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Loose ends

Two things that we shouldn’t completely lose sight of. (i) Can we use the

characterisation of multisets in terms of surjections to prove BQOness

of various multiset orderings (and in general characterisations of certain

datatypes in terms of domain equations to prove lots of theorems about

BQOs) (ii) The connections between AxCount≤ and WQOs in NF.

Proofs of wellfoundedness of RPO and LPO. The topological story.

Minimal bad array theorem. Proof of the BQO tree theorem and Laver’s

theorem. Sets of children or lists of children??? Inductive vs coinductive

dfn of infinite trees. Minimal bad array theorem. and therest of the topo-

logical stuff. Excluded substructure characterisation using RADO(n).

Commutation of lifts.

Can we use the fact that WQOness of X is the same as wfness of pow

X to extend the notion of the wf part of a relation to a wqo part of a

relation?

Minimal bad array lemma. I haven’t got anywhere near understanding

it. Sse 〈X,≤X〉 is a quasiorder that is not BQO. Then 〈Pℵ1
(X),≤∞〉

is not wellfounded. Look at the wellfounded part. Is this WQO? If it

is, then it’s the whole thing, so it isn’t. So there is an MBS. Does this

MBS sift into a bad array that in minimal in the right sense?



2 0 Contents

Let Θ be the structure whose carrier set is Hℵ1
(Q) where Q is a count-

able set of Quine atoms, quasiordered by the obvious lift of the identity

quasiorder. Presumably every countable wellfounded quasiorder embeds

in it. Something like that, anyway...

Perhaps every countable quasiorder embeds in it.....

The RADO QO cannot be an intersection of two wellorderings. One of

them would have to be the worder of <IN to length ω2. Any total order

whose intersection with that gives RADO must be illfounded beco of

〈1, 2〉 > 〈2, 3〉 > 〈3, 4〉 > . . ..

Try X ≤2 Y iff (∀x1x2 ∈ X)(∃y ∈ Y )(x1 ≤ y ∧ x2 ≤ y).

Exercise: show that if ≤ is WQO, the ≤2 is wellfounded

index entries for

tree list stretching coinduction, excluded substructures FFF sifting

block RADO ray

Notation

Does one write sequences in functional notation or subscript notation?

That is, does one write “x1, x2, . . .” or “f(1), f(2), . . .”? I am com-

ing round to the idea that the second is infinitely superior. With the

first, the letter ‘x’ does nothing. The second notation also makes it

much easier to deal with subsequences. I think i’ll try to remove all

subscripted-sequence-talk as i process this document.

finite bad arrays

An n-block is a binary structure 〈X, �〉 with either

• X = {{i} : i ≤ n} for some n ∈ IN and � is {〈i, j〉 : i < j ≤ n};

• or is obtained from another n-block 〈X, �〉 by choosing an x ∈ X

and (i) deleting x from X ∈ X and adding every x′ of the form

hd(x) :: y such that x � y, and (ii) deleting from � every ordered pair
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mentioning x and adding every ordered pair 〈z, x′〉 where z �x under

the old dispensation, and every ordered pair 〈hd(x) :: y, y〉.

A bad finite array is what you think it is.

We partially order bad finite arrays by reverse inclusion. f ≤ g if

g ⊆ f thought of as their graphs.

Is this wellfounded? The idea now is that if we have an infinite de-

scending sequence we can construct a bad array...



Preface

This book has grown out of lectures for a graduate (“Part III”) course

entitled ‘Logic and Combinatorics’ given at the University of Cambridge.

Since motivations for interest in WQO theory are various I should per-

haps explain that that course arose from my desire to show to my stu-

dents a beautiful result of Harvey Friedman’s which goes some way to

explaining why there should be courses with this title in the first place.

That result is “FFF”: Friedman’s Finite Form—of Kruskal’s theorem

on the wellquasiorderings of trees. Logicians have known ever since the

days of Gödel’s Incompleteness theorem that for any axiomatic system

of arithmetic there are logically simple assertions of arithmetic not prov-

able in that system, but until the advent of FFF no examples were known

that were mathematically natural. FFF arguably still remains the most

natural and pleasing example of such a formula. (The closest competi-

tion, the Paris-Harrington formula, was also in that course, but did not

make it into this book because it doesn’t involve WQOs or BQOs). I

still remember the talk where i first heard it, given by my Doktorvater,

Adrian Mathias, in the early 1980’s.

Others will have different reasons for interest. Theoretical computer

scientists are interested in WQO and BQO theory because it underpins

their craft of proving termination of algorithms. (Indeed my sole origi-

nal contribution to BQO theory appeared in the Journal of Theoretical

Computer Science.) Finally, people interested in descriptive set theory

will have had their attention drawn to BQO theory by the important and

influential work of Steve Simpson, showing that descriptive set theory

provides a smooth and illuminating treatment of BQOs.

