
CDMTCS
Research
Report
Series

The Travelling Salesman
Problem in cP Systems

James Cooper and Radu Nicolescu
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-510
August 2017

Centre for Discrete Mathematics and
Theoretical Computer Science



The Travelling Salesman Problem in cP Systems

James Cooper and Radu Nicolescu
Department of Computer Science

The University of Auckland, Private Bag 92019
Auckland, New Zealand

jcoo092@aucklanduni.ac.nz

r.nicolescu@auckland.ac.nz

Abstract

The Travelling Salesman Problem (TSP) is a long-standing and well-known NP-hard problem,
concerned with computing the lowest cost Hamiltonian cycle on a weighted graph. Many solutions
to the problem exist, including some from the perspective of P Systems, almost all of which have
combined membrane computing with other approaches for approximate solution algorithms. A
recent paper presented a brute-force style P Systems solution to the TSP, exploiting the ability of P
Systems to reduce time complexity in exchange for space complexity, but the resultant system had
a relatively high number of rules. Inspired by this paper, and seeking a more concise representation
of a brute-force TSP algorithm, we have devised a P Systems algorithm based on cP Systems which
requires five rules and takes n + 3 steps. This paper describes said algorithm and an example use
of it, and summarises simulations of the system written in Prolog and F#.
Keywords: Graph theory, Hamiltonian cycles, Travelling Salesman Problem, P Systems, cP Sys-
tems.

1 Introduction

The Travelling Salesman Problem (TSP) is a long-standing, well-known computationally (NP-) hard
problem in Computer Science and related fields. Briefly, the problem is about finding the minimum cost
Hamiltonian cycle in a weighted graph, where a Hamiltonian cycle is a traversal of the graph that ends
where it began, but visits every node exactly once after the start. It has been described as analogous
to finding the shortest route for a travelling salesman to visit multiple cities in one trip (whence the
name). The problem has been studied extensively, spawning many papers, dissertations and books on
the topic (e.g. [16, 4, 3, 1] amongst many, many others), and many sophisticated algorithms have been
developed to efficiently solve the problem, in either the exact or approximate case. This paper does
not seek overturn this prior body of work. Instead, it seeks to address the problem from a P Systems
perspective.

A small amount of work has been done on the TSP from the perspective of membrane computing, be-
ginning with the work of Nishida [13], who used a combination of a membrane structure and pre-existing
methods effectively to search a space of solutions to the TSP for a given graph, for an approximate
solution (note however the earlier paper [8], which gave a quadratic time solution to related Hamiltonian
Path Problems, and more generally demonstrated the capacity of P Systems to trade time complexity for
space complexity). Others built on this approach by integrating techniques such as Genetic Algorithms
[9, 6], Ant Colony Optimisation [18] and Active Evolution [17], along with more complex approaches for
multiple salesman problems [7]. A paper by Chen et al. [2] was apparently also written on the topic,
but no copy of that paper could be located.

All these papers however have been written from the perspective of approximate solutions to the TSP,
generally taking an approach of using membranes to divide up the search space of potential solutions,
whilst applying other pre-existing techniques to the process. These papers have used membranes to
structure a search space, but in our view have not fully embraced the P Systems model, e.g. none of
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them have specified typical P Systems object rules. More recently however, Guo and Dai published
a paper on solving the TSP in the exact case using P Systems [5]. By exploiting the property of P
Systems that time complexity can often be exchanged for space complexity [14, 8], the authors derived
a P Systems algorithm that can solve the TSP in O(n2) time.

Inspired by [5], we seek to derive a cP Systems algorithm for solving the TSP to exploit fully the power
of P Systems’ theoretical infinite space, as well as the compactness of representation of cP Systems. Such
systems have been described extensively in prior papers, in particular [12, 10, 11], although, unlike in
[10], for the sake of simplicity we do not use the Actor model in our functional programming simulation
for this paper as it would be ‘overkill’. Use of the Actor model is a likely approach to take if seeking to
extend the algorithm to work in the distributed case though.

