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Abstract. For more than 2000 years, from Pythagoras and Euclid to
Hilbert and Bourbaki, mathematical proofs were essentially based on
axiomatic-deductive reasoning. In the last decades, the increasing length
and complexity of many mathematical proofs led to the expansion of
some empirical, experimental, psychological and social aspects, yester-
day only marginal, but now changing radically the very essence of proof.
In this paper, we try to organize this evolution, to distinguish its differ-
ent steps and aspects, and to evaluate its advantages and shortcomings.
Axiomatic-deductive proofs are not a posteriori work, a luxury we can
marginalize nor are computer-assisted proofs bad mathematics. There is
hope for integration!

1 Introduction

From Pythagoras and Euclid to Hilbert and Bourbaki, mathematical proofs were
essentially based on axiomatic-deductive reasoning. In the last decades, the in-
creasing length and complexity of many mathematical proofs led to the expan-
sion of some empirical, experimental, psychological and social aspects, yesterday
only marginal, but now changing radically the very essence of proof. Computer-
assisted proofs and the multiplication of the number of authors of a proof became
in this way unavoidable.

In this paper, we try to organize this evolution, to distinguish its different
steps and aspects and to evaluate its advantages and shortcomings. Various
criticisms of this evolution, particularly, Ian Stewart’s claim according to which
the use of computer programs in a mathematical proof makes it as ugly “as a
telephone directory” while purely axiomatic-deductive proofs are “beautiful like
Tolstoy’s War and Peace”, will be discussed.

As axiomatic-deductive proofs, computer-assisted proofs may oscillate be-
tween ugliness and beauty. The elegance of a computer-program may rival the
beauty of a piece of poetry, as the author of the Art of Computer Programming
convinced us; however, this may not exclude the possibility that a computer-
program assisting a proof hides a central idea or obscures the global aspect of
the proof. In particular, the program assisting a proof may not be itself “proven
correct”, as it happened in the proof of the four-color problem, even in the latest,
improved 1996 variant.

Computer-assisted proofs are to usual axiomatic-deductive proofs what
(high-school) algebraic approaches are to arithmetic approaches or what ana-
lytical approaches are to direct geometric approaches. Arithmetic and intuitive



geometry make children’s brains more active, but algebra and analytic geometry,
leading to routine and general formulas, diminish the intellectual effort and free
their brains for new, more difficult problems. Obviously, each of these approaches
has advantages and shortcomings, its beauty and ugliness; they are not antithet-
ical, but complementary. Axiomatic-deductive proofs are not a posteriori work,
a luxury we can marginalize nor are computer-assisted proofs bad mathematics.
There is hope for integration!

2 Proofs in general

Proofs are used in everyday life and they may have nothing to do with mathe-
matics. There is a whole field of research, at the intersection of logic, linguistics,
law, psychology, sociology, literary theory etc., concerning the way people argue:
argumentation theory. Sometimes, this is a subject taught to 15 or 16 year-old
students.

In the “Oxford American Dictionary” [16] we read:

Proof: 1. a fact or thing that shows or helps to show that something is true

or exists; 2. a demonstration of the truth of something, “in proof of my state-

ment”; 3. the process of testing whether something is true or good or valid,

“put it to the proof”. To prove: to give or be proof of; to establish the validity

of; to be found to be, “it proved to be a good theory”; to test or stay out. To

argue: 1. to express disagreement, to exchange angry words; 2. to give reasons

for or against something, to debate; 3. to persuade by talking, “argued him

into going”; 4. to indicate, “their style of living argues that they are well off”.

Argument: 1. a discussion involving disagreement, a quarrel; 2. a reason put

forward; 3. a theme or chain of reasoning.

In all these statements, nothing is said about the means used “to show or help
to show that something is true or exists”, about the means used “in the process
of testing whether something is true or good or valid”. In argumentation theory,
various ways to argue are discussed, deductive reasoning being only one of them.
The literature in this respect goes from classical rhetorics to recent developments
such as [28]. People argue by all means. We use suggestions, impressions, emo-
tions, logic, gestures, mimicry, etc.

What is the relation between proof in general and proof in mathematics?
It seems that the longer a mathematical proof is, the higher the possibility to
contain elements usually belonging to non-mathematical proofs. We have in view
emotional, affective, intuitive, social elements related to fatigue, memory gaps,
etc. Long proofs are not necessarily computational; the proof of Fermat’s theorem
and the proof of Bieberbach’s conjecture did not use computer programs, but
they paid a price for their long lengths.

