∫ 1

0
Cov(1Y1>y1 ,1Y2>y2)dy1dy2

∣∣∣∣
≤

∫ 1

0

∫ 1

0
|Cov(1Y1>y1 ,1Y2>y2)| dy1dy2

≤
∫ 1

0

∫ 1

0
sup

A1∈σ(Y1),A2∈σ(Y2)
|Cov(1A1 ,1A2)| dy1dy2

= sup
A1∈σ(Y1),A2∈σ(Y2)

|Cov(1A1 ,1A2)|

≤ sup
A1∈σ(Xi∈Λ1

),A2∈σ(Xi∈Λ2
)
|Cov(1A1 ,1A2)| .

This completes the proof.

In the paper [56], Prakasa Rao introduced a definition of conditional strong mixing, Definition 4,

where the coefficient was generalized to random variables. In another paper [55] by the same

author, the mixing stably concept, Definition 2.6 in [55], was introduced for φ –mixing. Inspired

by these definitions, we introduce the following definition.

Definition 2.3. Let Zi∈Zd1 be a random field. A conditional strong mixing coefficient of Xi∈Zd ,

which is conditional on Z, is defined by

αk,l(X|Z;m) = sup{|P(A ∩B|C1 ∩ C2)− P(A|C1)P(B|C2)|: |Λ1|= k, |Λ2|= l,

A ∈ σ(Xi∈Λ1), B ∈ σ(Xj∈Λ2), C1, C2 ∈ σ(Zi∈Λ1∪Λ2),

P(C1 ∩ C2) > 0, dist(Λ1,Λ2) ≥ m}.
(2.5)

In the above definition, in order to measure the dependence within the random field X, a

conditional random field Z is introduced to X.
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2.2 Properties of the strong mixing coefficient

For a random field X, the strong mixing coefficient between two blocks, Xi∈Λ1 and Xi∈Λ2 ,

being zero is equivalent to Xi and Xj being independent for all i ∈ Λ1 and j ∈ Λ2. To

estimate the upper bound of strong mixing coefficients or |P(A ∩ B) − P(A)P(B)|, a direct

calculation provides |P(A ∩B)− P(A)P(B)|≤ 1
4 . Alternatively, by using the indicator function,

the discussion in the proof of Theorem 2.1 and Cauchy–Schwarz inequality, we can also have

the same bound. Therefore, those definitions of strong mixing coefficients which have the form

of |P(A ∩ B) − P(A)P(B)| can be bounded by 1
4 . If we denote αk,l(m) and α

(X,Y )
k,l (m) by one

symbol α, then we have

0 ≤ α ≤ 1

4
. (2.6)

For the above inequality we refer to the result on page 8 in Rio’s book [57] and the remark on

page 4 in Doukhan’s book [19]. Since σ(Xi∈Λ) ⊆ σ(Xi∈Λ̃) for all Λ ⊆ Λ̃ ⊆ Zd, the strong mixing

coefficient in Definition 2.1 implies that for all k1 ≤ k2, k1, k2, l ∈ Z+, m ≥ 0, we have

αk1,l(m) ≤ αk2,l(m), αl,k1(m) ≤ αl,k2(m). (2.7)

Similarly, for other strong mixing coefficients in Definition 2.2 and Definition 2.3, we have the

same results as in (2.7). Also in those definitions, the restriction provided by the distance

between two blocks being no less than m implies those strong mixing coefficients are non-

increasing functions with respect to m.

We define

‖X‖p= sup
i∈Zd
‖Xi‖p, ‖Xi‖p= (E|Xi|p)

1
p , 1 ≤ p <∞,

‖X‖∞= sup
i∈Zd
‖Xi‖∞, ‖Xi‖∞= ess-sup|Xi|= inf{x ∈ R : P(|Xi|≤ x) = 1}.

Theorem 2.2. Let Xi∈Zd be a random field, Λ1,Λ2 ⊆ Zd, |Λ1|= k, |Λ2|= l. Then for each

δ > 0, we have

|Cov(Xi, Xj)|≤ 8α
δ

2+δ

k,l (m)‖X‖22+δ, ∀i ∈ Λ1, ∀j ∈ Λ2, (2.8)

where m = dist(Λ1,Λ2).

The proof of this theorem can be found in [19] and [34], or see the Appendix in this thesis.

Lemma 2.3. Let Xt∈Zd be a random field,

Ei ∈ σ(Xt∈Λi), Λi ⊂ Zd, i = 1, · · · , r,

m = min{dist(Λi,Λj), i 6= j, i, j = 1, · · · , r},
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k =
r∑
i=1

|Λi|.

Then we have ∣∣∣∣∣P
(

r⋂
i=1

Ei

)
−

r∏
i=1

P(Ei)

∣∣∣∣∣ ≤ (r − 1)αk,k(m). (2.9)

Proof. We use the induction method. For r = 1, (2.9) holds. We suppose it holds for r = p, i.e.

let

E =

p⋂
i=1

Ei, P =

p∏
i=1

P(Ei),

m∗ = min{dist(Λi,Λj), i 6= j, i, j = 1, · · · , p},

k∗ =

p∑
i=1

|Λi|,

then we suppose

|P(E)− P |≤ (p− 1)αk∗,k∗(m
∗).

Following this, we need to prove it is still true for r = p+ 1.

Now let

Ep+1 ∈ σ(Xi∈Λp+1), |Λp+1|= k∗,

m = min{dist(Λi,Λj), i 6= j, i, j = 1, · · · , p+ 1},

k =

p+1∑
i=1

|Λi|,

then, by using the monotonicity properties of strong mixing coefficients, we have

αk∗,k∗(m
∗) ≤ αk,k(m), αk∗,k∗(m) ≤ αk,k(m),

which implies

|P(E)− P |≤ (p− 1)αk,k(m)

and

|P(E ∩ Ek+1)− P(E)P(Ep+1)|≤ αk,k(m).

Therefore, we have∣∣∣∣∣P
(
p+1⋂
i=1

Ei

)
−
p+1∏
i=1

P(Ei)

∣∣∣∣∣ = |P(E ∩ Ep+1)− PP(Ep+1)|

≤ |P(E ∩ Ek+1)− P(E)P(Ep+1)|+|P(E)P(Ep+1)− PP(Ep+1)|

≤ αk,k(m) + P(Ek+1)(p− 1)αk,k(m)
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≤ pαk,k(m).

This completes the proof. �

Let Ri∈Zd be an indicating random field, so that

Ri takes two possible values, 0 and 1, for all i ∈ Zd. (2.10)

Then we have the following lemma.

Lemma 2.4. Let Ri∈Zd be defined by (2.10). Then for any random field Xi∈Zd, we have

αRXk,l (m) ≤ α(R,X)
k,l (m), (2.11)

where m, k, l are the same as in Definition 2.1 and Definition 2.2.

Proof. It is enough to prove that

σ({RtXt}; t ∈ Λ) ⊂ σ({Rt}, {Xt}; t ∈ Λ), Λ ⊆ Zd.

Here we use Λ stand for any possible subset of Zd, say Λ1 or Λ2, in the definitions. Because, for

any size of Λ, the discussions in the proof are the same, we suppose there are only two indices

in Λ, i.e. Λ = {t1, t2}. Then we are going to prove

σ(Rt1Xt1 , Rt2Xt2) ⊂ σ(Rt1 , Xt1 , Rt2 , Xt2).

Let A be a Borel set. We write an event E, which is in σ(Rt1Xt1 , Rt2Xt2), as

E =
{
ω :
(
Rt1(ω)Xt1(ω), Rt2(ω)Xt2(ω)

)
∈ A

}
=

({
ω :
(
Xt1 , Xt2

)
∈ A

}
∩
{
ω :
(
Rt1 , Rt2

)
= (1, 1)

})
∪
({
ω :
(
Xt1 , 0

)
∈ A

}
∩
{
ω :
(
Rt1 , Rt2

)
= (1, 0)

})
∪
({
ω :
(

0, Xt2

)
∈ A

}
∩
{
ω :
(
Rt1 , Rt2

)
= (0, 1)

})
∪
({
ω :
(

0, 0
)
∈ A

}
∩
{
ω :
(
Rt1 , Rt2

)
= (0, 0)

})
.

Since {ω : (Xt1 , Xt2) ∈ A}, {ω : (Xt1 , 0) ∈ A}, {ω : (0, Xt2) ∈ A}, {ω : (0, 0) ∈ A} are in

σ(Xt1 , Xt2); and {ω : (Rt1 , Rt2) = (1, 1)}, {ω : (Rt1 , Rt2) = (1, 0)}, {ω : (Rt1 , Rt2) = (0, 1)},
{ω : (Rt1 , Rt2) = (0, 0)} are in σ(Rt1 , Rt2), then we have E ∈ σ(Rt1 , Xt1 , Rt2 , Xt2). This

completes the proof. �

Let Zi∈Zd be another random field. For any two subsets, Λ1,Λ2 ∈ Zd, if for all A1 ∈ σ(Xi∈Λ1),
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A2 ∈ σ(Xi∈Λ2), T1 ∈ σ(Zi∈Λ1) and T2 ∈ σ(Zi∈Λ2), we suppose

P(A1A2|T1T2) = P(A1|T1)P(A2|T2). (2.12)

Then we say the random field (Xi)i∈Zd is conditionally independent on the conditional random

field, Zi∈Zd .

We use φ(·) stands for the joint density function of specific random vectors, e.g.,

φ(zt∈Λ), Λ ⊆ Zd, (2.13)

means the density of a joint distribution of Zt∈Λ, and φ(zt) is the density of Zt, t ∈ Zd. Let

|Λ1|= k and |Λ2|= l. The above condition, (2.12), implies

αXk,l = sup
A1,A2

|P(A1 ∩A2)− P(A1)P(A2)|

= sup
A1,A2

∣∣∣∣∫ ∫ P(A1 ∩A2|{Zt = zt, t ∈ Λ1} ∩ {Zs = zs, s ∈ Λ2})

φ(zt∈Λ1 , zs∈Λ2)dzt∈Λ1dzs∈Λ2

−
∫

P(A1|{Zt = zt}t∈Λ1)φ(zt∈Λ1)dzt∈Λ1∫
P(A2|{Zs = zs}s∈Λ2)φ(zs∈Λ2)dzs∈Λ2

∣∣∣∣
= sup

A1,A2

∣∣∣∣∫ ∫ P(A1|{Zt = zt}t∈Λ1)P(A2|{Zs = zs}s∈Λ2)

1

1
× [φ(zt∈Λ1 , zs∈Λ2)− φ(zt∈Λ1)φ(zs∈Λ2)]dzt∈Λ1dzs∈Λ2

∣∣∣∣ .
We set

h1(zt) = P(A1|{Zt = zt}t∈Λ1), h2(zs) = P(A2|{Zs = zs}s∈Λ2).

Then, by using Theorem 2.1, we have

αXk,l(m) ≤ sup
0≤h1,h2≤1

|Cov(h1(Zt∈Λ1), h2(Zs∈Λ2))| = αZk,l(m).

It gives a lemma:

Lemma 2.5. For any random field Xi∈Zd, if it is conditionally independent on another random

field Zi∈Zd, i.e. (2.12) is satisfied, then αXk,l(m) ≤ αZk,l(m).

This lemma works for any random fields, e.g. if a combined random field (R,X) satisfies (2.12),

then we have α
(R,X)
k,l (m) ≤ αZk,l(m). Obviously, let Zi∈Zd and εi∈Zd be two extra random fields,

Xi = f(Zi, εi) be the focal random field, Ri∈Zd be the indicating random field. If (R,X) are

conditionally independent given Z which satisfies (2.12), then we also have α
(R,X)
k,l (m) ≤ αZk,l(m).
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Furthermore, if we set up a conditional independent property for the indicating random field,

we have the following lemma.

Lemma 2.6. Let Ri∈Zd be the indicating random field defined by (2.10), the focal random field

Xi∈Zd be a function with respect to an extra random field Zi∈Zd, i.e. Xi = f(Zi). We assume that

for any Λ1,Λ2 ⊆ Zd, and any A1 ∈ σ(Ri∈Λ1), A2 ∈ σ(Rj∈Λ2), T1 ∈ σ(Zi∈Λ1) and T2 ∈ σ(Zj∈Λ2),

P(A1A2|T1T2) = P(A1|T1)P(A2|T2). (2.14)

Then we have

αRXk,l (m) ≤ αZk,l(m),

where k, l,m are these parameters used in the Definition 2.1.

Proof. By using Theorem 2.1, we consider the equivalent expression of the strong mixing coef-

ficient of RX. Let h1 and h2 be any functions which satisfy 0 ≤ h1, h2 ≤ 1. Then we have

αRXk,l (m) = sup
0≤h1,h2≤1

∣∣∣ Cov ( h1({RiXi}i∈Λ1), h2({RjXj}j∈Λ2)
)∣∣∣ .

Let φ(·) be the density function defined in (2.13). We note that

E
(
h1({RiXi}i∈Λ1)h2({RjXj}j∈Λ1)

)
=

∫∫
E
(
h1({RiXi}i∈Λ1)h2({RjXj}j∈Λ2)

∣∣∣ {Zi = zi}i∈Λ1 , {Zj = zj}j∈Λ2

)
φ(zi∈Λ1∪Λ2)dzi∈Λ1dzi∈Λ2 ,

and, for ri ∈ {0, 1}, using assumption (H0), we have

E
(
h1({RiXi}i∈Λ1)h2({RjXj}j∈Λ2)

∣∣∣ {Zi = zi}i∈Λ1 , {Zj = zj}j∈Λ2

)
=

∑
ri∈Λ1

∈{0,1}k

∑
rj∈Λ2

∈{0,1}l
h1({rif(zi)}i∈Λ1)h2({rjf(zj)}j∈Λ1)×

P
(
{Ri = ri}i∈Λ1 , {Rj = rj}j∈Λ2

∣∣∣ {Zi = zi}i∈Λ1 , {Zj = zj}j∈Λ2

)
=

∑
ri∈Λ1

∈{0,1}k

∑
rj∈Λ2

∈{0,1}l
h1({Rif(zi)}i∈Λ1)h2({Rjf(zj)}j∈Λ1)×

P
(
{Ri = ri}i∈Λ1

∣∣∣ {Zi = zi}i∈Λ1

)
P
(
{Rj = rj}j∈Λ2

∣∣∣ {Zj = zj}j∈Λ2

)
=

∑
ri∈Λ1

∈{0,1}k
h1({Rif(zi)}i∈Λ1)P

(
{Ri = ri}i∈Λ1

∣∣∣ {Zi = zi}i∈Λ1

)
×

∑
rj∈Λ2

∈{0,1}l
h2({Rjf(zj)}j∈Λ1P

(
{Rj = rj}j∈Λ2

∣∣∣ {Zj = zj}j∈Λ2

)
.
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Since ∑
ri∈Λ1

∈{0,1}k
P
(
{Ri = ri}i∈Λ1

∣∣∣ {Zi = zi}i∈Λ1

)
= 1

and ∑
rj∈Λ2

∈{0,1}l
P
(
{Rj = rj}j∈Λ2

∣∣∣ {Zj = zj}j∈Λ2

)
= 1,

we may define

h̃1(zi∈Λ1) =
∑

ri∈Λ1
∈{0,1}k

h1({Rif(zi)}i∈Λ1)P
(
{Ri = ri}i∈Λ1

∣∣∣ {Zi = zi}i∈Λ1

)

and

h̃2(zj∈Λ2) =
∑

rj∈Λ2
∈{0,1}l

h2({Rjf(zj)}j∈Λ1)P
(
{Rj = rj}j∈Λ2

∣∣∣ {Zj = zj}j∈Λ2

)
.

Therefore we have

E
(
h1({RiXi}i∈Λ1)h2({RjXj}j∈Λ1)

)
=

∫∫
h̃1(zi∈Λ1)h̃2(zj∈Λ2)φ(zi∈Λ1∪Λ2)dzi∈Λ1dzi∈Λ2 ,

and, similarly, we have

E
(
h1({RiXi}i∈Λ1)

)
=

∫
h̃1(zi∈Λ1)φ(zi∈Λ1)dzi∈Λ1

and

E
(
h2({RjXj}j∈Λ1)

)
=

∫
h̃2(zj∈Λ2)φ(zi∈Λ2)dzi∈Λ2 .

Now we have

αRXk,l (m) ≤ sup
0≤h̃1,h̃2≤1

∣∣∣ Cov ( h̃1(zi∈Λ1), h̃2(zj∈Λ2))
)∣∣∣ = αZk,l(m).

This completes the proof. �

Remark: The conditional independence of (1.5) may be regarded as an example of the as-

sumption (H0) in Section 3.2, e.g. we may assume P(Ri = 1|Zi) = g(Zi) and P(Ri = 1, Rj =

1|Zi, Zj) = g(Zi)g(Zj).

Let Λ1 and Λ2 be subsets in the definition of αRk,l(m), αRXk,l (m), αXk,l(m) and αk,l(X|R;m),

A1 ∈ σ({RiXi}i∈Λ1) and A2 ∈ σ({RiXi}i∈Λ2). For the indicating random field, R, we define the

event

RΛ
T = {Ri = 1, i ∈ T ⊆ Λ, Rj = 0, j ∈ Λ− T}, Λ ⊂ Zd,

A1,T1 = A1 ∩RΛ1
T and A2,T2 = A2 ∩RΛ2

T .
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Because RΛ
T ∩RΛ

T ′ = ∅ for any T 6= T ′, T, T ′ ∈ Λ1 or T, T ′ ∈ Λ2, it means we have partitions of

the whole space Ω, i.e. ⋃
T⊆Λ1

RΛ1
T = Ω =

⋃
T⊆Λ2

RΛ2
T .

To simplify the notations, we use RT1 and RT2 to stand for RΛ1
T and RΛ2

T respectively. Then we

have

A1 = A1 ∩ Ω = A1 ∩

 ⋃
T1⊆Λ1

RT1

 =
⋃

T1⊆Λ1

(A1 ∩RT1) =
⋃

T1⊆Λ1

A1,T1 ,

and similarly

A2 =
⋃

T2⊆Λ2

A2,T2 .

Therefore

P(A1) = P(
⋃

T1⊆Λ1

A1,T1) =
∑
T1⊆Λ1

P(A1,T1),

P(A2) = P(
⋃

T2⊆Λ2

A2,T2) =
∑
T2⊆Λ2

P(A2,T2),

P(A1)P(A2) =
∑
T1⊆Λ1

∑
T2⊆Λ2

P(A1,T1)P(A2,T2),

and

P(A1 ∩A2) = P

(
⋃

T1⊆Λ1

A1,T1) ∩ (
⋃

T2⊆Λ2

A2,T2)

 =
∑
T1⊆Λ1

∑
T2⊆Λ2

P(A1,T1 ∩A2,T2).

If we have dependent information between random fields R and X, say αk,l(X|R;m), then we

have

|P(A1 ∩A2)− P(A1)P(A2)| ≤
∑
T1⊆Λ1

∑
T2⊆Λ2

|P(A1,T1 ∩A2,T2)− P(A1,T1)P(A2,T2)|

=
∑
T1⊆Λ1

∑
T2⊆Λ2

|P(A1 ∩A2|RT1 ∩RT2)P(RT1 ∩RT2)

−P(A1|RT1)P(RT1)P(A2|RT2)P(RT2)|

≤
∑
T1⊆Λ1

∑
T2⊆Λ2

P(A1 ∩A2|RT1 ∩RT2)

×|P(RT1 ∩RT2)− P(RT1)P(RT2)|

+
∑
T1⊆Λ1

∑
T2⊆Λ2

P(RT1)P(RT2)

×|P(A1 ∩A2|RT1 ∩RT2)− P(A1|RT1)P(A2|RT2)|

≤
∑
T1⊆Λ1

∑
T2⊆Λ2

[αRk,l(m) + αk,l(X|R;m)]

28



= 2k+l[αRk,l(m) + αk,l(X|R;m)].

Then we have

Lemma 2.7. Let Ri∈Zd be a random field, Ri be defined by (2.10), αRk,l(m), αRXk,l (m) and αXk,l(m)

be strong mixing coefficients of random fields Ri∈Zd, {RiXi}i∈Zd and Xi∈Zd respectively. If the

conditional strong mixing coefficient of X under the condition R is defined by αk,l(R|X;m), then

we have

αRXk,l (m) ≤ 2k+l
(
αk,l(R|X;m) + αXk,l(m)

)
. (2.15)

Lemma 2.8. Let a random field Zi∈Zd be independent of another random field εi∈Zd, f be a

Borel measurable function and Xi = f(Zi, εi). Then Xi∈Zd is a random field and

αXk,l(m) ≤ αZk,l(m) + αεk,l(m), (2.16)

where k, l,m are these parameters used in the Definition 2.1.

Proof. Since Zi and εi are random variables, the same discussion of (2.3) concludes that Xi∈Zd

is a random field.

Let Λ1,Λ2 ⊆ Zd, k = |Λ1|, l = |Λ2|, using Theorem 2.1 and the independent property, we have

αXk,l(m) = α
f(Z,ε)
k,l (m)

= sup
0≤h1,h2≤1

|Cov(h1[f(Zt∈Λ1 , εt∈Λ1)], h2[f(Zs∈Λ2 , εs∈Λ2)])|

= sup
0≤v1,v2≤1

|Cov(v1(Zt∈Λ1 , εt∈Λ1), v2(Zs∈Λ2 , εs∈Λ2))|

= sup
0≤v1,v2≤1

∣∣∣∣∫∫∫∫ v1v2φ(zt∈Λ1 , zs∈Λ2)φ(εt∈Λ1 , εs∈Λ2)dzt∈Λ1dzs∈Λ2dεt∈Λ1dεs∈Λ2

−
∫∫∫∫

v1v2φ(zt∈Λ1)φ(zs∈Λ2)φ(εt∈Λ1)φ(εs∈Λ2)dzt∈Λ1dzs∈Λ2dεt∈Λ1dεs∈Λ2

∣∣∣∣
≤ sup

0≤v1,v2≤1

∫∫ ∣∣∣∣∫∫ v1v2φ(zt, zs)dzt∈Λ1dzs −
∫∫

v1v2φ(zt)φ(zs)dztdzs

∣∣∣∣φ(εt, εs)dεtdεs

+ sup
0≤v1,v2≤1

∫∫ ∣∣∣∣∫∫ v1v2φ(εt, εs)dεtdεs −
∫∫

v1v2φ(εt)φ(εs)dεtdεs

∣∣∣∣φ(zt)φ(zs)dztdzs

= αZk,l(m) + αεk,l(m),

where h1 and h2 are the same functions in Theorem 2.1, φ is defined in (2.13), v1 and v2 are

introduced new functions which have the same property as h1 and h2. On the right hand side

of the above inequality, we use zt to stand for zt∈Λ1 and similarly for zs∈Λ2 , εt∈Λ1 , εs∈Λ2 . Then

this lemma is proved.

Remark: If we put f(Xi, Ri) = RiXi, then f is a measurable function. Furthermore, the
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independence property between X and R, by using Lemma 2.8, implies

αRXk,l (m) ≤ αXk,l(m) + αRk,l(m),

which provides a lower upper bound compared to Lemma ??. In the case of ε being a white

noise random field in Lemma 2.8, we have αεk,l(m) = 0. Hence αXk,l(m) = α
f(Z,ε)
k,l (m) ≤ αZk,l(m).

Therefore, if R is independent of X, we have

αRXk,l (m) = α
Rf(Z,ε)
k,l (m) ≤ αZk,l(m) + αRk,l(m).

By the similar discussion in the above lemma, for conditional dependent random fields, we have

the following lemma.

Lemma 2.9. For any two random fields, X and Y , we have

αXk,l(m) ≤ αk,l(X|Y ;m) + αYk,l(m). (2.17)

Proof. Let Λ1 and Λ2 be index sets in the definition of αXk,l(m), αk,l(X|Y ;m) and αYk,l(m),

A ∈ σ({Xi}i∈Λ1) and B ∈ σ({Xi}i∈Λ2). Let φ(yi∈Λ) be the joint distribution of Yi∈Λ, Λ ∈ Zd.
Then we have

αXk,l(m) = sup
A,B
|P(A ∩B)− P(A)P(B)|

= sup
A,B

∣∣∣∣∫∫ P(A ∩B|{Yi = yi}i∈Λ1 , {Yj = yj}j∈Λ2)φ(yi∈Λ1∪Λ2)dyi∈Λ1dyi∈Λ2

−
∫

P(A|{Yi = yi}i∈Λ1)φ(yi∈Λ1)dyi∈Λ1

∫
P(B{Yj = yj}j∈Λ2)φ(yj∈Λ2)dyj∈Λ2

∣∣∣∣
= sup

A,B

∣∣∣∣∫∫ [ P(A ∩B|{Yi = yi}i∈Λ1 , {Yj = yj}j∈Λ2)

− P(A|{Yi = yi}i∈Λ1)P(B{Yj = yj}j∈Λ2)
]
φ(yi∈Λ1∪Λ2)dyi∈Λ1dyi∈Λ2

+

∫∫
P(A|{Yi = yi}i∈Λ1)P(B{Yj = yj}j∈Λ2)[

φ(yi∈Λ1∪Λ2)− φ(yi∈Λ1)φ(yi∈Λ2)
]
dyi∈Λ1dyi∈Λ2

∣∣∣
≤ αk,l(X|Y ;m) + αYk,l(m),

where h1(yi∈Λ1) = P(A|{Yi = yi}i∈Λ1) and h2(yj∈Λ2) = P(B|{Yj = yj}j∈Λ2). This completes the

proof.
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Chapter 3

Central limit theorems

Central limit theorems play a crucial role in statistical theory and applications. Whenever we

set up a new sampling strategy or a new estimator, CLTs are basic tools to ensure the analysis is

reliable and the precision of estimators is measurable with confidence intervals. In this chapter,

we provide CLTs for the strategy in Chapter 1 on strong mixing random fields.

The CLT with strong mixing coefficients was first started by Rosenblatt in his paper [60] in 1956.

His work was intuitively inspired by Bernstein’s work [3] and Hopf’s ergotic theory in [33]. It also

inspired many followed works on asymptotic properties with strong mixing dependences. For

example, in [71] and [72], the authors considered limit theorems for random additive functions

with the strong mixing condition and a further assumption on the variances of quantities. In [38],

for stationary random processes, the relationship between the maximal correlation coefficient

and the strong mixing coefficient was discussed, as well as the necessary and sufficient condition

of a stationary Gaussian process that possesses the property of strong mixing. In [62], the author

introduced a CLT under the condition of the restricted strong mixing coefficient.

In 1982, by using Stein’s Lemma of [68], in the paper [7], the author, Bolthausen, proved a

CLT for high dimensional random fields with the stationary assumption. There are some other

papers using stationary assumptions such as [10], [47] and [30]. The author of the paper [21],

Ekström, considered CLTs for non-stationary strong mixing sequences but with triangular array

settings. In 1995, along the same line of the proof of Bolthausen’s work [7], Guyon proved a

CLT, Theorem 1.3 in his book [28], for non-stationary high dimensional random fields. This

theorem is our main tool to set up asymptotics for the indicated sampling method.
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3.1 CLTs on random fields

Let X = Xi∈Zd be a random field, E(Xi) = 0,

Sn =
∑
i∈Dn

Xi, σ2
n = V ar(Sn), (3.1)

where n ∈ Z+, Dn ∈ Zd. |Dn| increases strictly, and |Dn|→ ∞ as n→∞. Let αXk,l(m) be strong

mixing coefficient of random field X, which was introduced in Definition 2.1.

The following theorem, Theorem 3.1, is an important tool in proving our results. This theorem

is a generalization from stationary random fields to non-stationary random fields of the Theorem

in [7]. In these proofs, Stein’s Lemma and the truncation technique are used. We provide some

details on Stein’s Lemma and the truncation technique in the Appendix.