For the sake of space, we hereafter assume that the reader is familiar with the basic concepts of P
Systems (see [15] for a good, if slightly old, introduction to P Systems), cP Systems and the TSP. Our
algorithm, and in particular the rules for it, are presented in Section 2. We provide a worked example,
applying our algorithm to a specific weighted digraph, in Section 3, and discuss practical simulations
written in SWI-Prolog and F# in Section 4, the code for which is given in Appendix B. Finally, we
conclude the paper and suggest some further possible directions for future work in Section 5.

2 Description of our brute-force TSP algorithm

The algorithm follows a simple approach, essentially a simple maximally parallel breadth-first search
of the graph. We start with an elementary cell enclosed by the skin membrane, and populated with
objects describing the problem graph. From there, a starting node of the problem graph is randomly
selected, and populated with the other initial objects required. The computation then synchronously
steps through the different potential paths of the cycle by creating new objects encoding the graph
traversal up to that point, expanding all possible paths from a given node which exclude any of the
previously visited nodes.

If this process were to be thought of as a tree, then each step would be constructing the next level of
the tree. Once all possible full explorations of the graph have been generated, new objects are generated
for those ending nodes which have a link back to the starting node. A final step selects one of the
minimum cost paths at random.

In presenting their algorithm to solve the TSP, some papers have assumed totally connected graphs,
and/or used an Euclidean distance metric to define the weight between two arcs. We however assume a
graph with pre-specified arc weights, which could be derived as a pre-processing step (using Euclidean
distances if appropriate). Furthermore, our algorithm works with graphs of any level of density so long
as at least one Hamiltonian cycle exists (and could be extended to appropriately handle the case where
none exists), and works for both directed and undirected graphs.

At the beginning of the computation, we assume we have an elementary cell with the skin membrane,
and that the set E of objects of the form

E = {e(f(i) t(j)w(k))}i,j,k∈N ; i 6=j

encoding the arcs of the problem graph, is already present inside the skin membrane. Object e()
represents an arc, f() the origin node, t() the destination node, and w() the weight of the arc. We
further assume that the object v(v(X), v(Y )...), listing the vertices of the problem graph is present,
though this could be derived from the objects in E, if required. We further assume that there is an
object n(N) present, where N = |v| (i.e. the number of nodes in the graph), though this could be derived
by counting the objects present in v. The system begins in state 1.

The algorithm requires only five rules, presented in Figure 1. These rules are presented in weak-
priority order, and are explained below.

Rule (1) begins the computation by selecting an arbitrary node from the object v to become the
starting point of the cycle (encoded as r(R)), and creating our first s object. The s objects represents
steps along the graph, with the first step representing the selection of the node. Each s object comprises
four components, r; u, a set representing the remaining unexplored nodes in the graph; p which keeps
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S1 v(v(R)Y ) →min S2 s(r(R) u(Y ) p(h(R)p()) c(0)) (1)

S2 s(r(R) u() p(h(F )p(P )) c(C))

→max S3 z(p(h(R)p(h(F )p(P ))) c(CW )) (2)

| e(f(F ) t(R) c(W ))

S2 →max S2 s(r(R) u(Z) p(h(T )p(h(F )p(P ))) c(CW )) (3)

| s(r(R) u(v(T )Z) p(h(F )p(P )) c(C))

| e(f(F ) t(T ) c(W ))

S2 s( ) →max S2 (4)

S3 →min S4 p′(P ) c′(C1W ) (5)

| z(p(P ) c(C1W ))

¬ z(p( ) c(C))

Figure 1: Ruleset for our Travelling Salesman Problem cP Systems algorithm.

track of the cycle’s path so far; and c which tracks the cost so far of the cycle. The rule is applied in
min mode, and the system transitions to state 2. Application of this rule takes one step.