This book came to be written in a way that I suspect many textbooks

are written. It is the book that I wish I had had when i embarked on

my attempt to understand BQO theory. I do not claim to be an expert

4
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on BQO theory, and this book is not the definitive pronouncement of a

master, but rather the log of the labours of a journeyman with the false

starts and fruitless errors removed, and offered to the public as such, in

the hope that it may be useful in the way that expert texts are not.

Being by nature a lazy reader, I have worked most of this out for my-

self, with the clues I could find in the literature. I have cited everything

I have read, and a great deal that I haven’t. Most of the proofs I supply

are proofs I found myself, and altho’ I have given credit to other authors

where I know it to be due, I make no claims of priority for unattributed

results. worked exercises burble.

It is a pleasure to be able to thank my long-suffering correspondents

Steve Simpson, Richard Laver and Alberto Marcone, who patiently

and courteously answered the questions—many of them no doubt quite

daft—with which I plied them during my attempts to teach myself this

material. One of my reasons for writing this book is to ensure, by setting

down in writing (some of) what I have learned from them, that they are

in future slightly safer from the prospect of importunate correspondents

like me.
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Background

More chat along the following lines....

Computer scientists do not need to be reminded of the importance

of wellfounded relations in their subject: their utility in proofs of ter-

mination is enough by itself to command their attention. The typical

way for a wellfounded relation to arise is from declarations of recursive

datatypes, but some seem to have different roots, and an important class

of relations that can be wellfounded (or have natural wellfounded parts)

is the class of wellquasiorders, and a special subclass of that family is

the class of better quasiorders.

miniexercises

The original audiences for the lectures on which this book is based

were fourth year cohorts that had in their third year been subjected to

the lectures on which [19] were based, so it is hardly surprising that that

book provides the requisite logical background

1.1 Definitions and Notation

The larger the number of mathematical groupuscules that have reason

for being interested in a topic, the greater is the need for an introductory

text on that topic. By the same token, sadly, the greater will be the

divergence of notations that students bring with them to the endeavour

of reading such a book.

Combinatorists, proof theorists, set theorists and theoretical computer

scientists all have reasons for being interested in BQOs, and they have

different notations. I have had to make choices about notation but I

have tried to remain impartial in other ways. One way of preserving

an air of impartiality is to ensure that applications and illustrations

come from all areas equally. And one way of doing this—namely to

6



1.1 Definitions and Notation 7

provide no applications at all—recommends itself in other ways too.

There is always a case, in introductory texts, for concentrating on ideas.

This is particularly so in the case of WQO and BQO theory where the

basic ideas are rebarbative to the point of prickliness. I have exploited

illustrations only where they illuminate the underlying ideas, which—

God knows—are quite hard enough for readers to grasp as it is, without

constant hectoring from their guide to the effect that these ideas are

important: they know that already.

Delicate balancing act: CS people are likely to prefer constructive

arguments where these are available, and this means not only eschewing

the axiom of choice but also excluded middle. In contrast combinatorists

generally blithely assume the axiom of choice, even the uncountable

axiom of choice. Descriptive set theorists are in the middle somewhere,

assuming dependent choice always, but full AC (Zorn’s lemma etc) only

at times. The author is from none of these tribes, but is sympathetic to

all three viewpoints. Although the axiom of choice generally looms large

(even if unawoved, and in the background) in the proofs of the classical

results from WQO and BQO theory, it is a deep and significant fact

that most of the interesting mathematics to be had there takes place in

countable structures, and that therefore only countable choice will be

needed. I will assume DC throughout this book. At the time of writing

I have no plans to make any use of uncountable choice at all, but every

now and then one encounters some interesting devlopments that exploit

it and when we do I shall follow my usual classroom practice of using it

without hesitation, though I will of course flag all such uses.

Definitional equality =:

A list is either the empty list (here written nil) or the result of cons-

ing a head onto another list, and cons-ing is usually written in infix

notation as h::t. Thus if l = h::t, h is the head of l (written hd(l)) and

t is the tail (written tl(l)). Thus if l = h::t is a list of widgets, h is a

widget, and t is a list of widgets. This is a notation dervied from ML,

which marks it very clearly as a notation from CS not combinatorics,

but we have to call it something. When writing out lists in detail, we

use square brackets and semicolons. For example hd([5; 4; 7]) = 5, and

tl([5; 4; 7]) = [4; 7].

len(l) is the length of the list l.

butlast(l) is the list l minus last(l), its last element.

A stream is an infinite list. Lists can be thought of as finite sequences,

and streams as infinite (ω-) sequences. must de-

cide what

do do

about

consing

stuff on

the ENDS

of lists...

SNOC???