Theorem 3.1. (Theorem 3.3.1 in [28]) If X satisfies∑
m≥1

md−1αXk,l(m) <∞, k + l ≤ 4, (H1)

αX1,∞(m) = o(m−d), (H2)

∃δ > 0 s.t. ‖X‖2+δ<∞,
∑
m≥1

md−1
[
αX1,1(m)

] δ
2+δ <∞, (H3)

then

lim sup
n

1

|Dn|
∑
i,j∈Dn

|Cov(Xi, Xj)|<∞.

If we assume additionally that

lim inf
n

σ2
n

|Dn|
> 0, (H4)

then we have
Sn
σn

D−→ N(0, 1).

Remark: The proof of this theorem can be found in [28], which is along the same lines as the

proof in [7]. For details, see the Appendix. For the assumption (H3), the coefficient md−1 is

derived from the estimation of the number of the pairs, Xi and Xj , where i ∈ Zd is fixed and

|i − j|= m. If we define this estimation in the same way as we do in Chapter 4, i.e. define

h(m) = #{j : |i − j|= m, i ∈ Λ1, j ∈ Λ2}, then we will have the same result with md−1 been

replaced by h(m).

We introduce an indicating random field, R, to the random field X, in Theorem 3.1. Then we

have the following result.

Theorem 3.2. Let Ri∈Zd be introduced as in (2.10), R be independent of Xi∈Zd. Assume R
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satisfies (H1) and (H2). Let X satisfy (H1)–(H4), and for the δ in (H3) of Theorem 3.1, assume

that R also satisfies (H3), i.e.

∑
m≥1

md−1
[
αRk,l(m)

] δ
2+δ <∞. (3.2)

We set

Sn =
∑
i∈Dn

RtXt, σ2
n = V ar(Sn).

If

lim inf
n

σ2
n

|Dn|
> 0, (3.3)

then we have
Sn
σn

D−→ N(0, 1). (3.4)

Proof. The proof follows using Theorem 3.1. We set f(Ri, Xi) = RiXi in Lemma 2.8, then for

any k and l, the strong mixing coefficient of RX is bounded by that of R and X, i.e.

αRXk,l (m) ≤ αXk,l(m) + αRk,l(m),

which ensures (H1)–(H4) are satisfied for RX. This completes the proof.

Similarly, let a0, a1 ∈ R, a1 6= 0 and assume that

ci have Bernoulli distributions with two possible values, a0 and a1, for all i ∈ Zd. (3.5)

i.e. ci is a generalization of Ri. We set f(ci, Xi) = ciXi. Because f(ci, Xi) is a continuous func-

tion, it is a Borel measurable function. Therefore, if ci∈Zd is independent to Xi∈Zd , Lemma 2.8

gives:

αcXk,l (m) ≤ αck,l(m) + αXk,l(m). (3.6)

Then with a similar discussion in the previous proofs, we have the following theorem, which is

a general version of Theorem 4.39 for superpopulations.

Theorem 3.3. Let Xi∈Zd be independent to ci∈Zd and assume ci∈Zd satisfies (H1) and (H2).

Let Xi∈Zd satisfy (H1)–(H3). For the δ in (H3) of X, assume that

∑
m≥1

md−1
[
αck,l(m)

] δ
2+δ <∞. (3.7)

We set

Sn =
∑
i∈Dn

ctXt, σ2
n = V ar(Sn).
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If

lim inf
n

σ2
n

|Dn|
> 0, (3.8)

then we have
Sn
σn

D−→ N(0, 1).

3.2 CLTs on conditionally independent random fields

To study the asymptotics of the new strategy, which is mentioned in Chapter 1, we introduce

four random fields {Xt}, {Zt}, {εt} and {Rt}, t ∈ Zd. Here Rt is defined as it is in (2.10). Let

Xt∈Zd be a focal random field driven by two extra random fields, Zt∈Zd and εt∈Zd , i.e.

Xt = f(Zt, εt). (3.9)

The assumption (2.14) in Lemma 2.6 is the basic assumption for our general sampling method

in Chapter 1. This assumption is adopted by Theorem 3.4. We set Λ1,Λ2 ⊆ Zd, A1 ∈ σ(Ri∈Λ1),

A2 ∈ σ(Rj∈Λ2), T1 ∈ σ(Zi∈Λ1) and T2 ∈ σ(Zj∈Λ2). Then, to integrate the labels of our key

assumptions in Theorem 3.1, the before assumption (2.14) in Lemma 2.6 and the expression

(2.12) is described by

P(A1A2|T1T2) = P(A1|T1)P(A2|T2). (H0)

Theorem 3.4. Let (H0) be satisfied, and Xi = f(Zi, εi). We assume there exists δ > 0, such

that the strong mixing coefficient, αZk,l(m), of Zt∈Zd satisfies (H1)–(H3). Furthermore, for the

same δ > 0, we assume ‖ε‖2+δ<∞, and there exist constants K0,K1,K2 > 0 such that

sup
i∈Zd
‖f(Zi, εi)‖2+δ≤ K0 +K1‖Z‖2+δ+K2‖ε‖2+δ. (3.10)

We set

Sn =
∑
i∈Dn

RtXt, σ2
n = V ar(Sn). (3.11)

Let

lim inf
n

σ2
n

|Dn|
> 0. (3.12)

Then we have
Sn
σn

D−→ N(0, 1).

Proof. To apply Theorem 3.1, we check the conditions of that theorem.
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Lemma 2.6 implies αRXk,l (m) ≤ αZk,l(m). Therefore, we have∑
m≥1

md−1αRXk,l (m) ≤
∑
m≥1

md−1αZk,l(m) <∞, k + l ≤ 4,

and αRXk,∞(m) = o(m−d). Therefore (H1) and (H2) are satisfied. The assumption (3.10) and the

bounded ε imply

‖RX‖2+δ ≤ ‖X‖2+δ<∞.

Since αRXk,l (m) ≤ αZk,l(m), condition (H3) of Z also implies

∑
m≥1

md−1[αRX1,1 (m)]
δ

2+δ ≤
∑
m≥1

md−1[αZ1,1(m)]
δ

2+δ <∞,

which means random field RX also satisfies (H3). Equation (3.12) directly satisfies (H4). This

completes the proof.

Remark: The assumption (3.10) is in the general case of f satisfying some smoothness condi-

tions, such as the following result.

Proposition 3.5. Let Yi∈Zd and Zi∈Zd be random fields, Xi = f(Yi, Zi), i ∈ Zd. If f has

bounded partial derivatives with respect to Y and Z, then there exist constants K0, K1 and K2

such that for all r ≥ 1, we have ‖X‖r≤ K0 +K1‖Y ‖r+K2‖Z‖r.

Proof. Using the Taylor’s Theorem, for any pair of (Yt, Zt), there exist Y ξ
t and Zξt such that

Xt = f(0, 0) + Yt
∂f(Y ξ

t , Z
ξ
t )

∂Yt
+ Zt

∂f(Y ξ
t , Z

ξ
t )

∂Zt
.

The Minkowski’s inequality of Theorem A3 implies

‖X‖r = sup
t∈Zd

∥∥∥∥∥f(0, 0) + Yt
∂f(Y ξ

t , Z
ξ
t )

∂Yt
+ Zt

∂f(Y ξ
t , Z

ξ
t )

∂Zt

∥∥∥∥∥
r

≤ sup
t∈Zd

(
|f(0, 0)|+

∥∥∥∥∥Yt∂f(Y ξ
t , Z

ξ
t )

∂Yt

∥∥∥∥∥
r

+

∥∥∥∥∥Zt∂f(Y ξ
t , Z

ξ
t )

∂Zt

∥∥∥∥∥
r

)

The bounded partial derivatives implies |f(0, 0)|< ∞. We set f(0, 0) = K0, |∂f/∂Y |≤ K1 and

|∂f/∂Z|≤ K2. Then we have∥∥∥∥∥Yt∂f(Y ξ
t , Z

ξ
t )

∂Yt

∥∥∥∥∥
r

≤ ‖Yt‖r

∣∣∣∣∣∂f(Y ξ
t , Z

ξ
t )

∂Yt

∣∣∣∣∣ ≤ ‖Yt‖rK1
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and ∥∥∥∥∥Zt∂f(Y ξ
t , Z

ξ
t )

∂Zt

∥∥∥∥∥
r

≤ ‖Zt‖r

∣∣∣∣∣∂f(Y ξ
t , Z

ξ
t )

∂Zt

∣∣∣∣∣ ≤ ‖Zt‖rK2.

This completes the proof.

3.3 CLTs on dependent random fields

If random fields R and X have the conditional dependence defined in (2.5), then we have the

following theorem.

Theorem 3.6. Let Xt∈Zd be a random field, and Rt∈Zd be an indicating random field defined in

(2.10). Let αRk,l(m) and αk,l(X|R;m) satisfy (H1), and there exists a δ > 0 such that αRk,l(m)

satisfies (H3), and αk,l(X|R;m) satisfies∑
m≥1

md−1 [αk,l(X|R;m)]
δ

2+δ <∞ ∀k + l ≤ 4.

If {RtXt}t∈Zd also satisfies (3.12), Sn and σ2
n are defined as in (3.11). Then we have

Sn
σn

D−→ N(0, 1).

Proof. Lemma 2.9 gives αRXk,l (m) ≤ αXk,l(m) + αk,l(X|R;m). Then it is straightforward result

by checking that the random field, RX, satisfies (H1)–(H4) of Theorem 3.1. This completes the

proof.
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Chapter 4

Estimation of the variance

The estimation of variances provides not only confidence intervals but also an immediate estima-

tion of the variations of random elements. In this chapter, under the L2-consistancy, we mainly

develop Carlstein’s results in [13] and Fuller’s Theorem 1.3.2 in the book [26]. Carlstein’s results

are mainly on one dimensional stationary random processes. Fuller’s result is a central limit

theorem for independent identical distributed finite populations. After generalizing this CLT to

dependent random fields, we set up the variance estimation for dependent finite populations.

We generalize these results, with strong mixing conditions, to non-stationary dependent random

processes in Section 4.2 and random fields in Section 4.3. Section 4.2 and Section 4.3 have a

parallel structure, i.e. the first part of each section presents results with uniform integrability

conditions, and the second part considers the results with smooth conditions.

To set up consitent variance estimation on dependent random fields, we introduce a well-divided

sub-sampling technique, which is different from the commonly used description of sub-sampled

region. For example, in some works such as [66] by Sherman, [22] by Ekström and Sjöstedt

de-Luna, [50] by Nordman & Lahiri, and the book [39] by Lahiri, increasing rectangle blocks

are used to describe increasing sub-sampled regions, and to avoid strange regions, a further

assumption on the length of the boundary of the region has to be introduced. The well-divided

sub-sampling technique introduced in this chapter avoided to use these two assumptions. At

present, our research focuses on the case of non-overlapping regions. For further consideration on

overlapping cases, Lahiri’s book [39] is definitely a crucial reference for us, especially Chapter 7

and Chapter 12 in his book.
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4.1 Preliminaries

Let Xi∈Zd be a random field with constant mean, say E(Xi) = µ, and let Dn ⊆ Zd be the index

set of the sample. To get a CLT which provides a confidence interval, we need results in the

form of ∑
i∈Dn(Xi − µ)

σ̂

D−→ N(0, 1),

where σ̂2 is an estimator of

V ar

(∑
i∈Dn

(xi − µ)

)
.

For the case of non-identical mean, i.e. E(Xi) = µi, this kind of CLT also works, i.e.∑
i∈Dn(Xi − µi)

σ̂

D−→ N(0, 1),

where σ̂2 is an estimator of

V ar

(∑
i∈Dn

(xi − µi)

)
,

if we assume
1

|Dn|
∑
i∈Dn

E(Xi)→ µ.

Furthermore, we note that the CLT may also in the form of

1√
|Dn|

∑
i∈Dn(Xi − µi)√
V ar(Sn)
|Dn|

→ N(0, 1).

Then for non-identical variances of Xi’s, i.e. V ar(Xi) = σ2
i , it is reasonable to assume

V ar(Sn)

|Dn|
→ σ2,

where σ2 is a constant, Sn =
∑

i∈Dn Xi. This assumption is introduced in some theorems in

Section 4.2 and Section 4.3. It can be relaxed by

lim inf
n→∞

V ar(Sn)

|Dn|
> 0,

which implies V ar(Sn)
|Dn| might not have a limit. This assumption will be made in the following two

sections. In this section, we provide some preliminary results which are used in the following

sections.

Lemma 4.1. Let {tn}n∈Z+ be a sequence of random variables, θ is a real number. If limn→∞ E(tn) =
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θ and limn→∞ V ar(tn) = 0, then tn
L2−→ θ.

Proof. This directly follows the definition of convergence in L2 and the fact of E|tn − θ|2=

V ar(tn) + [E(tn)− θ]2.

Definition 4.1. Let T be an arbitrary index set, and let {Xi}i∈T be a family of random

variables. {Xi}i∈T is said to be uniformly integrable (abbreviated u.i.) iff

lim
A→∞

sup
i

E|AXi|= 0,

where AXi = Xi1{|Xi|≥A}.

In the following results, we will introduce two index sets for a family of random variables, say

{f lm}l∈L,m∈M . If we say {f lm}l∈L,m∈M is u.i., it means limA→∞ supl,m E|Af lm|= 0, which is a

special case of the above definition.

Theorem 4.2. (Theorem 4.5.3 in [16]) Let T be an arbitrary index set. The family {Xi}i∈T is

u.i. iff the following two conditions are satisfied:

(a) E|Xi| is bounded in i ∈ T ;

(b) For every ε > 0, there exists λ(ε) > 0 s.t. for any E ∈ σ(Xi):

P(E) < λ(ε) ⇒
∫
E
|Xi|dP < ε for every i ∈ T.

Theorem 4.3. (Theorem 4.5.4 in [16]) Let {tn}n∈Z+ be a random process, 0 < p <∞, tn ∈ Lp
and tn

P−→ t. Then the following three propositions are equivalent:

(i) {|tn|p} is u.i.;

(ii) tn
Lp−→ t;

(iii) E|tn|p→ E|t|p.

Because P(|tn − t|≥ ε) ≤ ε−pE|tn − t|p, the second proposition in Theorem 4.3 implies tn
P−→ t.

Then we have the following lemma.

Lemma 4.4. If tn
L2−→ t, then tn

P−→ t.

Lemma 4.5. (Lemma 1 in [13]) Let Xi∈Zd, Λ1,Λ2 ⊂ Zd, |Λ1|= k, |Λ2|= l, m = dist(Λ1,Λ2),

αk,l(m) be the strong mixing coefficient of Xi and Xj, where i ∈ Λ1, j ∈ Λ2. We assume that

maxi∈Λ1∪Λ2{EX2
i } ≤ C <∞, where C is a constant. Then, for any A > 0, we have

|Cov(Xi, Xj)|≤ 4A2αk,l(m) + 3
√
C(
√
E|AXi|2 +

√
E|AXj |2).
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Lemma 4.6. Let T be an arbitrary index set, r ≥ 1. If the family of random variables {Xr
i }i∈T

is u.i., then {Xi}i∈T is u.i.

Proof. This is a straightforward result using the fact that E|AXi|≤ (E|AXr
i |)

1
r .

Lemma 4.7. Let T be an arbitrary index set, {Xi}i∈T and {Yi}i∈T be two families of random

variables. If {Yi}i∈T is u.i. and |Xi|≤ |Yi| for all i ∈ T , then {Xi}i∈T is u.i..

Proof. This is because E|AXi|≤ E|AYi| for any A ≥ 0.

Lemma 4.8. Let k ∈ Z+, and T be an arbitrary index set. If {Xk
1,n}n∈T , {Xk

2,n}n∈T , · · · , {Xk
k,n}n∈T

are u.i., then {X1,nX2,n · · ·Xk,n}n∈T is u.i..

Proof. Let I = {1, 2, · · · , k}. Theorem 4.2 implies that there exists a constant C such that

‖Xi,n‖k≤ C for all i ∈ I. By using Hölder’s inequality k times, we have

‖X1,nX2,n · · ·Xk,n‖1≤
∏
i∈I
‖Xi,n‖k≤ Ck.

Then, the rest of this proof is to check condition (b) of Theorem 4.2.

We note that, for each j ∈ I, Hölder’s inequality also implies

‖Tj‖ k
k−1

=

∥∥∥∥∥∥
∏

i∈I\{j}

Xi,n

∥∥∥∥∥∥
k
k−1

≤
∏

i∈I\{j}

‖Xi,n‖k≤ Ck−1.

Since for all A > 0,

{|X1,nX2,n · · ·Xk,n|> A} ⊆
k⋃
i=1

{|Xi,n|> A
1
k },

then we have

sup
n

EA
∣∣∣∏
i∈I

Xi,n

∣∣∣ ≤ sup
n

(∑
i∈I

(
EA|Xi,n|k

) 1
k ‖Ti‖ k

k−1

)

≤ Ck−1
∑
i∈I

(
sup
n

EA
1
k |Xi,n|k

) 1
k

→ 0 as A→∞.

This completes the proof.

Lemma 4.9. For any two random variables X and Y , we have the following inequalities:

EA(|X|+|Y |) ≤ 2E
A
2 |X|+2E

A
2 |Y |,
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EA(|X|+|Y |) ≤ E
A
2 |X|+E

A
2 |Y |+E|Y |.

Proof. We note that {|X|+|Y |≥ A} ⊆ {|X|> A
2 } ∪ {|Y |≥

A
2 }.

EA(|X|+|Y |) =

∫
|X|+|Y |≥A

(|X|+|Y |)dP

≤
∫
{|X|≥A

2
}∪{|Y |≥A

2
}
(|X|+|Y |)dP

=

∫
{|X|≥A

2
}∪{|Y |≥A

2
}
|X|dP +

∫
{|X|≥A

2
}∪{|Y |≥A

2
}
|Y |dP

= (I)+(II).

We note that

(I) ≤
∫
{|X|≥A

2
}
|X|dP +

∫
{|X|<A

2
}∩{|Y |≥A

2
}}
|X|dP

= E|
A
2 |X||+E|

A
2 |Y ||,

and, with the same argument as (I), we have (II)≤ E|
A
2 |Y ||+E|

A
2 |X||. Therefore the first in-

equality is proved.

If we note (II) ≤ E|Y | and

(I) =

∫
{|X|≥A

2
}
|X|dP +

∫
{|Y |≥A

2
}∩{|X|<A

2
}
|X|dP

≤
∫
{|X|≥A

2
}
|X|dP +

∫
{|Y |≥A

2
}
|Y |dP.

Then the second inequality holds.

Corollary 4.10. Let k ∈ Z+, and T be an arbitrary index set. If {X1,n}n∈T , {X2,n}n∈T , · · · , {Xk,n}n∈T
are u.i., then {X1,n +X2,n + · · ·+Xk,n}n∈T is u.i..

Proof. We inductively use the first inequality in Lemma 4.9 k − 1 times. Then we have

EA
∣∣∣ k∑
i=1

Xi,n

∣∣∣ ≤ k−2∑
i=1

2iE
A

2i

∣∣∣Xi,n

∣∣∣+ 2k−1E
A

2k−1

∣∣∣Xk−1,n

∣∣∣+ 2k−1E
A

2k−1

∣∣∣Xk,n

∣∣∣.
This completes the proof.

Lemma 4.11. Let Si∈Z be a random process. If there exists δ > 0 s.t.

‖Si‖1+δ≤M <∞,
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then Si are u.i.

Proof. We only need to check condition (a) and (b) in Theorem 4.2.

For (a), E|Si|≤ ‖S‖1+δ≤M <∞.

For (b), for all ε > 0, there exists λ(ε) = (ε/M)
1+δ
δ s.t. for any E ∈ σ(Si), if P(E) < λ(ε), then

∫
E
|Si|dP ≤

(∫
E

1
1+δ
δ

) δ
1+δ
(∫

E
|Si|1+δ

) 1
1+δ

≤ (P(E))
δ

1+δ M

<
ε

M
M = ε.

This completes the proof.

Lemma 4.12. Let α(1) ≥ α(2) ≥ · · · be a decreasing sequence. For any k,m ∈ Z+, k ≥ 2, we

have
k−2∑
l=0

k−1∑
j=l+1

α(jm− lm) ≤ k

m

(k−1)m∑
i=1

α(i),

and
k−1∑
i=1

α(im) ≤ 1

m

(k−1)m∑
j=1

α(j).

Proof. We note that

k−2∑
l=0

k−1∑
j=l+1

α(jm− lm) =

k−1∑
i=1

(k − i)α(im) ≤ k
k−1∑
i=1

α(im),

and

m

k−1∑
i=1

α(im) =

k−1∑
i=1

mα(im) ≤
k−1∑
i=1

 im∑
j=(i−1)m+1

α(j)

 =

(k−1)m∑
j=1

α(j).

These two facts complete the proof.

4.2 Estimators on 1-dimension random processes

In this section, Theorem 4.13 and Theorem 4.14 generalize Carlstein’s Theorem 2 and Theorem 3

in [13] respectively. The first subsection carries on the uniform integrability conditions which

Carlstein used. In the second subsection, we drop the uniform integrability conditions, and

introduce smoothness conditions on estimators.
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4.2.1 Estimators with uniformly integrability conditions

Theorem 4.13. (To generalize Carlstein’s Theorem 2 in [13] to non–stationary processes) Let

Xi∈Z be a strong mixing process, α·,·(·) be the strong mixing coefficient, fm(·) be a measurable

function. We define

f lm = fm(Xl, Xl+1, · · · , Xl+m+1),

for all m > 0, m, l,∈ Z. Let n be the sample size, n ∈ Z+, {mn}n∈Z+ and kn = [ n
mn

] be such

that mn → ∞ and kn → ∞ as n → ∞. Suppose that αmn,mn(mn) → 0 as n → ∞, and that

{(f lmnmn )2} are u.i. with respect to l and mn. Let

f̄n =
1

kn

kn−1∑
l=0

f lmnmn

be an estimator. If limn→∞ E(f̄n) = ϕ exists, then we have f̄n
L2−→ ϕ.

Proof. We note that

V ar(f̄n) = V ar

(
1

kn

kn−1∑
l=0

f lmnmn

)

≤ 1

k2
n

[
kn−1∑
l=0

|Cov(f lmnmn , f
lmn
mn )|+2

kn−2∑
l=0

|Cov(f lmnmn , f
(l+1)mn
mn )|

+2

kn−3∑
l=0

kn−1∑
j=l+2

|Cov(f lmnmn , f
jmn
mn )|

 .
Since {(f lmnmn )2} are u.i., Theorem 4.2 implies E(f lmnmn )2 are bounded for all l and mn. Therefore,

there exists a constant C such that

|Cov(f lmnmn , f
lmn
mn )|= V ar(f lmnmn ) ≤ C

for all l and mn. Then we have

kn−1∑
l=0

|Cov(f lmnmn , f
lmn
mn )|≤ knC,

and
kn−2∑
l=0

|Cov(f lmnmn , f
(l+1)mn
mn )|≤

kn−2∑
l=0

√
V ar(F lmnmn )

√
V ar(F

(l+1)mn
mn ) ≤ (kn − 1)C.
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For any A > 0, by using Lemma 4.5, we have

|Cov(f lmnmn , f
jmn
mn )| ≤ 4A2αmn,mn(m∗) + 3

√
C

(√
E|Af lmnmn |2 +

√
E|Af jmnmn |2

)
≤ 4A2αmn,mn(mn) + 3

√
C

(√
E|Af lmnmn |2 +

√
E|Af jmnmn |2

)
= B(n,A),

where m∗ is the distance between f lmnmn and f jmnmn , m∗ ≥ mn for all j ≥ l + 2. By using the u.i.

condition and the assumption on strong mixing coefficient, given ε > 0, we choose sufficiently

large A so that

3
√
C

(√
E|Af lmnmn |2 +

√
E|Af jmnmn |2

)
< ε.

Then we have

B(n,A) < 4A2αmn,mn(mn) + ε,

and

lim sup
n

B(n,A) = 0.

Therefore, we have |Cov(f lmnmn , f
jmn
mn )|→ 0 as n→∞. Hence

V ar(f̄n) ≤ 1

k2
n

[knC + 2(kn − 1)C + 2k2
nB(n,A)]

≤ 3C

kn
+ 2B(n,A)→ 0 as n→∞.

By using Lemma 4.1, if limn→∞ E(f̄n) = ϕ exists, then f̄n
L2−→ ϕ. This completes the proof.

Example: (Example of (f lm)2 being u.i.)

Let Xi∈Z be a zero-mean process. We assume there exists a constant δ > 0 such that ‖X‖4+2δ<

∞. Let

f lm =
1

m

m−1∑
i=0

Xl+i.

Then (f lm)2 are u.i.

Proof. Since i ∈ Z are one-dimensional integers, the distance j between {i1 + l, i2 + l} and

{i3 + l, i4 + l} is no more than m, for all i1, i2, i3, i4 ∈ {0, 1, · · · ,m − 1}, i.e. all possible values

of the distance j are 0, 1, · · · ,m− 1. Therefore, in this case,

1

m

m−1∑
j=0

α
δ

2+δ

2,2 (j) ≤ 1

m
m

1

4
< 1 and

1

m

m−1∑
j=0

α
δ

2+δ

1,1 (j) < 1.
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By using Lemma 4.11, to prove this example, it is sufficient to show ‖(f lm)2‖2 is bounded. We

write

E
∣∣∣(f lm)2

∣∣∣2 =
1

m4

m−1∑
i1=0

m−1∑
i2=0

m−1∑
i3=0

m−1∑
i4=0

Cov(Xi1+lXi2+l, Xi3+lXi4+l)

+

(
1

m2

m−1∑
i1=0

m−1∑
i2=0

Cov(Xi1+l, Xi2+l)

)2

= (I)+(II)2.

For (II), since

#
{

(i1, i2) : dist({i1}, {i2}) = j
}

= O(m),

Theorem 2.2 implies, for a constant C,

(II) ≤ 1

m2
O(m)8

∑
j≥0

α
δ

2+δ

1,1 (j)‖Xi1+l‖2+δ‖Xi2+l‖2+δ

≤ C

m

m−1∑
j=0

α
δ

2+δ

1,1 (j)

= O(1).

For (I), let C be a constant, we have ‖Xi1+lXi2+l‖2+δ≤ C, ‖Xi3+lXi4+l‖2+δ≤ C, and

#
{

(i1, i2, i3, i4) : dist({i1, i2}, {i3, i4}) = j
}

= O(m3).

Then Theorem 2.2 implies

(I) ≤ 1

m4
O(m3)8

∑
j≥0

α
δ

2+δ

2,2 (j)‖Xi1+lXi2+l‖2+δ‖Xi3+lXi4+l‖2+δ

≤ C

m

m−1∑
j=0

α
δ

2+δ

2,2 (j)

= O(1),

where C is a new constant. �

Theorem 4.14. (To generalize Carlstein’s Theorem 3 in [13] to non–stationary processes) Let

Xi∈Z be a strong mixing process, Sm(·) be a measurable function. We define

Slm = Slm(Xl, Xl+1, · · · , Xl+m−1),

tlm =
√
m(Slm − E(Slm)),
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for all m > 0, m, l ∈ Z. Let mn, kn and n be defined as in Theorem 4.13,

Σn =
1

kn

kn−1∑
l=0

(tlmnmn )2,

S̄n =
1

kn

kn−1∑
l=0

Slmnmn ,

σ̂2
n =

mn

kn

kn−1∑
l=0

(Slmnmn − S̄n)2.

We assume

1) {(tlmnmn )4} are u.i. with respect to l and mn;

2) αmn,mn(mn)→ 0 as n→∞;

3) limn→∞ E(Σn) = φ;

4)

En ≡
mn

kn

kn−1∑
l=0

(
ESlmnmn − ES̄n

)2
→ 0 as n→∞.

Then we have σ̂2
n

L2−→ φ.

Proof. We set

t̄n =
1

kn

kn−1∑
l=0

tlmnmn .

Then we have

σ̂2
n =

mn

kn

kn−1∑
l=0

(
Slmnmn − ESlmnmn + ESlmnmn − S̄n

)2
.

