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Abstract

In this paper, we present efficient quadratic unconstrained binary optimization
(QUBO) formulations for the mixed dominating set and the weighted mixed dominat-
ing set problems, which are both NP-hard. By using a D-Wave 2X quantum computer
with 1098 active qubits, the QUBO formulation of the unweighted mixed dominating
set is tested on several small graphs. In every test graph, 30K samples were taken
on the D-Wave computer in two different execution modes (with and without post-
processing optimization). The experimental results achieved optimal answers in the
majority of the cases. The correctness of the formulations are proven, establishing
empirical evidence that our formulation and their implementations are correct.

Keywords: Adiabatic quantum computing; Quadratic Unconstrained Binary Op-
timization; Ising/QUBO formulation; Mixed dominating set; Weighted mixed domi-
nating set.

1 Introduction

Recently, adiabatic quantum computation (AQC) has attracted attention in the computing
community. With respect to the standard quantum circuit model of quantum computation,
the AQC model is equivalent with polynomial overhead [1, 15]. AQC is based on the adiabatic
principle to approximate solutions of the Schrödinger’s equation [6].

One of the pioneers in producing quantum computing computers is the company D-Wave,
which has a general-purpose Ising (or QUBO, defined later) problem-solving hardware. These
formulated problems correspond to finding the minimum energy state of a system modeled
by Schrödinger’s equation.

Since the Ising problem is an NP-hard problem [5], the standard way to solve a hard com-
binatorial optimization problem with D-Wave machine is to find an equivalent Ising/QUBO
formulation (with polynomial-time reduction).
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A set of vertices D in a graph G = (V,E) is called a dominating set of G if every vertex
in V − D is adjacent to at lest one vertex in D. The dominating set problem is to find
a dominating set with minimum cardinality. For general graphs, the decision version of
the dominating set problem is NP-complete. Depending on applications, variations of the
problem have been defined. One such problem is the mixed dominating set problem, also
know as the total cover problem, it was introduced by Alavi et. al in 1977 [3]. For a given
simple graph G = (V,E), a vertex v of G is said to mixed dominates itself, all edges incident
to v and all vertices adjacent to v. Similarly, an edge e of G is said to mixed dominates
itself, the two end vertices of e, and all edges adjacent to e. A set D ⊆ V ∪ E is called a
mixed dominating set if each element of V ∪ E is mixed dominated by some element of D.
The mixed domination number of G, denoted by γm(G), is the minimum size of a mixed
dominating set in G. One of the known applications of Mixed Dominating Set Problem is
the placement of phase measurement units (PMUs) in electrical power systems [17].

The Mixed Dominating Set Problem is NP-hard for general graphs [11] and remains
NP-hard when instances are restricted to chordal graphs [9], planar bipartite graphs of
maximum degree 4 [12] and split graphs [17, 10]. Finding a mixed dominating set with
minimum cardinality is tractable for some family of graphs such as trees [11, 8] and cactus
graphs [10]. Recently, a dynamic programming algorithm is proposed to solve the Mixed
Dominating problem for graphs with bounded tree-width tw in O(3tw2× tw2×|V |) time [13].

The focus of this paper is to use the mathematical QUBO model to solve the mixed
Dominating Set Problems and its weighted version. The extension of the Mixed Dominating
Set Problem to the Weighted Mixed Dominating Set Problem is proposed (for the first time).
Since the problem of finding the optimal locations of phasor measurement units (PMUs) in
a given power system is considered with weights [16, 4, 2], therefore the proposed method
can be used in analysis for such systems. The rest of paper is organized as follows. In
Section 2, we review some basic definition and notions. In Section 3, we present efficient
QUBO formulations, along with proof of correctness, of the Mixed Dominating Set Problem
and the Weighted Mixed Dominating Set Problem. The last section concludes with our
experimental results.

2 Preliminaries

In this section, we introduce the necessary background knowledge and notations for what is
to follow.

The cardinality of a set X is denoted by |X|. By lg we denote the logarithm function in
base 2.

