
CDMTCS
Research
Report
Series

Experimentally Probing the
Incomputability of Quantum
Randomness

Alastair A. Abbott
University of Grenoble Alpes, CNRS,
Grenoble, France

Cristian S. Calude
Michael J. Dinneen
Nan Huang
Department of Computer Science,
University of Auckland,
Auckland, New Zealand.

CDMTCS-515
June 2018 (Version 2)

Centre for Discrete Mathematics and
Theoretical Computer Science



Experimentally Probing the Incomputability of
Quantum Randomness

Alastair A. Abbott∗, Cristian S. Calude†, Michael J. Dinneen† and Nan Huang†

Abstract

The advantages of quantum random number generators (QRNGs) over pseudo-random
number generators (PRNGs) are normally attributed to the nature of quantum measure-
ments. This is often seen as implying the superiority of the sequences of bits themselves
generated by QRNGs, despite the absence of empirical tests supporting this. Nonetheless,
one may expect sequences of bits generated by QRNGs to have properties that pseudo-
random sequences do not; indeed, pseudo-random sequences are necessarily computable, a
highly nontypical property of sequences.

In this paper, we discuss the differences between QRNGs and PRNGs and the challenges
involved in certifying the quality of QRNGs theoretically and testing their output experi-
mentally. While QRNGs are often tested with standard suites of statistical tests, such tests
are designed for PRNGs and only verify statistical properties of a QRNG, but are insensitive
to many supposed advantages of QRNGs. We discuss the ability to test the incomputability
and algorithmic complexity of QRNGs. While such properties cannot be directly verified
with certainty, we show how one can construct indirect tests that may provide evidence for
the incomputability of QRNGs. We use these tests to compare various PRNGs to a QRNG,
based on superconducting transmon qutrits, certified by the Kochen-Specker Theorem.

While our tests fail to observe a strong advantage of the quantum random sequences due
to algorithmic properties, the results are nonetheless informative: some of the test results
are ambiguous and require further study, while others highlight difficulties that can guide
the development of future tests of algorithmic randomness and incomputability.

1 Introduction

Randomness is an important resource in a diverse range of domains: it has uses in science,
statistics, cryptography, gambling, and even in art and politics. In many of these domains, it is
crucial that the randomness be of high quality. This is most directly the case in cryptography,
where good randomness is vital to the security of data and communication, but is equally, albeit
more subtly, true in other areas such as politics, where decisions of consequence may be made
based on scientific and statistical studies relying crucially on randomness.

For a long time, people have predominantly relied on pseudo-random number generators (PRNGs)—
that is, computer algorithms designed to simulate randomness—to serve such needs. Problems
with various PRNGs, often only uncovered when it is already too late, are all too common and
can have serious consequences.1 This has driven a recent surge of interest in RNGs exploit-
ing physical phenomena, and more particularly in quantum RNGs (QRNGs) that utilise the
purportedly inherent randomness in quantum mechanics [16, 52, 60, 62]. QRNGs are generally
∗Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France.
†Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
1An example is the discovery in 2012 of a weakness in the encryption system used worldwide for online shopping,

banking and email; the flaw was traced to the numbers a PRNG had produced [42]. As of 2018, Java still relies
on a linear congruential generator, a low quality PRNG.
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considered to be, by their very nature, better than classical RNGs (such as PRNGs), but how
(or can) one test this in practice?

RNGs are usually tested by conducting batteries of tests on (finite) sequences they have pro-
duced [46, 53]. Traditionally, such tests have focused on intuitive aspects of randomness, such as
the frequencies of certain (strings of) bits, but human intuition about randomness is notoriously
poor [14, 32] and many other symptoms of randomness remain untested. Indeed, the randomness
of strings and sequences is an incomputable property and thus cannot be verified completely;
moreover, it is characterised by an infinity of properties [20]. With standard randomness tests
designed with PRNGs in mind, it is reasonable to wonder whether there are tests more appro-
priate for analysing QRNGs and perceiving the advantage they can provide. Indeed, QRNGs
should excel precisely on properties of randomness where algorithmic PRNGs are doomed to fail:
incomputability and their inherent unpredictability [4, 7, 9, 23]. Although incomputability is not
directly testable (not least because it is a property of infinite sequences and thus holds only in
the limit), one may ask whether there are tests than can reveal related advantages in practice.

With this goal, we study several possible tests of randomness based on algorithmic information
theory. In particular, we consider tests based on Borel normality [18, 19] as well as novel tests
based on the Solovay-Strassen probabilistic primality test [22, 59]—an algorithm which can be
made deterministic when given access to algorithmic randomness [25]. These latter tests allow one
to probe indirectly the algorithmic randomness—and consequently also the incomputability—
of sequences produced by a RNG, and thus have the potential to identify differences between
QRNGs and PRNGs that are not captured by more traditional statistical tests. We test several
classical RNGs as well as a semiconductor-based QRNG [41] using these tests. While the first few
tests we consider fail to find any significant difference between the quantum random sequences
and those produced by the PRNGs, they bring to light certain issues useful for guiding future tests
of incomputability and algorithmic complexity. Our final test finds some significant differences
between the QRNG and PRNGs, but it is unclear whether these are really due to algorithmic
properties of the strings; limitations of this test mean that further study is needed.

2 Randomness

In order to guide the development of tests for QRNGs, it is important to understand what
randomness is and thus what one should test. Historically, the quest to develop a formal under-
standing of randomness focused on the problem of determining whether a given (finite) string
or (infinite) sequence of bits is random. One of the first attempts to formalise such a no-
tion of randomness is due to Borel, who defined the concept of Borel normality for infinite
sequences [18]. Borel normality formalises the notion that bits should be evenly and equally
distributed within a sequence. Although this captures one of the most intuitive features of ran-
domness, it does not alone capture fully the desired concept. For example, the Champernowne
sequence 0 1 00 01 10 11 000 001 011 100 . . . [26] contains every string of length k with the same
limiting frequency of 2−k, and yet the sequence has a simple description: concatenate the binary
representation of all the strings of length k in lexicographical order for k = 1, 2, . . . . Given this
description, it is clear that the Champernowne sequence is not random, but highly ordered.