The object p acts akin to a classic singly-linked list, recursively preserving inside it a head element
h, as well another p object as the remainder/tail of the path list, which may be empty, as in this rule.
Thus, for the initial s object, it is a list of head R (the root node) cons the empty list.

Rule (2) is listed earlier despite being applied after rules (3) and (4), in order to enjoy an advantage
in weak priority ordering. It takes the final set of s objects, which have reached the point of exploring
the entire graph and thus contain empty u objects, and extracts from them z objects that each keep p
and c objects taken from the s objects, which will be used in the application of the final rule. These z
objects are only created when there is an e object describing an arc in the graph from the most recently
explored node (the head of the path list) back to the root node, i.e. only when there is a possibility of
a Hamiltonian cycle in the graph based on the path traversed so far. This rule simultaneously removes
the final s objects, keeping the working space of our system relatively clean. The rule is applied in max
mode, and the system transitions to state 3. Application of this rule takes one step.

Rule (3) is arguably the heart of the algorithm. So long as there are one or more node labels
remaining in the unexplored node objects u and a relevant e object available, this rule will be applied to
each extant s object, and create new derivative s objects that represent another step in the exploration
of the graph/another level in the exploration tree. The next selected node for each instantiation will
be removed from u and prepended to p, with the associated weight of the arc added to c. This rule is
applied in max mode, and the system remains in state 2. Application of this rule takes one step per
node in the graph, or n steps in total.

Rule (4) runs in parallel with rule (3), and simply removes the extant s objects from the system.
Due to the parallel nature of P Systems, where any number of rules can be applied concurrently so
long as they do not conflict with each other, this rule can work in conjunction with rule (3) without
issue, because changes to objects are not performed until the end of the step. Note that neither rules
(3) nor (4) can be applied alongside rule (2), because rule (2) changes the system’s state, and therefore
application of it conflicts with the latter two rules. Both later rules are applied at the same time, so that
at the end of their application, the new s objects have been created, and the pre-existing ones deleted.
This rule is applied in max mode, and the system remains in state 2. Application of this rule takes one
step per node in the graph, or n steps in total - of note is that these steps are the same ones used for
the application of rule (3), and occur simultaneously.
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Finally, rule (5) non-deterministically selects a z object with minimum cost by choosing an object
such that there is no other object with a lower cost, and outputs the cost and path objects of that z
object, completing the computation. This takes one step.

The time complexity of this algorithm can be summarised as Proposition 1:

Proposition 1. In total, the algorithm takes n + 3 operations, giving the algorithm a time complexity
of O(n).

For space complexity however, in the worst case of a totally connected graph, at the last application
of rules (3) and (4), a total of (n-1)! s objects will be created, and an equal number of z objects with rule
(2). Under the P Systems model of infinite space this is no issue, but of course can become a problem
for real-world simulations.

2.1 Rule for selection of minimum weight object

Rule (5), the rule for arbitrarily selecting one of the minimum weight z objects, is perhaps unusual enough
to warrant further attention. The rule creates one each of a c′ object encoding the final minimum cost,
and a p′ object which contains the total final path, after non-deterministically choosing one of the z
objects with minimum cost. The core of the functioning of the rule is the interaction between the
promoter and inhibitor. The inhibitor states that there cannot be an object with cost C, while the
promoter requires an object with at least weight C1 (i.e C + 1) - the W , like any numeric variable, can
potentially be zero. The combined effect of this is to select an object for which there is no object with
a lesser cost.

It may be tempting to think that, because the variables C and W can potentially take any number,
it would be possible to select them such that one does not choose the minimum-cost object. What if one
selects C as the minimum cost in any object, but W as any arbitrary natural number? Then it would
appear that the rule would select a greater-than-minimum cost object, as the rule would seek out an
object with at least C+1 cost. Such a choice however violates the constraints of the rule. The inhibitor
effectively states for the object selected, there must be no object with cost C such that C is less than
the selected object’s total cost, because if there is, then the number assigned to C can be modified from
its initially set value to a lesser number equal to the lower cost, and the rule is then violated by there
existing an object with C less than C1W .