A graph G = (V,E) consists a finite non-empty set of vertices V together with a set of
edges E. The order of G, denoted by n, is the number of vertices. The vertices are labelled
by V = {vi | 0 ≤ i < n}. The E consists of unordered pairs of vertices u, v ∈ V . We denote
an edge by e = uv or e = {u, v}, since uv and vu are considered the same edge, it will always
be referred to with u < v. The number of edges, denoted by m, is called the size of G. Two
vertices u and v are said to be adjacent (neighbors) if there is an edge uv ∈ E. The number
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of neighbors a vertex v, denoted by ∆(v), is called the degree of v. Furthermore, if u and v
are two vertices in V and uv is an edge in E, then we say that the edge uv is incident to the
vertices u and v. Two edges uv and u′v′ are said to be edge-incident if they share a common
vertex. The set of neighbors of a vertex v will be denoted by N(v), and the set of edges
incident to v will be denoted by I(v). The set of edge-incident edges of an edge e will also be
denoted by I(e). For notational convenience, we define the following mixed-neighborhood
function:

Nmd(x) : V ∪ E → V ∪ E

and

Nmd(x) =

{
N(x) ∪ I(x), if x ∈ V
I(x) ∪ {u, v}, if x = uv ∈ E

Given a graph G = (V,E), a mixed dominating set of G is a subset MD ⊆ (V ∪E) such
that for all x ∈ V ∪E, either x ∈MD or MD ∩Nmd(x) 6= ∅. The Dominating Set Problem
formally defined below involves finding the smallest of such set.

Mixed Dominating Set Problem:

Instance: A graph G = (V,E).
Question: What is the smallest subset MD of V ∪ E such that MD is a mixed

dominating set of G?

3 QUBO Formulation

QUBO is an NP-hard mathematical optimization problem of minimizing a quadratic objec-
tive function x∗ = xTQx, where x = (x0, x1, . . . , xn−1) is a n-vector of binary (Boolean)
variables and Q is an upper-triangular n× n matrix. Formally, QUBO problems are of the
form:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}.

3.1 Mixed Dominating Set

We provide a simple QUBO formulation of the Mixed Dominating Set problem that is
inspired by [7]. Given a graph G = (V,E) with n vertices, let V = {v0, v1, . . . , vn−1}. We
use one binary variable for each vertex, and one binary variable for each edge in the graph.
Variables for both sets will be denoted by xi,j, we follow the convention that xi,j corresponds
to vertex vi if i = j. Otherwise it corresponds to the edge ij if i 6= j. Since there is a natural
correspondence between the binary variables xi,j and elements in the set V ∪E, to improve
the readability of the objective function, we will use them interchangeably in what follows.

The objective function to be minimized is of the form:

F (x) =
∑
vi∈V

xi,i +
∑
ij∈E

xi,j + A
∑

xi,j∈(V ∪E)

Pi,j (1)
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where

Pi,j =

1−
(
xi,j +

∑
xu,v∈Nmd(xi,j)

xu,v

)
+

blg(|Nmd(xi,j)|)c∑
k=0

2kyi,j,k

2

Note that in objective function (1), we have also introduced blg(|Nmd(xi,j)|)c+ 1 redundant
variables for each variable xi,j. These variables are necessary for counter balance unnecessary
penalties when more than one element in the mixed-neighborhood of a vertex or edge is
chosen to be in the mixed dominating set.

Assume x∗ = minx F (x) and x∗ is the corresponding variable assignment. To obtain
a solution of the Mixed Dominating Set Problem, we use an additional decoder function
D(x) : Z|x|2 → 2V ∪E and take D(x) = {vi | xi,i = 1} ∪ {ei,j | xi,j = 1}, a subset of V ∪ E as
the mixed dominating set.