3 From proofs to mathematical proofs

Why did mathematical proofs, beginning with Thales, Pythagoras and Euclid,
till recently, use only deductive reasoning? First of all, deduction, syllogistic



reasoning is the most visible aspect of a mathematical proof, but not the only
one. Observation, intuition, experiment, visual representations, induction, anal-
ogy and examples have their role; some of them belong to the preliminary steps,
whose presence is not made explicit, but without which proofs cannot be con-
ceived. As a matter of fact, neither deduction, nor experiment could be com-
pletely absent in a proof, be it the way it was conceived in Babylonian mathemat-
ics, predominantly empirical, or in Greek mathematics, predominantly logical.
The problem is one of proportion. In the 1970s, for the first time in the history
of mathematics, empirical-experimental tools, under the form of some computer
programs, have penetrated massively in mathematics and led to a solution of
the four-color problem (4CP), a solution which is still an object of debate and
controversy, see Appel and Haken [1], Tymoczko [39], Swart [37], Marcus [27],
and A. Calude [10].1

Clearly, any proof, be it mathematical or not, is a very heterogeneous process,
where different ingredients are involved in various degrees. The increasing role of
empirical-experimental factors may recall the Babylonian mathematics, with the
significant difference that the deductive component, today impressive, was then
very poor. But what is the difference between ‘proof’ and ‘mathematical proof’?
The difficulty of this question is related to the fact that proofs which are not
typically mathematical may occur in mathematics too, while some mathematical
reasonings may occur in non-mathematical contexts. Many combinatorial real-
life situations require a mathematical approach, while games like chess require
deductive thinking (although chess thinking seems to be much more than de-
duction). In order to identify the nature of a mathematical proof we should first
delimit the idea of a ‘mathematical statement’, i.e. a statement that requires a
mathematical proof. Most statements in everyday life are not of this type. Even
most statements of the type ‘if . . . , then . . . ’ are not mathematical statements.
At what moment does mathematics enter the scene? The answer is related to
the conceptual status of the involved terms and predicates. Usually, problems
raised by non-mathematicians are not yet mathematical problems, they may be
farther or nearer to this status. The problem raised to Kepler, about the densest
packing, in a container, of some apples of similar dimensions, was very near to
a mathematical one and it was easy to find its mathematical version. The task
was more difficult for the 4CP, where things like ‘map’, ‘colors’, ‘neighbor’, and
‘country’ required some delicate analysis until their mathematical models were
identified. On the other hand, a question such as ‘do you love me?’ still remains
far from a mathematical modelling process.

4 Where does the job of mathematicians begin?

Is the transition from statements in general to mathematical statements the job
of mathematicians? Mathematicians are divided in answering this question. Hugo
Steinhaus’s answer was definitely yes, Paul Erdös’s answer was clearly negative.
The former liked to see in any piece of reality a potential mathematical problem,
1 We have discussed in detail this issue in a previous article [11].



the latter liked to deal with problems already formulated in a clear mathematical
language. Many intermediate situations are possible, and they give rise to a whole
typology of mathematicians. Goethe’s remark about mathematicians’ habit of
translating into their own language what you tell them and making in this way
your question completely hermetic refers just to this transition, sometimes of
high difficulty.

If in mathematical research both above attitudes are interesting, useful and
equally important, in the field of mathematical education of the general public
the yes attitude seems more important than the negative one and deserves prior-
ity. The social failure of mathematics to be recognized as a cultural enterprise is
due, to a large extent, to the insufficient attention paid to its links to other fields
of knowledge and creativity. This means that, in general mathematical education,
besides the scenario with definitions-axioms-lemmas-theorems-proofs-corollaries-
examples-applications we should consider, with at least the same attention, the
scenario stressing problems, concepts, examples, ideas, motivations, the histor-
ical and cultural context, including links to other fields and ways of thinking.
Are these two scenarios incompatible? Not at all. It happens that the second
scenario was systematically neglected; but the historical reasons for this mistake
will not be discussed here (see more in [29, 30]).

Going back to proof, perhaps the most important task of mathematical ed-
ucation is to explain why, in many circumstances, informal statements of prob-
lems and informal proofs are not sufficient; then, how informal statements can
be translated into mathematical ones. This task is genuinely related to the ex-
planation of what is the mathematical way of thinking, in all its variants: combi-
natorial, deductive, inductive, analogical, metaphorical, recursive, algorithmic,
probabilistic, infinite, topological, binary, triadic, etc., and, above all, the step-
by-step procedure leading to the need to use some means transcending the nat-
ural language (artificial symbols of various types and their combinations).

