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Abstract: We introduce geometric consideration into the

theory of formal languages. We aim to shed light on our un-

derstanding of global patterns that occur on infinite strings.

We utilise methods of geometric group theory. Our empha-

sis is on large scale geometries. Two infinite strings have

the same large scale geometry if there are colour preserving

bi-Lipschitz maps with distortions between the strings. Call

these maps quasi-isometries. Introduction of large scale ge-

ometries poses several questions. The first question asks to

study the partial order induced by quasi-isometries. This par-

tial order compares large scale geometries; as such it presents

an algebraic tool for classification of global patterns. We

prove there is a greatest large scale geometry and infinitely

many minimal large scale geometries. The second question

is related to understanding the quasi-isometric maps on var-

ious classes of strings. The third question investigates the

sets of large scale geometries of strings accepted by compu-

tational models, e.g. Büchi automata. We provide an algo-

rithm that describes large scale geometries of strings accepted

by Büchi automata. This links large scale geometries with

automata theory. The fourth question studies the complex-

ity of the quasi-isometry problem. We show the problem is

⌃0
3-complete thus providing a bridge with computability the-

ory. Finally, the fifth question asks to build algebraic struc-

tures that are invariants of large scale geometries. We invoke

asymptotic cones, a key concept in geometric group theory,

defined via model-theoretic notion of ultra-product. Partly,

we study asymptotic cones of algorithmically random strings

thus connecting the topic with algorithmic randomness.

Key words: Quasi-isometry, Büchi automata, ultra-filter,

asymptotic cones, ⌃0
3-completeness, Martin-Löf randomness.

1 Introduction

Our goal is to introduce geometric considerations into
the theory of formal languages. We emphasise the study

of large scale geometries of infinite strings. Our hope is
to shed light on our understanding of global large scale
patterns that occur on infinite strings. Our motivation
comes from geometric group theory, a cutting edge re-
search area in group theory linked with geometry, topol-
ogy, automata, logic, probability, complexity, etc.
In geometric group theory, an important concept is

that of quasi-isometry between metric spaces. LetM1 =
(M1, d1) and M2 = (M2, d2) be metric spaces.

Definition 1.1. A function f : M1 ! M2 is called an
(A,B)�quasi-isometry from M1 to M2, where A > 1
and B > 0, if for all x, y 2 M1 we have

(1/A) · d1(x, y)�B 6 d2(f(x), f(y)) 6 A · d1(x, y) +B,

and for all y 2 M2 there exists an element x 2 M1 such
that d2(y, f(x)) 6 A.

Note that when B = 0, the mapping becomes bi-
Lipschitz (and hence continuous). Thus, a quasi-
isometry f : M1 ! M2 behaves like a bi-Lipschitz map
with distortion B between the metric spaces. For in-
stance, the metric spaces Z (integers) and R (reals) with
their natural metric are quasi-isometric Informally, two
metric spaces M1 and M2 are quasi-isometric if these
spaces (such as Z and R) look the same from far away.
The quasi-isometry relation forms an equivalence rela-
tion on the class of all metric spaces.
Studying quasi-isometry invariants of groups turned

out to be crucial in solving many problems in group the-
ory [6] [7] [8]. Therefore, finding quasi-isometry invari-
ants has become an important theme in geometric group
theory. Examples of quasi-isometry invariants are: be-
ing virtually nilpotent, virtually free, hyperbolic, having
polynomial growth rate, being finitely presentable, hav-
ing decidable word problem, asymptotic cones [4] [5] [8].
In formal language theory and logic, one of the main

objects are infinite strings ↵ over finite alphabets ⌃.
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These objects are somewhat boring from a geometry
point of view. The strings ↵ possess the natural metric
inherited from the set of natural numbers !. The quasi-
isometry type of ! is the metric space R>0 of all positive
reals. So, from a quasi-isometry view point, ! viewed as
a metric space is also somewhat uneventful. However,
one crucial di↵erence from the setting in geometric group
theory is that the metric spaces ↵ are coloured. Namely,
for every position i 2 ! in ↵, the colour of the posi-
tion i is � when ↵(i) = �. These observations suggest
that the notions and methods of geometric group theory
(e.g. quasi-isometry) can be applied to coloured metric
spaces. Here we investigate quasi-isometries of coloured
metric spaces with strings ↵ as our primary objects, thus
initiating the study of large scale patterns on strings.
A coloured metric space M is a tuple (M ; d, C),

where (M ; d) is the underlying metric space with
metric d, C is a colour function C : M ! 2⌃, and
⌃ is a finite set of colours that we call an alphabet.
If � 2 C(m) then we say that m has colour �. As
mentioned above, infinite strings ↵ are coloured met-
ric spaces of the form (!; d,↵), where d is the natural
metric (so, d(i, j) = |i� j|) and ↵ : ! ! ⌃ is the colour
function. Every element in ↵ has a unique colour. We
always assume that the cardinality |⌃| of ⌃ is at least 2.
We denote the set of all infinite strings over ⌃, con-

sidered as coloured metric spaces, by ⌃!. We now adapt
Definition 1.1 for coloured metric spaces.

Definition 1.2. Assume we are given coloured met-
ric spaces M1 = (M1; d1, C1) and M2 = (M2; d2, C2).
A colour preserving quasi-isometry from (M1; d1) into
(M2; d2) is called a quasi-isometry from M1 into M2.

We write M1 6QI M2 if there is a quasi-isometry
from M1 into M2. For metric spaces the relation 6QI

is an equivalence relation, and hence it is symmetric. In
contrast, for coloured metric spaces the relation 6QI is
not symmetric. For instance, the mapping f : ! ! !
defined as f(i) = 2i is a quasi-isometry from the string
0! = 00000 . . . into the string (01)! = 010101 . . .. There
is no quasi-isometric mapping in the opposite direction.
If M1 6QI M2 and M2 6QI M1 then we write this

by M1 ⇠QI M2. The relation ⇠QI is an equivalence
relation in the class of all coloured metric spaces, in par-
ticular on the set ⌃!. Formally:

Definition 1.3. The equivalence classes of ⇠QI are
called the quasi-isometry types or, equivalently, the
large scale geometries. For the set ⌃!, we define
⌃!

QI = ⌃!/ ⇠QI . Denote the large scale geometry of
string ↵ by [↵]. Thus, ⌃!

QI = {[↵] | ↵ 2 ⌃!}.

Non-symmetry of 6QI on coloured metric spaces al-
lows us to compare large scale geometries of these spaces,
and consider the partial order 6QI on the quasi-isometry
types. Importantly, the partial order 6QI can be re-
stricted to the large scale geometries of coloured met-
ric spaces over a fixed underlying metric space (e.g. !
with its natural metric). In this sense the quasi-isometry
on coloured metric spaces is a much refined version of
the usual quasi-isometry relation on unclouded metric
space. This is because the quasi-isometry type of every
uncoloured metric space trivialises to a singleton.

Introduction of large scale geometries and the quasi-
isometry relation 6QI poses a vast amount of natural
questions. The contribution of this paper consists of
investigating the following questions:

The first question is concerned with understanding the
partial order 6QI on the set ⌃!

QI of all large scale ge-
ometries. The order presents an algebraic tool aimed at
classification of global patterns that occur on strings. In
Section 2 we investigate properties of this partial order.
Among several results, we prove that the order has the
greatest large scale geometry, infinite chains and infi-
nite anti-chains. We show that there are infinitely many
minimal large scale geometries.

The second question is related to understanding the
quasi-isometry relation ⇠QI . This can be done by ei-
ther restricting the relation ⇠QI on various subclasses of
infinite strings or by simplifying the definition of quasi-
isometry. In Section 3.1 we restrict the relation ⇠QI

to eventually periodic words, and give a full description
of quasi-isometry types in this class. Section 3.2 gives a
intuitively more easier yet equivalent definition of the re-
lation 6QI that we call component-wise reducibility. We
also give more refined version of6QI , colour-equivalence,
that implies quasi-isometry. It is shown that colour-
equivalence is strictly stronger than quasi-isometry. It
is natural to ask if quasi-isometric maps between strings
can be replaced with order preserving quasi-isometric
embeddings. We give a negative answer to this question;
however, we prove that the answer is positive modulo
⇠QI equivalence relation.

The third question is related to describing sets of large
scale geometries. We call such sets atlases. Let L be a
language of infinite strings. One considers the atlas [L] of
all large scale geometries of strings in L. So, the question
is related to understanding the atlas [L] given a descrip-
tion of L. In particular, a natural question is if one can
decide that [L1] = [L2] given descriptions of languages
L1 and L2. In Section 4, we use Büchi automata as a de-
scription language and provide a full characterisation of
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the atlases defined by Büchi recognisable languages. As
a consequence, we show that for Büchi automata recog-
nisable languages L1 and L2 there is a linear time algo-
rithm for deciding the equality of the atlases [L1] and
[L2]. This contrasts with the PSPACE completeness of
the equality problem for Büchi languages. This part of
the work links large scale geometries with automata the-
ory and complexity theory.
The fourth question addresses the complexity of quasi-

isometry relation on infinite strings in terms of arithmeti-
cal hierarchy, thus connecting the topic with computabil-
ity theory. Recall that isometry is colour preserving and
distance preserving map. So, quasi-isometry relation is
weaker than isometry relation. Hence, one might expect
that quasi-isometry is easier to detect than the isometry.
We prove that the quasi-isometry relation on computable
infinite strings is ⌃0

3-complete. This is in contrast to
⇧0

1-completeness of the isometry relation on computable
strings. These are explained in Section 5.
The fifth question asks how one encodes large scale ge-

ometries of coloured metric spaces ↵ into “limit” struc-
tures. For this, we define structures obtained from “look-
ing at ↵ from far away”. Dries and Wilkie [4], using
ultra-filters, formalised this intuitive notion through the
concept of asymptotic cone. Their work gave a logi-
cal context to Gromov’s work in [6] [8]. We invoke the
concept of asymptotic cone and study relationship be-
tween large scale geometries of infinite strings and their
asymptotic cones. In Section 6 we prove theorems akin
to results on asymptotic cones in geometric group the-
ory, and we show that asymptotic cones of Martin-Löf
random strings coincide when scaling factors are com-
putable. These results bridge the topic of this paper
with algorithmic randomness and model theory.