Lists and streams may have multiple occurrences of individual items,
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and the number and location of these multiple occurrences matter:

[1; 1; 1] 6= [1; 1] and [2; 1] 6= [1; 2]. Multisets are like lists in that the

number of occurrences of an item matters but unlike them in that the

location doesn’t. (“Throw away the order information”). What is left is

multiplicity information: the number of times an element appears. The

general theory of multisets is obscure
1

and there is not even a generally

agreed notation. Fortunately all our multisets have “finite multiplicity”.

The square brackets will be overloaded, since we will still use them,

as is traditional, for denoting closed intervals in total orderings. [1,n] is

{1, 2, . . . n}.

lambda notation?

\

colex orderingmight have

to be care-

ful here,

and spell

things

out. When

comparing

two things

under the

colex or-

dering we

compare

*last*

elements

first, then

look at

penul-

timate

elements,

then

antepenul-

timate and

so on. In

fact just

like lex

only doing

it right-to-

left instead

of left-to-

right.

A binary structure 〈X, R〉 consists of a carrier set, X , associated with

a relation. Given two binary structures 〈A, R〉 and 〈B, S〉, we say 〈B, S〉

is an end-extension of 〈A, R〉 if A ⊆ B and R ⊆ S, and whenever

y ∈ A and xSy then x ∈ A too.

Partitions for us are not the same as partitions in number theory. A

partition of a set X is a set is a set Π ⊆ P(X) s.t.
⋃

Π = X and

(∀π1, π2 ∈ Π)(π1 ∩ π2 = ∅). The members of Π are pieces.

If X is a set, P(X) is the power set of X ; [X ]n is the set of unordered

n-tuples from X . [X ]<n is
⋃

j<n

[X ]j. (Thus X<ω is the set of finite lists

of members of X).

the expo-

nent can

be infinite:

is it a car-

dinal or an

ordinal??

{i < j < k} will be the triple {i, j, k} accompanied by the information

that i < j < k,

Here n is a cardinal not an ordinal, and where infinite cardinals are

involved we will sometimes write ‘Pκ(X)’ rather than ‘[X ]<κ’. Xn is of

course the set of ordered n-tuples from X and this notation is extended

transfinitely, so that Xα is the set of α-sequences from X . (Contrast

X<ω with X<ℵ0 : the first superscript is an ordinal so the whole ex-

pression denotes the set of finite sequences, whereas the second is a

cardinal so we get the set of finite subsets!) Beware! Some people

will write ‘Xω’ when they intend to denote the set I would denote by

‘[X ]ℵ0 ’. Prömel and Voigt ?? write
(

X
ω

)

for the set of infinite subsets

of X . ‘XY ’ and ‘Y → X ’ both denote the set of all functions from

Y to X . There are three very good reasons for preferring the sec-

ond notation (i) the first notation overloads the exponential; (ii) the

1 For example it is not generally agreed what the axioms should be of a multiset
version of ZF
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second notation makes it typographically easy to iterate (try writing

‘(A → B) → ((B → C) → (A → C))’ in the first style!); (iii) it reflects

typographically the Curry-Howard correspondence.

Expain arrow notation for Ramsey theory here. We won’t prove Ram-

sey’s theorem here. we will speak of ‘monochromatic’ sets not ‘homoge-

neous’ sets. (‘Homogeneous’ is too overloaded already)

Quasiorders and posets

A binary relation that is transitive and reflexive will here be called a

quasiorder. The expressions “quasi-order”, “quasiordering” and “pre-

order” are also to be seen in the literature. A partial order is a qua-

siorder ≤ that is antisymmetric: that is to say, (∀xy)(x ≤ y∧y ≤ x→

x = y).

The intersection of a quasiorder with its converse is an equivalence

relation and will be called the corresponding equivalence relation. The

quotient is a partial order and will be called the corresponding partial

order. Notice that equivalence relations are quasiorders: in particular

the identity relation on any set is a quasiorder. However no nontrivial

equivalence relation can be a partial order.

Although to most readers the symbol ‘≤’ probably connotes a partial

order we will here use it for quasiorders as well. The reader should make

a mental note not to assume antisymmetry!. The relation x ≤ y 6≤ x

is the strict part of ≤ and will be written ‘x < y’. (That is to say,

delete the horizontal line from the symbol used to denote a quasiorder

to obtain a notation for the strict part of that relation.) In what follows

we will use ‘<’ for both the (strict part of the) quasiorder relation and

inequality on IN. The reader is warned! We will write ‘≥’ and ‘>’ for

the converses of the relations denoted by ‘≤’ and ‘<’ without further

comment.

A strict partial order is a relation that is transitive and irreflexive.

Alternatively a strict partial order is (R\ identity) | domain(R) where

R is a partial order, that is to say, the strict part of a partial order.