The study of algorithmic information theory, developed in the 1960s by Solomonoff, Kolmogorov
and Chaitin, provides more robust and acceptable definitions of a random sequence. In this
framework, random strings and sequences are those that are incompressible [24]. The incompress-
ibility of strings depends on the choice of universal Turing machine; this shortcoming disappears
when the definition is extended to infinite sequences [20, 29]. Notions of randomness—both for
finite strings and infinite sequences—defined in terms of incompressibility are generically called
algorithmic randomness.
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Let us briefly give some technical details useful later in the paper; we refer the reader to [20] for
further details. Consider Turing machines operating on binary strings. A Turing machine U is
universal if for every Turing machine M there exists a prefix p (depending only on U and M)
such that U(px) = M(x), for every program x. The Kolmogorov (or algorithmic) complexity of
a Turing machine M is defined by KM (x) = inf{|s| : M(s) = x}, where by |s| we denote the
length of the string s. We can see that U is universal if and only if for every Turing machine M
there exists a constant c such that KU (x) ≤ KM (x) + c, for every string x. For this notion of
complexity, the running time and the amount of storage required for computation are irrelevant.
One can prove that for every M the maximum value of KM (x) over all strings x of a fixed
length |x| = n is n + O(1). Furthermore, the overwhelming majority of strings x of length n
have KM (x) very close to n. This means that almost all strings of length n are incompressible
by M : more formally, very few such strings have KM (x) < n (i.e., are compressible). If U
is a universal Turing machine, then the condition KM (x) < |x| means that KU (x) < |x| − c,
that is, x is c-incompressible (or c-Kolmogorov random). These incompressible strings are highly
random, patternless and typical. It is easy to prove that less than 2n−c strings of length n are not
c-incompressible. An infinite sequence x is called Martin-Löf random if there exists a constant C
such that infinitely many prefixes of x are C-Kolmogorov random. This definition is equivalent
to the condition that x passes all Martin-Löf tests of randomness [47]; see Section 7.2 for more
details.

While algorithmic information theory provides a sound notion of randomness for strings and
sequences, two important points must be mentioned. Firstly, it is not effectively decidable
whether a string or sequence is random, so the notion does not provide a practical way to
test the randomness of a finite or infinite sequence of bits. Secondly, it is possible to define
ever stronger notions of randomness: from an algorithmic perspective, no notion of “pure” or
“absolute” randomness exists, only degrees of randomness [20, 21, 35]. This should temper any
desire to verify the randomness of a RNG by tests on its output. Instead, we can only hope to
compare the quality of strings produced.

As interest in generating random numbers soared, the concept of randomness received increased
philosophical attention and it became clearer that the algorithmic notion of randomness fails to
capture aspects of randomness important for RNGs [1]. Indeed, as von Neumann noted, “there is
no such thing as a random number—there are only methods to produce random numbers” [63].
The insight of von Neumann is not that the algorithmic notion of randomness is problematic—
indeed, it is highly satisfactory as a notion of random objects—but that there is a dual concept
of randomness, that of random processes [1, 31]. Such a concept has historically received little
attention, but the most convincing attempts to make it rigorous are perhaps those which define
it as a form of maximal unpredictability: the outcome of such a process should be unpredictable
for any physical observer [8, 30].

There are thus two legitimate notions of randomness to be reconciled: that of process randomness
(which is applicable to RNGs—viewed as processes—themselves), and that of product randomness
(which is applicable to the strings—i.e. objects—obtained from RNGs). The distinction between
these notions is important for understanding tests of randomness.

3 Random number generators (RNGs)

An ideal random number generator is normally taken to be a random process producing the
same probability distribution as the ideal (but unphysical) unbiased coin. It thus produces bits
sequentially, thereby generating a sequence x = x1x2 . . . with each bit xi being equiprobable, i.e.
p(xi = 0) = p(xi = 1) = 1/2, and with successive bits produced independently. Hence, all strings
x of length k have probability p(x) = 2−k and, in the infinite limit, one obtains the Lebesgue
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measure over all infinite sequences [20]. It is important to recognise that this conception of an
ideal RNG embodies the notion of random processes, not products, and concerns the distribution
produced by said process and not its output.

If one tries to implement such a device in practice, two issues immediately become apparent.

Firstly, how is one to know that the process exploited is really random and actually produces the
expected ideal distribution? This issue touches on the interpretation of probability [36] (although
this is beyond the scope of the present article). For example, a physical process thought to be
represented by the uniform distribution might only exhibit epistemic randomness, and a more
precise, deterministic model of the process might be possible which reveals its non-randomness.
The most direct way to avoid such possibilities is to harness an indeterministic process to ensure
its unpredictability [8].

Secondly, how does one test or verify the randomness of a RNG given that one only has access
to (finite) strings produced by it? Although the concepts of process and product randomness are
indeed distinct, they are nonetheless related: long enough strings produced by an ideal RNG will,
with high probability, be incompressible, while in the infinite limit the sequences produced will
be Martin Löf random (and thus also incomputable) with probability 1 but not with certainty :
an ideal coin can in principle produce non-random or even computable sequences. However, as
mentioned earlier, the randomness of sequences is already an incomputable property. Thus, one
can do no better than verifying finitely many properties of randomness to gain confidence in a
RNG.

3.1 Pseudo RNGs (PRNGs)

The predominant approach to generating randomness is to use algorithms to produce “pseudo-
randomness”, and such PRNGs are ubiquitous as a result of their practicality and speed. However,
the very fact that such devices use computational methods to produce their outcomes distin-
guishes them from ideal RNGs. PRNGs typically use a short string from an external source—
generally assumed to be random—as an initial “seed” for an algorithm [33]. Thus, PRNGs can
only produce computable sequences, whereas such sequences should be produced only with prob-
ability 0 by an ideal RNG. Instead, effort is made to make PRNGs difficult to distinguish from
an ideal RNG given limited (typically polynomial time) computational resources [34], since this
provides a degree of security against cryptographic attacks, even if the resulting distribution
(induced by the distribution over the initial seeds) is far from uniform in reality.

PRNGs generally produce sequences that satisfy many intuitive aspects of randomness—such as
the equidistribution of the bits produced—and pass most standard statistical tests of random-
ness despite their computability. Nonetheless, deficiencies resulting from the non-randomness of
PRNGs are regularly exploited (see, e.g., [17]) and much of the interest in quantum randomness
has been driven by the potential to avoid the shortcomings of PRNGs.

4 Quantum randomness

For some time now, quantum mechanics has garnered interest as a potential source of randomness
for RNGs. Such interest stems from the fact that certain quantum phenomena, such as the
radioactive decay of an atom or the detection of a photon having passed through a beamsplitter,
are generally taken to be “intrinsically random” under the standard interpretation of quantum
mechanics [11]. We will first discuss these claims in a little more detail—since it is important
to base the randomness of QRNGs on more formal grounds rather than simply assuming such
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randomness—before discussing one approach to the generation of quantum randomness in more
detail.

Claims about quantum randomness originate with the fact that, as a formal theory, quantum
mechanics differs fundamentally from classical physics in that not all observable properties are
simultaneously defined with arbitrary precision. Instead, quantum mechanics, via the Born
rule, only specifies the probabilities with which individual measurement outcomes occur for the
measurement of a physical quantity—i.e., a quantum observable. Formally, if a system is in a
quantum state |ψ〉 and one measures an observable A with spectral decomposition A =

∑
i aiPi,

where we adopt the notation Pi = |i〉〈i| for rank-1 projection observables, then one obtains
outcome ai with probability

P (ai|ψ) = |〈i|ψ〉|2. (1)

Thus, whereas randomness in classical physics is due to incomplete knowledge of the precise initial
conditions of a system (e.g., as in chaotic systems) [43], in quantum mechanics it is intrinsic to
the standard interpretation of the formal theory.

Nonetheless, the Born rule is a purely formal statement, and interpreting the probability dis-
tribution specified by the Born rule remains the subject of ongoing debate. The orthodox in-
terpretation, however, is that the distribution should be understood ontically as representing
an indeterministic phenomenon [11]. Crucially, this interpretation is more than a mere assump-
tion: several well-known no-go theorems rule out classical statistical interpretations of quantum
randomness.