As an example, consider the situation where there are objects

ca(3) cb(4) cc(4) cd(5) ce(6)

. Clearly, the minimum cost object is ca. What if one were to determine C = 3 and W = 0? Then the
rule would select cb or cc as the minimum cost object. That clearly violates the inhibitor specification
however, because it is possible to set C = 2 and find an object that fits to such a selection. It seems
that the ‘correct’ selection in this case is C = 2 and W = 0. Other selections would not conform to the
rule, as it would be possible to subtract from C and add to W and arrive at a valid object, meaning
that there exists an object which could be determined to have cost C less than the selected object, and
therefore the selection of the greater C is not valid according to the rule.

3 Worked example

Consider a graph G such as that in Figure 2. Ordinarily this would be shown as an undirected graph
(because all arcs are two-way), but it is presented as an equivalent directed graph so that it more closely
matches the graph as described for the cP Systems rules described above, specifically for the set E of
arc objects. Quite obviously, there is at least one Hamiltonian Cycle in this graph, and there will be
at least one cycle which has a minimum total weight. Figure 5 is a tree diagram showing the logical
progression of the algorithm as applied to this graph. Nodes in blue are the ends of the paths with a
minimum cost, while nodes in red are the ends of the paths where there is no arc in the graph such that
a Hamiltonian Cycle can be completed, based on the graph traversal so far. The arcs are labelled with
the cumulative weight of the path taken to reach the lower node.
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Figure 2: Sample weighted graph G with at least one Hamiltonian Cycle

e(f(1) t(2)w(1)) e(f(1) t(3)w(3)) e(f(1) t(5)w(2)) e(f(2) t(1)w(1))

e(f(2) t(4)w(6)) e(f(2) t(5)w(4)) e(f(3) t(1)w(3)) e(f(3) t(4)w(8))

e(f(3) t(5)w(5)) e(f(4) t(2)w(6)) e(f(4) t(3)w(8)) e(f(4) t(5)w(7))

e(f(5) t(1)w(2)) e(f(5) t(2)w(4)) e(f(5) t(3)w(5)) e(f(5) t(4)w(7))

v(v(1) v(2) v(3) v(4) v(5)) n(5)

Figure 3: Set of objects from G in the skin membrane at the initial state

The set of objects contained inside the membrane at various points in the computation are shown
in Figures 3, 4, 6 and 7. The algorithm starts by applying rule (1), selecting node 1 as the starting
point of the Hamiltonian cycle, creating origin object s(...) (full details of the contents of the objects are
provided in the figures). Should a particular node be preferred as the starting node, the object created
by created by rule (1) could instead by supplied from the outset, and rule (1) removed from the rules
list, with the system beginning at state 2.

Next, rule (3) is applied, creating the first level of objects in the exploration tree (Figure 5). This
creates new s(r(R)u(...) p(h(v(1))p(...)) c(...)) objects, representing the potential paths of the cycle after
one step. Rule (4) concurrently removes the old s objects from the system.

Eventually, after repeating rules (3) and (4) five times, rule (2) will become applicable. At this point,
rule (2) is applied, creating the z objects that represent the final arc traversal from another node back
to the origin node, node 1. Finally, rule (5) selects one of those z objects with minimum cost as the
solution, and outputs the path and cost objects relating to that cycle.