=
mn

kn

kn−1∑
l=0

[(
Slmnmn − ESlmnmn

)2

+2
(
Slmnmn − ESlmnmn

)(
ESlmnmn − S̄n

)
+
(
ESlmnmn − S̄n

)2
]

=
mn

kn

kn−1∑
l=0

(
Slmnmn − ESlmnmn

)2

+2
mn

kn

kn−1∑
l=0

(
Slmnmn − ESlmnmn

)(
ESlmnmn − S̄n

)
+
mn

kn

kn−1∑
l=0

(
ESlmnmn − S̄n

)2

= Σn + 2An +Bn,
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where

An =
mn

kn

kn−1∑
l=0

(
Slmnmn − ESlmnmn

)(
ESlmnmn − S̄n

)
,

and

Bn =
mn

kn

kn−1∑
l=0

(
ESlmnmn − S̄n

)2
.

The rest of this proof is to show Σn
L2−→ φ, An

L2−→ 0 and Bn
L2−→ 0.

First, consider Σn.

Because the distance between Slmnmn and Sjmnmn can be regarded as the distance between tlmnmn and

tjmnmn , Theorem 4.13 implies

Σn
L2−→ φ, as n→∞. (4.1)

We note the fact that E(tlmnmn ) = 0 for all l and mn. Therefore E(t̄n) = 0 for all n ∈ Z+. Then

we certainly have limn→∞ E(t̄n) = 0. Furthermore, we note

(t̄n)2 =

(
1

kn

kn−1∑
l=0

tlmnmn

)2

≤ 1

kn

kn−1∑
l=0

(tlmnmn )2 = Σn,

that is (t̄n)4 ≤ Σ2
n. By using Theorem 4.3, equation (4.1) implies Σ2

n are u.i. Then Lemma 4.7

implies (t̄n)4 are u.i. Thereafter, by using Lemma 4.6, the condition of (tlmnmn )4 being u.i. implies

(tlmnmn )2 being u.i. Then Theorem 4.13 implies

E|t̄n − 0|2→ 0 as n→∞. (4.2)

Therefore t̄n
P−→ 0. Since (t̄n)4 are u.i., Theorem 4.3 implies t̄n

L4−→ 0, which is equivalent to

(t̄n)2 L2−→ 0.

To proof Bn
L2−→ 0, we note

Bn =
mn

kn

kn−1∑
l=0

(
ESlmnmn − ES̄n + ES̄n − S̄n

)2

≤ En + (t̄n)2.

Then, by using Lemma 4.7, assumption 4 and (t̄n)2 L2−→ 0, we have Bn
L2−→ 0.

To proof An
L2−→ 0, we note, by using Hölder’s inequality,

|An| ≤
mn

kn

[
kn−1∑
l=0

(
Slmnmn − ESlmnmn

)2
kn−1∑
l=0

(
ESlmnmn − S̄n

)2
] 1

2
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= [ΣnBn]
1
2 .

Since Σn
L2−→ σ2 and Bn

L2−→ 0, we have An
L2−→ 0. This completes the proof.

Theorem 4.15. Let Xi∈Z be a zero-mean strong mixing random process. We assume that there

exists δ > 0 such that ‖X‖2+δ= C < ∞, C is a constant. Let α1,1(j) be the strong mixing

coefficient. We suppose
∞∑
j=0

α
δ

2+δ

1,1 (j) <∞.

We set

Slmn =

mn−1∑
i=0

Xl+i, Sn =

kn−1∑
l=0

Slmnmn ,

νlmn =
Slmn√
mn

, ν̄n =
1

kn

kn−1∑
l=0

νlmnmn ,

φ̂ =
1

kn

kn−1∑
l=0

(νlmnmn − ν̄n)2,

where kn, mn and n are defined as in Theorem 4.13. If (νlmnmn )4 are u.i. and

lim
n→∞

V ar(Sn)

n
= φ, (4.3)

then

φ̂
L2−→ φ.

Proof. Let

Σn =
1

kn

kn−1∑
l=0

(νlmnmn )2,

then we have

φ̂ = Σn − (ν̄)2.

By the same argument in Theorem 4.14, since (νlmnmn )4 are u.i., and E(ν̄n) = 0, we have

E|ν̄n|2→ 0 as n→∞.

For the rest of the proof, we only need to show EΣn → φ, i.e.

lim
n→∞

1

kn

kn−1∑
l=0

E(νlmnmn )2 = φ.
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We note that

V ar(Sn)

n
=

1

mnkn

kn−1∑
l=0

kn−1∑
j=0

Cov(Slmnmn , S
jmn
mn )

=
1

mnkn

kn−1∑
l=0

V ar(Slmnmn ) +
1

mnkn

∑
l 6=j

Cov(Slmnmn , S
jmn
mn )

= (I)+(II).

Because (I)= 1
kn

∑kn−1
l=0 E(νlmnmn )2, we only need to show (II) converges to zero. We note that

(II) ≤ 2

mnkn

kn−1∑
l=0

kn−1∑
j=l+1

|Cov(Slmnmn , S
lmn
mn )|

≤ 2

mnkn

kn−1∑
l=0

kn−1∑
j=l+1

mn−1∑
p=0

mn−1∑
q=0

|Cov(Xlmn+p, Xjmn+q)|

≤ 2

mnkn

kn−1∑
l=0

kn−1∑
j=l+1

mn−1∑
p=0

mn−1∑
q=0

8 · α
δ

2+δ

1,1 (|jmn + q − lmn − p|)‖X‖22+δ

≤ 16C

mnkn

kn−1∑
l=0

kn−1∑
j=l+1

mn−1∑
p=0

mn−1∑
q=0

α
δ

2+δ

1,1 (|(j − l)mn + q − p|).

Since the distance of any two random variables is directly driven by their 1–dimensional integer

index, we have

kn−1∑
j=l+1

mn−1∑
p=0

mn−1∑
q=0

α(|(j − l)mn + q − p|)

=

kn−l−1∑
i=1

mn−1∑
p=0

mn−1∑
q=0

α(|imn + q − p|)

= α(1) + 2α(2) + · · ·+mnα(mn)

+(mn − 1)α(mn + 1) + · · ·+ 2α(2mn − 2) + α(2mn − 1)

+α(mn + 1) + 2α(mn + 2) + · · ·+mnα(2mn)

+(mn − 1)α(2mn + 1) + · · ·+ 2α(3mn − 2) + α(3mn − 1)

+ · · ·

+α((kn − l − 2)mn + 1) + 2α((kn − l − 2)mn + 2)

+ · · ·+mnα((kn − l − 2)mn +mn)

+(mn − 1)α((kn − l − 1)mn + 1)

+ · · ·+ 2α((kn − l)mn − 2) + α((kn − l)mn − 1)
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≤ α(1) + · · ·+mnα(mn) +mn

knmn∑
i=mn+1

α(i),

where we use α(·) as the abbreviation of α
δ

2+δ

1,1 (·).

Therefore,

(II) ≤ 16C
1

mn
[α(1) + · · ·+mnα(mn)] + 16C

knmn∑
i=mn+1

αi.

By using the condition
∑∞

j=0 α
δ

2+δ

1,1 (j) <∞, the second term on the right hand side converges to

zero. The first term on the right side is also converges to zero by Kronecker’s Lemma (see [67],

page 390).

Now we have limn→ Eφ̂ = φ, which completes the proof. �

Theorem 4.16. Let Xi∈Z be a strong mixing random process. We assume

1) There exists a constant M and δ > 0 such that∥∥∥∥∥(Slmnmn )2

mn

∥∥∥∥∥
2+δ

≤M ;

2) ∑
j≥0

α
δ

2+δ
m,m(j) = o(m) as m→∞;

3)

lim inf
n→∞

V ar(Sn)

n
> 0;

4) E(Slmnmn ) ≡ 0 for all l and mn.

Let

σ̂2
n =

kn−1∑
l=0,j=0
|l−j|≤1

Slmnmn S
jmn
mn .

Then we have
σ̂2
n

V ar(Sn)

L2−→ 1 as n→∞,

where Slmnmn , mn, kn and n are defined as in Theorem 4.14, and

Sn =

kn−1∑
l=0

Slmnmn .
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Proof. We write

E
∣∣∣∣ σ̂2

n

V ar(Sn)
− 1

∣∣∣∣2 =
V ar(σ̂2

n)

[V ar(Sn)]2
+

[
E(σ̂2

n)− V ar(Sn)
]2

[V ar(Sn)]2
.

Then we will show

(i)
V ar(σ̂2

n)

[V ar(Sn)]2
→ 0 as n→∞,

and

(ii)
E(σ̂2

n)

V ar(Sn)
→ 1 as n→∞.

For (i), by assumption 3, for sufficiently large n, we have a constant C such that

[V ar(Sn)]2 ≥ n2C.

Therefore it is enough to prove

V ar(σ̂2
n)

n2
→ 0 as n→∞,

or, equivalently, by n = mnkn,

V ar
[∑kn−1

l=0,j=0,|l−j|≤1

(
Slmnmn√
mn

)(
Sjmnmn√
mn

)]
k2
n

→ 0 as n→∞.

We note that

V ar

[∑kn−1
l=0

(
Slmnmn√
mn

)2
]

k2
n

≤ 1

k2
n

kn−1∑
l=0

V ar

(Slmnmn√
mn

)2


+
2

k2
n

kn−2∑
l=0

∣∣∣∣∣∣Cov(

(
Slmnmn√
mn

)2

,

(
S

(l+1)mn
mn√
mn

)2

)

∣∣∣∣∣∣
+

1

k2
n

∑
|l−j|≥2

∣∣∣∣∣∣Cov(

(
Slmnmn√
mn

)2

,

(
Sjmnmn√
mn

)2

)

∣∣∣∣∣∣
= (I)+(II)+(III).
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Consider term (I). By assumption 1, we have

V ar

(Slmnmn√
mn

)2
 ≤ E

(Slmnmn√
mn

)4
 ≤

∥∥∥∥∥∥
(
Slmnmn√
mn

)2
∥∥∥∥∥∥

2

2+δ

≤M2.

Therefore, the first term (I)≤ 1
kn
M2 → 0 as n→∞.

Consider term (II).

∣∣∣∣∣∣Cov
(Slmnmn√

mn

)2

,

(
Sjmnmn√
mn

)2
∣∣∣∣∣∣ ≤

√√√√√V ar

(Slmnmn√
mn

)2

√√√√√V ar

(Sjmnmn√
mn

)2
 ≤M2

implies (II) converges to zero.

Consider term (III). We note that∣∣∣∣∣∣Cov
(Slmnmn√

mn

)2

,

(
Sjmnmn√
mn

)2
∣∣∣∣∣∣ ≤ 8α

δ
2+δ
mn,mn((|l − j|−1)mn)M2.

Because |l − j|≥ 2, by using Lemma 4.12 and assumption 2, we have

(III) ≤ 8M2 1

k2
n

∑
|l−j|≥2

α
δ

2+δ
mn,mn((|l − j|−1)mn)

≤ 16M2 1

knmn

∑
j≥1

α
δ

2+δ
mn,mn(j)

→ 0 as n→∞.

Therefore

V ar

[∑kn−1
l=0

(
Slmnmn√
mn

)2
]

k2
n

→ 0, as n→∞. (4.4)

Similarly, we note, for any |l − j|≤ 2,∣∣∣∣∣Cov
(
Slmnmn S

(l+1)mn
mn

mn
,
Sjmnmn S

(j+1)mn
mn

mn

)∣∣∣∣∣ ≤M2.

and for any |l − j|≥ 3,∣∣∣∣∣Cov
(
Slmnmn S

(l+1)mn
mn

mn
,
Sjmnmn S

(j+1)mn
mn

mn

)∣∣∣∣∣ ≤ 8α
δ

2+δ
mn,mn((|l − j|−2)mn)M2.
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Then we have

V ar

[∑kn−2
l=0

(
Slmnmn√
mn

S
(l+1)mn
mn√
mn

)]
k2
n

→ 0, as n→∞, (4.5)

and

Cov

[∑kn−1
l=0

(
Slmnmn√
mn

)2

,
∑kn−2

l=0

(
Slmnmn√
mn

S
(l+1)mn
mn√
mn

)]
k2
n

→ 0, as n→∞. (4.6)

Now (4.4), (4.5) and (4.6) prove (i).

Lastly, we prove (ii). We write

V ar(Sn) = V ar

(
kn−1∑
l=0

Slmnmn

)

=

kn−1∑
l=0,j=0
|l−j|≤1

Cov(Slmnmn , S
jmn
mn ) +

kn−1∑
l=0,j=0
|l−j|≥2

Cov(Slmnmn , S
jmn
mn )

= E(σ̂2
n) + (I).

Since V ar(Slmnmn ) ≤ mnM , for (I), by using Lemma 4.12, we have

(I) ≤ 2mn

kn−1∑
l=0,j=0
|l−j|≥2

8α
δ

2+δ
mn,mn((|l − j|−1)mn)M2

≤ 16M2kn
∑
j≥1

α
δ

2+δ
mn,mn(j).

Assumption 3 implies that we have a constant C such that V ar(Sn) ≥ nC. Then by using

assumption 2, we have

(I)

V ar(Sn)
≤ (I)

mnknC
≤ 16M2

C

1

mn

∑
j≥0

α
δ

2+δ
mn,mn(j)→ 0,

as n→∞. Now we have

E(σ̂2
n)

V ar(Sn)
= 1− (I)

V ar(Sn)
→ 1 as n→∞.

Therefore (ii) is proved. This completes the poof of this theorem.

Example: (Example of ‖m−1(Slm)2‖2+δ being bounded)

For any given l, let δ = 1, Xi be a Gaussian process and S1
m = X1 + X2 + · · · + Xm. We note

that ‖m−1(Slm)2‖3< ∞ is equivalent to E[m−1(Slm)2]3 < ∞. By using the Isserlis Theorem,
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Theorem A6 in the Appendix, we have

E(Slm)6 =
m∑
i1=1

m∑
i2=1

m∑
i3=1

m∑
i4=1

m∑
i5=1

m∑
i6=1

E(Xi1Xi2Xi3Xi4Xi5Xi6)

=

m∑
i1=1

m∑
i2=1

m∑
i3=1

m∑
i4=1

m∑
i5=1

m∑
i6=1

∑
(i,j)∈

∏
{i1i2i3i4i5i6}

E(XiXj)


=

m∑
i1=1

m∑
i2=1

m∑
i3=1

m∑
i4=1

m∑
i5=1

m∑
i6=1(

E(Xi1Xi2)E(Xi3Xi4)E(Xi5Xi6) + E(Xi1Xi2)E(Xi3Xi5)E(Xi4Xi6) + · · ·

+ E(Xi1Xi3)E(Xi2Xi4)E(Xi5Xi6) + E(Xi1Xi3)E(Xi2Xi5)E(Xi4Xi6) + · · ·

+ E(Xi1Xi4)E(Xi2Xi3)E(Xi5Xi6) + E(Xi1Xi4)E(Xi2Xi5)E(Xi3Xi6) + · · ·

+ E(Xi1Xi5)E(Xi2Xi3)E(Xi4Xi6) + E(Xi1Xi5)E(Xi2Xi4)E(Xi3Xi6) + · · ·

+ E(Xi1Xi6)E(Xi2Xi3)E(Xi4Xi5) + E(Xi1Xi6)E(Xi2Xi4)E(Xi3Xi5) + · · ·
)

= 15

 m∑
i=1

m∑
j=1

E(XiXj)

3

.

By using the fact of E(Xi, Xj) = Cov(Xi, Xj) and Theorem 2.2, we have

E(S1
m)6 ≤ 15

 m∑
i=1

m∑
j=1

Cov(Xi, Xj)

3

≤ 7680

 m∑
i=1

m∑
j=1

α
δ

2+δ

1,1 (|i− j|)‖X‖22+δ

3

≤ 7680

 m∑
i=1

∑
r≥1

2α
δ

2+δ

1,1 (r)‖X‖22+δ

3

= 61440m3

∑
r≥1

α
δ

2+δ

1,1 (r)‖X‖22+δ

3

.

Therefore, if we have the assumption such as (H3) for d = 1, i.e. ‖X‖2+δ and
∑

r≥1 α
δ

2+δ

1,1 (r) are

bounded, then we have E[m−1(S1
m)2]3 <∞.

In the following theorem, Theorem 4.17, we relax the assumption on ESlmnmn ≡ 0 in Theorem 4.16.

We also introduce a different estimator to approach the variance in L2.

Theorem 4.17. Let Xi∈Z be a strong mixing random process. We assume
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1) There exists a constant M and δ > 0 such that∥∥∥∥∥(Slmnmn )2

mn

∥∥∥∥∥
2+δ

≤M ;

2) ∑
j≥0

α
δ

2+δ
∞,∞(j) <∞;

3)

lim inf
n→∞

V ar(Sn)

n
> 0;

4)

1

mnkn

kn−1∑
i=0

(
ES(i)

mn − ES̄mn
)2
→ 0.

Let

σ̂2
n =

kn−1∑
l=0,j=0
|l−j|≤1

(
Slmnmn − S̄mn

)(
Sjmnmn − S̄mn

)
.

Then we have
σ̂2
n

V ar(Sn)

L2−→ 1 as n→∞,

where Slmnmn , mn, kn and n are defined as in Theorem 4.14, and

Sn =

kn−1∑
l=0

Slmnmn , S̄mn =
1

kn
Sn.

Proof. We use the same idea which is used in Theorem 4.16. With the similar argument of (i)

in the proof of Theorem 4.16, we have

V ar(σ̂2
n)

[V ar(Sn)]2
→ 0 as n→∞.

Therefore, the rest of this proof is to show

E(σ̂2
n)

V ar(Sn)
→ 1 as n→∞.
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Let Ei = ESimnmn , Ē = ES̄ and

ti =
1
√
mn

(Simnmn − Ei), i = 0, 1, 2, · · · , kn.

Then we have

σ̂2
n =

∑
|l−j|≤1

mntltj −
∑
|l−j|≤1

mn(tl t̄+ tj t̄+ t̄2)

+
∑
|l−j|≤1

√
mn(tl − t̄)(Ei − Ē) +

∑
|l−j|≤1

√
mn(tj − t̄)(Ei − Ē)

+
∑
|l−j|≤1

(El − Ē)(Ej − Ē)

=
∑
|l−j|≤1

mntltj − (I)+(II)+(III)+(IV).

By using the fact that Eti = 0 for all i = 0, 1, · · · , kn, we have E(II)= 0 and E(III)= 0. By using

assumption 1 and 2, we have
E(I)

n
→ 0.

Assumption 4 implies
E(IV)

n
→ 0.

Therefore we have
Eσ̂2

n

n
= An + o(1),

where

An =
1

n

∑
|l−j|≤1

Emntltj .

We write

V ar(Sn) =
∑
|l−j|≤1

mnE(tltj) +mn

∑
|l−j|≥2

Cov(tl, tj)

=
∑
|l−j|≤1

mnE(tltj) + (V).

Since assumption 2 implies
E(V)

n
→ 0,

we have
V ar(Sn)

n
= An + o(1).
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Therefore, assumption 3 implies∣∣∣∣ Eσ̂2
n

V ar(Sn)
− 1

∣∣∣∣ =

∣∣∣∣Eσ̂2
n/n− V ar(Sn)/n

V ar(Sn)/n

∣∣∣∣ =

∣∣∣∣ o(1)

V ar(Sn)/n

∣∣∣∣→ 0.

This completes the proof.

4.2.2 Estimators with smoothness conditions

In this subsection and the subsection 4.3.2, we assume the estimators have bounded partial

derivatives, which we call the smoothness condition, i.e. the second assumption in Theorem 4.18,

Theorem 4.19, Theorem 4.29, Theorem 4.30, Theorem 4.32 and Theorem 4.38. We also assume

that the population is divided into blocks. For example, when the population size is n = 48,

we may divide it into k48 = 16 blocks, and put m48 = 3 points in each block, see Figure 4.1.

Therefore, if the population has asymptotically independent properties, the distance between any

Figure 4.1: The divided population with 16 blocks

one pair of blocks will contribute to the estimation of the variance between them. Furthermore,

the assumed relationship between kn and mn will also contribute to the estimation of the variance

of the estimators.

Theorem 4.18. Let Xi∈Z be a strong mixing random process, fm(·) be a function. We define

f lm = fm(Xl, Xl+1, · · · , Xl+m+1),

for all m > 0, m, l,∈ Z. Let n be the sample size, n ∈ Z+, {mn}n∈Z+ and kn = [ n
mn

] be such

that mn →∞ and kn →∞ as n→∞. Let

f̄n =
1

kn

kn−1∑
l=0

f lmnmn .

We assume that

1) m2
n = o(kn) as n→∞;

2)
∥∥∥ ∂f∂X∥∥∥∞ = supm,i

∣∣∣∂fm∂Xi

∣∣∣ <∞, and supm|fm(0, 0, · · · , 0)|<∞;
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3) There exists δ > 0 s.t. ‖X‖2+δ<∞;

4)
∞∑
j=0

α
δ

2+δ
m,m(j) = O(m) as m→∞.

If limn→∞ E(f̄n) = ϕ exists, then we have f̄n
L2−→ ϕ.

Proof. We only need to show V ar(f̄n)→ 0 as n→∞.

By using the Mean Value Theorem for f lmnmn , there exists (X
(ξ)
l , X

(ξ)
l+1, · · · , X

(ξ)
l+mn−1) which is in

the segment joining (0, 0, · · · , 0) and (Xl, Xl+1, · · · , Xl+mn−1) such that

f lmnmn = fmn(0, 0, · · · , 0) +

l+mn−1∑
i=l

∂fmn(X
(ξ)
l , X

(ξ)
l+1, · · · , X

(ξ)
l+mn−1)

∂Xi
Xi.

Then Minkovski inequality implies

‖f lmnmn ‖2+δ≤ ‖fmn(0, 0, · · · , 0)‖2+δ+

l+mn−1∑
i=l

∥∥∥∥ ∂f∂X
∥∥∥∥
∞
‖X‖2+δ.

Assumptions 2 and 3 imply ‖f lmnmn ‖2+δ≤ (mn + 1)C, where C is a constant.

We note that

V ar(f̄n) ≤ 1

k2
n

 kn−1∑
l=0,j=0
|l−j|≤1

|Cov(f lmnmn , f
jmn
mn )|+

kn−1∑
l=0,j=0
|l−j|≥2

|Cov(f lmnmn , f
jmn
mn )|

 ,
and

kn−1∑
l=0,j=0
|l−j|≤1

|Cov(f lmnmn , f
jmn
mn )|≤ 3kn‖f lmnmn ‖

2
2+δ≤ 3kn(mn + 1)2C2.

By using Lemma 4.12, we have

kn−1∑
l=0,j=0
|l−j|≥2

|Cov(f lmnmn , f
jmn
mn )| ≤ 8

kn−1∑
l=0,j=0
|l−j|≥2

α
δ

2+δ
mn,mn(|j − l|mn −mn)‖f lmnmn ‖2+δ‖f jmnmn ‖2+δ

≤ 16
(mn + 1)2C2kn

mn

∞∑
j=1

α
δ

2+δ
mn,mn(j).
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Therefore, by using assumption 1 and 4, we have

V ar(f̄n) ≤ 3
(mn + 1)2C2

kn
+ 16

(mn + 1)2C2

knmn

∞∑
j=0

α
δ

2+δ
mn,mn(j)

→ 0 as n→∞.

This completes the proof.

Remark: In the above theorem, for an example of assumption 1, take mn = [n(1−r)] and

kn = [nr], where 2
3 < r < 1. The assumption 4 implies, comparing with the assumption (H1)

and the assumption (H3), a stronger dependence is taken into account in this theorem, i.e.∑∞
j=0 α

δ
2+δ
m,m(j) could be divergent, rather than a constant, as m→∞.

Theorem 4.19. Let Xi∈Z be a strong mixing process, Sm(·) be a function. We define

Slm = Slm(Xl, Xl+1, · · · , Xl+m−1),

tlm =
√
m(Slm − E(Slm)),

for all m > 0, m, l ∈ Z. Let mn, kn and n be defined as in Theorem 4.13 and set

t̄n =
1

kn

kn−1∑
l=0

tlmnmn ,

Σn =
1

kn

kn−1∑
l=0

(tlmnmn )2,

S̄n =
1

kn

kn−1∑
l=0

Slmnmn ,

σ̂2
n =

mn

kn

kn−1∑
l=0

(Slmnmn − S̄n)2.

We assume

1) m6
n = o(kn) as n→∞;

2)
∥∥ ∂S
∂X

∥∥
∞ = supm,i

∣∣∣∂Sm∂Xi

∣∣∣ = C1 < ∞, and supm|Sm(0, 0, · · · , 0)|= C2 < ∞, C1 and C2 are

constants;

3) There exists δ > 0 s.t. ‖X‖6+3δ= C3 <∞, C3 is a constant;

4)
∞∑
j=0

α
δ

2+δ
m,m(j) = O(m) as m→∞;
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5)

En ≡
mn

kn

kn−1∑
l=0

(
ESlmnmn − ES̄n

)2
→ 0 as n→∞;

6) ESlm ≤ O(m), for all l = 0, 1, · · ·.

If limn→∞ E(Σn) = σ2 exists, then we have σ̂2
n

L2−→ σ2 as n→∞.

Proof. Following the idea of the proof of Theorem 4.14, since

σ̂2
n = Σn + 2An +Bn, |An|≤ |ΣnBn|

1
2 , Bn ≤ 2En + 2(t̄n)2,

where An and Bn are introduced in Theorem 4.14, we only need to show

(i) Σn
L2−→ σ2, i.e. V ar(Σn)→ 0 as n→∞

and

(ii) t̄n
L2−→ 0, as n→∞.

With the same argument as in Theorem 4.18, there exists (X
(ξ)
l , X

(ξ)
l+1, · · · , X

(ξ)
l+mn−1) such that

Slm = Slm(0, 0, · · · , 0) +

l+m−1∑
i=l

∂Slm(X
(ξ)
l , X

(ξ)
l+1, · · · , X

(ξ)
l+m−1)

∂Xi
Xi. (4.7)

Then, by using Minkovski inequality and Hölder inequality, assumptions 2 and 3 imply ‖(Slm)2‖2+δ≤
(m+ 1)2C, C is a constant. Therefore, assumption 6 implies ‖(tlmm )2‖2+δ≤ (m+ 1)2mC4, where

C4 is a constant.

For (i), we note that, by using Theorem 2.2 and Lemma 4.12,

V ar(Σn) ≤ 1

k2
n

 kn−1∑
l=0,j=0
|l−j|≤1

|Cov
(

(tlmnmn )2, (tjmnmn )2
)
|+

kn−1∑
l=0,j=0
|l−j|≥2

|Cov
(

(tlmnmn )2, (tjmnmn )2
)
|


≤ 1

k2
n

3kn(mn + 1)4m2
nC3 + 16C4(mn + 1)4m2

nkn
1

mn

∑
j≥1

α
δ

2+δ
mn.mn(j)

 .
Then assumptions 1 and 4 imply V ar(Σn)→ 0 as n→∞.
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For (ii), by using Theorem 4.3, we are going to show E|t̄n|4→ 0. We write

E(t̄n)4 =
1

k4
n

kn−1∑
l1=0

kn−1∑
l2=0

kn−1∑
l3=0

kn−1∑
l4=0

Cov
(
tl1mnmn , tl2mnmn tl3mnmn tl4mnmn

) .
Theorem 2.2 implies

E(t̄n)4 ≤ 1

k4
n

kn−1∑
l1=0

kn−1∑
l2=0

kn−1∑
l3=0

kn−1∑
l4=0

∣∣∣Cov (tl1mnmn , tl2mnmn tl3mnmn tl4mnmn

) ∣∣∣


≤ 1

k4
n

kn−1∑
l1=0

kn−1∑
l2=0

kn−1∑
l3=0

kn−1∑
l4=0

kn−1∑
l1=0

kn−1∑
j1=0

8α
δ

2+δ

mn,3mn

(
dist(Λl1 ,Λl2l3l4)

)
‖tl1mnmn ‖2+δ‖tl2mnmn tl3mnmn tl4mnmn ‖2+δ

 ,
where, we use d to denote the distance between tl1mnmn and tl2mnmn tl3mnmn tl4mnmn , i.e.

d := dist(Λl1 ,Λl2l3l4),

Λl1 and Λl2l3l4 are the index sets of Xi’s which are involved in tl1mnmn and tl2mnmn tl3mnmn tl4mnmn respec-

tively. It means d may take values:

d = 0, d = mn, d = 2mn, d = 3mn, · · · ,

i.e. d = λmn, where λ = 0, 1, 2, 3, · · ·. By using the symmetry of l2, l3 and l4, we use l1 − l2 to

describe λ, we have the following estimation

E(t̄n)4 ≤ 1

k4
n

k2
n

kn−1∑
l1=0

kn−1∑
l2=0

8α
δ

2+δ

mn,3mn

(
|l1 − l2|)mn

)
‖tl1mnmn ‖2+δ‖tl2mnmn tl3mnmn tl4mnmn ‖2+δ

 ,
We note that

‖tl1mnmn ‖2+δ≤
√
mn[(mn + 1)‖X‖2+δ+O(mn)], (4.8)

and

‖tl1mnmn tl2mnmn tl3mnmn ‖2+δ≤
(√

mn[(mn + 1)‖X‖2+δ+O(mn)]
)3
. (4.9)

Therefore,

E(t̄n)4 ≤ 1

k4
n

k2
nm

2
n(mn + 1)4C

kn−1∑
l1=0

kn−1∑
l2=0

α
δ

2+δ

mn,3mn

(
|l1 − l2|mn

)
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≤ 1

k2
n

m2
n(mn + 1)4C

kn +
kn − 1

mn

(kn−1)mn∑
λ=1

α
δ

2+δ

mn,3mn

(
λ
) .