Bell’s Theorem [15] is the most well-known of these results, and shows that a classical, local hid-
den variable theory cannot reproduce the statistics of quantum correlations that are observed [12]
between entangled particles. The Kochen-Specker Theorem [39], although perhaps lesser known,
pinpoints this breakdown in determinism in a more precise way: it shows that, for any quantum
system with more than 2 dimensions, it is logically impossible to predetermine all measurement
outcomes prior to measurement in a noncontextual fashion (i.e., in a way which is independent
of other compatible—and thus non-disturbing—measurements one can perform).

More recently, this theorem has been refined to show that the only observables that can be
predetermined in a noncontextual way are those for which the Born rule assigns the probability
1 to a particular outcome [6, 10]. More precisely, we say that an observable A is value definite
for a system prepared in a state |ψ〉 if it has a predetermined measurement outcome vψ(A). The
stronger result shows that for systems of more than 2 dimensions, if we assume that any such
value definite observables should be noncontextual, then A is value definite if and only if |ψ〉 is
an eigenstate of A; all other observables must be value indefinite.

This result makes the extent of quantum value indefiniteness—and thus indeterminism—clear
and pinpoints which measurements are protected by such formal results. This not only allows
some QRNGs to be based more rigorously on physical principles but also to clarify the link
between quantum randomness and indeterminism. Crucially, this result also allows one to show
that the measurement of such value indefinite observables satisfies a strong form of unpredictabil-
ity [9], proving that one really cannot provide better predictions than the Born rule specifies, and
thus giving a stronger theoretical grounding to claims about the form of quantum randomness
proposed for QRNGs.

5 Quantum RNGs (QRNGs)

These properties of quantum measurements make them an ideal candidate for random number
generation: if one measures an observable for which the Born rule predicts a uniform distribution,
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then the QRNG embodies a perfect coin. Moreover, the results discussed above show that—
subject to very reasonable physical assumptions about how classical objects should behave—this
distribution cannot be given an epistemic interpretation and the corresponding measurement
outcomes are thus truly of indeterministic origin. The attractiveness of QRNGs is further en-
hanced by the possibility of obtaining high bitrates and the simplicity of their physical models.
This is in contrast to RNGs based on classical physics, such as chaotic systems.

Early QRNGs relied on features such as radioactive decay [55], but simpler systems based, for
example, on measuring the polarisation [38, 57, 60] or detection times [61] of photons, have
become the norm due to the practical advantages they provide. Such approaches have led to the
development of commercial QRNGs, such as ID Quantique’s Quantis [37].

Many successful QRNGs exploit two-dimensional systems to generate randomness (e.g. Quan-
tis uses the polarisation of photons). This greatly simplifies the design and production of such
devices but neither Bell’s Theorem (which requires entanglement) nor the Kochen-Specker The-
orem (which requires at least 3-dimensional systems) are applicable, and these QRNGs thus
lack the rigorous theoretical certification that quantum mechanics can provide, even if it may be
reasonable to think that the measurements they exploit should still be indeterministic.

More recently there has been significant interest in implementing QRNGs that violate Bell’s
inequalities in order to provide a stronger certification [27, 52]. Specifically, such devices allow
the indeterminism of a QRNG to be certified in a device-independent way—i.e., without assuming
knowledge of how the device works—which is particularly important in cryptographic settings,
where one perhaps does not wish to trust the workings of a given RNG. Such certification,
however, comes at a cost, since not only does it still require an initial small random seed, but
it also relies on the QRNG being separated into two space-like separated (or at least isolated)
components and the stringent requirements of loophole-free Bell tests reduce the obtainable
bitrate by several orders of magnitude compared to “standard” QRNGs [52].

An alternative approach outlined in [4, 7] is to use 3-dimensional systems exhibiting value in-
definiteness (via the Kochen-Specker Theorem) to certify a QRNG. While such a certification is
device dependent (i.e., one relies on knowledge of the functioning of the QRNG), it allows the
practical advantages of standard QRNGs to be maintained while providing stronger theoretical
certification. Although this QRNG was originally proposed specifically for spin-1 particles, the
principle is applicable to any 3-dimensional system (i.e., an implementation of a qutrit). The
approach proposed was to prepare a qutrit in the state |0〉 before measuring the observable
A = a0|0′〉〈0′| + a1|1′〉〈1′| + a2|2′〉〈2′| for which the orthonormal basis {|0′〉 , |1′〉 , |2′〉} is chosen
such that 〈0|0′〉 = 0 and 〈0|1′〉 = 〈0|2′〉 = 1√

2
(see Figure 1 below). Since the state |0〉 is thus

an eigenstate of the projection observable P0′ = |0′〉〈0′|, this observable is value definite with
value v(P0′) = 0—that is, the measurement outcome a0 never occurs.2 However, by the results
of [4, 10], both P1′ = |1′〉〈1′| and P2′ = |2′〉〈2′| are value indefinite and, moreover, both outcomes
a1 and a2 occur with probability 1/2 according to the Born rule (1). Thus, the QRNG operates
as an ideal coin certified by value indefiniteness.

A QRNG based on this proposal has recently been implemented experimentally [41], not with
spin-1 particles but by exploiting a superconducting transmon coupled to a microwave cavity as
a qutrit. Figure 1 shows a schematic of the QRNG proposed in [4, 7] based on the implemen-
tation used by Kulikov et al. [41]. This implementation was used to generate a large number of
bits, and in the subsequent sections we will analyse sample sequences produced by this QRNG
implementation. In particular, we will focus on observing differences between such sequences
and pseudo-random sequences arising from algorithmic properties of the sequences.

2This is, of course, only true in the ideal case. In the non ideal scenario, any such outcomes can simply be
discarded.

6



+

System prepared
in state

Projective measurement in basis

Inverse basis transformation
applied to system

Measurement in basis

01101...

Figure 1: Schematic showing the QRNG based on the Kochen-Specker Theorem as implemented in [41].
A transmon qutrit system is initially prepared in the state |0〉 (with respect to the computational basis
B1 = {|0〉 , |1〉 , |2〉} by thermal cooling. The system is then measured in the basis B2 = {|0′〉 , |1′〉 , |2′〉}
with 〈0|0′〉 = 0 and 〈0|1′〉 = 〈0|2′〉 = 1√

2
. In practice, this measurement is performed by first performing

the inverse basis transformation on the system and measuring in the basis B1. Since |〈0|0′〉|2 = 0, this
outcome never occurs in an ideal implementation, so the outcomes a1 and a2 corresponding to |1′〉〈1′|
and |2′〉〈2′| are mapped to a binary sequence.

This approach to certifying a QRNG via value indefiniteness leads to some interesting additional
consequences if one is willing to accept slightly stronger physical assumptions (in particular,
about whether being able to compute properties in advance implies well-defined physical prop-
erties). Specifically, it was shown in [4] that such a device, if used repeatedly ad infinitum to
generate an infinite sequence x of bits, will produce a sequence that is strongly incomputable
(technically, “bi-immune” [29]) not just with probability 1, but with certainty. Although such a
result will not alone lead to observable advantages for finite strings—recall that, from the Born
rule, an ideal QRNG will produce an incomputable sequence with probability 1—this nonetheless
highlights the differences between pseudo and quantum randomness in relation to computability.