Indeed if < is a strict partial order then there is a unique partial order

of which it is the strict part: if R is a partial order, with R \ R−1 the

strict part of it, then one can recover R from R \ R−1 by unioning it

with the identity relation.

Notice that the neat 1-1 correspondence between partial orders and

strict partial orders breaks down in the case of quasiorders in general:

if a quasiorder believes a ≤ b and b ≤ a, then the strict part believes

that a 6< b and b 6< a. But it would also believe a 6< b and b 6< a if
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the original quasiorder had had a 6≤ b and b 6≤ a, so in the general case

of quasiorders information gets lost in the passage from quasiorders to

their strict part. If we take the strict part of a quasiorder and attempt

to recover the original quasiorder by forming the union with the identity

relation we cannot expect to get back the original quasiorder. To take

an extreme example: equivalence relations are quasiorders, and if we

perform this two-step process to an equivalence relation then all we get

back is the identity relation.

A realistic example of a quasi-order that is not a partial order but is

nevertheless natural is the relation |A| ≤∗ |B| between cardinals |A| and

|B|. (“A is empty or there is a surjection from B onto A”). A further

natural example is provided by the embedding quasiorder between linear

order types. This is a quasiorder but is not a partial order: consider

the half-open intervals (0, 1] and [0, 1). Each embeds in the other, but

they are not isomorphic. One does not want to study these order types

through the corresponding equivalence relation, since it would identify

these two significantly distinct order types and thereby expunge too

much structure.

Two further examples of quasiorders that are not obviously antisym-

metrical are the graph minor and subgraph relations on the class of

infinite graphs.) Rudin-Keisler

Directed posets and total orderings

A relation R is connected if (∀x, y)(R(x, y) ∨ R(y, x)). The abstract

noun is connexity. There is no special designation for quasiorders that

are connected, but a partial order that is connected is said to be a total

or linear order.

If 〈X,≤X〉 is a poset, a subset X ′ ⊆ X of X is a directed subset if

(∀x1x2 ∈ X ′)(∃x3 ∈ X ′)(x1 ≤X x3 ∧ x2 ≤X x3). A poset 〈X,≤X〉 is a

directed poset if X itself is directed. (miniexercise: 〈X,≤X〉 is a total

order iff every subset of X is directed).We don’t

need this

do we?

There is

also κ-

directed.

In a directed poset all pairs of elements have sups. What is a poset

in which pairs of elements never have a sup? Two comparable elements

in a poset always have a sup—trivially: it will be one or the other, so

our question should be: what about posets where a pair of incomparable

elements never have a sup? Such a poset is called a tree, (at least if it

has a bottom element, and sometimes even if it doesn’t. Trees without

bottom elements are sometimes called forests though we will not be using

that terminology here). The bottom element is a root. Such trees are



1.1 Definitions and Notation 11

upward-branching trees. There are also downward-branching trees. We

will encounter both.

Trees can also be thought of as digraphs, particularly if they have

only countably many vertices, and edges of finite degree. However, for

us, trees (be they upward or downward branching) will usually be posets.

Complete posets and fixed point theorems

〈Q,≤Q〉 is a complete partial order (‘CPO’ for short) if every subset

has a least upper bound. 〈Q,≤Q〉 is a chain-complete poset if every

chain has a least upper bound. An antichain (in a poset) is set of

elements no two of which are ≤-comparable.

A function f : X → Y is a monotone map from the quasiorder

〈X,≤X〉 to the quasiorder 〈Y,≤Y 〉 if (∀x, x′ ∈ X)(x ≤X x′ → f(x) ≤Y

f(x′))

The difference between CPOs and chain-complete posets will matter

to us. The collection of quasiorders on a fixed arbitrary set is a complete

poset under inclusion (thinking of a quasiorder as a set of ordered pairs

and ordering those sets by inclusion) whereas the collection of partial

orders on a fixed arbitrary set is merely chain-complete since a pair of

partial orders that disagree has no upper bound.
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Other background: Ramsey theory,
Wellfoundedness, ordinals etc

If we as-

sume DC

and KL

from the

start, we

can use the

descending-

chain ac-

count of

wellfound-

edness

through-

out. That

makes the

excluded

substruc-

ture story

nicer. We

do need to

say a little

bit about

induction

and re-

cursion on

rectypes

beco’s

of trees

lists and

Kruskal.

Perhaps

we can

just say

that the

reader is

assumed

to be fami-

lair with

structural

induction?

No. There

is an issue

about

how much

detail we

can go into

µ for minimum.

We will need to know some fixed point theorems: every monotone

function from a complete poset into itself has a fixed point (Tarski-

Knaster), and every inflationary function from a chain-complete poset

into itself has a fixed point (Witt) However we do not need to know the

proofs.

Explain pre-fixed points and post-fixed points.