Then assumption 1 and 4 imply E(t̄n)4 → 0. This complete the proof.

Theorem 4.20. Let Xi∈Z be a zero-mean strong mixing random process. We set

Slmn =

mn−1∑
i=0

Xl+i, Sn =

kn−1∑
l=0

Slmnmn ,

νlmn =
Slmn√
mn

, ν̄n =
1

kn

kn−1∑
l=0

νlmnmn ,

σ̂2
n =

1

kn

kn−1∑
l=0

(νlmnmn − ν̄n)2, Σn =
1

kn

kn−1∑
l=0

(νlmnmn )2,

where kn, mn and n are defined as in Theorem 4.13. We assume

1) m6
n = o(kn) as n→∞;

2) ∃δ > 0 s.t. ‖X‖4+2δ<∞;

3)
∞∑
j=0

α
δ

2+δ
m,m(j) = O(m) as m→∞.

4)
∞∑
j=0

α
δ

2+δ

1,1 (j) ≤ ∞;

5) limn→∞
V ar(Sn)

n = σ2.

Then we have σ̂2
n

L2−→ σ2 as n→∞.

Proof. Theorem 4.19 implies that if limn→∞ E(Σn) = σ2 exists, then σ̂2
n

L2−→ σ2.

We note that, by using the property of zero-mean,

V ar(Sn)

n
=

1

knmn
V ar

(
kn−1∑
l=0

Slmnmn

)

=
1

knmn
E

(
kn−1∑
l=0

Slmnmn

)2
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=
1

kn
E

(
kn−1∑
l=0

Slmnmn√
mn

)2

= EΣn.

This completes this proof.

In Theorem 4.18, Theorem 4.19 and Theorem 4.20, if we introduce a stronger assumption on

strong mixing coefficients, then the “little-o” assumption may become weaker. For example,

Theorem 4.20 still holds if we replace the assumptions 1, 3 and 4 with the following two assump-

tions:

m5
n = o(kn), as n→∞

and
∞∑
j=0

α
δ

2+δ
∞,∞(j) <∞.

Since mn and kn can be practically controlled by the sampling design, we adopt the weaker

condition on strong mixing coefficients and the stronger condition on the “little-o” assumptions.

Proposition 4.21. Let Xi∈Z be a random process, Sm(·) be a measurable function, Slm =

Sm(Xl, Xl+1, · · · , Xl+m−1). We assume

1) There exists δ > 0 s.t. ‖X‖1+δ<∞;

2)
∥∥ ∂S
∂X

∥∥
∞ = supm,i

∣∣∣∂Sm∂Xi

∣∣∣ <∞, and supm Sm(0, 0, · · · , 0) <∞.

Then m−1Slm are u.i., for the indices l and m.

Proof. By using the Mean Value Theorem and the Minkovski’s inequality, assumption 1 and 2

imply ‖Slm‖1+δ≤ (m + 1)C, C is a constant. Therefore ‖m−1Slm‖1+δ is bounded. Lemma 4.11

completes this proof.

Remark: If we define Slm = Sm(Xi∈Dm), where Dm ⊂ Zd and |Dm|= m, then this proposition

still holds for a random field X∈Zd .

4.3 Estimators on random fields

In this section, we are going to generalize the results of Section 4.2 to random fields. Let Dn

stand for the sample of the random field Xi∈Zd , which is divided into blocks. We assume D
(i)
mn
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are blocks of Dn, where i ∈ Kn ⊆ Zd is the index of D
(i)
mn , and

Dn =
⋃
i∈Kn

D(i)
mn .

For all i ∈ Kn, we set

D(i)
mn ∩D

(j)
mn = ∅ if i 6= j,

|D(i)
mn |= mn, |Kn|= kn, mn →∞, kn →∞, as n→∞,

and therefore |Dn|= mnkn. We introduce Ji to stand for the index set of the neighbours of the

block D
(i)
mn , i.e.

Ji = {j : dist(D(i)
mn , D

(j)
mn) < dmn},

where dmn is a real number with respect to mn. We use |Ji| to stand for the number of elements

in Ji. We assume we may control D
(i)
mn through sampling strategies. Therefore we introduce the

following definition:

Definition 4.2. We say Dn is well-divided by {D(i)
mn}i∈Kn in the random field Xi∈Zd if and only

if there exist positive constants b1, b2 and b such that, for all mn, we have: (1) dmn = b1 and

|Ji|≤ b for all i ∈ Kn. (2) dist(D
(i)
mn , D

(j)
mn) ≥ mb2

n when j /∈ Ji.

This definition means by using a suitable well-divided sampling strategy, say the blocks are

regularly growing with |Dn|, the number |Ji| is not related to the size of the blocks. For example,

(a) Well-divided by squares (b) Well-divided by different shapes

Figure 4.2: Well-divided sample in 2-dimension random fields

in Figure 4.2, all sides of these blocks are growing with the same ratio which is with respect to

the sample size, i.e. this sampling strategy ensures these growing blocks keep similar shapes.

Therefore, for Figure 4.2(a), say the centred block is D
(i)
mn , for any real number dmn ∈ [2,m

1
2
n ], we

have |Ji|≤ 8. Similarly, for Figure 4.2(b), if we translate this sampling strategy into well-divided

blocks as in (a), we conclude that for any |Ji| of (b) will not greater than that of (a), which

means |Ji|< 8l.

On the other hand, we may have some sampling strategies which are not well-divided. For

example in Figure 4.3, say the block at the bottom is D
(i)
mn , if one side of these rectangles is 1,
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Figure 4.3: Not well-divided sample

and the other side is mn, then the sampling strategy in Figure 4.3 implies

|Ji|= #{j : dist(D(i)
mn , D

(j)
mn) ≤ 1} = mn,

which means |Ji|→ ∞ as n→∞. This infinite number of pairs within the finite distance brings

difficulties on estimating the moments of some estimators, therefore most of the results within

this subsection are based on a well-divided sampling strategy.

The following two theorems are applications of a well-divided sampling strategy. This sampling

strategy contributes to the estimation of fourth moments and variances of some estimators.

Theorem 4.22. Let Xi∈Zd be a random field, Dn ⊆ Zd, Kn ⊆ Zd,⋃
i∈Kn

D(i)
mn = Dn, D(i)

mn ∩D
(j)
mn = ∅ if i 6= j,

|D(i)
mn |= mn, |Kn|= kn, |Dn|= mnkn,

kn →∞, mn →∞ as n→∞.

Let Dn be well-divided by {D(i)
mn}i∈Kn, i.e. there exist constants b1, b2, b > 0, such that, for all

i ∈ Kn, |Ji|≤ b, where Ji = {j : dist(D
(i)
mn , D

(j)
mn) ≤ b1}, and dist(D

(i)
mn , D

(j)
mn) ≥ mb2

n when j /∈ Ji.
Let f

(i)
mn be a measurable function,

f (i)
mn = fmn(X

j∈D(i)
mn

),

f̄Dn =
1

kn

∑
i∈Kn

f (i)
mn .

We assume

1) (f
(i)
mn)2(k−1) are u.i., where k ≥ 2, k ∈ Z+ is a constant;
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2) Ef (i)
mn ≡ 0;

3) α∞,∞(mb2)→ 0 as m→∞.

Then we have E|f̄Dn |k→ 0 as n→∞.

Proof. We only prove this theorem for k = 4, similar arguments apply in other cases. We write

E(f̄Dn)4 =
1

k4
n

∑
i∈Kn

∑
j∈Kn

∑
q∈Kn

∑
l∈Kn

Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn).

Since assumption 1 implies V ar(f
(i)
mn) and V ar(f

(j)
mnf

(q)
mnf

(l)
mn) are bounded, then we have a con-

stant C such that

(I) =
1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Kn

∑
l∈Kn

Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

≤ 1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Kn

∑
l∈Kn

∣∣∣Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

∣∣∣
≤ 1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Kn

∑
l∈Kn

C

=
1

k4
n

∑
i∈Kn

|Ji|
∑
q∈Kn

∑
l∈Kn

C

≤ 1

k4
n

knbk
2
nC → 0.

Similarly, we have

(II) =
1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Ji

∑
l∈Kn

Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

≤ 1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Ji

∑
l∈Kn

∣∣∣Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

∣∣∣
≤ 1

k4
n

knb
2knC → 0

and

(III) =
1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Ji

∑
l∈Ji

Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

≤ 1

k4
n

∑
i∈Kn

∑
j∈Ji

∑
q∈Ji

∑
l∈Ji

∣∣∣Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

∣∣∣
≤ 1

k4
n

knb
3C → 0.
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If j, q, l /∈ Ji, then we have

dist
(
f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn

)
> mb2

n .

Assumption 1 and Lemma 4.8 imply there exists a constant C such that

E(f (i)
mn)2 ≤ C and E(f (j)

mnf
(q)
mnf

(l)
mn)2 ≤ C.

Then Lemma 4.5 implies, for any A > 0,

(IV) =
1

k4
n

∑
i∈Kn

∑
j /∈Ji

∑
q /∈Ji

∑
l /∈Ji

Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

≤ 1

k4
n

∑
i∈Kn

∑
j /∈Ji

∑
q /∈Ji

∑
l /∈Ji

∣∣∣Cov(f (i)
mn , f

(j)
mnf

(q)
mnf

(l)
mn)

∣∣∣
≤ 1

k4
n

k4
n

[
4A2αmn,3mn(mb2

n ) + 3
√
C sup
i,j,q,l

(√
E|Af (i)

mn |2 +

√
E|A
(
f

(j)
mnf

(q)
mnf

(l)
mn

)
|2
)]

= 4A2αmn,3mn(mb2
n ) + 3

√
C sup
i,j,q,l

(√
E|Af (i)

mn |2 +

√
E|A
(
f

(j)
mnf

(q)
mnf

(l)
mn

)
|2
)
.

By using assumption 1, for all ε > 0, there exists a sufficiently large A, such that

3
√
C sup
i,j,q,l

(√
E|Af (i)

mn |2 +

√
E|A
(
f

(j)
mnf

(q)
mnf

(l)
mn

)
|2
)
≤ ε,

and

(IV) ≤ 4A2αmn,3mn(mb2
n ) + ε.

Hence we have (IV)→ 0 as n→∞. Then, by using the symmetry of f
(j)
mn , f

(k)
mn , f

(l)
mn , we have

E(f̄Dn)4 = 3(I) + 3(II) + (III) + (IV)→ 0.

This completes the proof.

Theorem 4.23. Let Xi∈Zd be a random field, Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn

and kn be defined as in Theorem 4.22. Let f
(i)
mn be a measurable function,

f (i)
mn = fmn(X

j∈D(i)
mn

),

f̄Dn =
1

kn

∑
i∈Kn

f (i)
mn .

We assume

1) (f
(i)
mn)2k are u.i., where k ∈ Z+ is a constant;

2) α∞,∞(mb2)→ 0 as m→∞.
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Then we have V ar(f̄kDn)→ 0 as n→∞.

Proof. We write

V ar(f̄kDn) =
1

(kn)2k

∑
i1∈Kn

· · ·
∑
ik∈Kn

∑
j1∈Kn

· · ·
∑
jk∈Kn

Cov
(
f (i1)
mn · · · f

(ik)
mn , f

(j1)
mn · · · f

(jk)
mn

)
.

Since the idea used in this proof works for any positive integer k, we only prove this theorem

for k = 2, and omit other cases.

The proof is similar to that of Theorem 4.22.

Assumption 1 implies V ar(f
(i1)
mn f

(i2)
mn ) and V ar(f

(j1)
mn f

(j2)
mn ) are bounded, then we have a constant

C such that

(I) =
1

k4
n

∑
i1∈Kn

∑
i2∈Kn

∑
j1∈Ji1∪Ji2

or
j2∈Ji1∪Ji2

Cov(f (i1)
mn f

(i2)
mn , f

(j1)
mn f

(j2)
mn ) ≤ 1

k4
n

knbk
2
nC → 0.

If j1 /∈ Ji1 ∪ Ji2 and j2 /∈ Ji1 ∪ Ji2 , then the well-divided Dn implies

dist
(
f (i1)
mn f

(i2)
mn , f

(j1)
mn f

(j2)
mn

)
> mb2

n .

Assumption 1 and Lemma 4.8 imply there exists a constant C such that

E(f (i1)
mn f

(i2)
mn )2 ≤ C and E(f (j1)

mn f
(j2)
mn )2 ≤ C.

Then Lemma 4.5 implies, for any A > 0,

(II) =
1

k4
n

∑
i1∈Kn

∑
i2∈Kn

∑
j1 /∈Ji1∪Ji2

and
j2 /∈Ji1∪Ji2

Cov(f (i1)
mn f

(i2)
mn , f

(j1)
mn f

(j2)
mn )

≤ 4A2α2mn,2mn(mb2
n ) + 3

√
C sup
i1,i2,j1,j2

(√
E|A
(
f

(i1)
mn f

(i2)
mn

)
|2 +

√
E|A
(
f

(j1)
mn f

(j2)
mn

)
|2
)
.

By using assumption 1, for all ε > 0, there exists a sufficiently large A, such that

3
√
C sup
i1,i2,j1,j2

(√
E|A
(
f

(i1)
mn f

(i2)
mn

)
|2 +

√
E|A
(
f

(j1)
mn f

(j2)
mn

)
|2
)
≤ ε,

and

(II) ≤ 4A2α2mn,2mn(mb2
n ) + ε.

68



Thus as n→∞, (II) converges to aero. Then we have

V ar(f̄Dn) = (I) + (II)→ 0.

This completes the proof.

4.3.1 Estimators with u.i. conditions

In this subsection we generalize the results in Section 4.2.1 to strong mixing non-stationary

random fields.

Theorem 4.24. (To generalize Carlstein’s Theorem 2 in [13] to random fields)

Let Xi∈Zd be a random field, Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn and kn be defined as

in Theorem 4.22. Let f
(i)
mn be a measurable function,

f (i)
mn = fmn(X

j∈D(i)
mn

),

f̄Dn =
1

kn

∑
i∈Kn

f (i)
mn .

We assume

1) (f
(i)
mn)2 are u.i.;

2) α∞,∞(mb2)→ 0 as m→∞.

If E(f̄Dn)→ ϕ as n→∞, Then we have f̄Dn
L2−→ ϕ as n→∞.

Proof. By Lemma 4.1, we only need to show V ar(f̄Dn) → 0, which follows directly using

Theorem 4.23 for the case of k = 1. This completes the proof.

Theorem 4.25. Let Xi∈Zd be a random field, Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn

and kn be defined as in Theorem 4.22. Let S
(i)
mn be a measurable function,

S(i)
mn = Smn(X

j∈D(i)
mn

),

t(i)mn =
√
mn(S(i)

mn − ES(i)
mn),

Σn =
1

kn

∑
i∈Kn

∑
j∈Ji

t(i)mnt
(j)
mn ,

S̄n =
1

kn

∑
i∈Kn

S(i)
mn ,
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σ̂2
n =

mn

kn

∑
i∈Kn

∑
j∈Ji

(S(i)
mn − S̄n)(S(j)

mn − S̄n).

We assume

1) limn→∞ E(Σn) = σ2;

2) (t
(i)
mn)4 are u.i.;

3)

En ≡
mn

kn

∑
i∈Kn

(
ES(i)

mn − ES̄n
)2
→ 0 as n→∞;

4) α∞,∞(mb2)→ 0 as m→∞.

Then we have σ̂2
n

L2−→ σ2 as n→∞.

Proof. To simplify notations, we set

ti = t(i)mn , t̄ =
1

kn

∑
i∈Kn

ti, Ei = ES(i)
mn , Ē = ES̄mn .

We write

σ̂2
n = Σn − (I)+(II)+(III)+(IV)+(V),

where

(I) =
1

kn

∑
i∈Kn

∑
j∈Ji

(ti + tj)t̄,

(II) =
1

kn

∑
i∈Kn

∑
j∈Ji

t̄2,

(III) =

√
mn

kn

∑
i∈Kn

∑
j∈Ji

(ti − t̄)(Ej − Ē),

(IV) =

√
mn

kn

∑
i∈Kn

∑
j∈Ji

(tj − t̄)(Ei − Ē),

and

(V) =
mn

kn

∑
i∈Kn

∑
j∈Ji

(Ei − Ē)(Ej − Ē).

Then for the rest of this proof, it is sufficient to show (I)–(V) converge to zero in L2, and

V ar(Σn)→ 0.

By using Theorem 4.23, since assumption 2 and Lemma 4.8 imply (
∑

j∈Ji titj)
2 is u.i., then we

have V ar(Σn)→ 0.
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For (II), Theorem 4.22 implies E(t̄2)→ 0. We write

t̄2 =
1

k2
n

∑
i∈Kn

∑
j∈Kn

titj .

Since (titj)
2 is u.i., By re-indexing the pair (i, j), then we have, by using Theorem 4.23,

V ar(t̄2)→ 0. Therefore, by using Lemma 4.1, we have t̄2
L2−→ 0. Because Dn is well-divided, we

have

(II) ≤ sup
i
|Ji|t̄2 ≤ bt̄2,

which implies, by using Lemma 4.7, (II)
L2−→ 0.

For (I), since t̄2
L2−→ 0, Theorem 4.3 implies (t̄)4 is u.i.. Assumption 2 and Lemma 4.8 also imply

[
∑

j∈Ji(ti + tj)]
4 is u.i.. Therefore, Hölder’s inequality ensures E(I) → 0, and Theorem 4.23

implies V ar((I))→ 0. Then we have (I)
L2−→ 0.

For (III), we have E(III) = 0 and

(III)2 =
mn

k2
n

( ∑
i∈Kn

∑
j∈Ji

(ti − t̄)(Ej − Ē)
)2

≤
( 1

kn

∑
i∈Kn

∑
j∈Ji

(ti − t̄)2
)(mn

kn

∑
i∈Kn

∑
j∈Ji

(Ei − Ē)2
)

= AnBn.

Assumption 2, Lemma 4.8 and Theorem 4.2 imply E|titj | is bounded. Therefore EAn is bounded.

Furthermore, by using assumption 3, we have

Bn ≤
mn

kn

∑
i∈Kn

∑
j∈Ji

|Ji|(Ei − Ē)2 → 0.

Hence (III)
L2−→ 0.

For (IV), with the same argument in (III), we have (IV)
L2−→ 0.

For (V), we note ∑
i∈Kn

∑
j∈Ji

(Ei − Ē)(Ej − Ē) ≤
∑
i∈Kn

|Ji|(Ei − Ē)2.

Therefore, assumption 3 implies

(V) ≤ mn

kn

∑
i∈Kn

|Ji|(Ei − Ē)2 → 0.

This completes the proof.
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Theorem 4.26. Let Xi∈Zd be a random field, Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn

and kn be defined as in Theorem 4.22. Let

S(i)
mn =

∑
j∈D(i)

mn

Xj , Sn =
∑
i∈Kn

S(i)
mn , S̄mn =

1

kn
Sn,

ν(i)
mn =

S
(i)
mn√
mn

, ν̄mn =
S̄mn√
mn

, φ̂n =
1

kn

∑
i∈Kn

∑
j∈Ji

(
ν(i)
mn − ν̄mn

)(
ν(j)
mn − ν̄mn

)
.

We assume

1) (ν
(i)
mn)4 are u.i.,

2)

lim
n→∞

V ar(Sn)

|Dn|
= σ2;

3)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0;

4) α∞,∞(mb2)→ 0 as m→∞.

Then φ̂n
L2−→ σ2 as n→∞.

Proof. Let ti = ν
(i)
mn − Eν(i)

mn and t̄ = ν̄mn − Eν̄mn . Then we have Eti = Et̄ = 0. Assumption 1

implies t4i is u.i.. Let

Σn =
1

kn

∑
i∈Kn

∑
j∈Ji

titj , Ei = ES(i)
mn , Ē = ES̄mn .

Then we have

φ̂n = Σn − (I)+(II)+(III)+(IV)+(V),

where

(I) =
1

kn

∑
i∈Kn

∑
j∈Ji

(ti + tj)t̄,

(II) =
1

kn

∑
i∈Kn

∑
j∈Ji

t̄2,

(III) =
1

√
mnkn

∑
i∈Kn

∑
j∈Ji

(ti − t̄)(Ej − Ē),
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(IV) =
1

√
mnkn

∑
i∈Kn

∑
j∈Ji

(tj − t̄)(Ei − Ē),

and

(V) =
1

mnkn

∑
i∈Kn

∑
j∈Ji

(Ei − Ē)(Ej − Ē).

By using the properties of zero means and u.i. of ti, with the similar discussion in the proof of

Theorem 4.25, we have that (I)–(IV) converge to zero in L2, (V)→ 0 and V ar(Σn) → 0. We

also have φ̂n − Σn
L2−→ 0. Therefore the rest of this proof is to show EΣn → σ2. We note that

V ar(Sn)

|Dn|
=

1

kn

∑
i∈Kn

∑
j∈Kn

Cov(ti, tj)

= EΣn +
1

kn

∑
i∈Kn

∑
j /∈Ji

Cov(ti, tj).

The well-divided Dn and assumption 1 imply the above second term converges to zero. Therefore

assumption 2 gives EΣn → σ2. This completes the proof.

Theorem 4.27. Let Xi∈Zd be a random field, Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn

and kn be defined as in Theorem 4.22. Let Sm be a measurable function,

S(i)
mn = Smn(X

j∈D(i)
mN

), Sn =
∑
i∈Kn

S(i)
mn , S̄mn =

1

kn
Sn.

Let

φ̂n =
∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
.

We assume

1) There exists a constant M and δ, δ > 0, such that

sup
i,mn

∥∥∥∥∥(S
(i)
mn)2

mn

∥∥∥∥∥
2+δ

≤M ;

2)

lim inf
n→∞

V ar(Sn)

|Dn|
> 0;

3)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0 as n→∞.

4) α∞,∞(mb2)→ 0 as m→∞.
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Then we have
φ̂n

V ar(Sn)

L2−→ 1 as n→∞.

Proof. We follow the idea in the proofs of Theorem 4.17 and Theorem 4.26. We need to show

(i)

V ar(φ̂n)

[V ar(Sn)]2
→ 0 as n→∞,

and

(ii)

E(φ̂n)

V ar(Sn)
→ 1 as n→∞.

Let

ν(i)
mn =

S
(i)
mn√
mn

, ti = ν(i)
mn − Eν(i)

mn , t̄ = ν̄mn − Eν̄mn .

Then we have Eti = Et̄ = 0. Lemma 4.11 and assumption 1 imply t4i is u.i.. Let

Σn =
1

kn

∑
i∈Kn

∑
j∈Ji

titj , Ei = ES(i)
mn , Ē = ES̄mn .

We write

φ̂n = mnkn

[
Σn − (I)+(II)+(III)+(IV)+(V)

]
,

where (I)–(V) are defined in the proof of Theorem 4.26.

For (i), assumption 2 implies it is sufficient to show

V ar(φ̂n)

m2
nk

2
n

→ 0.

With the same argument as in the proof of Theorem 4.26, (I)–(IV) converge to zero in L2,

(V)→ 0 and V ar(Σn)→ 0. Then we have

V ar
( φ̂n
mnkn

)
→ 0,

which proves (i).

For (ii), we write

V ar(Sn) = mnkn

[
EΣn + EAn

]
,

where

An =
1

kn

∑
i∈Kn

∑
j /∈Ji

ti, tj .
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By using Lemma 4.5, with the same argument in the proof of Theorem 4.22, assumption 4

implies EAn → 0. Therefore, by using assumption 2, we have

lim inf
n→∞

EΣn > 0. (4.10)

Since (I)–(IV) converging to zero in L2 implies their expectation converging to zero, then

E(φ̂n)

V ar(Sn)
=

Eφ̂n
mnkn
V ar(Sn)
|Dn|

=
EΣn +

[
E(I) + E(II) + E(III) + E(IV) + (V)

]
EΣn + EAn

→ 0,

which is ensured by (4.10). This completes the proof.

4.3.2 Estimators with smooth conditions

This subsection generalizes those results in Section 4.2.2. We introduce some general assump-

tions and some estimators which are different to those in 1-dimension random processes.

To avoid estimating the number of these paired blocks, in this subsection, we also introduce

assumptions about the following function, a function of the number of the paired blocks with

respect to their distance, i.e.

hmn(m) = #
{

(i, j) : dist(D(i)
mn , D

(j)
mn) = m, i, j ∈ Kn

}
.

For example in the 2-dimensional random field in Figure 4.2(a), if we use the definition of the

distance introduced in Section 2.1, we have

hmn(m) =



9, if m = 0,

0, if 0 < m < 1,

24, if m = 1,

0, if 1 < m < 2,

16, if 2.

We have two properties of hmn function:

(P1) Let αk,l(m) be the strong mixing coefficient. For any p ≥ 0, we have

∑
i∈Kn

∑
j∈Kn

αpmn,mn

(
dist(D(i)

mn , D
(j)
mn)

)
=

∞∑
m=0

hmn(m)αpmn,mn(m).
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(P2) We note that, for any q, k ∈ Z+ and i1, i2, · · · , iq, j1, j2, · · · , jk ∈ Kn, we have

#

{
(i1, i2, · · · , iq, j1, j2, · · · , jk) : dist

( q⋃
t=1

D(it)
mn ,

k⋃
t=1

D(jt)
mn

)
= m

}
≤ kq+k−2

n #
{

(i, j) : dist
(
D(i)
mn , D

(j)
mn

)
= m

}
,

where i ∈ {i1, i2, · · · , iq} and j ∈ {j1, j2, · · · , jk}. Therefore we have

∑
i1∈Kn

· · ·
∑
iq∈Kn

∑
j1∈Kn

· · ·
∑
jk∈Kn

αpqmn,kmn

(
dist

( q⋃
t=1

D(it)
mn ,

k⋃
t=1

D(jt)
mn

))

=
∞∑
m=0

#

{
(i1, i2, · · · , iq, j1, j2, · · · , jk) : dist

( q⋃
t=1

D(it)
mn ,

k⋃
t=1

D(jt)
mn

)
= m

}
αpqmn,kmn

(
m
)

≤ kq+k−2
n

∞∑
m=0

hmn(m)αpqmn,kmn(m).

By using the above two properties, for a special case of well-divided Dn, we have the following

result.

Theorem 4.28. Let b > 0, p > 0 be constants, Dn, D
(i)
mn and Kn be defined as before, i.e.

Dn =
⋃
i∈Kn

D(i)
mn .