6 Testing RNGs

While it is crucial to have a good theoretical understanding of any RNG, there are several reasons
why testing experimentally their performance is nonetheless crucial. Firstly, one can never be
sure that the implementation of a RNG matches tits theoretical description, a fact that is equally
as true for hardware RNGs as for software RNGs. Indeed, in the extreme limit, one might not
wish to trust any theoretical claims about a given RNG, and thus confidence in the RNG can
only be gained from performing carefully selected tests. Secondly, thorough testing gives one the
opportunity to detect any issues with assumptions made in the theoretical analysis of a device
or in its practical deployment (e.g., if the distribution of seeds does not match that assumed
theoretically the performance of a RNG might be compromised).

It is nonetheless important to recognise that experimental testing can never allow one to perfectly
characterise a device. Instead, with access to only finite strings produced by it and the ability to
perform a finite number of tests, one can only ever gain increasing confidence in the operation
of the device. One can never be certain, for instance, that the output obtained was not a simply
atypical behaviour obtained purely by chance. This is doubly true since, as we discussed earlier,
randomness is characterised by an infinity of properties, so one must carefully choose the tests
one performs.

The issues arising when testing RNGs can be illustrated pointedly with an example. Imagine
a device which deterministically outputs the digits of the binary expansion of π = π1π2π3 . . .
starting from the 1010th bit. If we are unaware of the behaviour of this device and believe it to be
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a RNG, its output will appear extremely random to us; indeed, π passes all standard statistical
tests of randomness [45] despite the fact that it is not even known to be Borel normal [13, 64].
Nevertheless, the sequence produced by this box would be computable and thus not random at
all.

Standard statistical tests of randomness focus on properties of the distribution of bits or bit
strings within sequences, properties more closely related to Borel normality than algorithmic
complexity. Many such tests were developed with the aim of testing PRNGs, where reproduc-
ing such statistical predictions is a primary issue, particularly since failing to do so may leak
information about the seed and thus break the security of the PRNG [42]. QRNGs have gen-
erally been tested against similar tests, such as the NIST [53] and DIEHARD [46] batteries,
and generally perform well. For example, Quantis is officially certified as passing these tests on
1000 samples of 1 million bits [37]. Such tests, however, far from confirm the randomness of the
device; indeed, analysis of longer sequences (of 232 bits) revealed (albeit it very small) bias and
correlation amongst the output bits [2].

Such statistical non-uniformity is, however, to be expected in RNGs exploiting physical phe-
nomena due to experimental imperfections and instability [7]. Inasmuch as this form of non-
uniformity is small enough for the required application, this is not necessarily problematic
as long as a QRNG remains certified by value indefiniteness: unlike for PRNGs, where non-
equidistribution is often a symptom of deeper issues, the unpredictability of QRNGs is a result
of the indeterministic nature of the device, and is thus assured even if the resulting distribution
is biased [9]. Moreover, bias can be reduced by careful post-processing [3, 50, 63], allowing quan-
tum indeterminism to still be exploited sufficiently. Although testing such properties is crucial
in order to ensure any bias remains tolerably low, such tests do not directly probe crucial advan-
tages of quantum randomness, such as the degree of algorithmic randomness or incomputability
of their output.

Some authors have also looked at the compressibility of quantum random sequences using stan-
dard compression algorithms [40], ostensibly as a proxy for direct tests of Kolmogorov complexity.
In practice, however, just like the aforementioned tests, this approach also tests simple statistical
properties and suffers from the same problems as the above tests (such as being fooled by com-
putable sequences). Indeed, it is not possible to directly compute the Kolmogorov complexity
since it is an incomputable quantity. Nevertheless, one may still ask whether there are useful
tests that indirectly probe this to try and differentiate PRNGS—which always produce com-
putable sequences—from QRNGs [22]. In the following sections we investigate more closely this
question.

7 Experimentally testing for evidence of incomputability and al-
gorithmic randomness

In this section we describe several tests based on algorithmic properties which we use to study
random bits obtained from both PRNGs and the QRNG detailed in Figure 1. We tested 80
sequences of 226 bits3 obtained from each of the following six sources: the initial bits of the binary
representation of π (which can be seen as a form of pseudo-randomness [13]), the PRNG used
by Python v3.5.4 (a Mersenne Twister algorithm) [48], Random123 v1.09 [54], PCG v0.98 [49],
xoroshiro128+ [44], and the QRNG described in Section 5 (see [41]).

3The sequences were obtained from 10 longer sequences of 229 bits, each obtained during separate experimental
runs. We split them further into smaller sequences in order to provide a more detailed statistical analysis.
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7.1 Tests of Borel normality

As mentioned earlier, the notion of Borel normality was the first mathematical definition of
algorithmic randomness [18], and although, like many standard tests of randomness, it focuses
on the distribution of bits within a sequence, it is nonetheless worth looking at in its own right.

An infinite sequence x ∈ {0, 1}∞ is (Borel) normal if every binary string appears in the sequence
with the right frequency (which is 2−n for a string of length n). Every Martin-Löf random infinite
sequence is Borel normal [20], but the converse implication is not true: there exist computable
normal sequences, such as Champernowne’s sequence mentioned earlier. Normality is invariant
under finite variations: adding, removing, or changing a finite number of bits in any normal
sequence leaves it normal.

The notion of normality was subsequently transposed from infinite sequences to (finite) strings [20].
In doing so, one has to replace limits with inequalities, and one obtains the following definition.
For any fixed integer m > 1, consider the alphabet Bm = {0, 1}m consisting of all binary strings
of length m, and for every 1 ≤ i ≤ 2m denote by Nm

i the number of occurrences of the lexico-
graphical ith binary string of length m in the string x (considered over the alphabet Bm). By
|x|m we denote the length of x over Bm; |x|1 = |x|. A string x ∈ Bm is Borel normal (with
accuracy 1

log2
) if for every integer 1 ≤ m ≤ log2 log2 |x| and each 1 ≤ j ≤ 2m we have:∣∣∣∣Nm

j (x)

|x|m
− 2−m

∣∣∣∣ ≤ 1

log2 |x|
. (2)

Almost all algorithmic random strings are Borel normal with accuracy 1
log2

[20]; in particular,
they have approximately the same number of 0s and 1s. Furthermore, if all prefixes of a sequence
are Borel normal, then the sequence itself is also Borel normal.

The fact that Borel normality for finite strings is only defined up to the accuracy function arises
from the fact that the definition is well behaved (and converges to the definition for sequences
in the limit) if the right-hand-side of Eq. (2) is replaced by any decreasing computable real
function in |x| converging to 0. Fixing a specific accuracy function allows one to test explicitly
the normality of finite sequences, but this choice is necessarily somewhat arbitrary. However, the
relative normality of strings can be tested by comparing the values of a metric based on (2); a
reasonable choice of such a metric is the quantity max

(∣∣∣Nm
j (x)

|x|m − 2−m
∣∣∣) log2 |x| over the values

m = 1, . . . , blog2 log2 |x|c and each 1 ≤ j ≤ 2m. We recorded this metric for the six sources of
random bits under consideration, and the resulting distributions are shown in Figure 2.