5 Proofs: from pride to arrogance

With Euclid’s Elements, for a long time taken to be a model of rigor, mathe-
maticians became proud of their science, claimed to be the only one giving the
feeling of certainty, of complete confidence in its statements and ways of arguing.
Despite some mishaps occurring in the 19th century and in the first half of the
20th century, mathematicians continued to trust in axiomatic-deductive rigor,
with the improvements brought by Hilbert’s ideas on axiomatics and formaliza-
tion. With Bourbaki’s approach, towards the middle of the 20th century, some
mathematicians changed pride into arrogance, imposing a ritual excluding any
concession to non-formal arguments. ‘Mathematics’ means ‘proof’ and ‘proof’
means ‘formal proof’, is the new slogan.

Depuis les Grecs, qui dit Mathématique, dit démonstration

is Bourbaki’s slogan, while Mac Lane’s [25] austere doctrine reads



If a result has not yet been given valid proof, it isn’t yet mathematics: we
should strive to make it such.

Here, the proof is conceived according to the standards established by Hilbert,
for whom a proof is a demonstrative text starting from axioms and where each
step is obtained from the preceding ones, by using some pre-established explicit
inference rules:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

And according to Jaffe and Quinn [20]

Modern mathematics is nearly characterized by the use of rigorous proofs.
This practice, the result of literally thousands of years of refinement, has
brought to mathematics a clarity and reliability unmatched by any other
science.

This is a linear-growth model of mathematics (see Stöltzner [36]), a process
in two stages. First, informal ideas are guessed and developed, conjectures are
made, and outlines of justifications are suggested. Secondly, conjectures and
speculations are tested and corrected; they are made reliable by proving them.
The main goal of proof is to provide reliability to mathematical claims. The act
of finding a proof often yields, as a by-product, new insights and possibly unex-
pected new data. So, by making sure that every step is correct, one can tell once
and for all whether a theorem has been proved. Simple! A moment of reflection
shows that the case may not be so simple. For example, what if the “agent” (hu-
man or computer) checking a proof for correctness makes a mistake (as pointed
out by Lakatos [24], agents are fallible)? Obviously, another agent has to check
that the agent doing the checking did not make any mistake. Some other agent
will need to check that agent, and so on. Eventually either the process continues
unendingly (an unrealistic scenario?), or one runs out of agents who could check
the proof and, in principle, they could all have made a mistake! Finally, the
linear-growth model is built on an asymmetry of proof and conjecture: Posing
the latter does not necessarily involve proof.

The Hilbert-Bourbaki model has its own critics, some from outside mathe-
matics such as Lakatos [24]

. . . those who, because of the usual deductive presentation of mathemat-
ics, come to believe that the path of discovery is from axiom and/or
definitions to proofs and theorems, may completely forget about the pos-
sibility and importance of naive guessing

some from eminent mathematicians as Atiyah [2]:

[20] present a sanitized view of mathematics which condemns the subject
to an arthritic old age. They see an inexorable increase in standards and



are embarrassed by earlier periods of sloppy reasoning. But if mathemat-
ics is to rejuvenate itself and break new ground it will have to allow for
the exploration of new ideas and techniques which, in their creative phase,
are likely to be dubious as in some of the great eras of the past. Perhaps
we now have high standards of proof to aim at but, in the early stages
of new developments, we must be prepared to act in more buccaneering
style.

Atiyah’s point meets Lakatos’s [24] views

. . . informal, quasi-empirical mathematics does not grow through a
monotonous increase of the number of indubitably established theorems,
but through the incessant improvement of guesses by speculation and crit-
icism, by the logic of proof and refutation

and is consistent with the idea that the linear-growth model tacitly requires a
‘quasi-empirical’ ontology, as noted by Hirsch in his contribution to the debate
reported in [2]:

For if we don’t assume that mathematical speculations are about ‘reality’
then the analogy with physics is greatly weakened—and there is no rea-
son to suggest that a speculative mathematical argument is a theory of
anything, any more than a poem or novel is ‘theoretical’.