We assume

1) For all l ∈ Z+ and fixed i ∈ Kn, we have

#
{
j : (l − 1)mb

n ≤ dist
(
D(i)
mn , D

(j)
mn

)
< lmb

n

}
≤ ld−1;

2)
∞∑
l=1

ld−1αpmn,mn(l) <∞.

Then we have
∞∑
m=0

hmn(m)αpmn,mn(m) = O(kn) as n→∞.

Proof. By using the above property (P1), we have

∞∑
m=0

hmn(m)αpmn,mn(m)
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=
∑
i∈Kn

∑
j∈Kn

αpmn,mn

(
dist(D(i)

mn , D
(j)
mn)

)
≤

∑
i∈Kn

∞∑
l=1

#
{
j : (l − 1)mb

n ≤ dist
(
D(i)
mn , D

(j)
mn

)
< lmb

n

}
αpmn,mn

(
(l − 1)mb

n

)
≤

∑
i∈Kn

∞∑
l=1

ld−1αpmn,mn

(
(l − 1)mb

n

)
≤

∑
i∈Kn

(
αpmn,mn(0) +

∞∑
l=1

(lmb
n)d−1αpmn,mn

(
lmb

n

))

≤
∑
i∈Kn

αpmn,mn(0) +
∞∑

m=lmbn

md−1αpmn,mn(m)

 .

Because assumption 2 implies

∞∑
m=lmbn

md−1αpmn,mn(m)→ 0,

we have
1

kn

∞∑
m=0

hmn(m)αpmn,mn(m) ≤ αp∞,∞(0) + o(1).

This completes the proof.

Similarly, if we use assumption 1 and 2 for union blocks as in property (P2), we will have the

following estimation:

∑
i1∈Kn

· · ·
∑
iq∈Kn

∑
j1∈Kn

· · ·
∑
jk∈Kn

αpqmn,kmn

(
dist

( q⋃
t=1

D(it)
mn ,

k⋃
t=1

D(jt)
mn

))
≤ kq+k−2

n

∞∑
m=0

hmn(m)αpqmn,kmn(m) = kq+k−2
n O(kn) = O(kq+k−1

n ).

Therefore, in following theorems, we state assumptions in terms of the hmn function. Further-

more, if Dn is well-divided, it is possible for us to introduce weaker assumptions. For example,

in Theorem 4.30, Theorem 4.31 and Theorem 4.32, we assume the tail part of the sum, rather

than the total part of the sum, shares the same power with kn, i.e.

∞∑
m=m

b2
n

hmn(m)α
δ

2+δ

4mn,4mn
(m) = O(kn) as n→∞,

where b2 > 0 is the constant introduced in these theorems.
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Theorem 4.29. Let Xi∈Zd be a strong mixing random field, Dn ⊆ Zd, Kn ⊆ Zd,⋃
i∈Kn

D(i)
mn = Dn, D(i)

mn ∩D
(j)
mn = ∅ if i 6= j,

|D(i)
mn |= mn, |Kn|= kn, |Dn|= mnkn,

kn →∞, mn →∞ as n→∞.

hmn(m) = #
{

(i, j) : dist(D(i)
mn , D

(j)
mn) = m, i, j ∈ Kn

}
.

Let fm(·) be a function,

f (i)
m = fm(X

j∈D(i)
mn

), f̄n =
1

kn

kn∑
i=1

f (i)
mn .

We assume that

1) m2
n = o(kn) as n→∞;

2)
∥∥∥ ∂f∂X∥∥∥∞ = supm,i

∣∣∣∂fm∂Xi

∣∣∣ <∞, and supm fm(0, 0, · · · , 0) <∞;

3) There exists δ > 0 s.t. ‖X‖2+δ<∞;

4)
∞∑
m=0

hmn(m)α
δ

2+δ
mn,mn(m) = O(kn) as n→∞.

If limn→∞ E(f̄n) = ϕ exists, then f̄n
L2−→ ϕ.

Proof. The idea of the proof is similar to that of the previous theorems. We simply need to

show V ar(f̄n)→ 0.

By using assumption 2, assumption 3, Mean Value Theorem and Minkovski inequality, we have

‖f (i)
mn‖2+δ ≤ ‖fmn(0, 0, · · · , 0)‖2+δ+

∑
i∈D(i)

mn

∥∥∥∥ ∂f∂X
∥∥∥∥
∞
‖X‖2+δ

≤ C0 + |D(i)
mn |C1C2

≤ mnC,

where C0, C1, C2 and C are constants.
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By using assumption 1 and 4, we have

V ar(f̄n) ≤ 1

k2
n

kn∑
i=1

kn∑
j=1

|Cov(f (i)
mn , f

(j)
mn)|

≤ 1

k2
n

kn∑
i=1

kn∑
j=1

8α
δ

2+δ
mn,mn

(
dist(f (i)

mn , f
(j)
mn)

)
‖f (i)
mn‖2+δ‖f (j)

mn‖2+δ

=
1

k2
n

max{dist(f (i)
mn ,f

(j)
mn )}∑

dist(f
(i)
mn ,f

(j)
mn )=0

8hmn

(
dist(f (i)

mn , f
(j)
mn)

)
α

δ
2+δ
mn,mn

(
dist(f (i)

mn , f
(j)
mn)

)
max{dist(f (i)

mn ,f
(j)
mn )}∑

dist(f
(i)
mn ,f

(j)
mn )=1

× ‖f (i)
mn‖2+δ‖f (j)

mn‖2+δ

≤ 8m2
nC

2

k2
n

∞∑
m=0

hmn(m)α
δ

2=δ
mn,mn(m)

→ 0.

This completes the proof.

Theorem 4.30. Let Xi∈Zd be a strong mixing random field, Dn, Kn, D
(i)
mn, mn, kn and hn(m)

be defined as in Theorem 4.29. Let S
(i)
mn, t

(i)
mn, Σn, S̄n and σ̂2

n be defined as in Theorem 4.25.

Let Dn be well-divided, b1, b2 and b be defined as in Theorem 4.22. We assume

1) m6
n = o(kn) as n→∞;

2)
∥∥ ∂S
∂X

∥∥
∞ = supm,i

∣∣∣∂Sm∂Xi

∣∣∣ <∞, and supm Sm(0, 0, · · · , 0) <∞;

3) There exists δ > 0 s.t. ‖X‖4+2δ<∞;

4)
∞∑

m=m
b2
n

hmn(m)α
δ

2+δ

4mn,4mn
(m) = O(kn) as n→∞;

5)

En ≡
mn

kn

∑
i∈Kn

(
ES(i)

mn − ES̄n
)2
→ 0 as n→∞.

If limn→∞ E(Σn) = σ2 exists, then we have σ̂2
n

L2−→ σ2 as n→∞.

Proof. Using the same idea and notations as in the proof of Theorem 4.25, since assumption 4

implies (V)→ 0, we are going to show (I)–(IV) converge to zero in L2 without the u.i. assumption.

It is sufficient to show V ar(Σn)→ 0 and E(t̄4n)→ 0 as n→∞.

79



Assumptions 2 and 3 imply that, for all i, j ∈ Kn, we have ‖titj‖2+δ≤ m3
nC, where C is a

constant. Since Dn is well-divided, it implies sup|Ji|≤ b, by using property (P2) of the hmn

function, we have

V ar(Σn) =
1

k2
n

∑
i1∈Kn

∑
j1∈Ji1

∑
i2∈Kn

∑
j2∈Ji2

Cov
(
ti1tj1 , ti2tj2

)
≤ b2

k2
n

∑
i1∈Kn

∑
i2∈Kn

∣∣∣Cov(ti1tj1 , ti2tj2)∣∣∣
≤ b2

k2
n

∑
i1∈Kn

 ∑
i2∈Ji1

∣∣∣Cov(ti1tj1 , ti2tj2)∣∣∣+
∑
i2 /∈Ji1

∣∣∣Cov(ti1tj1 , ti2tj2)∣∣∣


≤ b2

k2
n

∑
i1∈Kn

bm6
nC

2 +
∑
i2 /∈Ji1

8α
δ

2+δ

2mn,2mn

(
di1,i2

)
m6
nC

2


≤ b3m6

nC
2

kn
+
b2

k2
n

∞∑
di1,i2=mb2n

hmn(di1,i2)8α
δ

2+δ

2mn,2mn

(
di1,i2

)
m6
nC

2,

where

di1,i2 = dist
(
ti1tj1 , ti2tj2

)
.

Then assumptions 1 and 4 imply V ar(Σn)→ 0.

We write

E(t̄4) =
1

k4
n

∑
i∈Kn

∑
j∈Kn

∑
q∈Kn

∑
l∈Kn

Cov
(
titj , tqtl

)
+

1

k4
n

∑
i∈Kn

∑
j∈Kn

∑
q∈Kn

∑
l∈Kn

Cov
(
ti, tj

)
Cov

(
tq, tl

)
= (I)+(II).

For (I), with the similar argument to V ar(Σn), since ‖titj‖2+δ≤ m3
nC, and Dn is well-divided,

then, by using property (P2) of hmn function, we have

(I) ≤ 1

k4
n

∑
i∈Kn

∑
j∈Kn

∑
q∈Kn

∑
l∈Kn

∣∣∣Cov(titj , tqtl)∣∣∣
=

1

k4
n

∑
i∈Kn

∑
j∈Kn

∑
q or l∈Ji∪Jj

∣∣∣Cov(titj , tqtl)∣∣∣
+
∑
i∈Kn

∑
j∈Kn

∑
q and l /∈Ji∪Jj

∣∣∣Cov(titj , tqtl)∣∣∣

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≤ 1

k4
n

( ∑
i∈Kn

∑
j∈Kn

knm
6
nC

2(sup
i
|Ji|)2 + k2

n8
∞∑

dij,ql=m
b2
n

hmn(dij,ql)α
δ

2+δ

mn,3mn
(dij,ql)m

6
nC

2
)

≤ b2m6
nC

2

kn
+

8

k2
n

∞∑
m=m

b2
n

hmn(m)8α
δ

2+δ

mn,3mn
(m)m6

nC
2 → 0,

where

dij,ql = dist
(
titj , tqtl

)
.

For (II), we write

√
(II) =

1

k2
n

∑
i∈Kn

∑
j∈Kn

Cov
(
ti, tj

)
= Et̄2.

Then Theorem 4.22 implies
√

(II)→ 0. This completes the proof.

Theorem 4.31. Let Xi∈Zd be a strong mixing random field, Dn, Kn, D
(i)
mn, mn, kn and hn(m)

be defined as in Theorem 4.29. Let Sn, S
(i)
mn, S̄mn,

φ̂n =
1

mnkn

∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
be defined as in Theorem 4.26. Let Dn be well-divided, b1, b2 and b be defined as in Theorem 4.22.

We assume

1) m2
n = o(kn);

2) There exists δ > 0 s.t. ‖X‖4+2δ<∞;

3)

lim
n→∞

V ar(Sn)

|Dn|
= σ2;

4)
∞∑

m=m
b2
n

hn(m)α
δ

2+δ

4mn,4mn
(m) = O(kn) as n→∞.

5)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0;

Then we have φ̂n
L2−→ σ2 as n→∞.
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Proof. Let Σn, ti, t̄, (I)–(V) be defined as in Theorem 4.26. We write

φ̂ = Σn + (I)+(II)+(III)+(IV)+(V).

Since assumption 5 implies (V)→ 0, for the rest of this proof, using the same idea as in the

proof of Theorem 4.26 but without the u.i. assumption, we need to show (I)–(IV) converge to

zero in L2, and V ar(Σn)→ 0. It is sufficient to show E(t̄4)→ 0.

With the similar argument on E(t̄4) as in the proof of Theorem 4.30, we write Et̄4=(I)+(II),

where (I) and (II) are defined as in Theorem 4.30. Then we have, by using Theorem 4.22,√
(II) → 0. Assumption 2 implies ‖titj‖2+δ≤ mnC, where C is a constant. Therefore the

argument involving (I) in the proof of Theorem 4.30 implies

(I) ≤ 1

k4
n

( ∑
i∈Kn

∑
j∈Kn

knm
2
nC

2(sup
i
|Ji|)2 + k2

n8
∞∑

dij,ql=m
b2
n

hmn(dij,ql)α
δ

2+δ

mn,3mn
(dij,ql)m

2
nC

2
)

≤ b2m2
nC

2

kn
+

8

k2
n

∞∑
m=m

b2
n

hmn(m)8α
δ

2+δ

mn,3mn
(m)m2

nC
2 → 0,

This completes the proof.

Theorem 4.32. Let Xi∈Zd be a strong mixing random field, Dn, Kn, D
(i)
mn, mn, kn and hn(m)

be defined as in Theorem 4.29. Let Sn, S
(i)
mn, S̄mn and

φ̂n =
∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
be defined as in Theorem 4.27 Let Dn be well-divided, b1, b2 and b be defined as in Theorem 4.22.

We assume

1) m2
n = o(kn) as n→∞;

2)
∥∥ ∂S
∂X

∥∥
∞ = supm,i

∣∣∣∂Sm∂Xi

∣∣∣ <∞, and supm Sm(0, 0, · · · , 0) <∞;

3) there exists δ > 0 s.t. ‖X‖4+2δ<∞;

4) lim infn→∞
V ar(Sn)
|Dn| > 0;

5)
∞∑

m=m
b2
n

hmn(m)α
δ

2+δ
mn,mn(m) = O(kn) as n→∞;

6)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0 as n→∞.
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Then we have
φ̂n

V ar(Sn)

L2−→ 1 as n→∞.

Proof. We use the same ideas as in the proofs of Theorem 4.27 and Theorem 4.30. Let Σn, ti, t̄,

(I)–(V) be defined as in the proof of Theorem 4.27. Therefore, similar to the arguments in the

proofs of Theorem 4.30 and Theorem 4.31, it is sufficient to show E(t̄4)→ 0.

Assumption 2 and 3 imply ‖titj‖2+δ≤ mnC, where C is a constant. Now, with the same argument

on E(t̄4) in the proof of Theorem 4.31, we have E(t̄4)→ 0. This completes the proof.

4.3.3 CLTs with estimated variances

This subsection provides CLTs with those estimated variances from previous theorems. We

firstly introduce two preliminary lemmas.

Lemma 4.33. Let Xn be random sequence and an be a real-value sequence. If E|Xn − an|2→ 0

and lim infn an > 0, then Xn/an
P−→ 1.

Proof. Because lim infn an > 0 implies 1/an < C, where C is a constant, we have

P
(∣∣∣∣Xn

an
− 1

∣∣∣∣ > ε

)
≤ E|Xn − an|2

ε2a2
n

=
1

a2
n

E|Xn − an|2

ε2
→ 0 as n→∞.

Lemma 4.34. Let Xn and Yn be two random sequences. If

1) Xn/
√
V ar(Xn)

D−→ N(0, 1);

2) E|Yn −
√
V ar(Xn)|2→ 0;

3) lim infn V ar(Xn) > 0.

Then Xn/Yn
D−→ N(0, 1).

Proof. By using Lemma 4.33, assumption 2 and 3 imply Yn/
√
V ar(Xn)

P−→ 1. Then Slutsky’s

Theorem implies
Xn

Yn
=

Xn√
V ar(Xn)

√
V ar(Xn)

Yn

D−→ N(0, 1).
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For a random field Xi∈Zd , Dn ⊆ Zd, Lemma 4.34 can be easily generalized by using |Dn| to

take the place of n with the condition of |Dn|→ ∞ as n→∞. It means Lemma 4.34 also holds

for random fields. The following theorems are directly combined by previous L2 consistency

estimators, CLTs and Lemma 4.34.

Theorem 4.35. Let Xi∈Zd be a zero-mean random field. The strong mixing coefficient of X

satisfy (H1)–(H3) of Theorem 3.1. Let Dn be well-divided, D
(i)
mn, Kn, Ji, b1, b2, b, mn and kn be

defined as in Theorem 4.22. Let Sn, S
(i)
mn, S̄mn,

φ̂n =
1

mnkn

∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
be defined as in Theorem 4.26. We assume

1) (
S

(i)
mn√
mn

)4 are u.i.;

2)

lim
n→∞

V ar(Sn)

|Dn|
= σ2 > 0;

3)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0;

4) α∞,∞(mb2)→ 0 as m→∞.

Then Sn/

√
φ̂n

D−→ N(0, 1) as n→∞.

Proof. Because assumption 2 implies (H4) of Theorem 3.1, this proof is completed by using

Theorem 3.1, Theorem 4.26 and Lemma 4.34. In using Lemma 4.34, we set Xn = Sn and

Yn =

√
φ̂n.

Theorem 4.36. Let Xi∈Zd be a zero-mean random field, and suppose that the strong mixing

coefficient of X satisfies (H1)–(H4) of Theorem 3.1. Let Dn be well-divided, D
(i)
mn, Kn, Ji,

b1, b2, b, mn and kn be defined as in Theorem 4.22. Let

S(i)
mn =

∑
j∈D(i)

mn

Xj , Sn =
∑
i∈Kn

S(i)
mn , S̄mn =

1

kn
Sn,

Let

φ̂n =
∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
.

We assume
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1) For the δ in (H3),

sup
i,mn

∥∥∥∥∥(S
(i)
mn)2

mn

∥∥∥∥∥
2+δ

≤M ;

2)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0 as n→∞.

Then Sn/

√
φ̂n

D−→ N(0, 1) as n→∞.

Proof. This proof is completed by using Theorem 3.1, Theorem 4.27 and Lemma 4.34.

Theorem 4.37. Let Xi∈Zd be a zero-mean random field, and suppose that the strong mixing

coefficient of X satisfies (H1)–(H3) of Theorem 3.1. Let Xi∈Zd be a strong mixing random field,

Dn, Kn, D
(i)
mn, mn, kn and hn(m) be defined as in Theorem 4.29. Let Sn, S

(i)
mn, S̄mn,

φ̂n =
1

mnkn

∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
be defined as in Theorem 4.26. Let Dn be well-divided, b1, b2 and b be defined as in Theorem 4.22.

We assume

1) m4
n = o(kn);

2) There exists δ > 0 s.t. ‖X‖4+2δ<∞ (implies ‖X‖2+δ<∞ in (H3));

3)

lim
n→∞

V ar(Sn)

|Dn|
= σ2 > 0 (implies (H4));

4)
∞∑

m=m
b2
n

hn(m)α
δ

2+δ

4mn,4mn
(m) = O(kn) as n→∞.

5)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0;

Then Sn/σ̂n
D−→ N(0, 1) as n→∞.

Proof. This proof is completed by using Theorem 3.1, Theorem 4.31 and Lemma 4.34.

Theorem 4.38. Let Xi∈Zd be a zero-mean random field, and suppose that the strong mixing

coefficient of X satisfies (H1)–(H4) of Theorem 3.1. Let Xi∈Zd be a strong mixing random field,
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Dn, Kn, D
(i)
mn, mn, kn and hn(m) be defined as in Theorem 4.29. Let Sn, S

(i)
mn, S̄mn and

φ̂n =
∑
i∈Kn

∑
j∈Ji

(
S(i)
mn − S̄mn

)(
S(j)
mn − S̄mn

)
be defined as in Theorem 4.27 Let Dn be well-divided, b1, b2 and b be defined as in Theorem 4.22.

We assume

1) m4
n = o(kn) as n→∞;

2)
∥∥ ∂S
∂X

∥∥
∞ = supm,i

∣∣∣∂Sm∂Xi

∣∣∣ <∞, and supm Sm(0, 0, · · · , 0) <∞;

4)
∞∑

m=m
b2
n

hmn(m)α
δ

2+δ
mn,mn(m) = O(kn) as n→∞;

5)
1

mnkn

∑
i∈Kn

(
ES(i)

mn − ES̄mn
)2
→ 0 as n→∞.

Then we have
Sn√
φ̂n

D−→ N(0, 1) as n→∞.

Proof. This proof is completed by using Theorem 3.1, Theorem 4.32, Lemma 4.4 and Lemma 4.34.

4.3.4 Estimators for finite populations

In this subsection, we develop Fuller’s central limit theorem, Theorem 1.3.2 in [26], into depen-

dent non-stationary random fields.

Let a finite population, xt∈DN , be from a random field Xt∈Zd , i.e. DN ⊆ Zd. Let Rt∈Zd be

defined by (2.10). We define

A = {t ∈ DN : Rt = 1},

x̄ =
1

|A|
∑
t∈A

xt,

x̄N =
1

|DN |
∑
t∈DN

xt,

ct =

{
1
|A| −

1
|DN | , Rt = 1,

− 1
|DN | , Rt = 0,
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Theorem 4.39. Let Xi∈Zd be independent to Ri∈Zd. Ri∈Zd satisfies (H1) and (H2). Let Xi∈Zd

satisfy (H1)–(H3), and for the δ in (H3) of Theorem 3.1, assume that R also satisfies (H3). For

the finite subset, DN , of Zd, let xt∈DN be a realization of Xt∈DN , and A ⊂ DN . We set

SN =
∑
i∈DN

ctxt, σ2
N = V ar(SN ).

If

lim inf
N

σ2
N

|DN |
> 0, (4.11)

then we have x̄− x̄N = SN and

SN
σN

D−→ N(0, 1), as N →∞. (4.12)

Proof. We note that x̄− x̄N =
∑

t∈DN ctxt, which proved x̄− x̄N = SN .

Let two possible values of ct be a1 = 1
|A| −

1
|D| and a0 = − 1

|D| . It is obvious that a0 6= 0, a1 6= 0

and a0 6= a1. Then we have

Rt =
ct − a1

a0 − a1
, t ∈ Zd.

Therefore σ(ct∈Λ) = σ(Rt∈Λ) for all subsets Λ ⊆ Zd. It also means we have αck,l(m) = αRk,l(m).

By using Lemma 2.8, it is easy to check that {ctXt}t∈Zd satisfies (H1)–(H3). Equation (4.11) im-

plies that {ctxt}t∈Zd satisfies (H4) of Theorem 3.1. Then (4.12) is a straightforward consequence

of Theorem 3.1.

Theorem 4.39 implies that if there exists an estimator, σ̂2
N , satisfying the assumptions in Theo-

rem 4.35, Theorem 4.36, Theorem 4.37 or Theorem 4.38, then we have

SN
σ̂N

D−→ N(0, 1) as N →∞. (4.13)

Furthermore, we suppose this finite population, DN , is in H strata, and h stands for the h-th

stratum, h ∈ {1, · · · , H}. Then Dh is the set of subscripts of the population within the h-th

stratum. Let Rt∈Zd is defined by (2.10) and

DN =
H⋃
h=1

Dh,

Ah = {t ∈ Dh : Rt = 1},

AN =

H⋃
h=1

Ah,

x̄h =
1

|Ah|
∑
t∈Ah

xt,
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x̄N =
1

|DN |

H∑
h=1

∑
t∈Dh

xt =
1

|DN |
∑
t∈DN

xt,

x̄ =

H∑
h=1

|Dh|
|DN |

x̄h,

ct =

{
1
|AN | −

1
|DN | , Rt = 1,

− 1
|DN | , Rt = 0.

Then Theorem 4.39 still holds.

We note that Dh in here is a kind of partition of DN based on strata, however D
(i)
mn in previous

theorems is another partition of Zd based on the settings in the assumptions. There is no

confusion between them.

Since the dependence between strata can also be described by the dependence between persons,

in this case, the estimator σ̂2
N defined as in Theorem 4.26 still works for the result as per (4.13)

with suitable assumptions in Theorem 4.35, Theorem 4.36, Theorem 4.37 or Theorem 4.38.

For indicated random fields, {RiXi}i∈Zd , d ≥ 1, central limit theorems in Chapter 3 imply that,

with their required assumptions, added by the assumptions used in this section, all the theorems,

such as Theorem 4.35, Theorem 4.36, Theorem 4.37 and Theorem 4.38, hold for the indicated

sampling method which is introduced in Chapter 1.
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Chapter 5

Functional central limit theorems

The functional central limit theorem is a kind of development of the central limit theorem on an

infinite dimensional space. It considers the asymptotic property of a series of random processes

which are indexed by time, t. It is also called a Donsker theorem or invariance principle.

To consider the convergence of these random processes, we need to set up a suitable space

and a topology with a measurement of distance between two elements in this space. Space

C = C[0, 1], which is the space of continuous functions, is one such space. However, it cannot

be used to describe random processes with jumps. Therefore, we introduce another space, space

D, endowed with the Skorohod topology. The preliminaries of this chapter are mainly adapted

from [4] by Billingsley and [57] by Rio. We prove FCLTs for nested sampled non-stationary

dependent random fields in Section 5.2. Section 5.3 directly applies the results in Section 5.2 to

the indicated sampling strategy, which was introduced in Chapter 1.

5.1 Space D and Skorohod topology

Let D = D[0, 1] be the space of cadlag functions, i.e. x : [0, 1] 7→ R, where x ∈ D is a right-

continuous function, and the left-limits exist for any points of x. Let x and y be two elements

in the space D. We introduce two metrics, which are defined in [4] by Billingsley,

d(x, y) = inf{ε : sup
t
|λ(t)− t|≤ ε, sup

t
|x(t)− y(λ(t))|≤ ε},

and

d0(x, y) = inf{ε : ‖λ‖≤ ε, sup
t
|x(t)− y(λ(t))|≤ ε},
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where λ(t) is in the class of strictly increasing, continuous mappings from [0, 1] onto itself,

‖λ‖= sup
s 6=t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ ,
and λ(t) satisfies ‖λ‖<∞. The Skorohod topology is defined by the metric d(·, ·). In Chapter 14

of [4], Theorem 14.1 proves that d and d0 are equivalent metrics, Theorem 14.2 and Theorem 14.3

proved that, with the metric d0(·, ·), the space D is complete and separable. Thereupon we can

consider the weak convergence and the tightness of a sequence of random elements in the space

D.

Definition 5.1. ([4]) Let Wn(t) be random elements of D. We say Wn(t) has asymptotically

independent increments if

0 ≤ s1 ≤ t1 < s2 ≤ t2 · · · < sr ≤ tr ≤ 1

implies, for all Borel sets B1, · · · , Br of R, that∣∣∣∣∣P {Wn(ti)−Wn(si) ∈ Bi, i = 1, · · · , r} −
r∏
i=1

P(Wn(ti)−Wn(si) ∈ Bi)

∣∣∣∣∣→ 0, as n→∞.

Similarly, we say two random sequences Xn∈N and Yn∈N are asymptotically independent if and

only if for all Borel sets B1, B2 of R, that∣∣∣P {Xn ∈ B1, Yn ∈ B2} − P {Xn ∈ B1}P {Yn ∈ B2}
∣∣∣→ 0, as n→∞.

Lemma 5.1.

a) Let two random sequences Xn and Yn be asymptotically independent. Let X and Y be inde-

pendent random variables. If Xn
D−→ X and Yn

D−→ Y , then we have Xn ± Yn
D−→ X ± Y .

b) Let Xn and Yn be two random sequences. Let {Xn±Yn}n∈N and Yn be asymptotically indepen-

dent, Xn
D−→ X, Yn

D−→ Y . If X ± Y is independent to Y , and Y has the non-zero characteristic

function, then Xn ± Yn
D−→ X ± Y .

Proof. a) We only need to prove the addition case. Since two random sequences Xn and Yn

are asymptotically independent, then we have |Eeit(Xn+Yn) − EeitXnEeitYn)|→ 0. We note that

Xn
D−→ X and Yn

D−→ Y imply

|EeitXn − EeitX |→ 0, |EeitYn − EeitY )|→ 0.

Therefore ∣∣∣Eeit(Xn+Yn) − Eeit(X+Y )
∣∣∣ =

∣∣∣Eeit(Xn+Yn) − EeitXEeitY
∣∣∣
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≤ |Eeit(Xn+Yn) − EeitXnEeitYn)|

+|EeitXn − EeitX |+|EeitYn − EeitY )|

→ 0.