The results show clearly that the bits produced by the QRNG are significantly less normal than
those produced by the other sources. This is, however, not surprising, since the experiment
implementing the QRNG was known to exhibit bias due to experimental imperfections [41] and,
as discussed at the end of Section 6, a sufficiently small bias may be less problematic in practical
applications for QRNGs than for traditional PRNGs.

While examining the normality of sequences produced by any RNG is important, this algorithmic
property fails to test properties of algorithmic randomness or incomputability in the way we aim
to do. The example of Champernowne’s sequence again testifies to this. To probe the incom-
putability of QRNGs we thus need to delve further into algorithmic properties of randomness.

7.2 A Martin-Löf test of incomputability

Is it possible to give formally a test which rejects every computable sequence as nonrandom?
Martin-Löf randomness is an important, if not the most important, form of algorithmic random-
ness and is based on the notion of Martin-Löf test of randomness. A test of randomness is defined
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Figure 2: Borel normality test: Box-plot showing the distribution of the quantity
max

(∣∣∣Nm
j (x)

|x|m − 2−m
∣∣∣) log2 |x| for the 80 strings of length |x| = 226 bits produced by each the six RNGs

tested.

by a uniformly computably enumerable shrinking sequence of constructive open sets in Cantor
space (the components of the test) whose intersection is a constructive null set (with respect to
Lebesgue measure); see [20] for more details. A sequence passes the test if it is not contained
in this null set. A sequence is Martin-Löf random if it passes all Martin-Löf tests. There exist
countably many such tests: some test normality, others test the law of large numbers, etc. The
answer to the question above is affirmative: such a Martin-Löf test exists.

To specify such a test for computability, we must define the sequences contained in its nth
component for all integers n > 0. To do so, one can take the nth component to be the union of
all σ{0, 1}∗{0, 1}∞ for which there is an e such that σ(0) = ϕe(0), . . . , σ(e+n+1) = ϕe(e+n+1)
and σ ∈ {0, 1}∗. This is an open computably enumerable class that contains all computable sets,
as each computable set has a computable characteristic function ϕe. Furthermore, the measure
of the nth component is bounded from above by

∑
e 2
−n−e−2, which in turn is bounded from

above by 2−n−1, as the string σ derived from ϕe has length e + n + 2 and is a prefix of the set
for which ϕe computes the characteristic function.

It is not difficult to see that the above test for computability depends on the enumeration (ϕe),
and there is no obvious “natural” choice. Furthermore, invariance under finite variations renders
the test unsuitable for finite experiments. As a result, it is necessary to consider more indirect
methods to test the incomputability of sequences produced by RNGs.

7.3 Chaitin-Schwartz-Solovay-Strassen tests

In this section we propose and carry out several related tests based on a rather different property
of random sequences: their ability to de-randomise the Solovay-Strassen probabilistic test of
primality [59]. In contrast with most standard tests of randomness which check specific properties
of strings of bits, these tests are based on the behaviour of the strings with respect to certain
“secondary” tasks. We first briefly describe the Solovay-Strassen primality test and the advantage
offered in this task by random strings, before presenting the tests themselves.

The Solovay-Strassen test checks the primality of a positive integer n: take k natural numbers
uniformly distributed between 1 and n−1, inclusive, and, for each i(= i1, . . . , ik), check whether
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a certain, easy to compute, predicate W (i, n) holds (W is called the Solovay-Strassen predicate).
If W (i, n) is true then “i is a witness of n’s compositeness”, hence n is composite. If W (i, n)
holds for at least one i then n is composite; otherwise, the test is inconclusive, but in this case
the probability that n is prime is greater than 1− 2−k. This is due to the fact that at least half
the i’s between 1 and n − 1 satisfy W (i, n) if n is composite, and none of them satisfy W (i, n)
if n is prime [59].

Chaitin and Schwartz [25] proved that, if c is a large enough positive integer and s is a long
enough c-Kolmogorov random binary string, then n is prime if snd only if Z(s, n) is true, where
Z is a predicate constructed directly from O(log n) conjunctions of negations of W predicates
(see Section 7.3.3 below for more details). The crucial fact is that the set of c-Kolmogorov
random strings is highly incomputable: technically the set is immune, that is, it contains no
infinite computably enumerable subset [20]. As a consequence, de-randomisation is thus non-
constructive, and thus without practical value.

Drawing on this result, we propose several tests that operationalise it in order to test the random-
ness of a sequence based on whether certain numbers obtained from RNGs succeed in witnessing
the compositeness of well chosen targets. We will make particular use of Carmichael numbers
as these target composites. A Carmichael number is a composite positive integer n satisfying
the congruence bn−1 ≡ 1 (mod n) for all integers b relatively prime to n. Although Carmichael
numbers are composite, they are difficult to factorise and thus are “very similar” to primes; they
are sometimes called pseudo-primes. Many Carmichael numbers can pass Fermat’s primality
test, but less of them pass the Solovay-Strassen test. Increasingly Carmichael numbers become
“rare”.4

In what follows we thus present four different tests based on the Chaitin-Schwartz Theorem and
the Solovay-Strassen test. Since the proposed tests rely directly on the algorithmic randomness of
a string, they can potentially give direct empirical evidence of incomputability, in stark contrast
to most tests of randomness. For example, the Borel normality test discussed previously is unable
to do so: the normality of Champernowne’s sequence mentioned earlier is evidence of this.

Moreover, while our primary objective in formulating these tests is to probe indirectly the in-
computability of quantum randomness, the fact that the Chaitin-Schwartz Theorem relies on the
stronger property of Kolmogorov randomness means that these tests also probe this property.
Indeed, an ideal QRNG should produce c-Kolmogorov random strings with very high probabil-
ity, while PRNGs produces strings of very low Kolmogorov complexity (since, in the limit, they
are computable). Nonetheless, we focus on probing the incomputability of strings from QRNGs
rather than their Kolmogorov complexity or randomness, a doubly motivated choice. Firstly, the
fact that incomputability is a weaker property than Kolmogorov randomness and less affected
by bias means that any difference between pseudo and quantum randomness will potentially be
easier to observe. Secondly, as mentioned earlier, subject to an additional physical assumption,
QRNGs can be shown to produce incomputable sequences with certainty, and not just probability
one [4].

As in [22], we conduct various statistical tests to determine whether any observed difference
is statistically significant or not. If a difference is found to be significant, we then look at
whether this really provides evidence of incomputability or not. As it is not a priori clear what
distribution the various test metrics we employ should follow, we utilise the non-parametric and
distribution free Kolmogorov-Smirnov test for two samples [28] to determine whether two datasets
differ significantly. This test returns a p-value5 indicating the probability, given the observed
test statistic, that the observed distributions were indeed drawn from the same distribution. We
conclude that “the difference between the two datasets is statistically significant” if the p-value

4There are 1,401,644 Carmichael numbers in the interval [1, 1018].
5Exact p-values are only available for the two-sided two-sample tests with no ties.
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is less than 0.005. We choose this relatively strict p-value to lower the chance of false positives
arising from the fact that we will perform several tests between several different data sources:
the probability of observing a spurious difference (simply by chance) on at least one of the many
tests is much higher than the critical p-value of 0.005 of obtaining such a spurious result on any
single test. A higher critical p-value (such as the commonly used 0.05) would mean such false
positives would be highly probable.