For example, from the object representing node 1, rule (3) will create, amongst others, an object
representing an arc traversal to node 2 with a weight object c(1). In turn, another new object, amongst
others, will be derived from this object representing a further arc traversal to node 4, with a weight
object of c(7). This continues for objects representing traversals to nodes 3 (c(15)) and 5 (c(20)), until

e(f(1) t(2)w(1)) · · · e(f(5) t(4)w(7))

v(v(1) v(2) v(3) v(4) v(5)) n(5)

s(r(R)u(v(2) v(3) v(4) v(5)) p(h(v(1))p()) c(0))

Figure 4: Set of objects in the skin membrane after the application of rule one
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Figure 5: Tree diagram of the algorithm in action

e(f(1) t(2)w(1)) · · · e(f(5) t(4)w(7))

v(v(1) v(2) v(3) v(4) v(5)) n(5)

s(r(1)u(v(3) v(4) v(5)) p(h(v(2))p(h(v(1))p())) c(1))

s(r(1)u(v(2) v(4) v(5)) p(h(v(3))p(h(v(1))p())) c(3))

s(r(1)u(v(2) v(3) v(4)) p(h(v(5))p(h(v(1))p())) c(2))

Figure 6: Set of objects in the skin membrane after a single application of rules three and four

finally the latter object contains an empty u object. For this object, rule (2) finds an e object that
connects node 5 to R, the root node 1, and so creates a z object containing a p object representing
the traversed path, and an object c(22), representing the total cost of the cycle. This final object is
potentially selected at random by rule (5).

Conversely, another chain of object creations will occur as node 1 to node 5, with c(2), node 5 to
node (4) with c(9), node 4 to node 2 with weight c(15). At this point, u(v(3)) is non-empty, but there
is no e object representing a transition from node 2 to node 3, so this object reaches a ’dead-end’, and
will be removed without further effect by rule (4).

Similarly, a progression will occur from node 1 to node 3 with c(3), to node 5 with c(8), to node 2
with c(12), and to node 4 with c(18). At this point, every node has been visited, and the object u() in
this particular s object is empty, but there is no e object representing a transition from the current node
back to the origin, so no z object will be created based on it.

4 Simulations

In order to demonstrate that this approach works in practice, small programs were written in SWI-
Prolog and F# to solve the example problem presented above. In both instances, the programs were
written with an emphasis on matching the cP Systems rules, rather than with a focus on memory or
time efficiency. Better implementations from a real-world use viewpoint could likely be created, but they
may not reflect the cP Systems rules as well. The complete program listings are in Appendix B, and a
copy of the source code is available at https://github.com/jcoo092/cP-Systems-TSP.
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e(f(1) t(2)w(1)) · · · e(f(5) t(4)w(7))

v(v(1) v(2) v(3) v(4) v(5)) n(5)

z(c(22) p(h(1)p(h(v(5))p(h(v(3))p(p(h(v(4))p(p(h(v(2))p(p(h(v(1))p()))))))))))

...

z(c(22) p(h(1)p(h(v(2))p(h(v(4))p(p(h(v(3))p(p(h(v(5))p(p(h(v(1))p()))))))))))

c(22) p(h(1)p(h(v(5))p(h(v(3))p(p(h(v(4))p(p(h(v(2))p(p(h(v(1))p())))))))))

Figure 7: Set of objects in the skin membrane at completion of the computation, if rule (5) selects the
object containing the path object representing the traversals 1 - 2 - 4 - 3 - 5 - 1.

4.1 Prolog simulation

This simulation is very small, and almost maps directly to the cP Systems description. It requires only
30 lines of code, more than half of which (lines 1 - 18) are the instantiation of the initial objects of the
problem as Prolog facts. Rules (1) - (3) are handled by three Prolog rules, while rule (4) is not considered
in this implementation. Line 20 matches rule (1), line 23 matches rule (3), and line 24 matches rule (2).
The only significant variation from the cP Systems algorithm is the implementation of Rule 5, which
is implemented using four other rules, as a recursive search across the list of all possible Hamiltonian
cycles in the graph for one with minimum cost.