6 Proofs: from arrogance to prudence

It is well-known that the doubt appeared in respect to the Hilbert-Bourbaki
rigor was caused by Gödel’s incompleteness theorem,2 see, for instance, Kline’s
Mathematics, the Loss of Certainty [21]. It is not by chance that a similar title
was used later by Ilya Prigogine in respect to the development of physics. So,
arrogance was more and more replaced by prudence. All rigid attitudes, based
on binary predicates, no longer correspond to the new reality, and they should be
considered ‘cum grano salis’. The decisive step in this respect was accomplished
by the spread of empirical-experimental factors in the development of proofs.

2 The result has generated a variety of reactions, ranging from pessimism (the final,
definite failure of any attempt to formalise all of mathematics) to optimism (a guar-
antee that mathematics will go on forever) or simple dismissal (as irrelevant for
the practice of mathematics). See more in Barrow [4], Chaitin [12] and Rozenberg
and Salomaa [34]. The main pragmatical conclusion seems to be that ‘mathematical
knowledge’, whatever this may mean, cannot solely be derived only from some fixed
rules. Then, who validates the ‘mathematical knowledge’? Wittgenstein’s answer
was that the acceptability ultimately comes from the collective opinion of the social
group of people practising mathematics.



7 Assisted proofs vs. long proofs, or from prudence to
humility

The first major step was realized in 1976, with the discovery, using a massive
computer computation, of a proof of the 4CP. This event should be related to
another one: the increasing length of some mathematical proofs. Obviously, the
length l(p(s)) of the proof p(s) of the statement s should be appreciated in
respect to the length l(s) of s. There is a proposal to require the existence of
a strictly positive constant k such that, for any reasonable theorem, the ratio
l(p(s))/l(s) is situated between 1/k and k. But the existence of such a k may
remain an eternal challenge.

In the past, theorems with too long a statement were very rare. Early ex-
amples of this type can be found in Apollonius’s Conica written some time
after 200 BC. More recent examples include some theorems by Arnaud Denjoy,
proved in the first decades of the 20th century, and Jordan’s theorem (1870)
concerning the way a simple closed curve c separates the plane in two domains
whose common frontier is c. A strong trend towards long proofs appears in the
second half of the 20th century. We exclude here the artificial situation when
theorems with long statements and long proofs can be decomposed into several
theorems, with normal lengths. We refer to statements having a clear meaning,
whose unity and coherence are lost if they are not maintained in their initial
form. The 4CP is just of this type. Kepler’s conjecture is of the same type and
so are Fermat’s theorem, Poincaré’s conjecture and Riemann’s hypothesis. What
about the theorem giving the classification of finite simple groups? In contrast
with the preceding examples, in this case the statement of the theorem is very
long. It may be interesting to observe that some theorems which are in complete
agreement with our intuition, like Jordan’s and Kepler’s, require long proofs,
while some other theorems, in conflict with our intuition, such as the theorem
asserting the existence of three domains in the plane having the same frontier,
have a short proof. Ultimately, everything depends on the way the mathematical
text is segmented in various pieces.

The proof of the theorem giving the typology of the finite simple groups re-
quired a total of about fifteen thousand pages, spread in five-hundred separate
articles belonging to about three-hundred different authors (see Conder [15]).
But Serre [31] is still waiting for experts to check the claim by Aschbacher and
Smith to have succeeded filling in the gap in the proof of the classification theo-
rem, a gap already discovered in 1980 by Daniel Gorenstein. The gap concerned
that part which deals with ‘quasi-thin’ groups. Despite this persisting doubt,
most parts of the global proof were already published in various prestigious jour-
nals. The ambition of rigor was transgressed by the realities of mathematical life.
Moreover, while each author had personal control of his own contribution (ex-
cepting the mentioned gap), the general belief was that the only person having
a global, holistic representation and understanding of this theorem was Daniel
Gorenstein, who unfortunately died in 1992. So, the classification theorem is still
looking for its validity and understanding.



The story of the classification theorem points out the dramatic fate of some
mathematical truths, whose recognition may depend on sociological factors
which are no longer under the control of the mathematical community. This
situation is not isolated. Think of Fermat’s theorem, whose proof (by Wiles)
was checked by a small number of specialists in the field, but the fact that
here we had several ‘Gorensteins’, not only one, does not essentially change the
situation.