When no significant difference is found by the Kolmogorov-Smirnov test, we additionally check
whether the test metric distribution is consistent with a normal distribution by performing a
Shapiro-Wilk test [56];6 if it is,7 we then use the (parametric) Welch t-test [65], which is a version
of Student’s test, to determine whether there is a significant difference between the means of the
test statistics for the different RNGs under the assumption of normally distributed test metrics.

7.3.1 First Chaitin-Schwartz-Solovay-Strassen test

The first test we look at, which was previously used in [22], probes directly the efficacy of a set
of random bits in simulations (in our case for checking primality).

We performed this test on all of the 246,683 Carmichael numbers n with at most 16 digits as
computed in [51], using strings of bits from each random source to specify the numbers tested
as potential witnesses of compositeness. More precisely, for a fixed k (see below) and each
Carmichael number n we take k strings of dlog2 ne bits from the source string and reject and
resample those which specify the binary representation of a number greater than n− 1. These k
strings, interpreted as the binary representation of k numbers i1, . . . , ik, serve as the witnesses
to test the primality of n (i.e., the i in W (i, n)). Initially we take k = 1 and increase k until all
the Carmichael numbers are correctly determined to be composite.

The metric for the test is taken to be the smallest k such that at most k witness numbers were
required to obtain a verdict of non-primality for all of the Carmichael numbers. For each k, new
bits are read from the sample string for each Carmichael number to be tested; we only restart
reading from the start of the string (and thus recycling bits) when there was a need to try a
larger value of k to pass this test.

Figure 3 shows the performance of the 80 bit strings from each RNG (i.e., the same ones as
tested for Borel normality in Section 7.1) using the metric described above.

The full results of the statistical analysis of this test (as well as the following) are given in the
Appendix. The Kolmogorov-Smirnov tests found no statistical significant difference between any
of the sources of randomness (see Table A1). The Shapiro-Wilk tests showed that the distribution
of test statistics were not normally distributed (see Table A2), so further parametric tests were
not performed. This test therefore did not provide any evidence of significant differences between
the RNGs, let alone evidence of incomputability of the QRNG.

7.3.2 Second Chaitin-Schwartz-Solovay-Strassen test

We next consider a closely related (and similarly motivated) test with a slightly different metric.
For each Carmichael number n, we repeatedly obtain a witness from the string being tested (in
the same manner as in the first test and using new bits for each Carmichael number) until the
compositeness of n is successfully witnessed. For this test metric we take the total number of
bits used (for a given string to test) to confirm the compositeness of all 16 digit Carmichael

6More precisely, the Shapiro-Wilk test examines the null hypothesis that the samples z1, . . . , zn come from a
normally distributed population. This test is appropriate for small samples, since it is not an asymptotic test.

7Here we consider evidence for non-normality to be a p-value below 0.05.
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Figure 3: First Chaitin-Schwartz-Solovay-Strassen test on 80 samples: Box-plot showing the distribution
in the minimum number of witnesses needed to verify the compositeness of all Carmichael numbers of at
most 16 digits.

numbers. We calculate this as the sum, over all such Carmichael numbers n, of dlog2 ne times
the number of Solovay-Strassen trials needed to witness the compositeness of n. (In this way,
bits that are read but then rejected because they give a witness larger than n do not contribute
to the metric.)
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Figure 4: Second Chaitin-Schwartz-Solovay-Strassen test: total number of bits required to verify the
compositeness of all Carmichael numbers of at most 16 digits using (a) the 80 strings from each RNG,
and (b) the complement of these strings.

Figure 4(a) shows a boxplot of the results for the 80 strings from each RNG being tested. The vis-
ible difference between the QRNG and the other sources is confirmed by the Kolmogorov-Smirnov
tests (see Table A3), which showed a statistically significant difference between the QRNG and
π, Random123 and xoroshiro128+. There is not, however, a general trend of normality for the
test metric across all sources (in particular, there is weak evidence to reject normality of the
distribution for the Python strings; see Table A4), so it is not appropriate to use Welch’s t-test
to look for a difference between the QRNG and Python.

Although a significant difference was found between the QRNG and most the other sources, this
is not necessarily a result of the incomputability we wish to test. Indeed, we have already seen
from the Borel normality test that the QRNG has a small statistical bias, so we should thus
verify that the difference seen here is not also a result of this bias. A simple way to test this
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is to perform the same test on the complement of the strings we have tested (i.e., exchanging
0 and 1). Since this transformation preserves randomness and incomputability, if the difference
observed is evidence of such properties it should not be effected by such a transformation.

Figure 4(b) shows the result of the test on the complemented sequences. Here we see that
again there is an apparent difference between the QRNG and some of the other sources. This is
confirmed by the Kolmogorov-Smirnov tests (see Table A5) to be the case between the QRNG
and π, Python and Random123. In this case, the test metric is consistent with being normally
distributed (see Table A6), so it is reasonable to use Welch’s t-test to try and confirm this
difference further under an assumption of normality. Doing so (see Table A7) shows that there
is indeed a statistically significant difference between the QRNG and all the other sources on the
complemented strings.

However, as is clear from Figure 4(b), this difference is in the opposite direction to (and of the
same magnitude as) that in Figure 4(a): in the latter the QRNG appears to perform better,
while in the former, it performs worse. It thus appears that this difference was indeed due to
the bias of the QRNG rather than incomputability. Nonetheless, we note that it is strange that
biased sequences (in particular, biased towards having more zeroes) perform better in proving
the compositeness of Carmichael numbers; we are not aware of any number theoretic explanation
for this.

To conclude, this test shows that the QRNG behaves significantly differently from almost all the
other sources on this test (whether we use either the original bits or the complemented bits), but
that this difference is likely due to the bias of the QRNG. Understanding better why this bias
makes such a difference would nonetheless be interesting.

7.3.3 Third Chaitin-Schwartz-Solovay-Strassen test

While the above tests are inspired by the Chaitin-Schwartz Theorem [25], they do not directly
test the predicate Z(s, n) appearing therein that we mentioned earlier. A key difference between
these tests and the previous ones is the method they use to convert strings of random bits into
potential witnesses to test.

Consider s = s0 . . . sm−1 a binary string (of length m) and n an integer greater than 2. Let k be
the smallest integer such that (n−1)k+1 > 2m−1; we can thus rewrite the number whose binary
representation is s into base n− 1 and obtain the unique string dkdk−1 . . . d0 over the alphabet
{0, 1, . . . , n− 2}, that is,

k∑
i=0

di(n− 1)i =
m−1∑
t=0

st2
t.