Despite the close approximation of the rules with the Prolog program, there are some notable differ-
ences in operation. Importantly, the model of exploration is fundamentally different. The cP Systems
algorithm essentially explores the graph in a maximally parallel forward-only breadth-first search us-
ing object rewriting rules on extant terms. Whereas instead the Prolog program works as a sequential1

depth-first exploration of the graph with backtracking, using logical inference rules between virtual goals.
This significant change in search style means that we no longer trade space complexity for time

complexity, returning the Prolog implementation to a O(n!) running time, but enabling much larger
graphs to be explored gradually. Another notable difference is that the cP Systems s objects use an
object u containing a set of the unvisited nodes to keep track of what nodes are available, whereas our
Prolog simulation uses a list to represent u.

At small graph sizes this is largely irrelevant, but it does mean that in the worst case, assessing
whether an arc is relevant to the current search takes O(n) steps, which could be relatively slow in the
case of a large set. Using a more natural set representation, such as one based on an associative container
using hash functions, would bring the implementation closer to our algorithm and make the lookup of
the available nodes a constant time operation.

4.2 F# simulation

The small ruleset for this algorithm maps well to F#, and the entire example takes fewer than 50 lines
of code.

Lines 1 to 12 of the sample code correspond to the creation of the initial objects present in the
system prior to the beginning of our algorithm and the definition of relevant types. Lines 35 and 36, and
the call to hgoal, represent rule (1). Rule (2) is represented by the conditional statement in sgoal and
accompanying call to sgoal. Rule (3), and it’s repeated application, is represented by the visit function,
and the calls to it on the else branch sgoal’s conditional. Rule (4) is implicitly represented by the tail
recursion of the sgoal function. When the next function call is made, the current slist variable goes out

1It would be preferable to use a parallel implementation insofar as possible, but no current inherently parallel imple-
mentation of Prolog could be easily located.
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of scope, and thus the memory allocated to the variable is freed by the garbage collector. Finally, rule
(5) is represented by the minh function.

It is the case that this program involves a lot of instantiations/memory allocations, with relatively
few calculations performed. It could arguably be seen as memoization taken to an extreme. This may
in fact limit its timely operation in real life, considering that memory allocation is a relatively slow
operation. Moreover, the approach of this algorithm is to expand the memory used as required, which
in the worst case will grow at a factorial rate, limiting the real-world utility of the program.

Given that, for a fully connected graph, at the eleventh step of instantiations almost 40 million (11!)
objects would be created, it is no surprise. Assuming that each object requires 100 bytes of memory,
roughly 3.7 GiB of memory would be needed to hold the objects for only the eleventh step, meaning that
in total during the operation of the build function for the eleventh step, more space would be required
in memory than the 4 GiB limit of 32-bit systems allows.

5 Conclusion & future work

We have defined here a succinct cP Systems algorithm for solving the Travelling Salesman Problem in
O(n) time, by using the capacity of cP Systems to create and manipulate complex objects in only a
few high-level steps. This algorithm requires only five rules, and takes n + 3 steps to find a solution.
A simple example was provided to demonstrate the operation of the algorithm. This algorithm can
operate on both directed and undirected graphs for which there exists a Hamiltonian cycle, and could
be extended to detect the absence of one.

It is a trivial task to create a basic simulation of this algorithm in a functional language such as F#,
although due to the factorial-scale increase in the number of objects created, a näıve implementation
may fail through lack of memory on graphs larger than 10 nodes. Another simulation was created in a
logic programming language, specifically SWI-Prolog, which in many ways closely fits with the algorithm
presented, but operates in a purely sequential manner without creating extra objects, thus returning to
a time complexity of O(n!).

5.1 Future work

There are multiple potential directions that further work could take, primarily with regards to the
practical implementation. Given the algorithm’s reliance on memory space, finding ways to decrease
significantly the memory used could lead to a greater ability to apply the algorithm to larger problems,
possibly by trading some memory allocations for more calculations.