2 The partial order (⌃!
QI ,6QI)

2.1 Basic Properties

The quasi-isometry relation 6QI naturally induces the
partially ordered set (⌃!

QI ,6QI) on the set of all large
scale geometries [↵]. Denote this partial order by ⌃!

QI

thus identifying it with its domain. Say that [�] covers
[↵] if [↵] 6= [�], [↵] 6QI [�], and for all [�] such that
[↵] 6QI [�] 6QI [�] we have [�] = [↵] or [�] = [�]. An
element is an atom if it covers a minimal element.

Proposition 2.1. The partial order ⌃!
QI has the fol-

lowing properties: (1) There exists a greatest element;

(2) There exist at least |⌃| minimal elements; (3) There

exist at least |⌃| · (|⌃|� 1)/2 atoms.

Proof. Assume that ⌃ = {�1, ...,�k}. For part (1), we
claim that ↵ = (�1...�k)! is the greatest element in ⌃QI .
Indeed, take any � 2 ⌃!. We write ↵ as v0v1 . . . where
each vi is �1 . . .�k. Define f : � ! ↵ such that f maps
any position n (in �) to the position kn in the portion
vn of the string ↵ such that �(n) = ↵(kn). For part
(2), consider the quasi-isometry types [�!

i ]. These form
minimal elements in ⌃!

QI . Indeed, if ↵ 6QI �!
i , then

each element of ↵ has colour �i. For part (3) , consider
�i(�j)!, where i 6= j. Clearly, �!

j 6QI �i(�j)!. More-
over, for any � 6= �!

j if � 6QI �i(�j)! then � finitely
many positions of � are coloured with �i, and all other
positions are coloured with �j . Hence, � ⇠QI �i(�j)!.
Thus, we have found at least k·(k�1)/2 of the atoms.

A quasi-isometry g : ↵ ! � can produce cross-overs,
e.g., pairs n and m with n < m but g(m) < g(n). The
definition of quasi-isometry does not obviously prohibit
large cross-overs. Nevertheless, the following lemma
shows that there is a uniform bound on cross-overs.

Lemma 2.2 (Small Cross Over Lemma). Consider

a quasi-isometry map g : ↵ ! �. There is a constant

C 6 0 such that for all n < m we have g(m)�g(n) > C.

Proof. Let n < m be given and suppose we have g(m)�
g(n) < C for some C 6 0. The goal is to provide a lower
bound for C. Define q = min(g�1(p) \ [m + 1,1)) and
p = min(g([m+1,1))\ [g(n)+1,1)). Then, we obtain

d(g(n), p) > (1/A) · d(n, q)�B > (1/A)d(n,m)�B

> (1/A)(1/A)(d(g(n), g(m))�B)�B

> �C/A2 � ((A2 + 1)/(A2))B.

We have g([m, q]) ⇢ [0, g(n)] [ [p,1) by our definition
of p and q. Note g(m) 2 [0, g(n)] and g(q) 2 [g(p),1).
Hence, there exists rC 2 [m, q � 1] such that g(rC) 2
[0, g(n)] and g(rC + 1) 2 [g(p),1), which means

d(g(n), p) 6 d(g(rC), g(rC + 1)) 6 A+B.

From these inequalities we have a lower bound on C.

Lemma 2.3. Let f : ↵ ! � be a quasi-isometric map-

ping. Then there exists constants A0
and B0

such that

for all positions x, y 2 � with x 6 y we have

(1/A0) · d2(x, y)�B0 6
d1(min f�1([x, y]),max f�1([x, y])) 6 A0 · d2(x, y) +B0

.

Proof. See Appendix.

Corollary 2.4. Let f : ↵ ! � be a quasi-isometry.

There is a C > 0 so that |f�1(y)| < C for all y 2 �.
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2.2 Structure theorems

Elementary properties of the partial order ⌃!
QI are in

Proposition 2.1. Now we provide several structure theo-
rems describing algebraic properties ⌃!

QI .

Theorem 2.5. The partial order ⌃!
QI has a chain

(↵n)n2Z of the type of integers, that is 8n 2 Z[↵n <QI

↵n+1]. Furthermore, the partial order ⌃!
QI has a count-

able anti-chain.

Proof. We prove the first part. Take two distinct element
in ⌃, say 0 and 1, respectively. Let

↵n =

(
(01)2

n

(011)2
n

...(012
k

)2
n

... (n > 0)

(01)(012
2�n

)...(01(2
k)2

�n

)... (n < 0)

The idea is the following. The string ↵0 is of the form:

(01)(011)(01111) . . . (012
k

) . . .

Let us call the substrings (012
k

) blocks of ↵0. The above
definition tells us that ↵1 is obtained from ↵0 by dou-
bling each block of ↵0; ↵�1 is obtained from ↵0 by re-
moving every other block. This is propagated to all ↵n’s.
We show that ↵n <QI ↵n+1 for all n > 0. For negative

n, the proof is similar. To see ↵n 6QI ↵n+1, consider

the mapping which sends an interval (012
k+1

) in ↵n to

(012
k

)2 in ↵n+1 in an obvious injective way. This map-
ping is a quasi-isometry from ↵n into ↵n+1.
To see that the converse is not true, assume that g is

a quasi-isometry from ↵n+1 into ↵n. Then using Lemma
2.3 and Lemma 2.2, one sees that g needs to be strictly
monotone on almost every point of ↵n+1 with colour
0; that is, we need to have M 2 N such that for all
m,m0 > M and m > m0 we have

↵n+1(m) = ↵n+1(m
0) = 0 ) g(m) > g(m0)].

But this is not possible; indeed, let mi,n 2 ! be the
position of i-th 0 in ↵n. If mi,n+1 > M and g(mi,n+1) =
mj,n, then from monotonicity and injectivity we should
have d(g(mi,n+1), g(mi+k,n+1)) > mj+k,n�mj,n for each
k 2 N. For any i and j we can easily verify

lim
k!1

mj+k,n �mj,n

mi+k,n+1 �mi,n+1
= +1,

which means we cannot have any bound A as in Def-
inition 1. This is contradiction, and hence there is no
quasi-isometry from ↵n+1 into ↵n.
Now we prove the second part. Consider the following

sequence of strings �n, n 2 !:

�n = 0102
n

12
n

03
n

13
n

...0k
n

1k
n

...

We claim that this sequence forms an anti-chain in ⌃!
QI .

Take any n,m 2 N and suppose �n 6QI �m via f . It
su�ces to show n = m.
Let An0,k0 be the ”k0-th block” of zeros in �n0 , i.e.

An0,k0 = [2
k0�1X

i=0

in
0
, 2

k0�1X

i=0

in
0
+ (k0)n

0
� 1]

Then by easy argument we can show that there exists
k, l 2 N such that (1) f(An,k) ✓ Am,l, and (2) for every
k0 2 N, we have f(An,k0+k) ✓ Am,k0+l. Intuitively, these
say that from some point f maps �n in “block by block”
manner without vacancy. For quasi-isometricity of f we
should have an upper and positive lower bound of the
rate

|An,k0+k|
|Am,k0+l|

=
(k0 + k)n

(k0 + l)m

with respect to k0, since otherwise we do not have any
bound A as in Definition 1. Clearly n = m is the only
case that satisfies this condition.

The trivial large scale geometries [0!] and [1!], as noted
above, are minimal elements of the partial order ⌃!

QI .
The next theorem shows that there are non-trivial min-
imal large scale geometries.

Theorem 2.6. Let {an}n2N be an unbounded nonde-

creasing sequence. Then the large scale geometry of the

string ↵ = 0a01a10a21a3 ...0a2k1a2k+1 . . . is a minimal el-

ement in the partial order ⌃!
QI .

Proof. Let In be the interval that corresponds to pan

(p 2 {0, 1}) in ↵, that is,

In = [
n�1X

k=0

ak, (
nX

k=0

ak)� 1].