How do exceedingly long proofs compare with assisted proofs? In 1996
Robertson, Sanders, Seymour and Thomas [32] offered a simpler proof of the
4CP. They conclude with the following interesting comment (p. 24):

We should mention that both our programs use only integer arithmetic,
and so we need not be concerned with round–off errors and similar dan-
gers of floating point arithmetic. However, an argument can be made that
our “proof” is not a proof in the traditional sense, because it contains
steps that can never be verified by humans. In particular, we have not
proved the correctness of the compiler we compiled our programs on, nor
have we proved the infallibility of the hardware we ran our programs on.
These have to be taken on faith, and are conceivably a source of error.
However, from a practical point of view, the chance of a computer er-
ror that appears consistently in exactly the same way on all runs of our
programs on all the compilers under all the operating systems that our
programs run on is infinitesimally small compared to the chance of a
human error during the same amount of case–checking. Apart from this
hypothetical possibility of a computer consistently giving an incorrect an-
swer, the rest of our proof can be verified in the same way as traditional
mathematical proofs. We concede, however, that verifying a computer
program is much more difficult than checking a mathematical proof of
the same length.3

Knuth [22] p. 18 confirms the opinion expressed in the last lines of the pre-
vious paragraph:

. . . program–writing is substantially more demanding than book–writing.
Why is this so? I think the main reason is that a larger attention span is
needed when working on a large computer program than when doing other
intellectual tasks. . . . Another reason is . . . that programming demands
a significantly higher standard of accuracy. Things don’t simply have to
make sense to another human being, they must make sense to a computer.

And indeed, Knuth compared his TEX compiler (a document of about 500 pages)
with Feit and Thompson’s [17] theorem that all simple groups of odd order
are cyclic. He lucidly argues that the program might not incorporate as much
creativity and “daring” as the proof of the theorem, but they come even when
compared on depth of detail, length and paradigms involved. What distinguishes
the program from the proof is the “verification”: convincing a couple of (human)
3 Our emphasis.



experts that the proof works in principle seems to be easier than making sure that
the program really works. A demonstration that there exists a way to compile
TEX is not enough! Hence Knuth’s warning: “Beware of bugs in the above code:
I have only proved it correct, not tried it.”

It is just the moment to ask, together with R. Graham: “If no human being
can ever hope to check a proof, is it really a proof?” Continuing this question, we
may ask: What about the fate of a mathematical theorem whose understanding is
in the hands of only a few persons? Let us observe that in both cases discussed
above (4CP and the classification theorem) it is not only the global, holistic
understanding under question, but also its local validity.

Another example of humility some eminent mathematicians are forced to
adopt with respect to yesterday’s high exigency of rigor was given recently by
one of the most prestigious mathematical journals, situated for a long time at
the top of mathematical creativity: Annals of Mathematics. We learn from Karl
Sigmund [35] that the proof proposed by Thomas Hales in August 1998 and the
corresponding joint paper by Hales and Ferguson confirming Kepler’s conjecture
about the densest possible packing of unit spheres into a container, was accepted
for publication in the Annals of Mathematics,

but with an introductory remark by the editors, a disclaimer as it were,
stating that they had been unable to verify the correctness of the 250-page
manuscript with absolute certainty.

The proof is so long and based to such an extent on massive computations, that
the platoon of mathematicians charged with the task of checking it ran out of
steam. Robert MacPherson, the Annals’ editor in charge of the project, stated
that “the referees put a level of energy into this that is, in my experience, un-
precedented. But they ended up being only 99 percent certain that the proof was
correct”. However, not only the referees, the author himself, Thomas Hales, ‘was
exhausted’, as Sigmund observes. He was advised to re-write the manuscript: he
didn’t, but instead he started another project, ‘Formal Proof of Kepler’ (FPK), a
project which puts theorem-verification on equal footing with Knuth’s program-
verification. Programming a machine to check human reasoning gives a new type
of insight which has its own kind of beauty. Here is the bitter-ironical comment
by Sigmund:

After computer-based theorem-proving, this is the next great leap forward:
computer-based proof checking. Pushed to the limit, this would seem to
entail a self-referential loop. Maybe the purists who insist that a proof is
a proof if they can understand it are right after all. On the other hand,
computer-based refereeing is such a promising concept, for reviewers,
editors, and authors alike, that it seems unthinkable that the community
will not succumb to the temptation.

So, what is the perspective? It appears that FPK will require 20 man-years
to check every single step of Hales’ proof. “If all goes well, we then can be 100
percent certain”, concludes Sigmund ([35], p. 67).