In the objective function, A > 1 is a positive real constant, the sum of
∑

vi∈V xi,i and∑
ij∈E xi,j represents a penalty for the size (number of elements) of the chosen set, and Pi,j

serves as a penalty if an incorrect set is chosen. If the assignment of the variables is a mixed
dominating set, then for each xi,j, we have xi,j +

∑
xu,v∈Nmd(xi,j)

xu,v ≥ 1. And therefore

1 − (xi,j +
∑

xu,v∈Nmd(xi,j)
xu,v) ≤ 0. In the worst case, 1 − (xi,j +

∑
xu,v∈Nmd(xi,j)

xu,v) =

−|Nmd(xi,j)| where the element xi,j corresponds to and all the other elements in its mixed-
neighborhood are chosen, so a total number of blg(|Nmd(xi,j)|)c+ 1 redundant variables are
needed to represent integers up to |Nmd(xi,j)|.

Theorem 1. Let x∗ and x∗ be the optimal value and its corresponding variable assignment
of objective function (1). Then D(x∗) is a minimum mixed dominating set of G.

Proof. First, we show that it is always possible to transform a variable assignment that does
not map to a mixed dominating set under the decoder function D into an assignment, which
does with a smaller value in objective function (1).

Suppose we have x∗ = minx F (x) and D(x∗) is not a mixed dominating set where x∗

corresponds to the variable assignment yielding x∗. Then there must exist some elements
such that these elements themselves nor any elements in their mixed-neighborhood are in
D(x∗). Then the corresponding penalty Pi,j for each of these elements will be 1 by the
definition of Pi,j. Therefore, if we set the corresponding xi,j of these elements to 1, then for
each one of them, a penalty of size 1 will be added to the term

∑
vi∈V xi,i if the element is a

vertex, or a penalty of size 1 will be added to the term
∑

ij∈E xi,j if the element is an edge.
Furthermore, the corresponding Pi,j will be reduced to 0 and so F (x∗) will be reduced by at
least A− 1. Hence the solution from x∗ = minx F (x) will always be a mixed dominating set.

The second part of the proof is to show that an assignment of x that produces a smaller
dominating set will have a smaller value in the objective function. This is trivial as if D(x)
is a mixed dominating set, then each Pi,j will have to be 0, so the value of the objective
function solely depends on the sum of

∑
vi∈V xi,i and

∑
ij∈E xi,j. By the definition of the

decoder function D(x), an assignment with a smaller sum will be mapped to a smaller mixed
dominating set.
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3.2 Mixed Dominating Set C3 Example

In this subsection, we will provide an example of the QUBO formulation (1) on the graph
C3. Formally, The cycle graph C3 is defined as follows. The vertices of C3 are V = {0, 1, 2}
and the edges are E = {{0, 1}, {0, 2}, {1, 2}}. It can be visualized as a 2-dimensional triangle
where the each corner of the square is a vertex.

Similar to what was presented in [7], objective function (1) will be modified as follows.
Constant terms are ignored, and all linear terms are replaced by the square of that term,
that is, we will replace all xi,j and yi,j,k by x2i,j and y2i,j,k respectively. These changes will not
impact the optimality of any optimal variable assignments of the objective function (see [7]
for more details).

After applying the two steps described in the paragraph above and summing up similar
terms, with A = 2, we compute the coefficients of the each quadratic term in the new
expression and present its matrix form in Table 1.

Table 1: Mixed Dominating Set QUBO matrix for C3

variables x0,0 x1,1 x2,2 x0,1 x0,2 x1,2 y0,0,0 y0,0,1 y0,0,2 y1,1,0 y1,1,1 y1,1,2 y2,2,0 y2,2,1 y2,2,2 y0,1,0 y0,1,1 y0,1,2 y0,2,0 y0,2,1 y0,2,2 y1,2,0 y1,2,1 y1,2,2
x0,0 -9 16 16 16 16 16 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16 0 0 0
x1,1 -9 16 16 16 16 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16 0 0 0 -4 -8 -16
x2,2 -9 16 16 16 -4 -8 -16 -4 -8 -16 -4 -8 -16 0 0 0 -4 -8 -16 -4 -8 -16
x0,1 -9 16 16 -4 -8 -16 -4 -8 -16 0 0 0 -4 -8 -16 -4 -8 -16 -4 -8 -16
x0,2 -9 16 -4 -8 -16 0 0 0 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16
x1,2 -9 0 0 0 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16 -4 -8 -16