Suppose � 6QI ↵ via f,A,B. We claim that � is of the
form vw0

0w1w
0
1w2w

0
2 . . . wnw

0
n . . ., where wn and w0

n are
sequences for which we have constants A0, B0, D, and n0

such that for all n we have |w0
n| 6 D, (1/A0)·an0+n�B0 6

|wn| 6 A0an0+n +B0 and wn = 0|wn| if n0 + n is even or
wn = 1|wn| if n0 + n is odd. If the claim is true, then it
is easy to see � =QI ↵.
Let Mn = max f�1(In) and mn = min f�1(In). From

Lemma 2.3, there exist A00 and B00 such that

(1/A00) · an �B00 6 Mn �mn 6 A00an +B00

for each n. Then there are numbers n0 and D > 0
such that for all n > n0 we have mn+2 > Mn and
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�D 6 mn+1 �Mn 6 1. Indeed, let D = B � A(C � 1)
and n0 satisfies an0 > A00(�2AC + 3max{B,B00}) + 2,
where C is a constant such that f(y) � f(x) > C for
all x < y (Lemma 2.2). Then mn+1 � Mn 6 1 holds
since otherwise there exists x 2 N such that Mn < x <
mn+1 which should be mapped to a point other than
In [ In+1, and we can find x 2 [Mn,mn+1 � 1] such
that d(f(x), f(x + 1)) > D > A + B, which contra-
dicts the quasi-isometricity of f . For a lower bound, if
mn+1 < Mn then f(Mn)� f(mn+1) > C due to Lemma
2.2, and hence

mn+1 �Mn = �d(mn+1,Mn)

> �A · d(f(mn+1), f(Mn))�B

= A · (f(Mn)� f(mn+1))�B

> AC �B > �D.

We also have

mn+2 �Mn =
(mn+2 �Mn+1) + (Mn+1 �mn+1) + (mn+1 �Mn)

> 2AC � 2B + (1/A00) · an+1 �B00 > 1.

Now for each n > n0 let Jn = [Mn�1 + 1,mn+1 � 1]
and J 0

n = [mn+1,Mn] if mn+1 < Mn, or otherwise J 0
n =

�. Let wn and w0
n be the strings that corresponds to

Jn0+n and J 0
n0+n, respectively. Then � is of the form

vw0
0w1w

0
1w2w

0
2 . . . , and by the inequality above

|wn| = mn0+n+1 �Mn0+n�1 � 1 >
(1/A00) · an0+n + 2AC � 2B �B00

We also have

|wn| 6 Mn0+n �mn0+n + 1 6 A00an0+n +B00 + 1.

Hence letting B0 = max{�2AC +2B+B00, B00 +1} and
A0 = A00 and we have a proof.

Corollary 2.7. The partially ordered set ⌃!
QI possesses

uncountably many minimal elements.

We now single out four subsets of ⌃!
QI that give some

insight into lattice-theoretic properties of the partial or-
der 6QI . Consider the string

↵ = 0n01m00n11m1 . . .

from the set {0, 1}!, where ni,mi > 1. Call the sub-
strings 0ni and 1mi of the string the 0-blocks and 1-
blocks, respectively. Define:

• X (0) = {[↵] | in ↵ all the lengths of 0-blocks are
universally bounded},

• X (1) = {[↵] | in ↵ the lengths of all 1-blocks are
universally bounded},

• X (u) = {[↵] | in ↵ there is no universal bound on
the lengths of both 0-blocks and 1-blocks },

• X (b) = {[↵] | in ↵ the lengths of both 0-blocks and
1-blocks are universally bounded}.

Upward closed sets are called filterers, and downward
closed sets ideals. We use this terminology in the next
theorem. A proof is in the Appendix.

Theorem 2.8. The sets X (0), X (1), X (u), X (b) satisfy
the following:

1. The sets X (0) and X (1) are filters.

2. The set X (u) is an ideal.

3. The set X (b) is the singleton {[(01)!]}.

Corollary 2.9. For all ↵ 2 X (0), � 2 X (1), � 2 ⌃!
, if

↵ 6QI � and � 6QI � then � ⇠ (01)!.

Consider the join operation � that, given ↵ and �,
produces the string ↵ � � = ↵(0)�(0)↵(1)�(1) . . .. The
operation is often used (e.g., in computability and com-
plexity theory) to produce the least upper bounds. It
turns out this operation is not well-behaved with re-
spect to the large scale geometries. Indeed, consider
the string ↵ = 010011 . . . (0)2

n

(1)2
n

. . . and the string
� = 101100 . . . (1)2

n

(0)2
n

. . . Then [↵ � �] = [(01)!].
But, [(01)!] 6= [↵], [(01)!)] 6= [�], and [↵] = [�].
Even though the operation � is not well-behaved with

respect to ⇠QI -classes, the operation can still be useful
in constructing counter-examples as shown below.

Corollary 2.10. The sets X (0), X (1) are not ideals.

Proof. Consider the strings � = 010011 . . . 0n1n . . . and
↵ = � � 1!. It is clear that ↵ 2 X (0). It is also easy to
see that � 6 ↵. However, � 62 X (0).

Corollary 2.11. Both X (0) and X (1) have countable

chains and anti-chains. In addition, X (u) has an infinite

anti-chain consisting of minimal elements.

Proof. The chain constructed in Theorem 2.5 is in X (0).
Hence, both X (0) and X (1) have countable chains. Let
�n be the sequence in the proof of Theorem 2.5. Then in
the same manner as in the proof of Theorem 2.5 we can
show that {�n � 1!}n2N ⇢ X (0) is an anti-chain. Simi-
larly {�n�0!}n2N ⇢ X (1) is an anti-chain. The minimal
elements constructed in Theorem 2.6 are in X (u).
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3 Refining quasi-isometry

The relation 6QI could be analysed in several ways.
One is to restrict 6QI to a particular class K of infinite
strings, and describe the partial order 6QI restricted
to large scale geometers of strings from K. In Section
3.1, we fully describe the partial order 6QI restricted to
the class of eventually periodic words. The second way
is to refine the definition of 6QI and study its implica-
tions. Section 3.2 provides an equivalent, more intuitive,
characterisation of quasi-isometry called component wise
reducibility.

3.1 Eventually periodic spaces

For a string ↵ (that might be finite) consider the set of
all colours in ↵: Cl(↵) = {� 2 ⌃ | 9i(↵(i) = �)}. Write
u v v if Cl(u) ✓ Cl(v). We easily get the following:

Lemma 3.1. If f : ↵ ! � is a quasi-isometry then

Cl(↵) ✓ Cl(�). So, if ↵ ⇠QI � then Cl(↵) = Cl(�).

A particularly simple strings are eventually periodic:

Definition 3.2. Metric space ↵ 2 ⌃! is eventually
periodic if there are finite words x, u 2 ⌃? such that
↵ = xuuu . . .. Call u the period of ↵.

Let ↵ = xu! be eventually periodic word. We assume
that Cl(u) ✓ Cl(x) as we can change the prefix x to xu.
With this assumption, we have the following theorem:

Theorem 3.3. For eventually periodic words ↵, � we

have ↵ 6QI � i↵ there are x, y, u, v 2 ⌃?
such that

↵ = xu!
, � = yv!, Cl(x) ✓ Cl(y), and Cl(u) ✓ Cl(v).

Proof. If ↵ 6QI � then it is easy to select finite strings
x, y, u, v that satisfy the statement of the theorem.
Now assume that there are x, y, u, v 2 ⌃? such that

↵ = xu!, � = yv!, Cl(x) ✓ Cl(y) and Cl(u) ✓ Cl(v).
We construct a quasi-isometry f from ↵ to � as fol-
lows. First, we map the prefix x into prefix y so that
colours are preserved. Secondly, we consider the set
X = {x1, . . . , xk} of all distinct colours that appear in u.
Now we map xi coloured position in the kth copy of u in
the string ↵ into the xi coloured position in the kth copy
of v in the string �. We now set A = max{|x|, |y|, |u|, |v|}
and B = A. It is clear that f preserves colours and the
quasi-isometry inequality between the distances d(x, y)
and d(f(x), f(y)) with constants A,B as required.

Let P1(⌃) of be the set of all non-empty subsets of ⌃.
Consider the following partial order on the domain:

X = {(A,B) | A,B 2 P1(⌃) and A ◆ B},

where the partial order on X is the component-wise in-
clusion. From the theorem above, we obtain the a full
description of the partial order 6QI restricted to large
scale geometers of eventually periodic strings. For the
proof see the Appendix:

Corollary 3.4. The partial order 6QI restricted to the

set EP = {[↵] | ↵ is eventually periodic string over ⌃}
is isomorphic the partial order X .

Let f : ↵ ! � be a quasi-isometric map, and let P be
a property. Say that f is eventually P if there is an i such
that f restricted to the su�x ↵i = ↵(i)↵(i+1)↵(i+2) . . .
satisfies P . A quasi-isometry f does not need to be even-
tually order preserving map; neither f needs to be even-
tual embedding (that is, eventually injective map). Now
we show that if ↵ and � are eventually periodic words,
then f can be computable eventually order preserving
injective map. For the proof see the Appendix:

Theorem 3.5. For eventually periodic strings ↵ and

� such that ↵ 6QI � there exists a computable quasi-

isometric map f↵ : ↵ ! � which is eventually order

preserving and injective.

3.2 Componentwise Reducibility

We formulate an equivalent more intuitive condition for
quasi-isometry between coloured metric spaces. Some
proofs of results in this subsection are provided in the
Appendix.

Definition 3.6. Say ↵ is componentwise reducible
to �, written ↵ 6CR �, if we can write ↵ = u1u2 . . . and
� = v1v2 . . . such that ui v vi for each i and |ui|, |vi| are
uniformly bounded by a constant C. Call these presen-
tations of ↵ and � witnessing partitions.