This implies Xn + Yn
D−→ X + Y .

b) We note that the non-negative characteristic function of Y implies the non-negative charac-

teristic function of −Y . Therefore we only prove the substitution case.∣∣∣Eeit(Xn−Yn) − Eeit(X−Y )
∣∣∣ =

∣∣∣∣ 1

EeitY
(
Eeit(Xn−Yn)EeitY − Eeit(X−Y )EeitY

)∣∣∣∣
≤

∣∣∣∣ 1

EeitY

∣∣∣∣×(∣∣∣Eeit(Xn−Yn)
(
EeitY − EeitYn

)∣∣∣
+
∣∣∣Eeit(Xn−Yn)EeitYn − Eeit(Xn−Yn)+itYn

∣∣∣
+
∣∣∣EeitXn − EeitX

∣∣∣)
=

∣∣∣∣ 1

EeitY

∣∣∣∣× ((I)+(II)+(III)
)
.

Since (I) (II) and (III) all go to zero by the assumptions, this completes the proof.

Theorem 5.2. (Theorem 19.2 in [4])Suppose that Wn(t) satisfies the following conditions:

1. Wn(t) has asymptotically independent increments;

2. {W 2
n(t)}n≥1 is uniformly integrable for each t;

3. E(Wn(t))→ 0 and E(W 2
n(t))→ t as n→∞;

4. For each positive ε and η, there exists a positive δ such that

P

(
sup
|s−t|<δ

|Wn(s)−Wn(t)|≥ ε

)
≤ η

for sufficiently large n. Then we have

Wn(t)
D−→W (t).

The above theorem is a criterion for convergence introduced in [4]. It has been used in some

work such as [12] by Bradley and Peligrad for one dimensional strictly stationary processes with

strong mixing conditions and a polynomial mixing rate, [31] by Herrndorf for non-stationary
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processes with ρ-mixing conditions, and been developed by Deo for a high dimensional time

index and stationary random fields with φ-mixing conditions in [18]. However another criteria

of convergence in Billingsley’s book [4], Theorem 15.6, is also used in this section.

Theorem 5.3. (Theorem 15.6 of [4]) Let F (t) be a continuous non-decreasing function on

[0, 1]. We suppose that Wn(t) and W (t) are elements in space D, and the following conditions

are satisfied:

1). (Wn(t1),Wn(t2), · · · ,Wn(tk))
D−→ (W (t1),W (t2), · · · ,W (tk)) whenever t1, t2, · · · , tk ∈ [0, 1];

2). P(W (1) 6= W (1−)) = 0;

3).

P(|Wn(t)−Wn(t1)|≥ λ, |Wn(t)−Wn(t2)|≥ λ) ≤ 1

λ2γ
[F (t2)− F (t1)]2α, (5.1)

for t1 ≤ t ≤ t2 and n ≥ 1, where γ ≥ 0, α > 1
2 .

Then we have

Wn(t)
D−→W (t).

5.2 FCLTs on non-stationary random fields

Generally speaking, the stationarity property will benefit the estimation of the variance of

the sample sum. Let Xi, i ∈ Z, be a one dimensional zero mean random process. Then

V ar
∑n

i=1Xi =
∑n

i=1

∑n
j=1 EXiXj . It means, although Xi are well bounded, the variance still

has order n2. However, if this sequence is endowed with the stationarity property, we have

Cov(Xi, Xj) = Cov(X0, Xj−i). Therefore, Theorem 1.2, in the book [42] by Lindgren et al,

implies |Cov(Xi, Xj)|≤ Cov(X0, X0). Now we have

V ar
n∑
i=1

Xi =
n∑
i=1

n∑
j=1

EXiXj = nCov(X0, X0)

[
1 + 2

n∑
k=1

n− k
n

Cov(X0, Xk)

Cov(X0, X0)

]
.

Since n−k
n < 1 and Cov(X0,Xk)

Cov(X0,X0) ≤ 1, it implies the possibility of an estimation of the variance

with a lower order compared to n2.

There are many works of FCLTs on stationary random processes and/or fields. For example,

in Theorem 20.1 of Billingsley’s book [4], ϕ-mixing conditions are introduced for the one di-

mensional stationary processes. In the paper [48] by Merlevède and Peligrad, the strong mixing

conditions and quantile conditions are introduced to one dimensional strictly stationary pro-

cesses. In [57] by Rio, the strong mixing conditions are introduced to one dimensional strictly

stationary processes. Fazekas [23] introduced continuous parameter fields and infill-increasing

assumptions to strictly stationary random fields.
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In [1] by Andrew and Pollard, bracketing conditions are introduced to FCLTs on non-stationary

strong mixing random process. In this section, we will introduce a FCLT which works for non-

stationary random fields with strong mixing dependent properties, quantile conditions and the

nested sampling strategy. Another FCLT involves ϕ-mixing conditions in order to relax the

previous quantile conditions.

Following Rio’s definition of a “tail” function in [57], we let the quantile function of |Xi| be the

inverse of the non increasing and left continuous tail function of |Xi|, which is noted by Q|Xi| or

Qi. Specifically,

Q|Xi|(u) = inf{x ≥ 0 : P(|Xi|> x) ≤ u}.

Some properties of the quantile function are provided in [57] such as Theorem 1.1 and Lemma 2.1

which will be our main tools in the following proofs. We also need some preliminaries on complex-

valued random variables such as the following lemma, Lemma 5.5, which is a relaxed version of

exercise 7 at the end of Chapter 1 in Rio’s book [57].

Comparing our Definition 2.1 of strong mixing coefficient with Rio’s definition in Chapter 1 of

[57], we use m to specify the distance between two blocks, Λ1 and Λ2. We also use the subscript

of αk,l to emphasize the sizes of Λ1 and Λ2, where |Λ1|= k and |Λ2|= l. Rio introduced a factor,

2, in front of our αk,l(m). This factor brings convenience to the proof of the following theorem,

Theorem 1.1 in the book [57]. Rio’s definition is the same as the form, 2αk,l(m) in our case on

random fields. In the following lemmas, we assume X is one of Xi∈Λ1 , and Y is one of Xi∈Λ2 ,

dist(Λ1,Λ2) ≥ m, in Definition 2.1. Furthermore, for convenience, we let α = α|Λ1|,|Λ2|(m).

Then we have the following two results, Lemma 5.4 and Lemma 5.6, by Rio.

Lemma 5.4. (Theorem 1.1 (a) in [57]) Let X and Y be integrable real-valued random variables.

Assume that XY is integrable. Then

|Cov(X,Y )|≤ 2

∫ 2α

0
Q|X|(u)Q|Y |(u)du ≤ 4

∫ α

0
Q|X|(u)Q|Y |(u)du.

Lemma 5.5. Let X and Y be complex-valued random variables. Then we have

|Cov(X,Y )|≤ 8

∫ 2α

0
Q|X|(u)Q|Y |(u)du ≤ 16

∫ α

0
Q|X|(u)Q|Y |(u)du,

where α is the corresponding strong mixing coefficient with respect to X and Y , and |X| is the

modulus of a complex number X.

Proof. Let X = X1 + iX2, Q|X1|(u) = x1, Q|X2|(u) = x2 and Q|X|(u) = x∗ for some fixed u.

Since |X|≥ |X1|, we have

P(|X1|> x∗) ≤ P(|X|> x∗) ≤ u.
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Therefore we have x∗ ≥ x1, i.e.

Q|X1|(u) ≤ Q|X|(u).

Similarly we have Q|X2|(u) ≤ Q|X|(u). If we let Y = Y1 + iY2, then we have

Q|Y1|(u) ≤ Q|Y |(u), Q|Y2|(u) ≤ Q|Y |(u).

Using the above inequalities, and the first inequality of Lemma 5.4, we have

|Cov(X,Y )| ≤ |Cov(X1, Y1)|+|Cov(X2, Y1)|+|Cov(X1, Y2)|+|Cov(X2, Y2)|

≤ 2

∫ 2α

0

[
Q|X1|(u)Q|Y1|(u) +Q|X2|(u)Q|Y1|(u)

+Q|X2|(u)Q|Y1|(u) +Q|X2|(u)Q|Y2|(u)
]
du

≤ 8

∫ 2α

0
Q|X|(u)Q|Y |(u)du.

Similarly, the second inequality of Lemma 5.4 implies the second inequality of this lemma. This

completes the proof.

Since Q|X|(u) is non-negative for the random variable X, and 0 ≤ α ≤ 1, then the inequalities in

Lemma 5.4 and Lemma 5.5 can also be bounded by a higher upper limitation of the integration,

i.e. ∫ α

0
Q|X|(u)Q|Y |(u)du ≤

∫ 1

0
Q|X|(u)Q|Y |(u)du. (5.2)

Now the following lemma can be directly applied to the case of the multiplication of random

variables if it occurs in Lemma 5.4 and Lemma 5.5.

Lemma 5.6. (Lemma 2.1 (b) in [57]) Let X1, · · · , Xp be random variables. Then∫ 1

0
Q|X1X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du ≤

∫ 1

0
Q|X1|(u)Q|X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du.

Lemma 5.7. For any α ∈ [0, 1
4 ] and any random variables, X1, X2, · · · , Xp, we have∫ α

0
Q|X1X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du ≤

∫ α

0
Q|X1|(u)Q|X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du.

Proof. For any α, α ∈ [0, 1
4 ], we define a random variable,

Z =

{
0, with the probability 1− α,
1, with the probability α.
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Then the tail function of Z is

Q|Z|(u) = inf{z ≥ 0 : P(|Z|> z) ≤ u} =

{
1, if u ≤ α,
0, if u > α.

Now, for any random variables, X1 and X2, we have∫ α

0
Q|X1X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du

=

∫ 1

0
Q|Z|(u)Q|X1X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du

≤
∫ 1

0
Q|Z|(u)Q|X1|(u)Q|X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du (By using Lemma 5.6)

=

∫ α

0
Q|X1|(u)Q|X2|(u)Q|X3|(u) · · ·Q|Xp|(u)du.

This completes the proof.

For the strong mixing coefficient in Definition 2.1, αk,l(m), we define the inverse function of

αk,l(m) as the supremum of the distance m, i.e. α−1
k,l (u) = sup{m ∈ N : αk,l(m) > u}, which is

the same as

α−1
k,l (u) = inf{m ∈ N : αk,l(m) ≤ u}.

We note that
∞∑
m=0

(m+ 1)1u∈[αk,l(m+1),αk,l(m)) = α−1
k,l (u). (5.3)

Therefore, for any constant K > 0, we have

∞∑
m=0

(m+ 1)K1u∈[αk,l(m+1),αk,l(m)) =
[
α−1
k,l (u)

]K
. (5.4)

Theorem 5.8. Let Xi∈Zd be a zero-mean random field with strong mixing coefficient α1,1(m),

which is defined by Definition 2.1. For any subset of Zd, D ⊆ Zd, we assume there exists a

constant K1 > 0 such that

|D|≤ K1(m+ 1)d, (5.5)

where m = sup{d(i, j) : i, j ∈ D}. Then there exists a constant C such that

E

(∑
i∈D

Xi

)2

≤ C
∑
i∈D

∫ 1
4

0

[
α−1

1,1 (u)
]d
Q2
Xi(u)du.

Proof. We note that (5.9) implies

#{j : d(i, j) ≤ m} ≤ K1(m+ 1)d.
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Therefore, by using Lemma 5.4, (5.3) and (5.4),

E

(∑
i∈D

Xi

)2

≤
∑
i,j∈D

|Cov(Xi, Xj)|

≤ 2
∑
i,j∈D

∫ α1,1(d(i,j))

0

(
Q2
Xi(u) +Q2

Xj (u)
)
du

= 4
∑
i∈D

∞∑
m=0

∫ α1,1(m)

0
#{j : d(i, j) = m}Q2

Xi(u)du

≤ 4
∑
i∈D

∞∑
m=0

∫ α1,1(m)

α1,1(m+1)
#{j : d(i, j) ≤ m}Q2

Xi(u)du

≤ 4K1

∑
i∈D

∞∑
m=0

∫ α1,1(m)

α1,1(m+1)
(m+ 1)dQ2

Xi(u)du

= 4K1

∑
i∈D

∫ 1
4

0

∞∑
m=0

1u∈[α1,1(m+1),α1,1(m))(m+ 1)dQ2
Xi(u)du

= 4K1

∑
i∈D

∫ 1
4

0

[
α−1

1,1 (u)
]d
Q2
Xi(u)du.

This completes the proof.

Let {S1, S2} be a partition of distinct {i, j, k, l}, i, j, k, l ∈ Zd. Then S1 and S2 are two non-empty

sets. We define

Mijkl = max
{
dist(S1, S2) : {S1, S2} ∈ Pijkl

}
, (5.6)

where Pijkl stands for the set of all partitions of {i, j, k, l}, i.e.

Pijkl =
{
{{i, j}, {k, l}}, {{i, k}, {j, l}}, {{i, l}, {k, j}},

{{i, }, {j, k, l}}, {{j, }, {i, k, l}}, {{k, }, {j, i, l}}, {{l, }, {j, k, i}}
}

Lemma 5.9. Let Mijkl be defined as in (5.6), but with {i, j, k, l} not necessary distinct. Then

j, k, l must be within 3Mijkl of i, i.e.

dist(i, j) ≤ 3Mijkl, dist(i, k) ≤ 3Mijkl, dist(i, l) ≤ 3Mijkl. (5.7)

Proof. We suppose the contrary of (5.7).

1) Firstly, we suppose {i, j, k, l} are distinct, then there are several cases to consider.

1.1) All of j, k, l are more than 3Mijkl from i. But this is impossible as the split S1 = {i} and

S2 = {j, k, l} would have a separation greater than Mijkl.
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1.2) Two of j, k, l are more than 3Mijkl from i, say k, l. Then the separation between i and k, l

is more than Mijkl. Therefore we must have dist(i, j) ≤ Mijkl, or else the separation S1 = {i}
and S2 = {j, k, l} would be more than Mijkl. Hence

3Mijkl ≤ d(i, k) ≤ d(i, j) + d(j, k) ≤Mijkl + dist(j, k),

i.e. d(j, k) ≥ 2Mijkl. By the same argument, we have d(j, l) ≥ 2Mijkl. Thus, the seperation

between S1 = {i, j} and S2 = {k, l} is more than Mijkl. This contradicts the definition of Mijkl.

1.3) One of j, k, l is more than 3Mijkl from i, say l. For example, if d(i, l) > 3Mijkl, d(i, j) < Mijkl

and d(i, k) < Mijkl, then by the same argument, we have d(i, l) > 2Mijkl and d(k, l) > 2Mijkl.

This contradicts to the definition of Mijkl.

Thus all these alternatives are impossible, so that j, k, l are within 3Mijkl of i.

2) Secondly, we suppose {i, j, k, l} are distinct. Then there are several cases to consider.

2.1) If only three of i, j, k, l are distinct, say i = j, then in (5.6), we can interpret S1 and S2

as the partition of {i, k, l}. In this case, with a similar argument, we must have the distance

between i and the other two distinct points is less than or equal to 2Mijkl.

2.2) If they are equal in pairs, then we must have the distance between the two distinct points

equal to Mijkl.

2.3) If they are all equal, then it becomes trivial.

So, in every case, we must have the conclusion of the lemma.

To simplify the expression in the following theorem, we combine α−1
2,2(u) and α−1

1,3(u) by defining

α−1
4 (u) = max{α−1

2,2(u), α−1
1,3(u)}. (5.8)

Theorem 5.10. Let Xi∈Zd be a zero-mean random field with strong mixing coefficient αk,l(m),

which is defined by Definition 2.1, α−1
4 (u) be defined as in (5.8), and D ⊆ Zd. We assume there

exists a constant K1 > 0 such that

|D|≤ K1(m+ 1)d, (5.9)

where m = sup{dist(i, j) : i, j ∈ D}. Then there exist a constant K > 0 such that

E

(∑
i∈D

Xi

)4

≤ 3

∑
i,j∈D

|E(XiXj)|

2

+K
∑
i∈D

∫ 1
4

0

[
α−1

4 (u)
]3d

Q4
Xi(u)du.
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Proof. We write

E

(∑
i∈D

Xi

)4

=
∑

i,j,k,l∈D
E(XiXjXkXl).

Consider partitioning {i, j, k, l} into two non-empty subsets, S1 and S2. Let Mijkl be defined as

in (5.6).

Case 1 : Suppose the maximum distance Mijkl occurs at the partition {S1, S2}, where S1 contains

two elements, and S2 contains the other two. Without loss of generality, we set S1 = {i, j} and

S2 = {k, l}. Then, by using the fact of abcd ≤ 1
4(a4+b4+c4+d4), where a, b, c, d ∈ R, Lemma 5.4

and Lemma 5.7 imply

E(XiXjXkXl) ≤ |E(XiXj)||E(XkXl)|+|Cov(XiXj , XkXl)|

≤ |E(XiXj)||E(XkXl)|

+

∫ α2,2(Mij,kl)

0

(
Q4
Xi(u) +Q4

Xj (u) +Q4
Xk

(u) +Q4
Xl

(u)
)
du.

Case 2 : If Mijkl occurs at the partition, where S1 contains one element, and S2 contains the

other three. Without losing of generality, we set S1 = {i} and S2 = {j, k, l}. Then, similarly,

we have

E(XiXjXkXl) = |Cov(Xi, XjXkXl)|

≤
∫ α1,3(Mi,jkl)

0

(
Q4
Xi(u) +Q4

Xj (u) +Q4
Xk

(u) +Q4
Xl

(u)
)
du.

The above two estimations of E(XiXjXkXl) also work for the cases where i, j, k, l are not distinct.

We note that

∑
i,j,k,l∈D

∫ α2,2(Mil,jk)

0
Q4
Xi(u)du =

∑
i∈D

∑
j,k,l∈D

∫ α2,2(Mil,jk)

0
Q4
Xi(u)du

=
∑
i∈D

∞∑
m=0

∫ α2,2(m)

0
#{(j, k, l) : Mijkl = m}Q4

Xi(u)du

≤
∑
i∈D

∞∑
m=0

∫ α2,2(m)

α2,2(m+1)
#{(j, k, l) : Mijkl ≤ m}Q4

Xi(u)du.

Lemma 5.9 and the assumption (5.9) imply #{(j, k, l) : Mijkl ≤ m} ≤ K(m+ 1)3d, where K is

a constant. Then by using (5.3) and (5.4),

∑
i,j,k,l∈D

∫ α2,2(Mil,jk)

0
Q4
Xi(u)du ≤

∑
i∈D

∞∑
m=0

∫ α2,2(m)

α2,2(m+1)
K(m+ 1)3dQ4

Xi(u)du
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=
∑
i∈D

∫ 1
4

0

∞∑
m=0

1u∈[α1,1(m+1),α1,1(m))K(m+ 1)3dQ4
Xi(u)du

=
∑
i∈D

∫ 1
4

0

[
α−1

2,2(u)
]3d

Q4
Xi(u)du

≤
∑
i∈D

∫ 1
4

0

[
α−1

4 (u)
]3d

Q4
Xi(u)du.

Similarly, we have

∑
i,j,k,l∈D

∫ α1,3(Mi,ljk)

0
Q4
Xi(u)du ≤

∑
i∈D

∫ 1
4

0

[
α−1

4 (u)
]3d

Q4
Xi(u)du.

Therefore the above discussion implies the upper bound of this fourth moment is not greater

than the sum of these two possible cases. It leads to

∑
i,j,k,l∈D

E(XiXjXkXl) ≤ 3

∑
i,j∈D

|E(XiXj)|

2

+ 3
∑

i,j,k,l∈D
|Cov(XiXj , XkXl)|

+4
∑

i,j,k,l∈D
|Cov(Xi, XjXkXl)|

≤ 3

∑
i,j∈D

|E(XiXj)|

2

+3
∑

i,j,k,l∈D

∫ α2,2(Mij,kl)

0

(
Q4
Xi(u) +Q4

Xj (u) +Q4
Xk

(u) +Q4
Xl

(u)
)
du

+4
∑

i,j,k,l∈D

∫ α1,3(Mi,jkl)

0

(
Q4
Xi(u) +Q4

Xj (u) +Q4
Xk

(u) +Q4
Xl

(u)
)
du

≤ 3

∑
i,j∈D

|E(XiXj)|

2

+ 28K
∑
i∈D

∫ 1
4

0
[α−1

4 (u)]3dQ4
Xi(u)du.

This completes the proof.

In Theorem 5.11 and Theorem 5.13, we introduce an assumption on the nested spatial structure,

which is illustrated by Figure 5.1. We set D0 is the index set of the original sample. Let

D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn ⊆ · · ·.

For example, in Figure 5.1, we assume n1 and n2 are the subscripts of the index set of the

sample, n1 < n2. The index set Dn1 is circled by the black dash line, and Dn2 is circled by the

black solid line, Dn1 ⊆ Dn2 . We also use Dc
n2

to stand for the outside of the region Dn2 , i.e.
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Figure 5.1: The nested spatial structure.

the indices which are not in Dn2 . Then dist(Dc
n2
, Dn1) is used to size the distance of the gap

between the dash line and the solid line, i.e. the distance between the region of Dc
n2

and the

region of Dn1 .

Theorem 5.11. Let the zero-mean random field Xi∈Zd satisfies (H1), (H2), (H3) and (H4) in

Theorem 3.1. We assume

1) Dn ⊂ Zd is with a nested spatial structure, i.e. D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn ⊆ · · ·. There

exists constants K0 > 0 and K1 > 0, such that for any n1 ≤ n2,

dist(Dc
n2
, Dn1) ≥ K1(n2 − n1)K0 ;

2) There exists a constant K3 > 0 such that (5.9) being satisfied, i.e. for any D ⊆ Zd,

|D|≤ K3(m+ 1)d,

where m = sup{dist(i, j) : i, j ∈ D},

sup
i∈Zd

∫ 1
4

0

(
[αX1,1]−1(u)

)3d
Q4
Xi(u)du <∞,

and

sup
i∈Zd

∫ 1
4

0

(
[αX4 ]−1(u)

)3d
Q4
Xi(u)du <∞,

where [αX4 ]−1(u) is defined as in (5.8);

3) There exists a non-decreasing continuous function F (t), t ∈ [0, 1], and a constant K > 0,

such that
|D[nt2] −D[nt1]|

|Dn|
≤ K[F (t2)− F (t1)], 0 ≤ t1 ≤ t2 ≤ 1.
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Let K2 be a constant and

Wn(t) =
S[nt]

σn
√
K2

. (5.10)

Then we have

Wn(t)
D−→W (t),

where W (t) is a one dimensional Brownian motion on [0, 1].

Proof. We need to check the three conditions in Theorem 5.3.

Firstly, for finite k ∈ Z+, 0 = t0 < t1 < · · · < tk−1 < tk = 1, and for sufficiently large n, we set

ε := n−
1
2 < min

i=1···,k
{ti − ti−1}. (5.11)

We are going to prove

(Wn(ti)−Wn(ti−1))1≤i≤k
D−→ (W (ti)−W (ti−1))1≤i≤k. (5.12)

As in the proof of Theorem 4.3 in [57], we consider characteristic functions. Let s = (s1, s2, · · · , sk) ∈
Rk, and

ϕn(s) = E exp

i k∑
j=1

sj(Wn(tj)−Wn(tj−1))

 ,

ϕn,ε(s) = E exp

i k∑
j=1

sj(Wn(tj − ε)−Wn(tj−1))

 .

Since W (t) is a Brownian motion, (W (ti)−W (ti−1))1≤i≤k are independent. Therefore, to prove

(5.12), it is sufficient to prove∣∣∣∣∣∣ϕn(s)−
k∏
j=1

E exp
(
isj(W (tj)−W (tj−1))

)∣∣∣∣∣∣→ 0.

We write∣∣∣∣∣∣ϕn(s)−
k∏
j=1

E exp
(
isj(W (tj)−W (tj−1))

)∣∣∣∣∣∣
≤

∣∣∣ϕn(s)− ϕn,ε(s)
∣∣∣+

∣∣∣∣∣∣ϕn,ε(s)−
k∏
j=1

E exp
(
isj(Wn(tj − ε)−Wn(tj−1))

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
k∏
j=1

E exp
(
isj(Wn(tj − ε)−Wn(tj−1))

)
−

k∏
j=1

E exp
(
isj(W (tj − ε)−W (tj−1))

)∣∣∣∣∣∣
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+

∣∣∣∣∣∣
k∏
j=1

E exp
(
isj(W (tj − ε)−W (tj−1))

)
−

k∏
j=1

E exp
(
isj(W (tj)−W (tj−1))

)∣∣∣∣∣∣
= (I)+(II)+(III)+(IV).

For term (IV), by using the continuity property of the characteristic function of the normal

distribution, we have

(IV)→ 0 as n→∞.

For term (I), by using the 1-Lipschitz property of the function of the real valued y, y 7→ eiy, we

have, for all real valued x and y, |eix − eiy|≤ |x− y|. We note that∣∣∣∣∣∣
k∑
j=1

sj

(
Wn(tj)−Wn(tj−1)

)
−

k∑
j=1

sj

(
Wn(tj − ε)−Wn(tj−1)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
j=1

sj

(
Wn(tj)−Wn(tj − ε)

)∣∣∣∣∣∣
≤ ‖s‖

 k∑
j=1

(
Wn(tj)−Wn(tj − ε)

)2

 1
2

.

Then we have ∣∣∣ϕn(s)− ϕn,ε(s)
∣∣∣

≤ ‖s‖

 k∑
j=1

E
(
Wn(tj)−Wn(tj − ε)

)2

 1
2

.

Because (H4) implies σ2
n ≥ |Dn|C, where C is a constant, we have

E
(
Wn(tj)−Wn(tj − ε)

)2
≤ 1

σ2
nK2

∑
i,j∈D[ntj ]−D[n(tj−ε)]

|Cov(Xi, Xj)|

≤ 1

|Dn|CK2
|D[ntj ] −Dn[tj−ε]|

∞∑
m=1

md−1α
δ

2+δ

1,1 (m)‖X‖22+δ,

and by using (H3) and assumption 3, we have

E
(
Wn(tj)−Wn(tj − ε)

)2
≤ C

(
F (tj)− F (tj − ε)

)
.

Therefore, for all s, we have |ϕn(s)− ϕn,ε(s)|→ 0 as n→∞.

For (II), we note that the distance between Wn(tj+1−ε)−Wn(tj) and Wn(tj−ε)−Wn(tj−1) is the

same as the distance between D[n(tj+1−ε)]−D[ntj ] and D[n(tj−ε)]−D[ntj−1]. In Figure 5.2, the gap
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Figure 5.2: The gap between D[n(tj+1−ε)] −D[ntj ] and D[n(tj−ε)] −D[ntj−1].

between two solid lines implies the distance between two grey regions. By using the definition of

Dc
[ntj ]

, this distance can be described by dist(Dc
[ntj ]

, D[n(tj−ε)]). Then the assumption 1 implies

dist
(
D[n(tj+1−ε)] −D[ntj ], D[n(tj−ε)] −D[ntj−1]

)
= dist

(
Dc

[ntj ]
, D[n(tj−ε)]

)
≥ K1

(
[ntj ]− [n(tj − ε)]

)K0

≥ C2

(
[nε]
)K0

,

where C2 is a constant.

We note that, if Yj = exp iTj , where Tj , j = 1, 2, · · · , k are real valued random variables, then

we have

|E(Y1Y2 · · ·Yk)−EY1EY2 · · ·EYk|≤ |Cov(Y1, Y2 · · ·Yk)|+|Cov(Y2, Y3 · · ·Yk)|+ · · · |Cov(Yk−1, Yk)|,

|Yc|= 1,

and ∫ α

0
Q|Yc|(u)du = α,

where Yc is the multiplication of a combination of any one subset of {Y1, Y2, · · · , Yk}.

Now, let

Yj = isj(Wn(tj − ε)−Wn(tj−1)),

dj = dist
(
{Yj}, {Yj+1, Yj+2, · · · , Yk}

)
.

By using Lemma 5.5, repeatedly (k − 1) times,∣∣∣∣∣∣ϕn,ε(s)−
k∏
j=1

E exp (isj(Wn(tj − ε)−Wn(tj−1)))

∣∣∣∣∣∣
103



≤ 16

k−1∑
j=1

∫ α∞,∞(dj)

0
Q|Yj |(u)Q|Yj+1Yj+2···Yk|(u)du

= 16

k−1∑
j=1

α∞,∞(dj).