Let us recall that Perelman’s recent proof of Poincaré’s conjecture4 is still
being checked at MIT (Cambridge) and IHES (Paris) and who knows how long
this process will be? We enter a period in which mathematical assessment will
increase in importance and will use, in its turn, computational means. The job
of an increasing number of mathematicians will be to check the work of other
mathematicians. We have to learn to reward this very difficult work, to pay it
at its correct value.

One could think that the new trend fits the linear–growth model: all experi-
ments, computations and simulations, no matter how clever and powerful, belong
to and are to stay at the first stage of mathematical research where informality
and guessing are dominant. This is not the case. Of course, some automated
heuristics will belong only to the first stage. The shift is produced when a large
part of the results produced by computing experiments are transferred to the
second stage; they no longer only develop the intuition, they no longer only build
hypotheses, but they assist the very process of proof, from discovery to checking,
they create a new type of environment in which mathematicians can undertake
mathematical research.

For some a proof including computer programs is like a telephone directory,
while a human proof may compete with a beautiful novel. This analogy refers to
the exclusive syntactic nature of a computer-based proof (where we learn that the
respective proof is valid, but we may not (don’t) understand why), contrasting
with the attention paid to the semantic aspect, to the understanding process,
in the traditional proofs, exclusively made by humans.5 The criticism implied
by this analogy, which is very strong in René Thom’s writings, is not always
motivated. In fact, an ‘elegant’ program6 may help the understanding process
of mathematical facts in a completely new way. We confine ourselves to a few
examples only:

. . . if one can program a computer to perform some part of mathematics,
then in a very effective sense one does understand that part of mathe-
matics (G. Tee [38])

If I can give an abstract proof of something, I’m reasonably happy. But if
I can get a concrete, computational proof and actually produce numbers
I’m much happier. I’m rather an addict of doing things on computer,
because that gives you an explicit criterion of what’s going on. I have a
visual way of thinking, and I’m happy if I can see a picture of what I’m
working with (J. Milnor, [7])

. . . computer-based proofs are often more convincing than many standard
proofs based on diagrams which are claimed to commute, arrows which

4 Mathematicians familiar with Perelman’s work expect that it will be difficult to
locate any substantial mistakes, cf. Robinson [33].

5 The conjugate pair rigor-meaning deserves to be reconsidered, cf. Marcus [26].
6 Knuth’s concept of treating a program as a piece of literature, addressed to human

beings rather than to a computer; see [23].



are supposed to be the same, and arguments which are left to the reader
(J.-P. Serre [31])

. . . the computer changes epistemology, it changes the meaning of “to
understand.” To me, you understand something only if you can program
it. (G. Chaitin [14])

It is the right moment to reject the idea that computer-based proofs are nec-
essarily ugly and opaque not only to being checked for their correctness, but also
to being understood in their essence.

Finally, do axiomatic-deductive proofs remain an a posteriori work, a luxury
we can marginalize? When asked whether “when you are doing mathematics,
can you know that something is true even before you have the proof?”, Serre
([31], p. 212) answers: “Of course, this is very common”. But he adds: “But one
should distinguish between the genuine goal [. . . ] which one feels is surely true,
and the auxiliary statements (lemmas, etc.), which may well be intractable (as
happened to Wiles in his first attempt) or even downright false [. . . ].”

8 A possible readership crisis and the globalization of the
proving process

Another aspect of very long (human or computer-assisted) proofs is the risk of
finding no competent reader for them, no professional mathematician ready to
spend a long period to check them. This happened with the famous Bieberbach
conjecture. In 1916, L. Bieberbach conjectured a necessary condition on an ana-
lytic function to map the unit disk injectively to itself. The statement concerns
the (normalised) Taylor coefficients an of such a function (a0 = 0, a1 = 1): it
then states that |an| is at most n, for any positive integer n. Various mathe-
maticians succeeded in proving the required inequality for particular values of
n, but not for every n. In March 1984, Louis de Branges (from Purdue Univer-
sity, Lafayette) claimed a proof, but nobody trusted him, because previously he
made wrong claims for other open problems. Moreover, nobody in USA agreed
to read his 400-pages manuscript to check his proof, representing seven years
of hard work. The readership crisis ended when Louis de Branges proposed to
the Russian mathematician I. M. Milin that he check the proof; Milin was the
author of a conjecture implying Bieberbach’s conjecture. De Branges travelled
to Leningrad, where after a period of three months of confrontation with a team
formed by Milin and two other Russian mathematicians, E. G. Emelianov and
G. V. Kuzmina, they all reached the conclusion that various mistakes existing in
the proof were all benign. Stimulated by this fact, two German mathematicians,
C. F. Gerald and C. Pommerenke (Technical University, Berlin) succeeded in
simplifying De Branges’s proof.