Given that memory allocation can be a relatively slow operation as compared to most calculations
performed on a CPU, this may in fact improve performance overall, while also increasing the size of
graphs that can be considered. This last approach, if carried out appropriately, might make the algorithm
amenable to running on a GPU - although given that it currently involves a significant number of semi-
random accesses to memory, this may not be feasible. Also, further exploration of the parallelism
opportunities available in modern Prolog implementations may yield a faster algorithm without overly
increasing the required memory.

Alternatively, the algorithm could be restructured to resemble more closely tissue-like P Systems,
which are well-suited to implementations with the Actor model, which are in turn well-suited to running
on the Cloud, where access to potentially much larger memory capacities may enable larger graphs to
be considered. Other theoretical P Systems models might also be considered. Given Spiking Neural P
Systems’ focus on the communication of numbers/weights between neurons, the model may be a good
fit to this problem.
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A Prolog simulation

Listing 1: Complete SWI-Prolog code for the cP Systems solution to the TSP

1 e(1, 2, 1).

2 e(1, 3, 3).

3 e(1, 5, 2).

4 e(2, 1, 1).

5 e(2, 4, 6).

6 e(2, 5, 4).

7 e(3, 1, 3).

8 e(3, 4, 8).

9 e(3, 5, 5).

10 e(4, 2, 6).

11 e(4, 3, 8).

12 e(4, 5, 7).

13 e(5, 1, 2).

14 e(5, 2, 4).

15 e(5, 3, 5).

16 e(5, 4, 7).

17 v([1, 2, 3, 4, 5]).

18 n(5).

19

20 s(R, [], [F| P], C, Ph, Ch) :- e(F, R, W), CW is C + W, Ph = [R, F| P], Ch = CW.

21

22 s(R, Y, [F| P], C, Ph, Ch) :- member(T, Y), delete(Y, T, Z), e(F, T, W), CW is C + W,

s(R, Z, [T, F| P], CW, Ph, Ch).↪→

23

24 h(R, Y, H) :- findall(z(Ph,Ch), s(R, Y,[R],0,Ph,Ch), H).

25

26 minh([z(P1,C1)], [z(P1,C1)]).

27 minh([z(P1,C1), z(_P2,C2)| H], M) :- C1 =< C2, !, minh([z(P1,C1)| H], M).

28 minh([z(_P1,_C1), z(P2,C2)| H], M) :- minh([z(P2,C2)| H], M).

29

30 go(M) :- v(X), member(R, X), delete(X, R, Y), !, h(R, Y, H), minh(H, M).

B F# simulation

Listing 2: Complete F# code for the cP Systems solution to the TSP
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1 let infty = 10000

2

3 let E = // Specification of set of E objects

4 [| [| 0; 1; 3; infty; 2; |];

5 [| 1; 0; infty; 6; 4; |];

6 [| 3; infty; 0; 8; 5; |];

7 [| infty; 6; 8; 0; 7; |];

8 [| 2; 4; 5; 7; 0; |];

9 |]

10

11 type s = int * Set<int> * list<int> * int // (r, u, p, c)

12 type z = list<int> * int // (p, c)

13

14 let visit (si:s) (u:Set<int>): list<s> =

15 let r, _, f::p, c = si

16 [for t in u do

17 let w = E.[f].[t]

18 if w < infty then

19 yield (r, Set.remove t u, t :: f :: p, c + w) ]

20

21 let rec sgoal (slist: list<s>): list<s> =

22 slist |> List.collect (fun si ->

23 let r, u, _, _ = si

24 if Set.isEmpty u

25 then visit si (set [r])

26 else sgoal (visit si u))

27

28 let hgoal (r:int) (y:Set<int>): list<z> =

29 [(r, y, [r], 0)] |> sgoal |> List.map (fun (r, u, p, c) -> (p, c))

30

31 let minh (h: list<z>): z =

32 h |> List.minBy (fun (p, c) -> c)

33

34 let go () =

35 let r = 0

36 let y = set [0..(Array.length E - 1)] |> Set.remove r

37 hgoal r y |> minh |> printfn "%A"

38

39 go ()
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