y0,0,0 6 8 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,0,1 16 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,0,2 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y1,1,0 6 8 16 0 0 0 0 0 0 0 0 0 0 0 0
y1,1,1 16 32 0 0 0 0 0 0 0 0 0 0 0 0
y1,1,2 48 0 0 0 0 0 0 0 0 0 0 0 0
y2,2,0 6 8 16 0 0 0 0 0 0 0 0 0
y2,2,1 16 32 0 0 0 0 0 0 0 0 0
y2,2,2 48 0 0 0 0 0 0 0 0 0
y0,1,0 6 8 16 0 0 0 0 0 0
y0,1,1 16 32 0 0 0 0 0 0
y0,1,2 48 0 0 0 0 0 0
y0,2,0 6 8 16 0 0 0
y0,2,1 16 32 0 0 0
y0,2,2 48 0 0 0
y1,2,0 6 8 16
y1,2,1 16 32
y1,2,2 48

It is fairly easy to verify that any two vertices/edges from V ∪ E is a minimum mixed
dominating set for C3 so we have a total of

(
6
2

)
= 15 optimal solutions. For instance, we

have
x = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

as one of the optimal solutions and D(x) = {0, 1}. Note that the variables y2,2,0 and y0,1,0
are also set to 1 to counter balance the fact that vertex 2 and edge {0, 1} are being covered
by two elements.
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3.3 Weighted Mixed Dominating Set

The formulation, which was provided in the previous section, can be modified quite easily to
adapt to weighted graphs. The definition of the Mixed Dominating Set Problem is slightly
different in weighted graphs. For the weighted problem, each element in V ∪ E is assigned
a real positive weight wi,j. Once again, we follow the convention that wi,j is the weight
assigned to vertex vi if i = j, otherwise, it is the weight assigned to the edge ij if i 6= j. The
goal is to find a mixed dominating set that has a minimum sum of the weights. Formally,
we have the following definitions.

The input to the Weighted Mixed Dominating Set Problem consists of a graph
G = (V,E) as well as a weight function W : V ∪ E → R+ that maps each vertex and edge
in G to some positive real weights. The weighted sum function S : 2V ∪E → R+ is defined as
S(MD) =

∑
x∈MDW (x). The goal is to find a mixed dominating set MD such that S(MD)

has the minimum value over all possible mixed dominating sets.

We restrict to positive weights in the problem defined above. Any elements associated
with a non-positive weight would always be added to a minimum solution and we could
reduce to a strictly positive subproblem.

For the Weighted Dominating Set problem, the objective function F (x) is almost identical
to the unweighted version. With wi,j = W (xi,j), we have

F (x) =
∑
vi∈V

wi,ixi,i +
∑
ij∈E

wi,jxi,j + A
∑

xi,j∈(V ∪E)

Pi,j (2)

where

Pi,j =

1−
(
xi,j +

∑
xu,v∈Nmd(xi,j)

xu,v

)
+

blg(|Nmd(xi,j)|)c∑
k=0

2kyi,j,k

2

Every term serves the same purpose here except that A has to be picked with the property
that A > max{wi,j | xi,j ∈ V ∪ E}. Finally, we take D(x) = {vi | xi,i = 1} ∪ {ei,j | xi,j = 1}
as the solution at the end. The following proof of correctness of the above formulation is
very similar to the proof of the unweighted version as well.

Theorem 2. Let x∗ and x∗ be the optimal value and its corresponding variable assignment
of objective function (2). Then D(x∗) is a minimum weighted mixed dominating set of G.

Proof. First, we show that it is always possible to transform a variable assignment that does
not map to a mixed dominating set under the decoder function D into an assignment which
does with a smaller value in objective function (2).