The predicate Z(s, n) is defined by

Z(s, J) = ¬W (1 + d0, n) ∧ · · · ∧ ¬W (1 + dk−1, n), (3)

where W is the Solovay-Strassen predicate from Section 7.3. The digits of s (rewritten in base
n− 1) define the witnesses used to test the primality of n.

The main result from [25] is:

Theorem 1. For all sufficiently large c, if s is a c-Kolmogorov random string of length `(`+2c)
and n is an integer whose binary representation is ` bits long, then Z(s, n) is true if and only if
n is prime.
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In order to carry out these tests we first fix c. For each Carmichael number n (with an `-bit
binary representation) we take c = `− 1.8
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Figure 5: Third Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the distribution of total
number of bits used to identify all 16-digit Carmichael numbers as composite by (a) the 80 strings from
each RNG, and (b) the complement of these strings.

The metric of the third test has some similarities to that used in the second test. For each such n
we take ` (`+2c) bits. Rewriting s in base n−1 as described above, we then computeW (1+dj , n)
for 0 ≤ j ≤ k until the first j is found such thatW (1+dj , n) holds (and the compositeness of n is
thus witnessed). The metric itself is then taken as the sum (over all 16-digit Carmichael numbers
n tested) of j × dlog2(n− 1)e. Note that, if no first j ≤ k is found such that W (1 + dj , n) holds
(which occurs very rarely), then we simply count all the bits used when testing that Carmichael
number, i.e., ` (` + 2c). Figures 5(a) shows the performance of the 80 strings from each of the
six sources according to this metric. In order to be able to do decouple any potential difference
between the QRNG and the other sources due to algorithmic randomness from those resulting
from the bias of the QRNG, we similarly perform the same test on the complement of each of
the strings, the results of which are shown in Figure 5(b).

The results of the Kolmogorov-Smirnov tests on the data shown in Figures 5(a) and 5(b) are
given in Tables A8 and A11, respectively. No statistically significant differences between any
of the sources were found, reinforcing the impression given by Figure 5 that the RNGs all give
similar results. The Shapiro-Wilk test shows (see Tables A9 and A12) that there is no strong
evidence against the normality of test metric for the non-complemented strings (but there was
weak evidence against it for the complemented ones), so we were able to use Welch’s t-test to
look for any further evidence of differences between the sources on these strings (see Table A10).
No significant differences between the sources were found by these tests either. We therefore
conclude that the third Chaitin-Schwartz-Solovay-Strassen test with the this metric, which counts
the total number of bits required to verify the compositeness of all Carmichael numbers of at
most 16 digits, failed to find significant differences between the QRNG and the PRNGs tested.

7.3.4 Fourth Chaitin-Schwartz-Solovay-Strassen test

The final test is based more closely on the Chaitin-Schwartz Theorem out of the tests we consider.
Rather than looking at how many witnesses need to be tested until a Carmichael number’s
compositeness is verified, we look directly at the ability of the entire set of witnesses evaluated
in (3) to verify the compositeness of a number. In other words, we look for direct violations of

8This is somewhat arbitrary; other choices could of course be made, but would make little difference to our
test.
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the Chaitin-Schwartz Theorem: a violation appears when for all j = 0, . . . , k − 1, W (1 + dj , n)
are false; that is, all tests wrongly conclude that n is “probably prime”.

However, as the Solovay-Strassen test guarantees that W (1 + dj , n) is true with probability at
least one half when n is a composite number, it quickly becomes difficult, in practice, to observe
such violations for even the smallest Carmichael numbers used in the previous tests. In order to
observe some violations with the length of random strings (and time) we have access to, we have
to severely restrict ourselves and be content with testing the performance of the strings on only
the odd composite numbers less than 50: 9, 15, 21, 25, 27, 33, 35, 39, 45, 49. For these numbers,
we compute Z(s, n) by reading `(` + 2c) bits and following the same procedure as in the third
test. When Z(s, n) = 1, a violation of the Chaitin-Schwartz Theorem is thus observed. Since
testing this predicate a single time on the ten numbers above would give insufficient statistics to
observe any difference between the sources, we then repeated the above procedure reading from
then 2nd bit of each string, then the 3rd, etc., until all the random bits have been used. The
metric is thereby taken as the average number of violations observed for the 10 composites tested
(where the average is taken over all the repetitions). Figures 6(a) and 6(b) show the results of
this test for the 80 strings of each of the six sources used in the previous tests: again, the tests
in the former figure use the original strings from each source while the tests in the latter use the
complemented strings.
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Figure 6: Fourth Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the distribution of the
average count of violations of the Chaitin-Schwartz Theorem for all odd composite numbers less than 50
by (a) the 80 strings from each RNG, and (b) the complement of these strings.

We apply the same statistical tests to determine whether there are any statistically significant
differences in performance between the different RNGs. The results of the Kolmogorov-Smirnov
tests for the data in Figures 6(a) and 6(b) are given in Tables A13 and A15, respectively. Unlike
the results for the previous metrics, the QRNG exhibits significantly different behaviour on
the original (i.e., non-complemented) strings from the PCG, Python and Random123 PRNGs.
However, no significant difference is found on any of the complemented strings. The Shapiro-Wilk
tests (see Tables A14 and A16) find strong evidence against the normality of the distribution
of the test metric, so Welch’s t-test was not applied to see if further evidence of significant
differences was present.

Again, the reason for the apparently significant differences in performance between the QRNG
and some of the sources (at least for the non-complemented strings) is unclear, and further
investigation is required. The fact that only very small composite numbers were able to be
tested means that, in the absence of strong evidence of differences between the sources, the
results should be interpreted cautiously. Indeed, the Chaitin-Schwartz Theorem is an asymptotic
result, and a significant difference on larger composites (ideally Carmichael numbers), would be
preferable. We thus cautiously conclude that the fourth Chaitin-Schwartz-Solovay-Strassen test
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with the violation-count metric potentially identifies differences between QRNGs and the other
sources, but that further testing and study is needed to confirm the robustness of the initial
results observed here.

8 Conclusions

In this paper we looked at the ability to formulate tests of incomputability for QRNGs. As we
argued, such tests are important since they probe key advantages of QRNGs over PRNGs that
are not addressed by standard statistical testing of RNGs. The properties of incomputability
mean that one must resort to indirect tests of incomputability in practice, and we discussed
several such approaches.

We considered testing the Borel normality of sequences—a necessary property of algorithmic
randomness—which probes the bias of a sequence rather than its incomputability per se. This
served as a useful preliminary probe for the analysis of later tests. We then focused on a
different approach based around the Chaitin-Schwartz Theorem, which shows a practical con-
sequence of algorithmic randomness in probabilistic primality testing algorithms. We proposed
four different tests based on this result which, in principle, could exhibit advantages due to
the incomputability—as well as the algorithmic randomness—of sequences from QRNGs over
PRNGs.