People from a combinatorial tradition will be familiar with the practice

of mathematical induction, but perhaps less familiar with the general

idea of which it is a special case: structural induction.

Only theoretical computer scientists are familiar with coinduction.

State and Prove T-K and Witt. (Poss make connection with QO of

linear orders unde embedding? Cococo theorem?)

Structural induction is associated with inductively defined sets. An

inductively defined set is the ⊆-least set containing certain things and

closed under certain operations. That is to say, it is the least fixed

point (in the chain-complete poset of all subsets of the universe) for

the function that takes a set X and adds to X the result of doing each

operation once to everything in X . This gives rise to a principle of

structural induction.

Now what about the greatest fixed point? Normally any proof or

construction applicable to a least fixed point can be dualised to obtain

a construction or proof pertaining to a greatest fixed point. So what

happens to the principle of structural induction?

A: we get coinduction.

The collection of X-lists (lists whose elements are Xs) is inductively

defined, and is a least fixed point: it is the ⊆-least class containing the

empty list and containing x::l whenever (i) it contains l and (ii) x ∈ X .

12
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The collection of X-streams is co-inductively defined, and is a greatest

fixed point: it is the ⊆-greatest class Y such that every member of Y is

of the form x::l where (i) l ∈ Y and (ii) x ∈ X . someone

will surely

ask why

this gives

us ω-

sequecnes

not ω∗+ω-

sequences.

For any set X we have the concepts of finite and infinite trees over

X . The trees in this section will be upward-branching, and all of

them can also be thought of as digraphs with labelled vertices. Finite

trees resemble lists and form a recursive datatype: infinite trees resemble

streams and form a co-recursive datatype.

First we have a definition of a recursive datatype of Q-trees. A Q-tree

is either (i) a singleton from Q; or (ii) an ordered pair of an element of

Q with a list of Q-trees.

‘rt(t)’ will denote the root of t—the label of the bottom vertex. The

subtree corresponding to a child of the root will be called a child of

the tree (inversely a parent). The list of children of a tree t will be

children(t). By abuse of notation this will also denote the set of chil-

dren of t.

Thus one would write:

rt(tree(q,treelist) =: q; and children(tree(q, treelist)) =:treelist

Correspondingly the corecursive datatype of infinite Q-trees is the ⊆-

largest collection Y such that everything in Y has a root in Q and a

stream of children that are all in Y . more

detail?The children could form a list or a stream!

LEMMA 1 Let 〈D,≤D〉 be a wellfounded directed poset, and {〈Ad, Rd〉 :

d ∈ D} a family of wellfounded structures, with, for each d, d′ ∈ D a

map id,d′ : 〈Ad, Rd〉 →֒ 〈Ad′ , Rd′〉 making 〈Ad′ , Rd′〉 isomorphic to en

end-extension of 〈Ad, Rd〉, such that the id,d′s commute, then the direct

limit 〈AD, RD〉 is also wellfounded.

“A direct limit of wellfounded structures under end-extension is well-

founded”

Proof: Supply

proof(I don’t think we need D to be wellfounded. Consider a family of

structure with increasing domain but empty relation indexed by the

rationals.)

(see page 23.)

Wellorderings and ordinals. Explain α∗ notation for reversals of

wellorderings.

Must define prewellordering, just to get things straight
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A prewellordering is a wellfounded transitive relation whose com-

plement is transitive and connected (or—less quixotically—a wellordered

partition).

We will continue with the widespread bad habit of referring to a re-

flexive relation as wellfounded when we really mean that its strict part

is wellfounded (when this is obvious from context). Notice that altho’

adding ordered pairs to a wellfounded relation does not normally give

you a wellfounded relation, adding ordered pairs to a “wellfounded”

quasiorder to obtain a new quasiorder does preserve wellfoundedness.

EXERCISE 1

Product of finitely many wellfounded relations is wellfounded, but give

an example to show that the set of finite strings over an ordered alphabet,

ordered lexicographically, is not wellfounded.

Wellfounded part of a relation. (needed for Buchholtz’s proof)

Explain how to extract a long wellordering from a wellfounded rela-

tion.