It is clear that ↵ 6CR � implies ↵ 6QI �: any colour-
preserving map that maps each interval ui in ↵ to vi in
� is quasi-isometry. Showing the converse is not trivial.
The main di�culty is showing that 6CR is transitive.

Definition 3.7. An atomic crossing map is a func-
tion f : ↵ ! � of the following form: we have {ai, bi}i2I ,
where I is an at most countable index set such that
9C8i[(ai < bi < ai+1) ^ (bi � ai 6 C)] and

f(a) =

8
<

:

bi (a = ai)
ai (a = bi)
a (otherwise)

Clearly, every atomic crossing map is bijective. The next
result is a step towards transitivity of 6CR.
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Proposition 3.8. Any quasi-isometry f : ↵ ! � can be

decomposed into the following form:

↵
f1�! �1

f2�! �2
f3�! �,

where f1 is a monotonic injection, f2 is a monotonic

surjection, f3 is a bijection, and f1, f2, f3 are all quasi-

isometric. Furthermore, f3 can be decomposed into the

following form for some n > 1:

�2
g1�! �1

g2�! . . .
gn�! �,

where each gk is an atomic quasi-isometry.

Corollary 3.9. If ↵ 6QI �, then there is �0 ⇠QI � so

that ↵ 6QI �0
via strictly monotonic quasi-isometry.

Proof. The strings �1 is a desired �0 as �0 is obtained
through the composition of quasi-isometric maps f�1

3

and �n.min f�1
2 (n) applied to �.

Informally, the proposition above says that any quasi-
isometry can be decomposed into three parts. The first
part is the mapping f1 which can be viewed as a “pol-
lution” of ↵, the second part is the map f2 that can be
called a “collapsing” map, and the third part is f3 that
can be called “mixing” since it mixes atomic crossing
maps. One would notice that the mixing part is the one
that makes things complicated: below we show that mix-
ing functions preserve componentwise reducibility. The
proof is in the Appendix.

Lemma 3.10. Suppose ↵ 6CR � and � 6QI � via an

atomic crossing map f : � ! �. Then ↵ 6CR �.

Theorem 3.11. ↵ 6QI � implies ↵ 6CR �.

Proof. Let f : ↵ ! � be a quasi-isometry. Decompose it

into ↵
f1�! �1

f2�! �2
f3�! � according to Proposition 3.8.

For any monotonic QI map g : ↵0 ! �0 we easily have
↵0 6CR �0: Indeed, enumerate all elements of an image
of g as {bn}n2N, where bn < bn+1 for all n, let un =
g�1(bn) and vn = [bn, bn+1 � 1]. Then ↵0 = u1u2 . . . and
�0 = v1v2 . . . are witnessing partitions. Hence we have
↵ 6CR �2, and Lemma 3.10 completes the proof.

One could attempt to go further, namely say ↵ and �
are colour-equivalent if they are componentwise reducible
to each other via the same witnessing partitions. It is
clear that if ↵ and � are colour-equivalent, then they
are quasi-isometric. Can we show that ↵ ⇠QI � implies
their colour-equivalence? The answer is negative.

Proposition 3.12. There are colour-equivalent ↵ and �
such that no eventual embeddings witness quasi-isometry

between ↵ and �.

Proof. We provide the strings ↵ and �, and refer the
reader to the appendix for the proof. Consider the fol-
lowing coloured metric spaces over the alphabet {0, 1}:

↵ = 00120014 . . . 12n00 . . . and � = 01012 . . . 01n . . . .

It is not hard to see that ↵ and � are quasi-isometric.

Proposition 3.13. There are sequences ↵ and � such

that ↵ and � are quasi-isometric via monotonic embed-

dings but ↵ and � are not colour-equivalent.

Proof. Let ⌃ = {0, 1, ⇤} and define ↵,� 2 ⌃! as follows.
We first define � by:

010 ⇤ 0 ⇤ 1 ⇤ 0 ⇤ ⇤ ⇤ . . . 0(⇤)n1(⇤)n0(⇤)2n+1 . . .

Thus, the nth-part of � is the string 0(⇤)n1(⇤)n0(⇤)2n+1.
We re-write � with subscripts on each 0 and 1 as pointers
for easier readability:

00100 1
2
⇤ 01 ⇤ 11 ⇤ 0 3

2
⇤ ⇤ ⇤ ...0n(⇤)n1n(⇤)n0 2n+1

2
(⇤)2n+1...

Let ↵ be obtained from � by omitting the second occur-
rence of 0 in the nth-substring of �. So,

↵ = 01 ⇤ 0 ⇤ 1 ⇤ ⇤ ⇤ ⇤ . . . 0(⇤)n1(⇤)n(⇤)2n+1 . . .

So, the nth-substring of ↵ is 0(⇤)n1(⇤)n(⇤)2n+1. As
above we re-write ↵ with with subscripts as pointers:

↵ = 0010 ⇤ 01 ⇤ 11 ⇤ ⇤ ⇤ ⇤...0n(⇤)n1n(⇤)3n+1...

The Appendix shows that ↵ and � are desired.

4 Büchi automata and large scale

geometries

Let L ✓ ⌃! be a language, where we assume that ⌃ =
{0, 1}. The notion of quasi-isometry leads us to consider
the quasi-isometry types of strings from L:

Definition 4.1. An atlas is a set of quasi-isometry
types. In particular, the atlas defined by the language
L is the set [L] = {[↵] | ↵ 2 L}, where [↵] is the quasi-
isometry type of ↵.
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A question of a general character is concerned with
understanding the set [L] given a description of L. In
particular, a natural question is if one can decide that
[L1] = [L2] given descriptions of languages L1 and L2.
In this section, we study the atlases defined by Büchi au-
tomata recognisable languages. We show that for Büchi
automata recognisable languages L1 and L2 there is an
e�cient algorithm that decides if [L1] = [L2]. We recall
basic definitions for Büchi automata.

Definition 4.2. A Büchi automaton M is a quadru-
ple (S, ◆,�, F ), where S is a finite set of states, ◆ 2 S is
the initial state, � ⇢ S ⇥ ⌃ ⇥ S is the transition table,
and F ✓ S is the set of accepting states.

A run of M on ↵ = �0�1 · · · 2 ⌃! is a sequence of
states r = s0, s1, . . . such that s0 = ◆ and (si,�i, si+1) 2
� for all i 2 !. The run is accepting if the set Inf(r) =
{s : 91i(qi = s)} has a state from F . The automaton
M accepts the string ↵ if it has an accepting run on it.
The language accepted by M, denoted L(M), is the set
of all infinite words accepted by M.
Let M be a Büchi automaton. Our goal is to describe

the atlas defined by the language L(M). We call such
[L] Büchi recognisable. We need to do some state space
analysis of the automation M.
A loop (in M) is a path L of states s1, . . . , sn+1 in

the state space S such that s1 = sn+1. We say that a
word �1 . . .�n labels the loop L if (si,�, si+1) 2 � for
1 6 i 6 n. If all symbols �i are 0 only (or 1 only), then
we say that the loop is 0-loop (or respectively, 1-loop). In
the loop L we do not require that the states are pairwise
distinct. Any state in a loop is a loop state.
The state space S can naturally be considered as a

directed graph, where the edges between states are tran-
sitions of M with labels removed. Hence, we can write
S as a disjoint union of its strongly connected compo-
nents (sccs). Call a scc X ✓ S non-trivial if |X| > 1,
where |X| is the cardinality of X. Thus we write S as
the union T [ S1 [ . . . [ Sk, where T is the union of
trivial strongly connected components and each Si is a
nontrivial scc. Every successful run of M on every in-
finite string ↵ eventually ends up in one of the sccs Si.
Consider Büchi automata M1, . . ., Mk such that the
initial states and the state diagrams of Mi all coincide
with that of M but Fi = F \ Si. It is clear that

(?) L(M) = L(M1) [ . . . [ L(Mk).

Hence describing the atlas [L(M)] boils down to describ-
ing the atlases of [L(Mi)], i = 1, . . . , k. Assume that ↵
is accepted by Mi. Then we can write ↵ as v↵0 such

that an accepting run of Mi after reading v stays inside
Si. Therefore, the large scale geometry [↵] of ↵ is quasi-
isometric to either [0↵0] or [1↵0] (or both). Therefore,
we can postulate the following assumption till the end
of this section unless otherwise stated.

Postulate. The state space S can be written as {q0}[S0

such that (1) q0 is the only initial state and q0 62 S0, (2)
S0 is the only nontrivial strongly connected component
of M, and (3) any transition from q0 goes into S0.

Lemma 4.3. If M has a 0-loop and a 1-loop, then the

atlas [L(M)] coincides with the atlas [⌃!] \X for some

X ✓ {[0!], [1!], [10!], [01!]}.