This example is very significant for the globalization of mathematical re-
search, a result of the globalization of communication and of international co-
operation. It is no exaggeration to say that mathematical proof has now a global
dimension.



9 Experimental mathematics or the hope for it

The emergence of powerful mathematical computing environments such as Math-
ematica, MathLab, or Maple, the increasing availability of powerful (multi-
processor) computers, and the omnipresence of the Internet allowing mathe-
maticians to proceed heuristically and ‘quasi-inductively’, have created a blend
of logical and empirical–experimental arguments which is called “quasi–empirical
mathematics” (by Tymoczko [39], Chaitin [13]) or “experimental mathematics”
(Borwein, Bailey [8], Borwein, Bailey, Girgensohn [9]). Mathematicians increas-
ingly use symbolic and numerical computation, visualisation tools, simulation
and data–mining. New types of proofs motivated by the experimental “ideol-
ogy” have appeared. For example, the interactive proof (see Goldwasser, Micali,
Rackoff [18], Blum [5]) or the holographic proof (see Babai [3]). And, of course,
these new developments have put the classical idea of axiomatic-deductive proof
under siege (see [11] for a detailed discussion).

Two programatic ‘institutions’ are symptomatic for the new trend: the Cen-
tre for Experimental and Constructive Mathematics (CECM),7 and the journal
Experimental Mathematics.8 Here are their working ‘philosophies’:

At CECM we are interested in developing methods for exploiting math-
ematical computation as a tool in the development of mathematical in-
tuition, in hypothesis building, in the generation of symbolically assisted
proofs, and in the construction of a flexible computer environment in
which researchers and research students can undertake such research.
That is, in doing experimental mathematics. [6]

Experimental Mathematics publishes formal results inspired by exper-
imentation, conjectures suggested by experiments, surveys of areas of
mathematics from the experimental point of view, descriptions of algo-
rithms and software for mathematical exploration, and general articles
of interest to the community.

For centuries mathematicians have used experiments, some leading to im-
portant discoveries: the Gibbs phenomenon in Fourier analysis, the determinis-
tic chaos phenomenon, fractals. Wolfram’s extensive computer experiments in
theoretical physics paved the way for his discovery of simple programs having
extremely complicated behavior [40]. Experimental mathematics—as system-
atic mathematical experimentation ranging from hypotheses building to assisted
proofs and automated proof–checking—will play an increasingly important role
and will become part of the mainstream of mathematics. There are many reasons
for this trend: they range from logical (the absolute truth simply doesn’t exist),
sociological (correctness is not absolute as mathematics advances by making mis-
takes and correcting and re–correcting them), economic (powerful computers will
be accessible to more and more people), and psychological (results and success

7 www.cecm.sfu.ca.
8 www.expmath.org.



inspire emulation). The computer is the essential, but not the only tool. New the-
oretical concepts will emerge, for example, the systematic search for new axioms.
Assisted-proofs are not only useful and correct, but they have their own beauty
and elegance, impossible to find in classical proofs. The experimental trend is
not antithetical to the axiomatic-deductive approach, it complements it. Nor is
the axiomatic-deductive proof a posteriori work, a luxury we can marginalize.
There is hope for integration!
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30. G. Pólya. Mathematics and Plausible Reasoning, Volume 1: Induction and Analogy
in Mathematics, Volume 2: Patterns of Plausible Inference, Princeton University
Press, Princeton, 1990. (reprint edition)

31. M. Raussen, C. Skau. Interview with Jean-Pierre Serre, Notices of AMS, 51, 2
(2004), 210–214.

32. N. Robertson, D. Sanders, P. Seymour, R. Thomas. A new proof of the four-colour
theorem, Electronic Research Announcements of AMS 2,1 (1996), 17–25.

33. S. Robinson. Russian reports he has solved a celebrated math problem, The New
York Times, April 15 (2003), p.D3.

34. G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice-Hall, New
York, 1994.

35. K. Sigmund. Review of George G. Szpiro. “Kepler’s Conjecture”, Wiley, 2003,
Mathematical Intelligencer, 26, 1 (2004), 66–67.
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