It is customary to capture the idea of ranks of wellfounded relations

by means of recursively defined maps onto the ordinals. This uses

Mostowski collapse and replacement. The desire to have a presenta-

tion of these ideas that doesn’t use complex set-theoretic notions is not

by itself a sufficient reason for seeking a presentation using simpler ma-

chinery. However, in this context we will be trying to make sense of al-

legations that are commonly made in slangy shorthand as “If Kruskal’s

theorem is true, then the ordinals below Γ0 are wellfounded”. Γ0 is an

ordinal, as the reader will discover. And are not the ordinals below any

ordinal wellfounded? Well, yes. What is really being claimed is that if

Kruskal’s theorem holds then there is a definable wellordering which can

be proved to be of length at least Γ0.
1

2.0.1 defining rank from first principles

Let R be a wellfounded relation. Quasiorder the carrier set of R by the

following recursion:

1 The significance of this fact is that constructions which need wellorderings of such
extreme length for their successful recursive declaration can actually be carried
out. One such construction is the elimination of cuts from proofs in certain for-
mulations of elementary arithmetic. This enables us to prove the consistency of
arithmetic, and thereby establish (by appeal to the second incompleteness theo-
rem) that Kruskal’s theorem (or did i mean FFF?) is not provable in elementary
arithmetic.
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x ≤ y if R−1“{x} ≤+ R−1“{y}

+ not

defined

yet. Do

we need

to explain

R−1“{x}

We will establish that ≤ is (i) reflexive, (ii) transitive, (iii) connected

and (iv) wellfounded.

(i) Evidently ≤ is reflexive.

(ii) We prove that it is transitive by R-induction. Let x be R-minimal

so that there are y and z such that x ≤ y and y ≤ z but x 6≤ z. Having

picked such an x, pick y R-minimal so that x ≤ y and there is a z such

that y ≤ z but x 6≤ z, and having picked such a y pick z R-minimal so

that x ≤ y and y ≤ z but x 6≤ z.

Because x ≤ y it follows that for every x′ ∈ R−1“{x} there is y′ ∈ y

with x′ ≤ y′. Similarly for every y′ ∈ R−1“{y} there is z′ ∈ z with y′ ≤

z′. But by minimality of x y and z as counterexamples to transitivity

we must have that for all such x′ there is a suitable z′ so that x′ ≤ z′,

which is to say x ≤ z, and x, y and z are not counterexamples after all.

(iii) We prove that it is connected by R-induction. Suppose

(∀y)(R(yx)→ (∀z)(y ≤ z∨z ≤ y)). We will prove (∀w)(x ≤ w∨w ≤ x).

Consider R−1“{x} and R−1“{w}. By induction everything in R−1“{x}

is comparable with everything, and so, in particular, with everything in

R−1“{w}. S if x 6≤ w there is y ∈ R−1“{x} s.t. y 6≤ z for any z ∈

R−1“{w}. But then, by comparability, we have (∀z ∈ R−1“{w})(z ≤ y)

so w ≤ x.

(iv) To prove that ≤ is wellfounded we prove by induction on R that

(∀Y )(∀x′ ≤ x)(x′ ∈ Y → (∃y ∈ Y )(∀z ∈ Y )(y ≤ z)).

Suppose this is true for all w ∈ R−1“{x}. We want to show that any

set Y containing anything ≤ x has a ≤-minimal element. If Y contains

something ≤ any R-predecessor of x then Y has a minimal element by

induction hypothesis, so we need only consider the case where every

member of Y is > every R-predecessor of x. We want to infer from this

that if y ∈ Y then x ≤ y, so that x is itself the minimal element that we

seek.

For this we need a result to the effect that if a > every R-predecessor

of b, then a ≥ b.

Let a be R-minimal so that there is b < a with b > all R-predecessors

of a. Since b < a it cannot be the case that every R-predecessor of a ≤

an R-predecessor of b, so there is a′ an R-predecessor of a which > every

R-predecessor of b and yet is < b. We repeat the construction to obtain

b′ < a′ with b′ > all R-predecessors of a. But now a′ is not R-minimal.

Since ≤ is wellfounded and connected quasiorder, the corresponding

partial order is a wellorder.
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We comment, without proof, that this construction can be executed

in very weak systems of set theory using only ∆0 separation and no

replacement, such as the systems Mac and KF.

The rank preorder is the least fixed point. What is the greatest fixed

point.



3

Quasiorders

3.1 Lifts

A quasiorder on a set X can give rise to quasiorders on P(X), on the set

of partitions of X , on the set of α-sequences af members of X , multisets

of members of X , trees decorated with members of X and so on. Let us

use the word ‘lift’ to describe constructors that take a quasiorder of a set

X and return a quasiorder on one of these sets derived somehow from X .

A natural general question to ask about a given lift is what properties

of its argument are also posessed by the value? If we feed a connected

(say) quasiorder to our lift L, do we get back a connected quasiorder on

the set derived from X? If it does we say that L preserves connexity.

(See Marcone[2001] for a discussion of lifts). perhaps

mine it for

material

First come three ways to lift a quasiorder from a set to its power set.

DEFINITION 2

Let 〈Q,≤, 〉 be a quasiorder. For Y and Z subsets of Q say

Y ≤+ Z iff (∀y ∈ Y )(∃z ∈ Z)(y ≤ z);

Y ≤∗ Z iff (∀z ∈ Z)(∃y ∈ Y )(y ≤ z);

Y ≤1−1 Z iff there is an injection f : Y →֒ Z such that (∀y ∈ Y )(y ≤

f(y)).