Proof. Assume that L0 is a 0-loop and L1 is a 1-loop.
Let ↵ be a string with !-many 0s and !-many 1s. Say,
↵ = 0n01m00n11m1 . . .. We can build a � of the form

u 0n
0
1v1m

0
1w 0n

0
2v1m

0
2w 0n

0
3v1m

0
3w . . . 0n

0
iv1m

0
iw . . .

such that (1) � is accepted by M, (2) ni = n0
i + ci and

mi = m0
i + c0i, where ci < |S| and c0i < |S| for all i, (3)

v is a string that labels a path from a state s0 in L0 to
a state s1 in L1, and (4) w is a string that labels a path
from s1 to s0, and (5) v is a string that labels a path
from the initial state to s0. This implies that ↵ and �
are colour-equivalent. Hence they are quasi-isometric.
Note that none of the strings 0!, 1!, 10!, 01! is

quasi-isometric to a string with both !-many 0s and 1s.
Also, these four strings are pairwise not quasi-isometric.
Hence, the choice of X is dependent on whether or not
M accepts some (or all) of these four strings. For in-
stance, 0! 2 X i↵ 0! is not accepted by M.

Lemma 4.4. If M has no 0-loop and has no 1-loop, then

the atlas [L(M)] equals the singleton atlas [{(01)!}].

Proof. Let ↵ = �0�1 . . . be a string accepted by M. Let
⇢ = s1, s2, . . . be an accepting run of M on ↵. We can
write ↵ as w1w2 . . . so that (1) the length of each wi is
bounded by |S| and (2) the run ⇢ along each wi has a
loop; that loop within wi contains both 0 and 1. This
implies that (01)! and ↵ are colour-equivalent. Hence
they are quasi-isometric.

Lemma 4.5. Suppose that M contains no 1-loop but

has a 0-loop L0. Then the atlas [L(M)] coincides with

one of the following atlases:

[{0!}], [{10!}], [{0!, 10!}],
[{0n110n210n3 . . . | ni > 0} \ {0!}] or
[{0n110n210n3 . . . | ni > 0} [ {0!}].
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Proof. The assumption of the lemma implies that if ↵
is accepted by M then (1) ↵ contains infinitely many
0s and (2) the lengths of any sequence of consecutive
1s occurring in ↵ is bounded by |S|. If L(M) = V 0!

for some regular language V ✓ ⌃?, then the atlas
[L(M)] is either [{0!}] or [{10!}] or [{0!, 10!}]. So,
we assume that M accepts a string with ! many 1s’.
Let ↵ be any string of the form 0t110t21 . . ., where all
ti > 0 for all i. We can build a string � of the form
u 0n1v 0n2v 0n3v . . . 0niv . . . such that (1) � is
accepted by M, (2) ti = ni + ci, where ci < |S| for all
i, and (3) v is a string that labels a path from a state
s0 in L0 back to s0, and v contains 1. The string � is
quasi-isometric to string �0 obtained from � by replacing
all occurrences of v with 1 and removing the prefix u. In
turn �0 is colour equivalent to ↵. Hence, ↵ ⇠QI �.
Now suppose that � is accepted by M and �

has infinitely many 1s. Then � is of the form
u0n11m10n21m2 . . . where we have ni,mi > 0 for all i.
As noted above the numbers mi are uniformly bounded.
The string � is quasi-isometric to string �0 obtained from
� by replacing all 1mi with just 1 and removing the pre-
fix u. Clearly �0 is of the form desired. Note that M
accepts the string quasi-isometric to 10!. Hence, if 0!

is accepted by M then the atlas [L(M)] coincides with
[{0n110n210n3 . . . | ni > 0} [ {0!}]. Otherwise, the atlas
[L(M)] equals [{0n110n210n3 . . . | ni > 0} \ {0!}].

Lemma 4.6. Suppose that M contains no 0-loop but

has a 1-loop L0. Then the atlas [L(M)] coincides with

one of the following atlases:

[{1!}], [{01!}], [{1!, 01!}],
[{1n101n201n3 . . . | ni > 0} \ {1!}] or
[{1n101n201n3 . . . | ni > 0} [ {1!}].

We now remove our postulate put on the state space of
Büni automata. Using equality (?) given above, and the
lemmas, we obtain the following characterisation result:

Theorem 4.7. Any Büchi recognisable atlas [L] is a

union from the following list of atlases:

• [⌃!] \X, where X ✓ {[0!], [1!], [10!], [01!]}.

• [{0n110n210n3 . . . | ni > 0} \ {0!}], [{1!}],

• [{0n110n210n3 . . . | ni > 0} [ {0!}], [{0!}],

• [{01!}], [{10!}], [{0!, 10!}], [{1!, 01!}],

• [{1n101n201n3 . . . | ni > 0} \ {1!}],

• [{1n101n201n3 . . . | ni > 0} [ {1!}].

We obtain the following complexity-theoretic result solv-
ing the equality problem for Büchi recognisable atlases.
See Appendix for the proof. In comparison, the equality
problem for Büchi automata is PSPACE complete.

Corollary 4.8. There exists an algorithm that, given

Büchi automata A and B, decides if the atlases [L(A)]
and [L(B)] coincide. Furthermore, the algorithm runs in

linear time on the size of the input automata.

5 The quasi-isometry problem

The quasi-isometry problem QIP is to find if, given
strings ↵ and �, there is a quasi-isometry from ↵ to �:

QIP = {(↵,�) | ↵,� 2 ⌃! & [↵] 6QI [�]}.

Let ↵ and � be coloured metric spaces and A,B be
constants. Our goal is to construct a rooted tree
T (↵,�, A,B) such that the following properties hold:

1. The tree T (↵,�, A,B) is finitely branching and com-
putable in ↵ and �. In particular, if ↵ and � are
computable then so is T (↵,�, A,B).

2. For any n one can e↵ectively compute, with an ora-
cle for ↵ and �, the number of nodes in the tree at
distance n from the root.

3. The tree T (↵,�, A,B) is infinite i↵ there exists an
(A,B)-quasi-isometric map from ↵ into �.

4. There is a bijection between (A,B)-quasi-isometric
maps from ↵ to � and the set [T (↵,�, A,B)] of all
infinite paths of the tree T (↵,�, A,B).

Informally, the nodes of T (↵,�, A,B) are finite partial
functions that can potentially be extended to (A,B)-
quasi-isometric maps from ↵ to �. Formally:

1. The root of the tree T (↵,�, A,B) is the empty set
;, that is, nowhere defined partial function.

2. Let x be a node of the tree T (↵,�, A,B) constructed
so far, and fx be the partial function associated with
x. We identify x and fx. We assume that

(a) x is at distance n from the root, and fx =
{(0, i0), . . . , (n� 1, in�1)}.

(b) For all k,m from the domain of fx we have
that fx is colour preserving and the (A,B)-
quasi-isometry condition is satisfied:

(1/A) · d(k,m)�B < d(fx(k), fx(m))
< A · d(k,m) +B.
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We list all the extension � of fx such that the do-
main of � is the set {0, 1, . . . , n} and � satisfies the
the (A,B)-quasi-isometry condition. The children
of fx will be all these functions � extending fx.

In Part 2 of the construction the number of extensions
� of fx is finite since these extensions must satisfy the
quasi-isometry condition. Moreover, the number of these
extensions is computed with an oracle for ↵ and �. If
such extensions � of fx do not exist, then x is a leaf.

Lemma 5.1. The tree T (↵,�, A,B) is infinite i↵ there

is an (A,B)-quasi-isometric map from ↵ into �. There

is a bijection between all infinite paths of T (↵,�, A,B)
and (A,B)-quasi-isometric maps from ↵ to �.

Proof. If g : ↵ ! � is an (A,B)-quasi-isometric map
from ↵ to � then the sequence {gi}i2!, where gi is the
restriction of g on the initial segment {0, . . . , i}, is an
infinite path through the tree T (↵,�, A,B). If x1, x2, . . .
is an infinite path through the tree T (↵,�, A,B) then
the function f defined as the limit of the sequence
fx1 , fx2 , . . . is an (A,B)-quasi-isometry from ↵ to �.

The next theorem that solves the quasi-isometry prob-
lem. See the Appendix for the proof.

Theorem 5.2. The following statements are true:

1. Given quasi-isometric strings ↵ and �, there exists

a quasi-isometry between ↵ and � computable in the

halting set relative to ↵ and �.

2. The quasi-isometry problem between computable

strings is a complete ⌃0
3-set.

The isometry problem for coloured computable met-
ric spaces is a refined version of quasi-isometry. Hence,
one might expect that quasi-isometry is easier to detect
than the isometry. However, the isometry problem for
computable coloured metric spaces is ⇧0

1-complete as op-
posed to ⌃0

3-completeness of the quasi-isometry problem.

6 Asymptotic cones

Let F be a non-principal ultra-filter on !. Recall that a
non-principal ultra-filter is a non-empty maximal subset
of P (!) that satisfies the following properties: (1) No
finite set belongs to F . So, F does not contain the empty
set; (2) For all A,B 2 F we have A\B 2 F ; (3) For all
A,B ✓ ! if A 2 F and A ✓ B then B 2 F .
Every ultrafilter F has the following two properties:

(1) For every set A ✓ !, either A 2 F or ! \A 2 F . (2)

For all pairwise disjoint sets A,B ✓ ! if A[B 2 F then
either A 2 F or B 2 F .
Let ↵ 2 ⌃! and s : ! ! ! be a strictly increas-

ing monotonic function such that s(0) = 1. Call the
mapping s(n) a scaling factor. We define the following
sequence of metric spaces:

X0,↵ = (↵, d0), X1,↵ = (↵, d1), . . . , Xn,↵ = (↵, dn), . . .

where dn(i, j) = |i � j|/s(n). Informally, we move ↵
away from us by scaling the metric down. For instance,
in the metric space X0,↵ the distance from 0 to s(n)
equals s(n), while in Xn,↵ the distance from 0 to s(n) is
1. We assume that the domains of these metric spaces
are disjoint pairwise: Xi,↵ \Xj,↵ = ; for all i 6= j.
Let a = (an)n>0 be a sequence, where each an 2 Xn,↵

for all n. Call the sequence bounded if there is a con-
stant L such that the set {n | dn(0, an) < L} 2 F . Let
B(F , s) be the set of all bounded sequences. Say that
two bounded sequences a and b are F-equivalent, writ-
ten a ⇠F c, if {n | dn(an, bn) 6 ✏} 2 F for every ✏.