Suppose we have x∗ = minx F (x) and D(x∗) is not a mixed dominating set where x∗

corresponds to the variable assignment yielding x∗. Then there must exist some elements
such that these elements themselves nor any elements in their mixed-neighborhood are in
D(x∗). Then the corresponding penalty Pi,j for each of these elements will be 1 by the
definition of Pi,j. Therefore, if we set the corresponding xi,j of these elements to 1, then for
each one of them, a penalty of size wi,i will be added to the term

∑
vi∈V xi,i if the element is a

6



vertex, or a penalty of size wi,j will be added to the term
∑

ij∈E xi,j if the element is an edge.
Furthermore, the corresponding Pi,j will be reduced to 0 and so F (x∗) will be reduced by at
least A− wi,j. Hence the solution from x∗ = minx F (x) will always be a mixed dominating
set.

The second part of the proof is to show that an assignment of x that produces a smaller
weighted dominating set will have a smaller value in the objective function. This is trivial as
if D(x) is a mixed dominating set, then each Pi,j will have to be 0, so the value of the objective
function solely depends on the sum of

∑
vi∈V wi,ixi,i and

∑
ij∈E wi,jxi,j. By the definition

of the decoder function D(x) and the weighted sum function S(MD), an assignment with
a smaller value in objective function (2) will be mapped to a mixed dominating set with a
smaller weighted sum.

4 Computation Results

We tested our unweighted mixed dominating set QUBO formulation for several small graphs
on a D-Wave 2X computer with 1098 active qubits. See [7] for more information about this
computer. The results are highlighted in Table 2 using the programs listed in Appendices A–
D. We took 30K samples for each test case in two different modes, with and without post-
processing optimization. The later mode does a little bit of deterministic search to find local
optimal answers, starting at the sample state. Only slightly better answers were obtained
for the second mode, which is reflected in the majority of the “Minimum D-Wave” column
of the table. The number of logical qubits represents the size of our QUBO matrices and
the physical qubits represents the total size, after doing a minor embedding of the QUBO
graph structure onto the physical D-Wave machine. The maximum chain size indicates how
good the embedding is with a lower number generally better. The last column of the table
is the mixed dominating number (optimal answer) computed by an Integer Program solver
using Sage mathematical system [14] (see Appendix E). As can be observed in the table, we
obtained the expected optimal answer from the D-Wave computer in most instances.

The total running time using default API parameters for about 10K samples on the D-
Wave is about 3770000µs, with the bulk of the time about 3700000µs reading samples. Only
about 20000µs was used for programming/loading the QUBO problem and about 117000µs
and 404000µs for postprocessing (non-optimized and optimized, respectively). The total
wall/real-time, which includes substantial network connection and queue time, for taking all
60K samples was about 45 minutes. For comparison, our sage exact solver could find all
graphs’ optimal answer was about 30 seconds.
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Table 2: Results for some small graphs families for Mixed Dominating Set.

Logical Physical Maximum Minimum Minimum Minimum Optimal

Graph Order Size Qubits Qubits Chain Size PostProc Default PostProc Optimize D-Wave Answer