By using the non-increasing property of strong mixing coefficients with respect to the distance,

since assumption 1 implies

min{dj , j = 1, 2, · · · , k} ≥ K1([nε])K0 ,

then we have∣∣∣∣∣∣ϕn,ε(s)−
k∏
j=1

E exp (isj(Wn(tj − ε)−Wn(tj−1)))

∣∣∣∣∣∣ ≤ 16(k − 1)α∞,∞

(
K1([nε])K0

)
,

which vanishes as n→∞.

For term (III), it is sufficient to prove

Wn(t2)−Wn(t1)
D−→W (t2)−W (t1).

Since Theorem 3.1 implies Wn(t) → W (t) for any fixed t ∈ [0, 1], by referring the proof of

Lemma 5.1 b, to prove (III), we only need to show that Wn(t2) − Wn(t1) and Wn(t1) are

asymptotically independent, i.e. that

|ϕ1(s)− ϕ2(s)ϕ3(s)|→ 0,

where ϕ1(s), ϕ2(s) and ϕ3(s) are characteristic functions of Wn(t2), Wn(t2)−Wn(t1) and Wn(t1)

respectively. Let ϕ∗(s) be the characteristic function of Wn(t2)−Wn(t1)+Wn(t1− ε), and ϕε(s)

be the characteristic function of Wn(t1 − ε). Then we have

|ϕ1(s)− ϕ2(s)ϕ3(s)| ≤ |ϕ1(s)− ϕ∗(s)|+|ϕ∗(s)− ϕ2(s)ϕε(s)|+|ϕ2(s)ϕε(s))− ϕ2(s)ϕ3(s)|

= (i)+(ii)+(iii).

For (i) and (iii), we follow the similar arguments in (I). Therefore, we have

(i) ≤ Es|Wn(t1)−Wn(t1 − ε)|→ 0

and

(iii) ≤ |ϕε(s))− ϕ3(s)|→ 0.

For (ii), since the distance between eis(Wn(t2)−Wn(t1)) and eis(Wn(t1−ε)) is just the distance between
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Wn(t2)−Wn(t1) and Wn(t1 − ε), we have

(ii) = Cov
(
eis(Wn(t2)−Wn(t1)), eis(Wn(t1−ε))

)
≤ 8α

δ
2+δ
∞,∞

(
K1([nε])K0

)
→ 0 as n→∞.

Hence, the first condition of Theorem 5.3 is satisfied.

Secondly, since W (t) is a Brownian motion, the second condition of Theorem 5.3 is satisfied.

Thirdly, we check the restricted version of the third condition of Theorem 5.3 which is provided

on page 128 of Billingsley’s book [4]. We set γ = 2, α = 1, then we have

E(|Wn(t)−Wn(t1)|2|Wn(t2)−Wn(t)|2)

=
1

σ4K2
E

 ∑
i∈D[nt]−D[nt1]

Xi

2 ∑
i∈D[nt2]−D[nt]

Xi

2

≤ 1

σ4K2

E
 ∑
i∈D[nt]−D[nt1]

Xi

4
1
2
E
 ∑
i∈D[nt2]−D[nt]

Xi

4
1
2

Theorem 5.10, the assumption 1, the assumption 2, (H3) and the assumption 3 imply that a

constant C exists such that

E(|Wn(t)−Wn(t1)|2|Wn(t2)−Wn(t)|2)

≤ C

|Dn|2
|D[nt] −D[nt1]||D[nt2] −D[nt]|

≤ [F (t2)− F (t1)]2.

Therefore the third condition of Theorem 5.3 is satisfied. This completes the proof.

Remark: For the assumption 2 in Theorem 5.11, the application of Corollary 3.1 in [57] has

shown that, with some proper conditions, it holds for a strictly stationary and strong mixing

sequence. For the assumption 3, if we define a nested sampling method which satisfies |Dn|= n2

for a 2-dimensional random field, then |D[nt2]|−|D[nt1]|= [nt2]2 − [nt1]2. Now we only need to

show
|D[nt2] −D[nt]||D[nt] −D[nt1]|

|Dn|2
≤ 4(t22 − t21)2.

As in the proof of Theorem 16.1 in Billingsley’s book [4] page 138, we prove this with two

cases. Case 1: If nt2 − nt1 ≤ 1, then one of |D[nt2] − D[nt]| and |D[nt] − D[nt1]| must be zero

since t1 ≤ t ≤ t2. The above inequality holds. Case 2: If nt2 − nt1 > 1, we note that
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[nt2]− [nt1] ≤ 2(nt2 − nt1) and

[nt2]2 − [nt1]2 = ([nt2]− [nt1])([nt2] + [nt1]) ≤ 2(nt2)2 − 2(nt1)2.

Therefore the above inequality holds. It means we can also replace the assumption 3 with a

weaker assumption such as

|D[nt2] −D[nt]||D[nt] −D[nt1]|
|Dn|2

≤ K[F (t2)− F (t1)]2, 0 ≤ t1 ≤ t ≤ t2 ≤ 1.

Furthermore, we note that

|D[nt2] −D[nt]||D[nt] −D[nt1]|
|Dn|2

≤
|D[nt2] −D[nt1]|2

|Dn|2
.

This is a stronger condition which we used in Theorem 5.11, i.e.

|D[nt2] −D[nt1]|2

|Dn|2
≤ K[F (t2)− F (t1)]2,

where F (t) can be F (t) = t2 for the present example of the 2-dimensional random field. If the

sample size can be controlled by its index, say |Dn|= |D0|+n, then according to the discussion

in the proof of Theorem 16.1 in [4] by Billingsley, F (t) = t satisfies the weaker assumption we

mentioned above.

In Theorem 5.13, we are going to relax the assumption 2 of Theorem 5.11. As a trade-off for

this relaxing, we have to introduce the following mixing coefficient.

Definition 5.2. An uniform mixing coefficient between two blocks within a random field, Xi∈Zd ,

is defined by a function with respect to the distance between the blocks, and the size of the blocks,

specifically,

ϕk,l(m) = sup
A,B

{
|P(B|A)− P(B)|: A ∈ σ(Xi∈Λ1), B ∈ σ(Xi∈Λ2),

P(A) 6= 0, k = |Λ1|, l = |Λ2|, dist(Λ1,Λ2) ≥ m
}
.

Analogously to the strong mixing coefficient, sometimes, we use ϕ|Λ1|,|Λ2|(m), ϕXk,l(m), or ϕk,l(X;m),

to stand for the uniform mixing coefficient of the random field Xi∈Zd .

To check the tightness of the random fields in the proof of Theorem 5.13, we introduce the

following theorem, which is similar to Theorem 8.4 in [4] but which works for non-stationary

random fields.

Theorem 5.12. Let Dn be with a nested spatial structure, |Dn| be a non-decreasing function
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with respect to n,

Wn(t) =
S[nt]

σn
√
k

be defined as in (5.10). The sequence {Wn} is tight if (H4) is satisfied and for each ε > 0 there

exists a λ > 1, and an integer n0 ∈ Z+ such that for all n ≥ n0

sup
m

P
{

max
i≤n
|Sm+i − Sm|≥ λ

√
|Dn|
√
k

}
≤ ε

λ2
. (5.13)

Proof. Since (H4) implies there exists a constant C ≥ 1 such that√
|Dn|
σn

≤ C,

then for any random variable X, we have

P{X ≥ σn} ≤ P{X ≥
√
|Dn|
C
}.

Therefore, according to Theorem 8.3 in [4], to prove Wn is tight, it is sufficient to show that, for

any 0 < ε < 1 and 0 < η < 1, there exits a δ, 0 < δ < 1, and an integer n0 > 0, such that for all

n ≥ n0 we have

sup
m

P
{

max
i≤n
|Sm+i − Sm|≥ εσn

√
k

}
≤ ηδ,

which is implied by

sup
m

P

{
max
i≤n
|Sm+i − Sm|≥ ε

√
|Dn|
C

√
k

}
≤ ηδ.

Along the line of the proof of Theorem 8.4 in [4], with ηε2 taking the place of ε of (5.13), there

exits λ and n1 such that

sup
m

P

{
max
i≤n
|Sm+i − Sm|≥ λ

√
|Dn|
C

√
k

}
≤ ηε2

λ2
,

for all n ≥ n1 and k ≥ 1. Put δ = ε2

λ2 , since λ > 1 > ε, we have 0 < δ < 1. Let n0 ≥ n1
δ +1. Then

for sufficiently large n, n ≥ n0 implies [nδ] ≥ n1, which means

√
|D[nδ]|
C

√
k ≤

√
|Dn1 |
C

√
k. This is

followed by the assumption on the nested spatial structure and |Dn| sharing the monotonicity

with its index n. Now the rest of this proof is the same as the corresponding part of the proof

of Theorem 8.4 in [4].

Remark: If σn is a non-decreasing function with respect to its index n, then Theorem 5.12 still
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holds provided by the assumption of (5.13) being replaced by

sup
m

P
{

max
i≤n
|Sm+i − Sm|≥ λσn

√
k

}
≤ ε

λ2
.

The constant
√
k can be ignored if we do not need to specify the Wn, which is defined in (5.10).

In the following theorem, we use both strong mixing and uniform mixing in the assumption.

Theorem 5.13. Let the random field Xi∈Zd satisfies (H1), (H2), (H3) and (H4) in Theorem

3.1. We assume

1) Dn ⊂ Zd is from a nested spatial structure, i.e. D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn ⊆ · · ·;
n ≤ |Dn|; and there exists constants K0 > 0 and K1 > 0, such that for any n1 ≤ n2,

dist(Dc
n2
, Dn1) ≥ K1(n2 − n1)K0 ;

2) There exists a constant k > 0 such that, for all t ∈ [0, 1],

lim
n

σ2
[nt]

σ2
n

= kt; (5.14)

3) There exists a constant K2 > 0 such that (5.9) is satisfied, i.e.

|D|≤ K2(m+ 1)d, ∀D ⊆ Zd,

where m = sup{dist(i, j) : i, j ∈ D}, and

1

|Dn|2
∑
i∈Dn

∫ 1
4

0

(
[αX4 ]−1(u)

)3d
Q4
Xi(u)du <∞;

4) Let φ(m) = supΛ1,Λ2

{
ϕX|Λ1|,|Λ2|(m) : Λ1 = Dn1 − Dn2 ,Λ2 = Dn3 − Dn4 , n1 > n2, n3 > n4

}
,

and φ(m)→ 0 as m→∞;

Then we have

Wn(t) =
S[nt]

σn
√
k

D−→W (t),

where Wn(t) is defined by (5.10), W (t) is a one dimensional Brownian motion on [0, 1].

Proof. This proof is analogous to the proof of Theorem 20.1 in the book [5] by Billingsley. We

are going to check four conditions in Theorem 5.2.
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Firstly, we check the asymptotically independent increments. Let

0 ≤ s1 ≤ t1 < s2 ≤ t2 < · · · < sr ≤ tr ≤ 1, δ = min{si − ti−1|i = 2, · · · , r}.

Then we have δ > 0, [nsi]− [nti−1] + 1 ≥ [nδ] and

D[ns1] ⊆ D[nt1] ⊂ D[ns2] ⊆ D[nt2] ⊂ · · · ⊂ D[nsr] ⊆ D[ntr],

for all n and i = 2, · · · , r. We set

Ti = D[nti] −D[nsi], Mi = σ(Ti), i = 1, · · · , r. (5.15)

Then the assumption 1 implies that, for all i = 1, · · · , r − 1,

dist(Ti+1, Ti) = dist(Dc
[nsi+1], D[nti]) ≥ K1([nδ]− 1)K0 .

Because

Wn(ti)−Wn(si) =
1

σn
√
k

∑
j∈Ti

Xi,

if we set

Ei = {Wn(ti)−Wn(si) ∈ Hi},

where Hi ∈ Bd, d-dimensional Borel sets, we have Ei ∈Mi. Lemma 2.3 guarantees the following

estimation,

|P(E1 ∩ · · · ∩ Er)− P(E1) · · ·P(Er)|≤ (r − 1)αXl,l

(
K1([nδ]− 1)K0

)
, l =

r∑
i=1

|Ti|.

The definition of strong mixing coefficient and the assumption 4 imply that the right side goes

zero as n→∞. Hence the first condition is satisfied.

Secondly, we prove that W 2
n(t) is uniformly integrable for each t. We note that

EA|W 2
n(t)| ≤ 1

A
E(W 4

n(t))

=
1

A
E

 1

σ4
nk

2

 ∑
i∈D[nt]

Xi

4
=

1

A

1

σ4
nk

2
E

 ∑
i∈D[nt]

Xi

4 .

Because 1
k2 , |Dn|

σ2
n

and
|D[nt]|
|Dn| are bounded, Theorem 5.10 and the assumption 3 imply the right
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hand side of the above inequality convergences to zero as A→∞. Then we have

lim
A→∞

sup
n

EA
(
W 2
n(t)

)
= 0. (5.16)

Hence {W 2
n(t)} is uniformly integrable for each t.

Thirdly, we have

E (Wn(t)) = E

 1

σn
√
k

∑
i∈D[nt]

Xi

 = 0

and

E
(
W 2
n(t)

)
= E

 1

σ2
nk

 ∑
i∈D[nt]

Xi

2
=

σ2
[nt]

σ2
nk

E

 1

σ[nt]

∑
i∈D[nt]

Xi

2

Theorem 3.1 gives E
(

1
σ[nt]

∑
i∈D[nt]

Xi

)2
→ 1. Therefore the assumption 2 implies

E
(
W 2
n(t)

)
→ t.

Lastly, we check the tightness. Let

Yj = Sj − Sm, j = m,m+ 1, · · · , n. (5.17)

By using Theorem 5.12, we only need to prove that, for any m ∈ Z+ and for all ε > 0, there

exists a λ > 1, such that for sufficiently large n we have

P
{

max
m≤j≤n

|Yj |≥ 3λ
√
|Dn|k

}
≤ ε

λ2
.

We set

S∗n =
∑
i∈Dn

|Xi|,

Y ∗j = S∗j − S∗m

and

p(n) = p(n;m) = sup
{
τ ∈ Z+ : m ≤ τ ≤ n− 1, |Dτ −Dm|≤ |Dn|

δ
4(2+δ)

}
.
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Then we have, for any m ≤ n− 1, m ∈ Z+, p(n)→∞ as n→∞, and

P
{
Y ∗p(n) ≥ λ

√
|Dn|k

}
≤

E|Y ∗p(n)|
2+δ(

λ
√
|Dn|k

)2+δ
=

‖Y ∗p(n)‖
2+δ
2+δ

(λ
√
k)2+δ|Dn||Dn|

δ
2

≤

(∑
i∈Dp(n)−Dm‖Xi‖2+δ

)2+δ

(λ
√
k)2+δ|Dn||Dn|

δ
2

≤

(
C|Dn|

δ
4(2+δ)

)2+δ

(λ
√
k)2+δ|Dn||Dn|

δ
2

=
K

|Dn||Dn|
δ
4

,

where C and K are constants. Therefore we have

lim
n
|Dn|P

{
Y ∗p(n) ≥ λ

√
|Dn|k

}
= 0. (5.18)

We note that |Sn|/
√
|Dn|k ≥ λ implies∣∣∣∣∣1{|Sn|/√|Dn|k≥λ} |Sn|√

|Dn|k

∣∣∣∣∣ ≥ λ,
we have

P{|Sn|≥ λ
√
|Dn|k} ≤ P

{∣∣∣∣∣1{|Sn|/√|Dn|k≥λ} |Sn|√
|Dn|k

∣∣∣∣∣ ≥ λ
}

≤ 1

λ2
Eλ
(

S2
n

|Dn|k

)
=

1

λ2

σ2
n

|Dn|
Eλ
(
W 2
n(1)

)
.

By using Theorem 3.1, (H1)–(H3) implies

lim sup
n

1

|Dn|
∑
i,j∈Dn

|Cov(Xi, Xj)|<∞,

which means lim supn
σ2
n
|Dn| < ∞. Then, additionally since (5.16) is satisfied, we have that, for

any ε > 0, we can find a sufficiently large λ such that Eλ
(
W 2
n(1)

)
< ε, i.e. we have

P{|Sn|≥ λ
√
|Dn|k} ≤

ε

λ2
. (5.19)

Since for any m ≤ j ≤ n,

Y 2
j = (Sj − Sm)2 ≤ 2(S2

j + S2
m),
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as in the discussion of P{|Sn|≥ λ
√
|Dn|k}, we have

P{|Yj |≥ λ
√
|Dn|k} ≤

2

λ2
Eλ

(
S2
j + S2

m

|Dn|k

)

=
2

λ2

σ2
n

|Dn|
Eλ
(
W 2
j (t) +W 2

m(t)
)
.

Again, by using the property of (5.16) and the fact of lim supn
σ2
n
|Dn| <∞, it means for any ε > 0,

there exist sufficiently large λ such that Eλ
(
W 2
j (t) +W 2

m(t)
)
< ε for all m ≤ n. Hence we have

P{|Yj |≥ λ
√
|Dn|k} ≤

ε

λ2
. (5.20)

Now, we define

Ei =

{
max
j<i
|Yj |< 3λ

√
|Dn|k ≤ |Yi|

}
i = m,m+ 1, · · · , n.

Then we have

P
{

max
m≤j≤n

|Sj − Sm|≥ 3λ
√
|Dn|k

}
= P

{
max
m≤j≤n

|Yj |≥ 3λ
√
|Dn|k

}
≤ P(|Yn|≥ λ

√
|Dn|k) +

n−1∑
j=m

P(Ej ∩ {|Yn − Yj |≥ 2λ
√
|Dn|k})

≤ P(|Yn|≥ λ
√
|Dn|k) +

n−p(n)−1∑
j=m

P(|Yj − Yj+p(n)|≥ λ
√
|Dn|k)

+

n−p(n)−1∑
j=m

P(Ej ∩ {|Yn − Yj+p(n)|≥ λ
√
|Dn|k}) +

n−1∑
j=n−p(n)

P(|Yn − Yj |≥ λ
√
|Dn|k)

= (I) + (II)+(III)+(IV).

For (II) and (IV), each term can be bounded by P
{
Y ∗p(n) ≥ λ

√
|Dn|k

}
. Since the assumption 1

gives n ≤ |Dn|, by using (5.18), we have

(II)+(IV) ≤ (n−m)P
{
Y ∗p(n) ≥ λ

√
|Dn|k

}
≤ |Dn|P

{
Y ∗p(n) ≥ λ

√
|Dn|k

}
≤ ε.

For (I) and (III), we note that (5.20) yields

(I) ≤ ε

λ2
,
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and, for all m+ p(n) ≤ q ≤ n− 1,

P(|Yn − Yq|≥ λ
√
|Dn|k) ≤ ε

λ2
.

By using the definition of the uniform mixing coefficient, the assumption 4 implies

(III) ≤
n−p(n)−1∑
j=m

P(Ej)
[
P(|Yn − Yj+p(n)|≥ λ

√
|Dn|k) + ϕX|Dj+1−Dm|,|Dn−Dj+p(n)|(K1[p(n)]K0)

]
≤ max

{
P(|Yn − Yj+p(n)|≥ λ

√
|Dn|k) : m ≤ j ≤ n− p(n)− 1

}
+ φ(K1[p(n)]K0)

= P(|Yn − Yq|≥ λ
√
|Dn|k) + φ(K1[p(n)]K0)

≤ ε

λ2
+ ε,

where q is the subscript which makes P(|Yn − Yq|≥ λ
√
|Dn|k) reach the maximum. Therefore,

(I)+(II)+(III)+(IV) ≤ ε

λ2
+ ε+

ε

λ2
+ ε.

Theorem 5.12 completes the proof.

Remark: In the assumption 4 of Theorem 5.13, φ(m) can be bounded by ϕX∞,∞(m), i.e.

φ(m) ≤ ϕX∞,∞(m).

In Bradley’s paper [9], if the random field is strictly stationary, ϕX∞,∞(m) = 0 implies an “m-

dependence” random field. However, we do not have the similar result for non-stationary random

fields. Therefore, this assumption is adopted in Theorem 5.13.

Proposition 1 in [19] by Doukhan gives that, for any fixed k, l and m, the uniform mixing

coefficient is stronger than the strong mixing coefficient, i.e.

2αk,l(m) ≤ ϕk,l(m). (5.21)

Therefore, if we define

ϕ−1
|Λ1|,|Λ2|(u) = sup{m ∈ N : ϕ|Λ1|,|Λ2|(m) > u},

since the set {m ∈ N : 2α|Λ1|,|Λ2|(m) > u} implies {m ∈ N : ϕ|Λ1|,|Λ2|(m) > u}, we have

ϕ−1
|Λ1|,|Λ2|(u) ≥ α−1

|Λ1|,|Λ2|

(u
2

)
. (5.22)
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It is obvious that the above inequality also implies, for the constant d > 0,

∫ 1
4

0

[
α−1
|Λ1|,|Λ2|(u)

]3d
Q4
Xi(u)du ≤

∫ 1
4

0

[
ϕ−1
|Λ1|,|Λ2|(2u)

]3d
Q4
Xi(u)du,

which connects the application of Theorem 5.10 to uniform mixing coefficients, and can be used

in the proof of Theorem 5.13. Therefore the assumption on the tail functions of the assumption

3 in Theorem 5.13 may be replaced with

1

|Dn|2
∑
i∈Dn

∫ 1
4

0

(
[ϕXl1,l2 ]−1(2u)

)3d
Q4
Xi(u)du <∞, ∀l1 + l2 = 4. (5.23)

By using the inequality (5.21), we can directly develop a theorem like Theorem 3.1 but with

uniform mixing coefficients.

Theorem 5.14. If X satisfies∑
m≥1

md−1ϕXk,l(m) <∞, k + l ≤ 4, (H1’)

ϕX1,∞(m) = o(m−d), (H2’)

∃δ > 0 s.t. ‖X‖2+δ<∞,
∑
m≥1

md−1
[
ϕX1,1(m)

] δ
2+δ <∞, (H3’)

then

lim sup
n

1

|Dn|
∑
i,j∈Dn

|Cov(Xi, Xj)|<∞.

If we assume additionally that

lim inf
n

σ2
n

|Dn|
> 0, (H4)

then we have
Sn
σn

D−→ N(0, 1).

Based on Theorem 5.14, if (H1), (H2) and (H3) are replaced by (H1’), (H2’) and (H3’) respec-

tively in Theorem 5.13, and the third assumption is replaced by (5.23), then Theorem 5.13 still

holds, but only uniform mixing coefficients are involved.
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5.3 FCLTs on indicated random fields

Let {RiXi}i∈Zd be the indicated random field which we introduced before. Since |RiXi|≤ |Xi|,
for all i ∈ Zd, implies

{x ≥ 0 : P(|RiXi|> x) ≤ u} ⊇ {x ≥ 0 : P(|Xi|> x) ≤ u}, ∀u ∈ [0, 1],

we have

QRiXi(u) ≤ QXi(u), ∀i ∈ Zd,∀u ∈ [0, 1]. (5.24)

For the inverse function of strong mixing coefficient, if αXk,l(m) ≤ αZk,l(m), then we have

{m ∈ N : αXk,l(m) > u} ⊆ {m ∈ N : αZk,l(m) > u} ∀u ∈ [0,
1

4
],

which implies

[αXk,l]
−1(u) ≤ [αZk,l]

−1(u), ∀u ∈ [0,
1

4
]. (5.25)

In the proofs of Theorem 5.13, Theorem 3.1 is used for checking the third condition of The-

orem 5.2. In the proof of Theorem 5.11, Theorem 3.1 is used to check the first condition of

Theorem 5.3. It means the results on CLTs in Chapter 3 can be introduced to set up FCLTs

with some suitable conditions on indicated random fields. To avoid tedious repetition, we omit

the details of description and proofs of similar theorems except the following example, where

Theorem 3.4 is involved.

Theorem 5.15. Let random fields Xt∈Zd, Zt∈Zd, and Rt∈Zd satisfy (H0), which is introduced

in Theorem 3.4. εi∈Zd be another random field, f satisfy (3.9). We suppose there exists δ > 0,

such that ‖ε‖2+δ< ∞, the strong mixing coefficient, αZk,l(m), of Zt∈Zd satisfies (H1)–(H3), and

there exist constants K0,K1,K2 > 0 such that

sup
i∈Zd
‖f(Zi, εi)‖2+δ≤ K0 +K1‖Z‖2+δ+K2‖ε‖2+δ.

Let {RtXt}t∈Zd satisfy

0 < lim inf
n

1

|Dn|
V ar

(∑
t∈Dn

RtXt

)
,

and

Sn =
∑
i∈Dn

RtXt, σ2
n = V ar(Sn).

We also assume

1) Dn ⊂ Zd is with a nested spatial structure, i.e. D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn ⊆ · · ·. There
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exists constants K0 > 0 and K1 > 0, such that for any n1 ≤ n2,

dist(Dc
n2
, Dn1) ≥ K1(n2 − n1)K0 ;

2) There exists a constant K3 > 0 such that (5.9) being satisfied, i.e. for any D ⊆ Zd,

|D|≤ K3(m+ 1)d,

where m = sup{dist(i, j) : i, j ∈ D},

sup
i∈Zd

∫ 1
4

0

(
[αZ1,1]−1(u)

)3d
Q4
Zi(u)du <∞,

and

sup
i∈Zd

∫ 1
4

0

(
[αZ4 ]−1(u)

)3d
Q4
Zi(u)du <∞,

where [αZ4 ]−1(u) is defined as in (5.8);

3) There exists a non-decreasing continuous function F (t), t ∈ [0, 1], and a constant K > 0,

such that
|D[nt2] −D[nt1]|

|Dn|
≤ K[F (t2)− F (t1)], 0 ≤ t1 ≤ t2 ≤ 1.

Then we have

Wn(t) =
S[nt]

σn
√
K

D−→W (t), (5.26)

where W (t) is a one dimensional Brownian motion on [0, 1].

Proof. We use Theorem 5.11. The proof of Theorem 3.4 implies {RiXi}i∈Zd satisfies (H1)–(H4)

and

lim sup
n

1

|Dn|
V ar

(∑
t∈Dn

RtXt

)
<∞.

For the rest of this proof, we only need to check assumptions of Theorem 5.11. In fact, only the

assumption 2 of Theorem 5.11 need to be checked. It is directly from the fact that [αRXk,l (m)]−1 ≤
[αZk,l(m)]−1. This completes the proof.

116



Chapter 6

Future research

The current research in this thesis focuses on three parts: central limit theorems, estimation of

variances and functional central limit theorems.

6.1 On the sampling method

These asymptotic properties are original from the indicated sampling method, where each in-

dividual of the super-population has equal or unequal selection probability. Based on real

situations, we further assume that each individual and its selection probability are driven by

the auxiliary information. We also introduce some assumptions about the spatial structures of

the population. This sampling method is appropriate for setting up estimators such as Horvitz-

Thompson estimator and others.

We have set up some asymptotic results for this indicated sampling method in this thesis. The

future work for this part will focus on applications. Practically, we need to specify functions

f and g for real problems. This is going to lead some researches on curve fitting methods

and the goodness of fit, from the auxiliary information to interested quantities and selection

probabilities.

6.2 On CLTs

It is important to understand the asymptotics of a new complex survey method. For this in-

dicated sampling method, we prove central limit theorems with the assumption of conditional

independence properties. In this thesis, we also generalized Fuller’s central limit theorem, The-

orem 1.3.2 in his book in 2011, to dependent random fields.
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For the future work on CLTs, the more general assumptions allow for wider applications. We

will consider relaxing the independence assumptions and introduce more assumptions on depen-

dences to enable more general practical problems to be tackled.

6.3 On variance estimations

In Chapter 4, with the assumption on the joint-blocks spatial structures, we proved the L2

consistency for the estimators of the variance of the population. We then generalized the results

on estimating the variance by Carlstein in 1986. Compared with the existed method, we provided

a new way to describe re-sample domains. This method allows the domain have complicated

geometric features such as an infinite boundary, which is technically avoided as an assumption

in many works.