Definition 6.1. Define the asymptotic cone of ↵,
written Cone(↵,F , s), with respect to the scaling func-
tion s(n) and the ultra-filter F to be the factor set

B(F , s)/ ⇠F

equipped with the following metric D and colour C:

1. D(a,b) = r i↵ {n | r � ✏ 6 dn(an, bn) 6 r + ✏} 2 F
for all ✏ > 0.

2. C(a) = � i↵ {n | an has colour �} 2 F .

This definition implies that some elements a of the
asymptotic cone might have several colours.

Lemma 6.2. For each � 2 ⌃, the set

{a 2 Cone(↵,F , s) | � 2 C(a)}

is closed.

Proof. Let a be a limit point of the set above,
an = (anm)m>0 2 Cone(↵,F , s) be a point of colour
� such that D(a,an) 6 2�n. Also let r = D(0,a),
rn = D(0,an), and im be a number such that im 6 m
and |r � dn(0, aimm)| 6 |r � dn(0, ajm)| for all j 6 m.
Then b = (ainn)n>0 ⇠ a and � 2 C(b): indeed, let
An = {m 2 N | |rn � dm(0, anm)| 6 2�n}. Then for
given n,

{m 2 N | |r � dm(0, bm)| 6 2�(n+1)}
◆ {m 2 N | |r � dm(0, aimm)| 6 2�(n+1)} [ [n,1)

◆ An+2 [ [n,1) 2 F .
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Also {m 2 N | |r � dm(0, am)| 6 2�(n+1)} 2 F , hence

{m 2 N | dm(am, bm) 6 2�n} 2 F .

Theorem 6.3. For eventually periodic word ↵ = uv! all

asymptotic cones Cone(↵,F , s) equal the coloured metric

space (R>0; d, C) such that every real r > 0 has colours

of v and the real 0 has colours of both u and v.

Proof. Let F be any filter and s : ! ! ! be a monotonic
function. It is easy to see that 0 has all colours of both
u and v. Let r 2 R and r > 0. For any � present in
v there is a sequence (an)n>0 such that an 2 Xn,↵, the
colours of an all are � and for every ✏ > 0 there is an N✏

such that for all n > N✏ we have

|dn(an, 0)� r| 6 ✏.

Indeed, for each n 2 N such that |u|/s(N✏) < r let an be
any element which has the colour � and satisfies (|u| +
i|v|)/s(n) 6 dn(0, an) < (|u|+(i+1)|v|)/s(n), where i is
the unique integer which satisfies (|u|+ i|v|)/s(n) 6 r <
(|u| + (i + 1)|v|)/s(n). |dn(an, 0) � r| 6 |v|/s(n). This
inequality implies the claim.

We now prove a theorem akin to a known result in ge-
ometric group theory stating that there are non-quasi-
isometric groups that realise the same cones. For in-
stance, in [2] [3] it is proved that all asymptotic cones of
non-elementary hyperbolic group are isometric.

Theorem 6.4. There are non-quasi-isometric strings

↵,� 2 {0, 1}!, a scale factor s(n), and filter F such

that Cone(↵,F , s) = Cone(�,F , s) and ↵,� 2 X (1).

Proof. Our scale factor is s(n) = 2n. The string ↵ is
such that ↵(i) = 1 if and only if i is a power of 2. Let
F be any ultra-filter. Consider the cone Cone(↵,F , s).
It is note hard to see that the cone coincides with the
coloured metric space (R>0; d, C), where d is the usual
metric on reals, all reals have colour 0, and a real r has
also colour 1 i↵ r is an integer power of 2 or r = 0.
So, we need to construct � and a filter F such

that ↵ and � are not quasi-isometric but the cone
Cone(�,F , s) coincides with the above coloured metric
space (R>0; d, C). Let � be a string of the form

0m010m110m210m3 . . . 0mk10mk+1 . . .

such that the following properties hold:

1. The positions where � contains 1 are powers of
two, and let us list these positions as the sequence
2n0 , 2n1 , 2n2 , . . ..

2. For each i 2 ! we have 2ni < ni+1.

3. The strings ↵ and � are not quasi-isometric.

Now we construct our filter F . Let X be the set

{n0, n0 + 1, . . . , 2n0, . . . , nk, nk + 1, . . . , 2nk, . . .}.

Call the sequences of the form nk, nk +1, . . . , 2nk blocks

of the set X. Note that the lengths of the blocks is
unbounded. For each integer i, consider the set X + i =
{x+ i | x 2 X, x+ i > 0}. Since the sizes of the blocks
is unbounded, the collections of sets is a bases of a filter:

X, X + 1, X � 1, X + 2, X � 2, . . . , X + i, X � i, . . .

Let F be the ultrafilter that contains the collection.
Consider the cone Cone(�,F , s). We can view the do-

main of this cone as the set R>0. It is not too hard
to note that every real r gets colour 0 in the cone
Cone(�,F , s). Now we need to show that r gets colour
1 if and only if r is an integer power of 2. It su�ces to
show that if r is an integer power of 2 then r has colour
1. But, this is implied by the fact that the sets X + i
are in F . Indeed, assume that r is of the form 2i. Then,
since X + i 2 F , from the definition of Cone(�,F , s) we
see that r has colour 1.
To finish the proof, we just need to show that we can

select the sequence n0, n1, . . . such that ↵ and � are not
quasi-isometric. To see this, let nk+1 = 2nk + 2: then
we can show that ↵ and � are not quasi-isometric in the
same manner as the proof of Theorem 2.5.

In contrast to the theorem above, we show that the
same coloured metric space can produce two asymptotic
cones that are not quasi-isometric. This is similar to the
result in geometric group theory where one group can
realise two non homeomorphic asymptotic cones [1].

Theorem 6.5. There is a sequence ↵, scaling factors s1
and s2 so that for all ultrafilters F cones Cone(↵,F , s1)
and Cone(↵,F , s2) are not quasi-isometric.

Proof. We construct ↵ and two scaling factors s0 and
s1 such that in the asymptotic cone Cone(↵,F , s0) all
reals r > 1 have colour 0, and in the asymptotic cone
Cone(↵,F , s1) all reals r > 1 have colour 1 only. These
two metric spaces are clearly not quasi-isometric.
Define pn and qn, inductively, by: p1 = q1 = 1, and

pn+1 = n

nX

i=1

(pi + qi),

qn+1 = n

✓ nX

i=1

(pi + qi) + pn+1

◆
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Now consider the string ↵ = 0p11q10p21q2 . . ., and define
the following two scale functions:

• s0(n) =
Pn

i=1(pi + qi), and

• s1(n) =
�Pn

i=1(pi + qi) + pn+1

�
.

Also let dj,n(x, y) = |y � x|/sj(n) (j = 0, 1). Then all
points a in (↵, dj,n) such that 1 < dj,n(0, a) < n have
the colour j. Hence for any r > 1, the colour of r is 0 in
Cone(↵,F , s0) and 1 in Cone(↵,F , s1).

The next theorem shows that the asymptotic cones
of all Martin-Löf random strings [11] coincide when the
scaling factor is a computable function.

Theorem 6.6. If ↵ is Martin-Löf random, then for

all computable scaling factors s and ultra-filters F , the

asymptotic cone Cone(↵,F , s) coincides with the space

(R>0; d, C), where every real has all colours from ⌃.

Proof. We assume that ⌃ = {0, 1}. For given r 2 R>0,
assume the following:

9A 2 F8✏81n 2 A9r0 2 ↵n[r�✏ 6 r0 6 r+✏^Cn(r
0) = 0].

Then we have a sequence (an) such that the subsequence
{an | n 2 A} converges to r and all elements of the
subsequence are coloured by 0, and hence Cone(↵,F , s)
has the colour 0 at r.
Taking the contraposition of this fact and letting A =

N, we have the following: if Cone(↵,F , s) does not have
the colour 0 at r (by virtue of Lemma 6.2 we can assume
that r 2 Q>0), then for some ✏ > 0 we have infinitely
many n 2 N such that all points r0 of ↵n in an interval
[r � ✏, r + ✏] has the colour 1.
Now assume such an r exists and consider the set:

Gn = {X 2 2! | s(n)(r�✏) 6 i 6 s(n)(r+✏) ) X(i) = 1}

In the Cantor space {0, 1}!, the sequence of open sets
(Gn) is uniformly computably enumerable and the sum
of the measures of Gn is bounded. Such sequences are
called Solovay tests. This Solovay test fails the string
↵, that is, ↵ 2 Gn for infinitely many n (cf. Definition
3.2.18 in [11]). It is known that falling Solovay tests
is equivalent failing Martin-Löf tests (cf. Proposition
3.2.19 in [11]). This shows that ↵ is not random.