Bull 5 5 38 264 17 2 2 2 2

Butterfly 5 6 45 390 20 3 3 3 3

C4 4 4 32 179 12 2 2 2 2

C5 5 5 40 240 14 2 3 2 2

C6 6 6 48 352 20 3 3 3 3

C7 7 7 56 329 14 3 4 3 3

C8 8 8 64 374 14 5 4 4 4

C9 9 9 72 546 25 5 6 5 4

C10 10 10 80 478 15 7 7 7 4

C11 11 11 88 541 16 6 7 6 5

C12 12 12 96 602 17 8 7 7 5

Diamond 4 5 36 332 19 2 2 2 2

Grid2x3 6 7 52 485 26 3 3 3 3

Grid3x3 9 12 85 871 36 5 5 5 4

Hexahedral 8 12 80 925 37 4 4 4 4

House 5 6 44 387 23 2 2 2 2

K2 2 1 9 28 6 1 1 1 1

K3 3 3 24 119 12 2 2 2 2

K4 4 6 40 316 17 2 2 2 2

K2x3 5 6 44 353 18 2 2 2 2

K3x3 6 9 60 669 30 3 3 3 3

S2 3 2 16 59 8 1 1 1 1

S3 4 3 25 135 10 1 1 1 1

S4 5 4 33 203 12 1 1 1 1

S5 6 5 40 337 18 1 1 1 1

S6 7 6 47 468 20 2 2 2 1

S7 8 7 61 790 40 2 2 2 1

S8 9 8 70 879 45 2 1 1 1‘
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A Python utilities for mixed domination number

#!/usr/bin/python3

#

# utilites for MDS scripts

import sys

import networkx as nx

# input graph in adjacency list format

#

def read_graph(infile=sys.stdin):

n=int(infile.readline ().strip())

G=nx.empty_graph(n,create_using=nx.Graph())

for u in range(n):

neighbors=infile.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

# output graph in adjacency list format

#

def print_graph(G):

n=G.order()

print(n)

for u in range(n):

for v in G[u]: print(v,end=’ ’)

print()

# return mixed neighborhood for vertices (u,u) or edges (u,v)

#

def mixed_neighborhood( G, x ):

u,v=x[0],x[1]

result = []

if u == v:

for i in G.neighbors(u):

result.append ((i,i))

for edge in G.edges(u):

temp = (min(edge), max(edge))

result.append(temp)

else:

result.append ((u,u))

result.append ((v,v))

u_edges = G.edges(u)
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v_edges = G.edges(v)

for edge in u_edges:

temp = (min(edge), max(edge))

if temp != (u,v):

result.append(temp)

for edge in v_edges:

temp = (min(edge), max(edge))

if temp != (u,v):

result.append(temp)

return result

listings/MDS utilities.py

B Python program to generate QUBO

#!/usr/bin/python3

import networkx as nx

import sys , math

from MDS_utilities import *

def compute_pij(G, Q, x, var_index , red_var_index , red_var_num)

:

v = 0

for (i,j) in var_index:

index = var_index[i,j]

mixed_neigh = mixed_neighborhood(G, (i,j))

v = 1 - x[index]

for (a,b) in mixed_neigh:

temp = var_index [(a,b)]

v -= x[temp]

red_index = red_var_index[i,j]

red_num = red_var_num[i,j]

for k in range(red_num):

v += (2**k * x[red_index+k])

print(’P’, (i,j), ’=’, v)

def generateQUBO(G):

Q = {}

size = G.size()

order = G.order ()

total_num_vars = order + size
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# compute/index num of slack vars for vertices and edges

var_index = {}

red_var_index = {}

num_red_var = {}

i = 0

j = 0

for v in G.nodes ():

var_index[v,v] = i

i += 1

num = int(math.log (2*nx.degree(G,v) ,2))+1

num_red_var[v,v] = num

red_var_index[v,v] = j + total_num_vars

j += num

for (u,v) in G.edges():

var_index[u,v] = i

i += 1

md_neigh = nx.degree(G,u) + nx.degree(G,v)

num = int(math.log(md_neigh ,2))+1

num_red_var[u,v] = num

red_var_index[u,v] = j + total_num_vars

j += num

total_num_vars += j

# initialize Q

for i in range(total_num_vars):

for j in range(total_num_vars):

Q[i,j] = 0

for (u,v) in var_index:

i = var_index[u,v]

Q[i,i] += 1

A = 2

# encode P_i ,j

for (u,v) in var_index:

# -x_i ,j

i = var_index [(u,v)]

Q[i,i] -= (1 * A)

red_index = red_var_index[u,v]

red_num = num_red_var[u,v]

13



mixed_neigh = mixed_neighborhood(G, (u,v))