The future work for this part is to develop our method to over-lapping re-sample domains. We

also need a further research on comparing our method to the existed method. This is because

of, intuitively, our method implies the existed method. It has a massive application background

such as sampling from high dimension continuous spaces.

6.4 On FCLTs

In Chapter 5, by using Billingsley’s Theorem 15.6, in his book in 1968, with the assumptions

on the nested spatial structures and the proper estimation of the fourth moment of the sample

sum, we prove functional central limit theorems, where the estimation of the fourth moment

develops Rio’s Theorem 2.1 in his report in 2013.

The further work of this part lies on polishing or refining some assumptions in our results. It

also includes examining whether Bradley’s result in 1989 works for non-stationary random fields.
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Appendix

A1: Figures on NHANES 2011-2014 (in support of Example 2, Chapter 1)

 

Households Step 1: 

Household  

Screener Sampling rates 

& 

Selection methods 

Sample 

Step 2: 

Interview 

Response rates 

Sample 

Collection: Person-level 

                    Demographic 

                    Health 

                    Nutrition                    

Response rates 

Sample 

Exam: Physical measurements 

Test: hearing, dental, blood, urine specimens         

Step 3: 

Examination 

Sample 

Design 

Figure A1: Three steps of NHANES 2011-2014
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Here we provide two figures to exhibit three steps in the NHANES 2011–2014 survey and the

first stage of this sample design. We use arrows in these figures to stand for the direction of

information flow. In Figure A1, the sample design is depicted in each step. The sample is

affected by response rates, sampling rates and selection methods of the sample design.

 

Precision & Operational Requirements 

Data Source Sampling rates MOS of PSU 

Min of PSU MOS 

If weighted MOS exceeds 75% of 

the initial sampling interval 
Certainty PSUs Noncertainty PSUs Yes No 

PSU was selected 

or been divided 

into more study 

locations 

Study locations 

Minimize overlap 
& 

Use Ohlsson’s method 
(with PRN) 

Stratification of PSUs 

If the PSU in each 

stratum with the 

minimum 

transformed PRN 

No 

Yes 

Linear regression 

Senior project staff 
Response rates 

Sample 

Do not select 

Figure A2: The first stage of sample design in NHANES 2011-2014

Figure A2 gives some details of one out of four stages in NHANES. In the processes of sampling,

there are many implicit random effects, which are abstracted as εi∈Zd in our sampling strategy.

Furthermore, the dependence is also implicit in the sampling process, e.g. the dependence

within PSUs, the dependence between strata, and/or the dependence between persons. This

information is taken into account in our asymptotic results with some abstracted conditions in

Chapter 3, Chapter 4 and Chapter 5.
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A2: Some basic inequalities

Theorem A1. (Hölder’s inequality, equation (21.15) on page 276 in [5])

Let p > 1, q > 1 and 1
q + 1

p = 1. Then for any two random variables, X1 and X2, we have

‖X1X2‖1≤ ‖X1‖q‖X2‖p. (1)

Theorem A2. (Hölder’s inequality, a special case of Theorem 188 of [29]) Let 1
p + 1

q = 1
r ,

p, q, r > 0. Then for any two random variables, X1 and X2, we have

‖X1X2‖r≤ ‖X1‖p‖X2‖q. (2)

Proof. It is a straightforward extension of Theorem A1. We note that 1
p + 1

q = 1
r implies

r

p
+
r

q
=

1
p
r

+
1
q
r

= 1,
p

r
> 1, and

q

r
> 1.

Hence Theorem A1 completes the proof.

Theorem A3. (Minkowski’s inequality, a special case of equation (31) on page 194 in [43])

If r ≥ 1, then for any random variables, X1 and X2, we have

‖X1 +X2‖r≤ ‖X1‖r+‖X2‖r. (3)

A3: Kolmogorov Existence Theorem

Let {Xt}t∈T be a random process, T be any non-empty index set, k ∈ N. Given two consistency

conditions:

(C1) If (s(1), s(2), · · · , s(k)) is any permutation of (1, 2, · · · , k), then for distinct t1, · · · , tk ∈ T ,

and any Borel H1, · · · , Hk ⊆ R, we have

µt1···tk(H1 × · · · ×Hk) = µts(1)···ts(k)
(Hs(1) × · · · ×Hs(k))

(C2) For distinct t1, · · · , tk ∈ T , and any Borel H1 · · · , Hk−1 ⊆ R, we have

µt1···tk(H1 × · · · ×Hk−1 × R) = µt1···tk−1
(H1 × · · · ×Hk−1)
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Theorem A4. (Theorem 15.1.3 in [61]) A family of Borel probability measures {µt1,···,tk ; k ∈
N, ti ∈ Tdistinct}, with µt1,···,tk a measure on Rk, satisfies the consistency conditions (C1) and

(C2) above iff there exists a probability triple (RT ,FT ,P), and random variables {Xt}t∈T defined

on this triple, such that for all k ∈ N, distinct t1, · · · , tk ∈ T , and Borel H ⊆ Rk, we have

P
[
(Xt1 , · · · , Xtk) ∈ H

]
= µt1···tk(H).

A4: Truncation technique

Let X be a random variable,

X(N) =


X, |X|≤ N,
N, X > N,

−N, X < −N,
X(N) = X −X(N), N ∈ R.

We note the t-th absolute moment satisfies

E|X|r=
∫
|x|rdF = lim

N→∞

∫
|x|≤N

|x|rdF,

where r > 0, F is the distribution of X. Then we have the following lemma.

Lemma A1. If E|X|r<∞, then E|X(N)|r→ 0 as N →∞.

By using the definition of almost sure convergence, we also have

Lemma A2. X(N)
a.s.−−→ 0 as N →∞.

If the higher order moment is bounded, we have the following lemmas.

Lemma A3. If E|X|2r<∞, then E|XX|r→ 0 as N →∞.

Lemma A4. Let σ2 = V ar(X), σ2
N = V ar(X). If E|X|2<∞, then

σ2
N

σ2
→ 1, as N →∞.

We note that
X

X

P−→ 1 as N →∞.

Then Slutsky’s Theorem implies: If

X

σN

D−→ N(0, 1),
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then we have
X

σ
=

X

σN

X

X

σN
σ

D−→ N(0, 1).

A5: Proof of Theorem 2.2

The proof in this section refers to [19] and [34]. We prove a general case for Theorem 2.2, i.e.

let p, q > 1, then for any two random variables X and Y with two sigma fields σ1 = σ(X) and

σ2 = σ(Y ) generated by them respectively, we have

|Cov(X,Y )|≤ 8α
1− 1

p
− 1
q ‖X‖q‖Y ‖p, (4)

where α = αk,l(m), because the result is for any k, l and m, we omit them for shorthand, that

is

α = sup{|P(A ∩B)− P(A)P(B)|: A ∈ σ1, B ∈ σ2}.

To prove this, we need the following two lemmas.

Lemma A5. |Cov(X,Y )|≤ 4α‖X‖∞‖Y ‖∞.

Proof. Let u = sign[E(X|σ2)− E(X)] and v = sign[E(Y |σ1)− E(Y )], where sign(·) is the sign

function of real numbers. Then we have

|Cov(X,Y )| = |E(XY )− E(X)E(Y )|

= |E(XE(Y |σ1))− E(X)E(Y )|

= |E[X(E(Y |σ1)− E(Y ))]|

≤ E[|X||E(Y |σ1)− E(Y )|]

≤ ‖X‖∞E|E(Y |σ1)− E(Y )|

= ‖X‖∞E[vE(Y |σ1)− E(Y )]

= ‖X‖∞Cov(v, Y )

≤ ‖X‖∞|Cov(v, Y )|.

Following the same idea, we have

|Cov(v, Y )|= |Cov(Y, v)|≤ ‖Y ‖∞|Cov(u, v)|,

and thereafter

|Cov(X,Y )|≤ ‖X‖∞‖Y ‖∞|Cov(u, v)|.
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We set up four events u+ = {u = 1}, u− = {u = −1}, v+ = {v = 1} and v− = {v = −1}, then

u+, u− ∈ σ1, v+, v− ∈ σ2, u+ ∩ v+ ∩ u− ∩ v− = ∅,

and the expectations can be calculated in the following ways.

E(uv) = 1× P[(u+ ∩ v+) ∪ (u− ∩ v−)]− 1× P[(u+ ∩ v−) ∪ (u− ∩ v+)]

= P(u+ ∩ v+) + P(u− ∩ v−)− P(u+ ∩ v+ ∩ u− ∩ v−)

−P(u+ ∩ v−)− P(u− ∩ v+) + P(u+ ∩ v− ∩ u− ∩ v+)

= P(u+ ∩ v+) + P(u− ∩ v−)− P(u+ ∩ v−)− P(u− ∩ v+),

E(u) = 1× P(u+)− 1× P(u−) = P(u+)− P(u−),

E(v) = P(v+)− P(v−).

Hence

|Cov(u, v)| = |E(u, v)− E(u)E(v)|

= |P(u+ ∩ v+) + P(u− ∩ v−)− P(u+ ∩ v−)− P(u− ∩ v+)

−P(u+)P(v+)− P(u−)P(v−) + P(u+)P(v−) + P(u−)P(v+)|

≤ 4 sup{|P(A ∩B)− P(A)P(B)|: A ∈ σ1.B ∈ σ2}

= 4α.

This completes the proof.

Lemma A6. For all 1 ≤ p ≤ ∞,

|Cov(X,Y )|≤ 6α
1− 1

p ‖X‖p‖Y ‖∞ (5)

Proof. For any real number a > 0, we define

1{|X|≤a} =

{
1, |X|≤ a,
0, otherwise,

1{|X|>a} =

{
1, |X|> a,

0, otherwise,

and

X = X1{|X|≤a} =

{
X, |X|≤ a,
0, otherwise,

X = X1{|X|>a} =

{
X, |X|> a,

0, otherwise.

Then we have X = X +X and for any p, q 6= 0,

1
p
{|X|>a} = 1

q
{|X|>a} = 1{|X|>a} = 1{|X|p>ap} = 1{|X|q>aq}. (6)
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We note that

|Cov(X,Y )| = |Cov(X +X,Y )|= |Cov(X,Y ) + Cov(X,Y )|
≤ |Cov(X,Y )|+|Cov(X,Y )|.

(7)

Lemma A5 implies

|Cov(X,Y )|≤ 4α‖X‖∞‖Y ‖∞= 4αa‖Y ‖∞.

We have

|Cov(X,Y )| = |E(XY )− E(X)E(Y )|

≤ |E(XY )|+|E(X)E(Y )|

≤ ‖Y ‖∞|E(X)|+‖Y ‖∞|E(X)|= 2‖Y ‖∞|E(X)|,

and by using (6) and Hölder’s inequality for any p, q > 1, 1
p + 1

q = 1,

E|X| = E|X1{|X|>a}|

≤ (E|X|p)
1
p
(
E|1{|X|>a}|q

) 1
q = (E|X|p)

1
p

(
E1q{|X|>a}

) 1
q

= (E|X|p)
1
p
(
E1{|X|>a}

) 1
q = (E|X|p)

1
p
(
E1{|X|p>ap}

) 1
q

= (E|X|p)
1
p (1× P(|X|p> ap) + 0× P(|X|p≤ ap))

1
q

= (E|X|p)
1
p (P(|X|p> ap))

1
q

≤ (E|X|p)
1
p

(
E|X|p

ap

) 1
q

= (E|X|p)
1
p

+ 1
q a
− p
q = a

E|X|p

ap
.

Since a > 0 is arbitrary, it is acceptable if we set

E|X|p

ap
= α, i.e. a = (E|X|p)

1
p α
− 1
p = ‖X‖pα−

1
p .

Then we have

|Cov(X,Y )|≤ 2αa‖Y ‖∞,

and (7) shows

|Cov(X,Y )|≤ 4αa‖Y ‖∞+2αa‖Y ‖∞= 6α
1− 1

p ‖X‖p‖Y ‖∞.

This completes the proof.

We define

Y = Y 1{|Y |≤b}, Y = Y 1{|Y |>b}, ∀b > 0.

Then we have

|Cov(Y,X)|≤ |Cov(Y ,X)|+|Cov(Y ,X)|. (8)
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For the first term on the right side of (8), Lemma A6 implies

|Cov(Y ,X) ≤ 6α
1− 1

p ‖X‖p‖Y ‖∞= 6α
1− 1

p ‖X‖pb.

For all m, p > 1 and 1
m + 1

p = 1, we estimate the second term on the right side of (8),

|Cov(Y ,X)| ≤ |E(Y X)|+|E(Y )E(X)|

≤ (E|Y |m)
1
m (E|X|p)

1
p + E|Y |E|X|

≤ 2‖X‖p‖Y ‖m

Furthermore, for all τ, t > 1 and 1
τ + 1

t = 1, (6) implies

E|Y |m ≤ (E|Y m|τ )
1
τ (E1{|Y |>b})

1
t

= (E|Y |mτ )
1
τ (E1{|Y |mτ>bmτ})

1
t

≤ (E|Y |mτ )
1
τ

(
E|Y |mτ

bmτ

) 1
t

= E|Y |mτ bm(1−τ)

Now we have

|Cov(Y ,X)| ≤ 2‖X‖p(E|Y |mτ bm(1−τ))
1
m

= 2‖X‖pb
(
E|Y |mτ

bmτ

) 1
m

.

Similarly, we use the idea of setting a in Lemma A6. We set

α
1− 1

p =

(
E|Y |mτ

bmτ

) 1
m

, i.e. α
1
τ
− 1
pτ =

‖Y ‖mτ
b

.

Then we have

b = ‖Y ‖mτα−
1
τ

+ 1
pτ ,

and

|Cov(X,Y )| ≤ 6α
1− 1

p b‖X‖p+2α
1− 1

p b‖X‖p
= 8α

1= 1
pα
− 1
τ

+ 1
pτ ‖Y ‖mτ‖X‖p.

Now we set q = mτ . Then 1
m + 1

p = 1 implies (4). If we go further by setting p = q = 2 + δ in

(4), Theorem 2.2 is proved.
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A6: Stein’s lemma

Stein’s lemma was first introduced in [68]. Bolthausen [7] and Guyon [28] used it as a tool in

proving CLTs. To give a more detailed proof of Stein’s lemma, we provide some preliminaries

at the beginning of this section.

Lemma A7. Let νn∈N be a sequence of probability measures. If

sup
n

∫
x2νn(dx) <∞,

then there exists a subsequence νnk and a probability measure ν such that νnk
w−→ ν.

Proof. By using the definition of tightness on page 276 of [15], the assumption of this lemma

directly implies the tightness of νn. Then Theorem 25.10 of [5] implies the existence of the

subsequence.

Lemma A8. Let νn∈N be a sequence of probability measure, g(x) be a function, which is con-

tinuous in R. If

sup
n

∫
x2νn(dx) <∞, (9)

and
|g(x)|
x2

→ 0, as x→∞, (10)

then for the subsequence νnk and ν in Lemma A7, we have∫
g(x)νnk(dx)→

∫
g(x)ν(dx).

Proof. From Lemma A7, we have νnk
w−→ ν. The remainder of the proof is to show that∣∣∣∣∫ g(x)νnk(dx)−

∫
g(x)ν(dx)

∣∣∣∣→ 0.

Condition (10) implies, for all ε > 0, there exists Nε > 0, such that

|g(x)|
x2

< ε, x > Nε.

We set

ḡN (x) =


g(−Nε), x < −Nε

g(x), |x|≤ Nε

g(Nε), x > Nε.

Since g(x) is continuous, ḡN (x) is bounded. Hence, by the definition of weak convergence, we
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have ∣∣∣∣∫ ḡN (x)νnk(dx)−
∫
ḡN (x)ν(dx)

∣∣∣∣→ 0. as k →∞.

Furthermore, condition (9) ensures∣∣∣∣∫ g(x)νnk(dx)−
∫
ḡN (x)νnk(dx)

∣∣∣∣→ 0. as Nε →∞.

Similarly, ν is a limit of νnk implies∫
x2ν(dx) ≤ sup

n

∫
x2νn(dx) <∞.

Then we have ∣∣∣∣∫ g(x)ν(dx)−
∫
ḡN (x)ν(dx)

∣∣∣∣→ 0. as Nε →∞.

We note ∣∣∣∣∫ g(x)νnk(dx)−
∫
g(x)ν(dx)

∣∣∣∣
≤

∣∣∣∣∫ g(x)νnk(dx)−
∫
ḡN (x)νnk(dx)

∣∣∣∣+

∣∣∣∣∫ ḡN (x)νnk(dx)−
∫
ḡN (x)ν(dx)

∣∣∣∣
+

∣∣∣∣∫ g(x)ν(dx)−
∫
ḡN (x)ν(dx)

∣∣∣∣
= (I) + (II) + (III).

For (I) and (III), since supn
∫
x2νn(dx) <∞, there exists a constant K, such that

sup
Nε

{(I)} ≤ εK, sup
Nε

{(III)} ≤ εK.

For the second term, (II)→ 0 as k →∞. Therefore we have∣∣∣∣∫ g(x)νnk(dx)−
∫
g(x)ν(dx)

∣∣∣∣→ 0 as k →∞.

This completes the proof.

Theorem A5. (Stein’s Lemma, see [68], [7] and [28]) Let νn∈N be a sequence of probability

measure on R. If (9) is satisfied and

lim
n→∞

∫
(iλ− x)eiλxνn(dx) = 0, ∀λ ∈ R. (11)

Then

νn
D−→ N(0, 1).

Proof. Let g(x) = (iλ − x)eiλx. Then Lemma A8 implies there exists a probability measure ν,
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which satisfies ∫
g(x)νnk(dx)→

∫
g(x)ν(dx).

The uniqueness of the limit means
∫
g(x)ν(dx) = 0, with the condition (11), i.e. we have∫
(iλ− x)eiλxν(dx) = 0.

Let φ(λ) be the characteristic function of ν(x), i.e.

φ(λ) =

∫
eiλxν(dx).

We note ∣∣∣∣∫ ∂

∂λ
(eiλx)ν(dx)

∣∣∣∣ ≤ (∫ x2ν(dx)

) 1
2

<∞.

Hence we can calculate the derivative as the following:

dφ(λ)

dλ
=

∫
∂

∂λ
(eiλx)ν(dx) = i

∫
xeiλxν(dx).

Then we have

−λφ(λ) = φ′(λ).

Because ν(x) is a probability measure, we also have φ(0) = 1. By solving this differential

equation with the initial condition, we get

φ(λ) = e−
λ2

2 ,

which means ν(x) is a normal distribution.

A7: Proof of Theorem 3.1

By using the definition of dist(Λ1,Λ2) in Chapter 2, we have, for fixed i0, and for all m ≥ 1,∑
j:|i0−j|=m

α1,1(i0, j) ≤ C(2m+ 1)d−1α1,1(m),

where C is a constant. This inequality and the property of the strong mixing coefficient, (2.6),

support ∑
i,j∈Dn

α(i, j) ≤ |Dn|

1

4
+ C

∑
m≥1

md−1α1,1(m)

 , (12)
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where C is a new constant. Now the condition (H1) gives

1

|Dn|
∑
i,j∈Dn

α(i, j) <∞.

By Theorem 2.2 and condition (H3), we have

lim sup
n

1

|Dn|
∑
i,j∈Dn

|Cov(Xi, Xj)|≤ C‖X‖22+δ· lim sup
n

∑
m≥1

md−1α
δ

2+δ

1,1 (m) <∞,

where C is a new constant. Then the first part of the result in Theorem 3.1 is proved.

For the asymptotic normality as the second part of the result, the two conditions of Stein’s

Lemma, i.e. Theorem A5, need to be checked.

Firstly, we check condition (9). For truncated Xi(N)’s, which is introduced in Appendix A4,

E(Xi) = 0 means

Sn
σn

=
1

σn

∑
i∈Dn

[
Xi − E(Xi)

]
+

1

σn

∑
i∈Dn

[
Xi − E(Xi)

]
.

Theorem 2.2 and the estimation of (12) imply the estimation of the variance of the second term,

in the above inequality, as

E

(
1

σn

∑
i∈Dn

[
Xi − E(Xi)

])2

≤ |Dn|
σ2
n

C‖X‖22+δ

∑
m≥1

md−1α
δ

2+δ

1,1 (m),

where, by Lemma A2, ‖X‖2+δ→ 0 as N → ∞ for all i ∈ Dn. Condition (H4) implies |Dn|/σ2
n

is bounded. Therefore,

E

(
1

σn

∑
i∈Dn

[
Xi − E(Xi)

])2

→ 0, as N →∞.

We conclude that if Sn
σn

converges, then 1
σn

∑
i∈Dn

[
Xi − E(Xi)

]
converge to a same distribution.

Since Lemma A2 also implies E(Xi)→ E(X) = 0 as N →∞, it is sufficient to show 1
σn

∑
i∈Dn Xi

converges to a normal distribution as n→∞. In the rest of this proof, we use Sn to denote the

sum of the truncated Xi’s.

Condition (H1) implies αk,l(m) = o(m−d) for all k + l ≤ 4. Guyon [28] and Bolthausen [7]

claimed the existence of a sub-sequence mn. Then we have

αk,l(mn)|Dn|
1
2→ 0, α1,∞(mn)|Dn|

1
2→ 0,

|Dn|
1
2

md
n

→∞, as n→∞. (13)
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Now Sn can be separated into two parts by the conditions of d(i, j) ≤ mn or d(i, j) > mn. For

all i ∈ Zd, we define

Si,n =
∑
j∈Dn

d(i,j)≤mn

Xj , S∗i,n = Sn − Si,n =
∑
j∈Dn

d(i,j)>mn

Xj .

an =
∑
i∈Dn

E(XiSi,n), Sn = a
− 1

2
n Sn, Si,n = a

− 1
2

n Si,n.

Then we have

σ2
n = an +

∑
i∈Dn

E(XiS
∗
i,n).

Since condition (H3) implies∣∣∣∣∣∑
i∈Dn

E(XiS
∗
i,n)

∣∣∣∣∣ = o(|Dn|), as n→∞,

added by condition (H4), we have

an = σ2
n(1− o(1)).

Thus the proof is reduced to showing that Sn is asymptotically normal.

Now the first result in this proof and condition (H4) gives

sup
n

E(S
2
n) = sup

n

1

an

∑
i,j∈Dn

Cov(Xi, Xj) <∞,

which satisfies the first condition, (9), of Theorem A5.

Secondly, we check condition (11) of Theorem A5. Let

A1 = iλeiλSn

1− 1

an

∑
j∈Dn

XjSj,n

 ,

A2 =
1
√
an
eiλSn

∑
j∈Dn

Xj

(
1− iλSj,n − e−iλSj,n

)
,

A3 =
1
√
an

∑
j∈Dn

Xje
iλ(Sn−Sj,n).

We have

(iλ− Sn)eiλSn = A1 −A2 −A3.
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Because

E
(

(iλ− Sn)eiλSn
)
≤ |E(A1)|+|E(A2)|+|E(A3)|≤ E|A1|+E|A2|+E|A3|.

The remainder of this proof is to show three asymptotic behaviour of A1, A2 and A3.

For A2, Taylor’s Theorem gives

|1− iλSj,n − eiλSj,n |C ≤ λ2S
2
j,n,

where C is a constant. Then, by using the facts of an = σ2
n(1− o(1)) and the bounded |Dn|/σ2

n,

we have

E|A2| ≤
‖X‖∞√
an

E

∣∣∣∣∣∣
∑
j∈Dn

Cλ2S̄2
j,n

∣∣∣∣∣∣
≤ C1

(
√
an

3)

∑
j∈Dn

E
∣∣S2
j,n

∣∣
≤ C1

(
√
an

3)

∑
j∈Dn

∑
i,i′∈Dn
d(i,j)≤mn
d(i′,j)≤mn

|Cov(Xi, Xj)|

≤ C2|Dn|md
n

(
√
an)3

∑
m̃≥0

m̃d−1α1,1(m̃)

= O

(
|Dn|
an

md
n√
an

)
= O

(
|Dn|

1
2

σn

md
n

|Dn|
1
2

)
→ 0,

where C1 and C2 are constants, the last equality uses the second limitation in (13).

For A3, the truncated setting, property of (13) and Lemma A5 yield

|EA3| ≤
1
√
an

∑
i,j∈Dn

∣∣∣Cov(Xj , e
iλ(S̄n−S̄i,n)

)∣∣∣
≤ 1
√
an

∑
i∈Dn

α1,∞(mn)‖X‖∞‖eiλ(S̄n−S̄i,n)‖∞

≤ O

(
|Dn|√
an
α1,∞(mn)

)
= O

(
|Dn|

1
2

√
an
|Dn|

1
2α1,∞(mn)

)
= O

(
|Dn|

1
2α1,∞(mn)

)
→ 0.
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For A1, we note that

E|A1|2=
λ2

an

∑
j,j′,l,l′∈Dn
d(j,l)≤mn
d(j′,l′)≤mn

Cov(XjXl, Xj′Xl′)

and

|Cov(XjXl, Xj′Xl′)|≤ |E(XjXlXj′Xl′)|+|E(XjXl)||E(Xj′Xl′)|.

Now for fixed j ∈ Dn, we estimate the number of |Cov(XjXl, Xj′Xl′)|. Let dist({j}, {j′}) = k.

Caes 1 : k < 3mn. Let m̃ = dist({j}, {j′, l, l′}). Then there exists a constant C such that the

number of |Cov(XjXl, Xj′Xl′)| no more than Cm2d
n m̃

d−1. Therefore

E|A1|2 ≤ λ2

an

∑
j∈Dn

∑
j′,l,l′∈Dn
d(j,l)≤mn
d(j′,l′)≤mn

|Cov(XjXl, Xj′Xl′)|

≤ λ2

an

∑
j∈Dn

∑
j′,l,l′∈Dn
d(j,l)≤mn
d(j′,l′)≤mn

(
|Cov(Xj , XlXj′Xl′)|+|Cov(Xj , Xl)|‖X‖2∞

)

≤ C

an
|Dn|m2d

n

∑
m̃≥0

m̃d−1α1,3(m̃)

= O

(
|Dn|2

a2
n

m2d
n

|Dn|

)
→ 0,

where C is a new constant.

Case 2 : k ≥ 3mn. Then we have

min
{
dist({j}, {j′}), dist({j}, {l′}), dist({l}, {j′}), dist({l}, {l′})

}
≥ k − 2mn

and there exists a new constant C, such that the number of |Cov(XjXl, Xj′Xl′)| is no more than

Cm2d
n k

d−1. Let p = k − 2mn, then we have

E|A1|2 ≤ λ2

an

∑
j∈Dn

∑
j′,l,l′∈Dn
d(j,l)≤mn
d(j′,l′)≤mn

|Cov(XjXl, Xj′Xl′)|

≤ C

an
|Dn|m2d

n

∑
k≥0

kd−1α2,2(k − 2mn)

≤ C

an
|Dn|m2d

n

∑
p≥mn

(3p)d−1α2,2(p)
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= O

(
|Dn|2

a2
n

m2d
n

|Dn|

)
→ 0,

where C is a new constant.

Hence, E
(

(iλ− Sn)eiλSn
)
→ 0. Theorem A5 completes this proof.

A8: Isserlis’ Theorem

Isserlis’ Theorem is first introduced by Leon Isserlis in [35], 1918. This theorem provides a

formula for calculating the product–moment of Gaussian random variables.

Theorem A6. (Refer to page 44 of [25] and equation (6) in [35]) Let n,m, k ∈ Z+, X1, · · · , Xn

be centred Guassian random variables, then we have

E(Xi1Xi2 · · ·Xin) =


0, if n = 2m+ 1,∑∏

(i,j)

E(Xi, Xj), if n = 2m,

where ik ∈ {1, 2, · · · , n} and 1 ≤ k ≤ n,
∑∏

(i,j) means the summation of products of all

(possible) partitions of {i1, i2, · · · , i2m} into pairs.

Let n = 2m be an even number. For the second equality in this theorem, there are m factors in

each term, with the form E(Xi, Xj), and 1
m

(
n
2

)(
n−2

2

)
· · ·
(

4
2

)(
2
2

)
terms in total.
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