Among computer scientists the first is commonly known as the Hoare

powerdomain construction. The second is the dual construction called

the Smyth powerdomain construction. Barwise

approx-

imants

here??
Find a

suitable

place for

this obser-

vation

Notice

that for

any qua-

siorder

〈Q,≤〉, the

quasiorder

〈P(Q),≤+〉

is what

one might

call a

complete

qua-

siorder,

The operations in definition 2 are all monotone operators on the CPO

of all quasiorders of V .

EXERCISE 2 Characterise the least and greatest fixed points of +.

17
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We will tend to concentrate on the first. This is usual practice in the

literature. This is probably beco’s of its natural connection with the

rank quasiorde.

3.2 Lifts to other structures

Power set is not the only constructor we want to lift quasiorders to.

We can also define lifts from quasiorders on X to quasiorders on—for

example—the set of partitions of X . This doesn’t seem to have attracted

much interest: Xα seems to have caught the public imagination rather

better. A general definition which encompasses this is as follows:

DEFINITION 3 Let 〈Q,≤Q〉 be a quasiorder, and 〈I,≤I〉 be an (or-

dered) index set. If f and g are two elements of I → Q we say f ≤l g

iff there is an order-preserving map h : I → I s.t. (∀i)(f(i) ≤Q g(h(i)))

Notice that we don’t ask for h to be injective or anything fancy, so

this is just the same as saying f ≤l g iff (∀i ∈ I)(∃j ∈ I)(f(i) ≤ g(j)).

This perhaps reads like a gratuitously complicated way of introducing

a way of lifting quasiorders on X to quasiorders of Xα (with α an ordinal)

but the extra generality will be needed. For one thing, the definition it

gives us of a quasiorder on Qω given one on Q can be tweaked into one

on Q<ω, and this we will need later. For another, one can take the index

set to be a quasiorder (specifically a WQO or even a BQO) and lemmas

using this construction are used in Laver’s proof of Fräıssé ’s conjecture

in section 6.1.

3.2.1 Lists and streams

The case that will be of most concern to us is where I is an initial

segment of IN and where we require f to be injective. In this case the

relation given by definition 3 is written ≤l. We met ω-sequences from

Q on page 7 where they were called Q-streams, and finite sequences

similarly were Q-lists. I shall write the set of Q-streams as Qω and

the set of Q-lists as Q<ω. Following Mathias (oral tradition) we use

the word stretching to denote the relation that holds between two Q-

lists (or Q-streams) l1 and l2 if there is a 1-1 increasing map f from

the addresses of l1 to the addresses of l2 such that for all addresses a,

a ≤ f(a). That is to say: think of a (Q-list or a) Q-stream as a map



3.2 Lifts to other structures 19

from a (proper) inititial segment of IN to Q. Then f1 stretches into f2

iff there is a strictly increasing f : IN →֒ IN such that . . . .

We write this ‘l1 ≤l l2’ with a subscript ‘l’ for ‘list’, and we say l1
stretches into l2.

As well as the direct definition of stretching for lists and streams given

by definition 3 there are inductive and coinductive definitions.

The stretching relation on Q-lists is inductively defined as the ⊆-

smallest set of ordered pairs of Q-lists containing 〈nil, nil〉 and con-

taining 〈l1, l2〉 if it contains 〈l1, tl(l2)〉, or if hd(l1) ≤ hd(l2) and it

contains 〈tl(l1), tl(l2)〉.

The stretching relation on Q-streams is coinductively defined as the

⊆-largest relation R ⊆ Qω × Qω such that R(l1, l2) ←→ ((hd(l1) ≤Q

hd(l2) ∧R(tl(l1), tl(l2))) ∨R(l1, tl(l2))).

EXERCISE 3 Prove that the recursive definition of stretching for lists

is equivalent to the direct definition of definition 3.

Prove that the coinductive definition of stretching for streams is equiv-

alent to the direct definition of definition 3. flag in-

jectivity

somehow(I mentioned earlier (definition 2) a way of engendering a quasiorder

on P(X) given a quasiorder on X , a way that looks for injections

from one subset of X to another. This was notated ‘≤1−1’. The list-

embedding we have just introduced is notated ‘≤l’ and this might be

thought to be confusing, but the list version is the obvious transforma-

tion of the set-version to the sequence version, and they could be thought

of as the same operation.)

No list stretches into its tail: for all lists l over a quasiorder, l >l tl(l).

l ≥l tl(l) by the second clause in the recursive definition of ≤l, and we

prove by induction that no list can ≤l something strictly shorter than

itself. In contrast to lists, a stream might stretch into its tail.

3.2.2 Multisets

Multisets. In fact we will consider only finite multisets here (i think!)