# -2 sum x_u ,v

for (a,b) in mixed_neigh:

i = var_index [(a,b)]

Q[i,i] -= (2 * A)

# + 2 * sum 2^k * y_i ,j,k

for k in range(red_num):

i = k + red_index

Q[i, i] += (2**(k+1) * A)

# +2 x_i ,j * sum x_u ,v

for (a,b) in mixed_neigh:

i = var_index[u,v]

j = var_index[a,b]

Q[i,j] += (2 * A)

# -2 x_i ,j * sum 2^k * y_i ,j,k

for k in range(red_num):

i = k + red_index

j = var_index[u,v]

Q[i,j] -= (2**(k+1) * A)

# sum x_u ,v * sum x_u ,v

for (a,b) in mixed_neigh:

i = var_index [(a,b)]

for (c,d) in mixed_neigh:

j = var_index [(c,d)]

Q[i,j] += (1 * A)

# -2 sum x_u ,v * sum 2^k * y_i ,j,k

for (a,b) in mixed_neigh:

j = var_index [(a,b)]

for k in range(red_num):

i = k + red_index

Q[i,j] -= (2**(k+1) * A)

# sum 2^k * y_i ,j,k * sum 2^k * y_i ,j,k

for k1 in range(red_num):

i = k1 + red_index

for k2 in range(red_num):

j = k2 + red_index

Q[i,j] += (2**(k1+k2) * A)
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# making Q upper -triangular

for i in range(total_num_vars):

for j in range(i+1, total_num_vars):

Q[i,j] += Q[j,i]

Q[j,i] = 0

return Q,total_num_vars

## main program ##

G=read_graph(sys.stdin)

Q,nvars=generateQUBO(G)

print(nvars , G.order (), G.size())

for i in range(nvars):

for j in range(nvars):

print(Q[i,j],end=’ ’)

print()

listings/MDS generate QUBO.py

C Python program to solve QUBO on D-Wave

#!/usr/bin/env python2

# MDS of graph QUBO (with embedding) -> Ising -> DWave

import sys , time , math , traceback

from dwave_sapi2.remote import RemoteConnection

from dwave_sapi2.util import get_hardware_adjacency

from dwave_sapi2.embedding import embed_problem , unembed_answer

from dwave_sapi2.util import qubo_to_ising

from dwave_sapi2.core import solve_ising

from sys import exc_info

# coupler streingth for embedded qubits of same variable

s,s2=1.0 ,1.0

print ’Embed scale=’,s,s2

assert len(sys.argv)==1
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# read input

line=sys.stdin.readline ().strip().split ()

n=int(line [0])

order=int(line [1])

size= int(line [2])

print’Logical qubits used=’, n, ’order=’, order , ’size=’, size

Q = {}

for i in range(n):

line=sys.stdin.readline ().strip().split ()

for j in range(n):

t = float(line[j])

if j>=i and t!=0: Q[(i,j)]=t

embedding=eval(sys.stdin.readline ())

print ’embedding=’, embedding

print ’Physical qubits used= %s’ % sum(len(embed) for embed in

embedding)

# create a remote connection and connect to solver

#

url = "https :// dwave.machine.com"

token = "mytoken"

solver_name = "DW2X"

print(’Attempting to connect to network ...’)

try:

remote_connection = RemoteConnection(url , token)

solver = remote_connection.get_solver(solver_name)

except:

print(’Error: %s %s %s’ % sys.exc_info () [0:3])

traceback.print_exc ()

A = get_hardware_adjacency(solver)

(H,J,ising_offset) = qubo_to_ising(Q)

# scale by maxV

maxH =0.0

if len(H): maxH=max(abs(min(H)),abs(max(H)))

maxJ=max(abs(min(J.values ())),abs(max(J.values ())))

maxV=max(maxH ,maxJ)

print len(H),maxH ,maxJ ,maxV
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for i in range(n):

if len(H)>i:

H[i]=H[i]/maxV

for j in range(n):

if j>=i and (i,j) in J:

J[(i,j)]=J[(i,j)]/maxV

# Embed problem into hardware

(h0 , j0, jc, new_emb) = embed_problem(H, J, embedding , A)

h1= [val*s for val in h0]

j1 = {}

for (key , val) in j0.iteritems ():

j1[key]=val*s

j1.update(jc)

# call the solver

result = solve_ising(solver , h1, j1, num_reads =10000 ,

postprocess=’optimization ’)

print ’result:’, result

newresult = unembed_answer(result[’solutions ’], new_emb ,

broken_chains=’vote’, h=H, j=J)

print ’newresult:’, newresult

for i, sol in enumerate(newresult):

print "solution", i, ’size=’, \

sum(x==1 for x in [sol[j] for j in range(order+size)]), \

[(1+ sol[j])/2 for j in range(n)] # Boolean/QUBO variables

listings/MDS run dwave.py

D Python program to verify solutions from D-Wave

#!/usr/bin/python3

# template for checking dwave answers

# usage: checkMDS.py graph.alist < graph.d.out

import sys

import networkx as nx

from MDS_utilities import *
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def testsol(X):

ans=sum(X[:n+m])

MV=set((v,v) for v in range(n) if X[v]==1)

ME=set(E[e-n] for e in range(n,n+m) if X[e]==1)

MDS=MV | ME

status=True

# test vertices are covered

for v in range(n):

if (v,v) in MV: continue

if set(mixed_neighborhood( G, (v,v) )) & MDS: continue

status=False

break

# test edges are covered

for (u,v) in G.edges():

assert u < v

if (u,v) in ME: continue

if set(mixed_neighborhood( G, (u,v) )) & MDS: continue

status=False

break

if status ==True: return ans

else: return -1

### main check program ###

assert len(sys.argv)==2

gfile=open(sys.argv[1],’r’)

G=read_graph(gfile)

n=G.order()

m=G.size()

E=G.edges()

minsol =999

mincnt =0

for line in sys.stdin:

if line.find(’solution ’)==0:

X=eval(line[line.find(’[’):])
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s=float(line[line.find(’size=’)+5: line.find(’[’) -1])

if s>minsol: continue

ans=testsol(X)

if ans <0: continue

if ans < minsol:

minsol=ans

mincnt =0

print(’new best:’,minsol)

if ans == minsol:

mincnt += 1

print(X)

print(minsol ,mincnt)

listings/MDS check.py

E Sage program for mixed domination number

#!/usr/bin/env sage

import sys , networkx as nx

def read_graph(graphFile=sys.stdin):

n=int(graphFile.readline ().strip())

G=nx.empty_graph(n,create_using=nx.Graph())

for u in range(n):

neighbors=graphFile.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

G=read_graph ()

n=G.order()

#print ’Graph ’, [(u,v) for (u,v) in G.edges ()]

p=MixedIntegerLinearProgram(maximization=False , solver="GLPK")

x=p.new_variable(binary=True)

#p.set_binary(x)

var_index = {}

counter = 0

for v in G.nodes ():
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var_index[v] = counter

counter += 1

for (u, v) in G.edges ():

var_index[u,v] = counter

var_index[v,u] = counter

counter += 1

for u in G.nodes ():

p.add_constraint(x[var_index[u]]

+ sum(x[var_index[v]] for v in G[u])

+ sum(x[var_index[e]] for e in G.edges(u)), min = 1)

for (u,v) in G.edges():

p.add_constraint(x[var_index[u]]+x[var_index[v]]

+ sum(x[var_index[e]] for e in G.edges(u))

+ sum(x[var_index[e]] for e in G.edges(v)), min = 1)

p.set_objective(sum(x[var_index[v]] for v in G.nodes ())

+ sum(x[var_index[e]] for e in G.edges () ))

try:

sz=p.solve()

except sage.numerical.mip.MIPSolverException as e:

pass

else:

print "Mixed domination number is", sz

listings/MDS IP.sage
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