A culmination of asymptotic cones construction is
that [↵] = [�] implies bi-Lipschitz equivalence between
Cone(↵,F , s) and Cone(�,F , s). The proof is standard
with the di↵erence that our metric spaces are coloured.
However, since our base metric space is a linear order
!, the conclusion of our theorem is a little stronger as it
implies order preservance. The proof is in the Appendix.

Theorem 6.7. If strings ↵ and � have the same large

scale geometry then there are colour-preserving and order

preserving homeomorphisms

H : Cone(↵,F , s) ! Cone(�,F , s) and
G : Cone(�,F , s) ! Cone(↵,F , s),

constants CH , CG such that for all a,b 2 Cone(↵,F , s)
and c,d 2 Cone(�,F , s) we have:

(1/CH) ·D(a,b) 6 D(H(a), H(b)) 6 CH ·D(a,b)
and

(1/CG) ·D(c,d) 6 D(G(c), G(d)) 6 CG ·D(c,d).
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7 Appendix

Proof of Lemma 2.3:
The inequality in the definition of quasi-isometry im-
plies:

(1/A) · d2(f(n), f(m))� (B/A) 6 d1(n,m)
6 A · d2(f(n), f(m)) +AB.

For given x 6 y 2 �, let Mxy = max f�1([x, y]) and
mxy = min f�1([x, y]). Then we have d1(mxy,Mxy) 6
A · d2(f(mxy), f(Mxy)) + AB 6 A · d2(x, y) + AB. For
the lower bound of d1(mxy,Mxy), let M 0

xy = max([x, y]\
f(↵)) and m0

xy = min([x, y]\f(↵)). Then due to the last
condition of quasi-isometricity it holds that d2(y,M 0

xy) 6
2A and d2(x,m0

xy) 6 2A. Also from Lemma 2.2 we have

d2(f(Mxy),M
0
xy) 6 �C

and
d2(f(mxy),m

0
xy) 6 �C.

Hence we obtain:

d2(f(mxy), f(Mxy)) > d2(x, y)� 4A+ 2C.

In summary, for any x 6 y 2 � it holds that

(1/A) · d2(x, y)� (4A+B � 2C)/A
6 d1(mxy,Mxy) 6 A · d2(x, y) +AB,

and letting A0 = A and B0 = (4A+B� 2C)/A+AB we
have the claim.

Proof of Theorem 2.8
We prove that X (0) is a filter. Assume that ↵ 2 X (0)
and ↵ 6QI � through a quasi-isometry f with constants
A and B. We need to show that � 2 X (0). Assume
that the length of 0-blocks in � is unbounded. Let K
be the length of the largest 0-block in ↵. Now, take a
0-block �(i) . . .�(i + n0) in �, where n0 is su�ciently
large. We give bound on the value of n0 below. Since
f is a quasi-isometry, there exists a �(i0) that belongs
to the block such that �(i0) has a pre-image ↵(j0) and
�(i0) is within distance A from the center of the 0-block
�(i) . . .�(i + n0). The length of the block in ↵ that
contains ↵(j0) is bounded by K, hence the string

↵(j0 �K � 1) . . .↵(j0) . . .↵(j0 +K + 1)

must contain 1. The length of this interval is 2K + 2.
There exists a C such that f -image of all intervals of
length 2K+2 is contained in the intervals in � of length

at most C. So, it must be the case that n0 6 C. Hence
� 2 X (0). The same proof shows that X (1) is a filter.
The proof of Part 2 is similar to the proof above.
For the last part for all the strings ↵, � if in both the

lengths of 0-blocks and 1-blocks are universally bounded
then, it is not hard to see hat ↵ and � are quasi-isometric
to each other since they are colour-equivalent. They are
also quasi-isometric to (01)!.

Proof of Corollary 3.4:
Let A,B be subsets of P1(⌃) such that A ✓ B. Say,
A = {a1, . . . , ak} and B = {b1, . . . , bn}. We asso-
ciate with the pair (A,B) the infinite string string
a1 . . . ak(b1 . . . bn)!. This establishes the mapping from
X into EP . By Theorem 3.3 this is an isomorphism
from X onto EP .

Proof of Theorem 3.5:
Consider ↵ = xuuu . . . and � = yvvv . . .. We as-
sume that Cl(x) ✓ Cl(y) and Cl(u) ✓ Cl(v). Our de-
sired mapping f↵ maps x into y by preserving colours.
(That is where f↵ need not be order preserving embed-
ding). So, it su�ces to construct a computable quasi-
isometric embedding from ↵1 = u! to �1 = v!. Let
X = {x1, . . . , xk} be the set of all colours that appear in
↵1, and hence in �1. Let ai be the number of times that
colour xi appears in v. Clearly ai > 1. Consider the
new string v1 obtained by writing v exactly a1+ . . .+an
times, that is, v1 = (v)a1+a2+...+an . There exists an em-
bedding f 0 from u into v1 that preserves colours and the
order. Just like in the theorem above, we can propa-
gate this mapping f 0 to a colour preserving embedding
f↵ from ↵1 into �1. The map f↵ : ↵ ! � thus built is a
desired function.

Proof of Proposition 3.8:
Let f : ↵ ! � be a quasi-isometry. First we decompose

it to ↵
f 0

�! �2
f3�! �, where f 0 is monotonic and f3 is a

bijection. By Small Cross Over Lemma we have a bound
D < 0 such that f(m) � f(n) > D for all n < m. Let
{(ni,mi)}i2I be the set of all pairs of natural numbers
such that ni < mi and f(mi) � f(ni) = D, where I is
an at most countable index set that depends on f . We
define �̃ as the sequence that is same as � except that
colours of the position ni and mi are swapped for each
i 2 I: that is,
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�̃(n) =

8
><

>:

�(mi) (n = ni)

�(ni) (n = mi)

�(n) (otherwise)

Notice that ni,mi, nj and mj are all distinct element
for distinct i, j 2 I, and hence the above definition is
well-defined. Also let f̃ be a function that executes this
swapping, i.e. f̃(mi) = ni, f̃(ni) = mi and f̃(n) = n
otherwise. It is easy to show that f̃ � f is a QI map
from ↵ to �̃ such that f̃ � f(m) � f̃ � f(n) > D + 1 for
all n < m. Iterating this procedure (�D) times we get
�2 and a bijective QI map g : � ! �2 such that g � f
is monotonic. let f 0 = g � f and f3 = g�1. From the
construction it is clear that g�1 is a finite composition
of certain atomic crossing functions.

Now we decompose f 0 to ↵
f1�! �1

f2�! �2, where f1
is a monotonic injection and f2 is a monotonic surjec-
tion. For �2 = c1c2 . . ., let �1 = (c1)n1(c2)n2 . . ., where
ni = max{1, |f�1

1 (ci)|}. Let f1 be a map that sends each
interval f 0(ci) in ↵ to (ci)ni in �1 in an obvious injective,
monotonic way. Also let f2 be a map that sends each
(ci)ni in �1 to ci in �2. This is the desired decomposition.

Proof of Lemma 3.10
Let ↵ = u1u2 . . . and � = v1v2 . . . be witness partitions.
Let � = w1w2 . . . be a partition such that |wn| = |vn|
for all n. We construct a strictly increasing sequence
{nk}k2N such that vnk . . . vnk+1�1 v wnk . . . wnk+1�1

for each k. Through the proof we identify a finite se-
quence un in a partition ↵ = u1u2 . . . and an interval
[|u1 . . . un�1|, |u1 . . . un|� 1] in ↵, and write as “a 2 un”
for given a 2 N.
For simplicity we assume f satisfies the following con-

ditions:

1. f is characterised by {ai, bi}i2N such that C(ai) 6=
C(bi) for all i 2 N.

2. For each i, if ai 2 wn then bi 2 wm for some m < n.

3. For each i, if ai 2 wn then bi+1 2 wn.

This is the most complicated situation we encounter,
and the general case can be proved in a similar way.
Further we can assume m = n� 1 in the condition 2, as
otherwise we can regard vm . . . vn�1 as a single interval
in the partition and do the same argument. Similarly we
can also assume a1 2 u1. Hence our assumption on f is
simplified as follows:

1. f is characterised by {ai, bi}i2N such that C(ai) 6=
C(bi) for all i 2 N.

2. For each i, ai 2 ui and bi 2 ui+1.

The following claim is the crucial part of our proof.

Claim. Let n 2 N be given. If C(bn) 2 C(wn+i) for
some 1 6 i 6 |⌃|, then there exists j such that 1 6 j 6
|⌃|(⌃ + 1) such that vn+1 . . . vn+j v wn+1 . . . wn+j and
c(bn+j) 2 c(wn+j+i0) for some 1 6 i0 6 |⌃|.
First notice that for given n, there are n1, n2 2

{n, . . . , n+ |⌃|} such that n1 < n2 and C(bn1) = C(bn2):
this is immediate from the pigeonhole principle. Notice
that this implies that C(bn1) 2 C(wn2) and n2 � n1 6
|⌃|� 1. Also for given n, let

A = {m | m > n ^ C(am) 62 C(wn+1 . . . wm)}.