To assess the practical utility of these tests, we applied them to long sequences generated by
various RNGs: a QRNG (described in Section 5), and several different PRNGs. Two of the tests
(the first and the third) failed to find any significant differences between the QRNG and the
PRNGs. A significant difference was, on the other hand, observed, for the second test. However,
we were able to show that the difference was due to a small bias present in the strings produced by
the QRNG rather than a result of any incomputability. Indeed, this highlighted a key challenge:
the need to decouple the incomputability from the bias within the test results, since the tests
can in general be effected by both these elements. To this end, we examined the performance of
tests on the complement of the strings as well as the strings themselves, but conclude that care
should be taken to formulate tests that are not effected by the bias of a sequence. This task is
complicated, however, by the fact that the effect of using a biased distribution in probabilistic
primality testing is not well understood theoretically.

Our fourth test, which was designed to follow more faithfully the Chaitin-Schwartz Theorem and
to be potentially more robust to bias (but, unfortunately, more demanding to apply in practice),
produced ambiguous results. In particular, significant differences were found only on the non-
complemented strings, but it was not clear whether these differences were entirely due to bias, as
one would expect the complemented strings to show a similar difference in the opposite direction,
which was not observed. Due to the practical limitations of this test and small numbers tested,
further testing (and, probably, refinements of the test itself) are needed to understand this effect
better.

While our tests failed to find any conclusive experimental evidence of incomputability of quantum
randomness, they provide an important study for the development of tests aimed at probing
algorithmic properties of quantum randomness. Indeed, being based on the Chaitin-Schwartz
Theorem, the tests in fact probe the stronger property of c-Kolmogorov randomness, and this
fact potentially contributes to the difficulty in observing indirect effects of incomputability. The
development of further tests to this end, as well as additional experimental studies, are therefore
merited.

We conclude by noting that all the test data (i.e., random strings), programs and results are
available online in [5].
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Table A1: Kolmogorov-Smirnov tests for the first Chaitin-Schwartz-Solovay-Strassen test with the
metric that records the minimum number of witnesses needed to verify the compositeness of all Carmichael
numbers of at most 16 digits.

p-values π Python Random123 QRNG xoroshiro128+

PCG 0.8186 0.8186 1 1 1
π 0.9976 0.9976 0.5596 1

Python 0.9976 0.5596 0.9976
Random123 0.9976 1

QRNG 0.9780

Table A2: Shapiro-Wilk tests of normality for the first Chaitin-Schwartz-Solovay-Strassen test with
the metric that records the minimum number of witnesses needed to verify the compositeness of all
Carmichael numbers of at most 16 digits.

PCG π Python Random123 QRNG xoroshiro128+

p-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

Table A3: Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-Strassen test with the
“bit counting” metric on the non-complemented (i.e., original) bits.

p-values π Python Random123 QRNG xoroshiro128+

PCG 0.6953 0.4383 0.922 0.0132 0.6953
π 0.4383 0.8219 0.0045 0.9794

Python 0.0814 0.0537 0.5625
Random123 0.0014 0.5625

QRNG 0.0026

Table A4: Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-Solovay-Strassen test with
the “bit counting” metric on the non-complemented (i.e., original) bits.

PCG π Python Random123 QRNG xoroshiro128+

p-value 0.4892 0.2003 0.04867 0.5951 0.1669 0.0808

Table A5: Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-Strassen test with the
“bit counting” metric on the complemented bits.

p-values π Python Random123 QRNG xoroshiro128+

PCG 0.4383 0.3307 0.2424 0.05372 0.5625
π 0.4383 0.1202 0.0045 0.5625

Python 0.5625 0.0026 0.8219
Random123 0.0014 0.2424

QRNG 0.0132

Table A6: Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-Solovay-Strassen test with
the “bit counting” metric on the complemented bits.

PCG π Python Random123 QRNG xoroshiro128+

p-value 0.199 0.2433 0.0754 0.4401 0.0518 0.9673
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Table A7: Welch t-tests for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting”
metric on the complemented bits.

p-values π Python Random123 QRNG xoroshiro128+

PCG 0.6422 0.3796 0.1265 0.0034 0.9454
π 0.6343 0.2287 0.0004 0.6795

Python 0.4683 0.0001 0.3964
Random123 < 10−4 0.1271

QRNG 0.0020

Table A8: Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-Strassen test with the
“bit-counting” metric for the non-complemented (i.e., original) bits for all Carmichael numbers of at most
16 digits.

p-values π Python Random123 QRNG xoroshiro128+

PCG 0.2694 0.4821 0.2988 0.4013 0.1054
π 0.6953 0.4383 0.3307 0.4383

Python 0.8186 0.5625 0.5625
Random123 0.9794 0.8219

QRNG 0.8219

Table A9: Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-Strassen test with
the “bit-counting” metric for the non-complemented (i.e., original) bits for all Carmichael numbers of at
most 16 digits.

PCG π Python Random123 QRNG xoroshiro128+

p-value 0.2076 0.4921 0.3337 0.1956 0.7608 0.1347

Table A10: Welch t-tests for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting”
metric for the non-complemented (i.e., original) bits for all Carmichael numbers of at most 16 digits.

p-values π Python Random123 QRNG xoroshiro128+
PCG 0.2838 0.81 0.5227 0.4335 0.2437
π 0.4186 0.6833 0.8401 0.911

Python 0.6956 0.584 0.3653
Random123 0.8585 0.6096

QRNG 0.7629

Table A11: Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-Strassen test with the
“bit-counting” metric for the complemented bits for all Carmichael numbers of at most 16 digits.

p-values π Python Random123 QRNG xoroshiro128+
PCG 0.5596 0.9794 0.173 0.9794 0.3307
π 0.922 0.8219 0.8219 0.6953

Python 0.5625 0.9194 0.6953
Random123 0.4383 0.1201

QRNG 0.8219
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Table A12: Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-Strassen test with
the “bit-counting” metric for the complemented bits for all Carmichael numbers of at most 16 digits.

PCG π Python Random123 QRNG xoroshiro128+
p-value 0.4616 0.6708 0.6067 0.94 0.9355 0.0239

Table A13: Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-Strassen test with the
“violation-count” metric for non-complemented (i.e., original) bits for all odd composite numbers that are
less than 50.

p-values π Python Random123 QRNG xoroshiro128+
PCG 0.318 0.2414 0.692 0.0027 0.9976
π 0.692 0.8186 0.05397 0.9976

Python 0.9194 0.0004 0.8186
Random123 0.0047 0.8186

QRNG 0.0348

Table A14: Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-Solovay-Strassen test with
the “violation-count” metric for non-complemented (i.e., original) bits for all odd composite numbers that
are less than 50.

PCG π Python Random123 QRNG xoroshiro128+
p-value < 10−4 0.0040 0.0002 0.0056 0.0115 0.0148

Table A15: Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-Strassen test with the
“violation-count” metric for the complemented bits for all odd composite numbers that are less than 50.

p-values π Python Random123 QRNG xoroshiro128+
PCG 0.692 0.9194 0.9194 0.1725 0.5596
π 0.5596 0.9976 0.692 0.2414

Python 0.692 0.1725 0.8186
Random123 0.5596 0.5596

QRNG 0.0135

Table A16: Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-Solovay-Strassen test with
the “violation-count” metric for the complemented bits for all odd composite numbers that are less than
50.

PCG π Python Random123 QRNG xoroshiro128+
p-value 0.06601 0.02957 < 10−4 0.0080 < 10−4 0.0017
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