Then |A| 6 |⌃| � 1, as m 2 A only if C(am) 6= C(an),
and for any distinct m,m0 2 A we have C(am) 6= C(a0m).
Now assume C(bn) 2 C(wn+i) holds for some 1 6

i 6 |⌃|. From the facts above, we have 1 6 m 6 |⌃|2
such that for all m0 6 |⌃| we have C(bn), C(an+m+m0) 2
C(wn+1 . . . wn+m+m0). Notice that from this we have
vn+1 . . . vn+m+m0 v wn+1 . . . wn+m+m0 . Finally, we can
find m0 and i0 such that m0 < m0 + i0 6 |⌃| and
C(bn+m+m0) = C(bn+m+m0+i0), hence C(bn+m+m0) 2
C(wn+m+m0+i0), where 1 6 i0 6 |⌃|. This m+m0 is the
desired j.

Now let find n such that u1 . . . un v w1 . . . wn and
C(bn) 2 C(wn+i) for some 1 6 i 6 |⌃|, then iterate
finding j in the claim above. This is a procedure that
gives the desired {nk}.

Proof of Proposition 3.12:
We now prove that no eventual embeddings exist wit-
nessing quasi-isometry between ↵ and �.
Assume that f : ↵ ! � and g : � ! ↵ are eventual

embeddings with constants Af , Bf and Ag, Bg witness-
ing quasi-isometry. Let in and in + 1 be the sequence
of consecutive positions in ↵ with colour 0. Since f is
quasi-isometry we have

|f(in + 1)� f(in)| 6 Af |in+1 � in|+Bf = Af +Bf .

There exists a position in such that f(in) < f(in+1) and
the number of consecutive 1s immediately on the right
side of f(in) is greater that Af +Bf . Hence, f(in+1)�
f(in) > Af + Bf . This is a contradiction with quasi-
isometry.
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Proof of Proposition 3.13:
Constructing a quasi-isometry f : ↵ ! � is straight-
forward, since eliminating 0 2n+1

2
for each n 2 N from

� we have the sequence ↵. We define g : � ! ↵ as a
map that sends certain intervals in � to intervals in ↵
monotonically and as equally as possible, as follows:

• g maps each sequence 0n(⇤)n1n in � to the sequence
02n(⇤)2n12n in ↵;

• 1n(⇤)n0 2n+1
2

in � to 12n(⇤)6n+202n+1 in ↵; and

• 0 2n+1
2

(⇤)2n+10n+1 in the string � to the sequence

02n+1(⇤)2n+112n+1(⇤)6n+302(n+1) in ↵.

Then g is a monotonic embedding and satisfies d(i, j) 6
d(g(i), g(j)) 6 6d(i, j), thus it is a witness for quasi-
isometric embedding.
For non-colour equivalence, assume the contrary and

let ↵ = u1u2... and � = v1v2... be a witness. We should
have only finitely many ui and vi that contain more than
one occurrences of 0 and/or 1, since otherwise we do not
have a bound of |ui| or |vi|. Let I 2 N be a number such
that for all i > I this does not happen.
Let p > I and suppose up contains 1n. Then vp con-

tains 1n+k for some k 2 Z, and for all 1n0 and p0 > I
such that up0 contains 1n0 , vp0 contains 1n0+k (otherwise
some up0 or vp0 contains multiple 1s).
Now suppose p0 > p > I and up and up0 contain 1n

and 1n+1, respectively. Then from the construction of ↵
there should be exactly one q 2 [p + 1, p0 � 1] with the
corresponding interval uq contains 0. On the other hand
vp and vp0 contain 1n+k and 1n+k+1, respectively, and
from the construction of � we should have two elements
in [p+1, p0� 1] with the corresponding interval contains
0, which is the contradiction.

Proof of Corollary 4.8:
Let M be a Büchi automaton. Our goal is to find at-
lases from the list provided in Theorem 4.7 such that the
union of these atlases coincides with the atlas [L(M)].
For this, we decompose M into k automata M1, . . .,
Mk so that the equality (?) holds and each Mi satis-
fies the postulate. This decomposition can be done in
linear time on the size of M (e.g. using Tarjan’s algo-
rithm that decomposes a directed graph into strongly
connected components). Now for each Mi, we check the
assumptions of Lemma 4.3 through Lemma 4.6. This
can also be done in linear time.

As an example, the assumptions of Lemma 4.3 can be
checked as follows. Assume that the automaton under
consideration is Mi. In order to check if Mi contains
a 0-loop, we remove all transitions labeled with 1 from
the state diagram of Mi. This gives us a directed graph
whose edges are transitions labelled with 0. In this graph
we check if there is a loop. If there exists a loop, then
Mi has a 0-loop. Otherwise Mi does not have a 0-loop.
Similarly, to check if Mi contains a 1-loop, we remove
all transitions labeled with 1. This gives us a directed
graph. If there is a loop in this directed graph, then Mi

has a 1-loop; Otherwise, not. To find the setX from (the
statement of) the Lemma we just need to check which
of the strings 0!, 1!, 10!, 01! is accepted by Mi. This
can also be done in linear time on the size of Mi.

The argument shows that we can find, in linear time
on size of M, the atlases from the list provided in The-
orem 4.7 such that the union of these atlases is the atlas
[L(M)]. Thus, given Büchi automata A and B we can
decide in linear time if [L(A)] = [L(B)].

Proof of Theorem 5.2:
Assume that ↵ and � are (A,B)-quasi-isometric. The
tree T (↵,�, A,B) is infinite by the Lemma above. Such a
tree has a path computable in the halting set for the tree
[10]. The tree, as we constructed above, is computable
in ↵ and �. This proves the first part.

We prove the second part of the theorem. By Lemma
5.1 computable strings ↵ and � are quasi-isometric if
and only if there exists are constants A,B such that the
computable tree T (↵,�, A,B) is infinite. This is a ⌃0

3-
statement. Hence, the quasi-isometry problem between
computable strings ↵ and � is a ⌃0

3-set. To prove that the
problem is complete, we reduce a ⌃0

3-complete problem
to the quasi-isometry problem. Below is an informal
explanation of the reduction.

Let W0,W1, . . . be a standard enumeration of all c.e.
sets. It is known that the set Fin = {i | Wi is finite} is a
⌃0

3-complete problem [12]. For each Wi we need to con-
struct ↵i and �i two infinite strings such that Wi is finite
if and only if ↵i and �i are quasi-isometric. For this we
start enumerating Wi by stages 1, 2, . . .. At stage 0, we
consider ↵i,0 and �i,0 finite prefixes that can be extended
to a (1, 1)-quasi-isometry and set A0 = B0 = 1. By stage
s we will have a finite prefixes ↵i,s�1 of ↵i and �i,s�1 of
�i built. If at stage s the enumeration of Wi outputs a
new element, then we start extending ↵s and �s so that
the following holds. If Wi never increases its size from
stage s on then ↵ and � are (As, Bs)-quasi-isometric but
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not (As�1, Bs�1)-quasi-isometric, where As > As�1 and
Bs > Bs�1. This can easily be achieved in two steps. In
the first step, one ensures that a large part of ↵ contains
a long consecutive sequence of elements of one colour,
and the same positions of � have another colour. This
will guarantee that ↵i and �i are not (As�1, Bs�1)-quasi-
isometric. In the second step, one ensures that those long
sequences in the first step do not conflict with (As, Bs)-
quasi-isometry and one can continue on extending ↵i,s

and �i,s so that they are (As, Bs)-quasi-isometric. Thus,
if Wi is infinite then there is an infinite sequence s1, s2,
. . . of increasing stages at which the enumeration of Wi

increases the size of Wi. Hence, from stage si, it is guar-
anteed that ↵ and � are not (Asi , Bsi)-quasi-isometric.
This implies that Wi is infinite then ↵i and �i are not
quasi-isometric.

Proof of Theorem 6.7:
Let h : ↵ ! � be an (A,B)–quasi-isometry, and g :
� ! ↵ be a (C,D)–quasi-isometry. They induce quasi-
isometries between Xn,↵ and Xn,� . In particular, for the
function h and each Xn,↵ and Xn,� we have:

(1/A) · dn(i, j)�B/s(n) 6
dn(h(i), h(j)) 6 A · dn(i, j) +B/s(n),

where i, j and h(i), h(j) are elements of the spaces Xn,↵

and Xn,� , respectively. Hence, we have

(1/A) · |an � bn|/s(n)�B/s(n) 6 dn(h(an), h(bn))
6 A · |an � bn|/s(n) +B/s(n).

Taking the limits and setting H(a) = (h(an))n>0, we get

(1/A) ·D(a,b) 6 D(H(a), H(b)) 6 A ·D(a,b).

So, the desired CH is just A. The function G is con-
structed the same way. Both H and G preserve colours.

Continuity and injectivity of G and H immediately
follow from the bi-Lipschitz condition. This implies that
both G and H are order preserving mappings as well.
Surjectivity ofH follows from the condition put on quasi-
isometry h: for every a0 2 � there exists an a 2 ↵
such that |a0 � h(a)| 6 A. Hence for any bounded se-
quence (a0n)n>0 there exists a sequence (an)n>0 such that
D(H(a),a0) = 0, that is, h(a) = a0.
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