The multiset ordering of finite multisets of a quasiordered set Q

is defined as follows X ≤m Y iff there is a finite sequence X =

X0, X1, X2, . . . Xn = Y where for each n, Xn+1 is obtained from Xn

by replacing finitely many a1 . . . ak by a single b such that b > each ai.
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THEOREM 4 If ≤ is a wellfounded quasiorder of a set X, then the

multiset order on the set of finite multisubsets of X is wellfounded.

Proof:

(This proof is due to Wilfried Buchholz and is included with his per-

mission.)

http://www.cis.upenn.edu/~bcpierce/types/archives/current/msg00032.htmlcan we

get any

mileage

out of

Boffa’s

represen-

tation of

hereditar-

ily finite

multisets?

Order-

ing them

by the

multiset

ordering

make it

total or

some-

thing?

Compare

with the

ordering

on Vω by

iterating

+?

EXERCISE 4 Think about the ordinals below ǫ0, the smallest α such that

α = ωα. By the Cantor normal form theorem every ordinal α below ǫ0 is

a finite sum ωα1 +ωα2 +ωα3 . . . where the exponents are nonincreasing.

That is to say, α codes the multiset [α1, α2 . . .]. Every ordinal below ǫ0
codes a unique multiset of other—smaller!—ordinals below ǫ0.

So do we

prove CNF

in this

book or

not?

3.2.3 Finite and infinite trees

There are also finite and infinite trees over X , and we need to think how

to lift quasiorders of X to trees over X .

There are (at least) two ways of thinking of trees as mathematical

objects. (i) A tree can be a special kind of poset, and (ii) a tree can be

a special kind of graph (a thing with vertices and edges). Labelled trees

can be thought of as naked trees (be they posets or graphs) equipped

with maps to a set of labels. However they can also be thought of as a

distinctive kind of mathematical entity as in.

as in

what??

But apart from these questions of *how* we are to think of trees,

there are also different kinds of trees. Is the set of children (“litter”) of

a node equipped with an ordering or not? If litters are ordered, then

morphisms between trees must respect the ordering of each litter, and

positive results about the existence of embeddings become harder to

prove. We will consider both kinds of tree, and where there is a choice

about which flavour of tree to assert the result for, we will assert and

prove the harder version.

and it is common to equivocate between them.

With these

trees the

collection

of children

of a node

is a LIST

of trees

not a SET

of trees.

We do

really need

to sort this

out. Do

we want

to consider

both sorts

of tree??

What wor-

There is a fairly close parallel between lists/streams and finite/infinite

trees. There is a tree-embedding which corresponds to stretching, and,

like stretching, it has both a direct definition analogous to definition 3

and an inductive (definition (for finite trees) or coinductive definition

(for infinite trees).

First the direct definition analogous to definition 3 of stretching.
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If Q is a quasiorder, a Q-tree can be thought of as a kind of lower-

semilattice where no two incomparable points have a common upper

bound, decorated with labels from Q. Think of the-thing-that-carries-

the-decorations as the skeleton of the tree.

DEFINITION 5 Say Ti ≤t Tj if there is an injective lower-semilattice

homomorphism f from the skeleton of Ti to the skeleton of Tj such that

the label at any node n of Ti is ≤Q the label at node f(n) of Tj.
Tidy this

up: It

would be

nice if

these two

definitions

6 and 5

were to

agree on

the re-

cursive

datatype

of defini-

tion 2.

However

this isn’t

quite true:

trees as

posets

have no

left-to-

right

structure

of the kind

exploited

in the def-

inition in

definition

6. If we

changed

the dec-

laration

of the

rectype of

Q-trees by

replacing

‘list’ by

‘multi-

set’ and

‘stretch-

ing’ by 1-1-

embedding

then the

two would

be equiv-

alent. I

won’t

bother

Definition 5 makes sense for infinite trees as well.

There is of course an inductive definition for tree-stretching for finite

trees.

DEFINITION 6 Ta ≤t Tb if

• Both are singleton trees {a} and {b} with a ≤ b; or

• Ta ≤t some child of Tb; or

• The root of Ta ≤ root of Tb and the list of children of Ta ≤l list

of children of Tb.

The list constructor has finite character. We shall see later that it pre-

serves wellfoundedness but we can see already that it does not preserve

connexity: 〈IN,≤〉 is a total ordering but neither of of the two-membered

lists [1, 2] and [2, 1] stretch into the other. Nor do either of the two

streams 〈1, 1, 1, . . .〉 and 〈2, 0, 0, 0, 0, . . .〉 stretch into the other. The three

constructors of definition 2 preserve reflexivity and transitivity and thus

lift quasiorders to quasiorders. The ≤+ and ≤∗ constructors additionally

preserve connexity but ≤1−1 does not: consider the natural numbers in

their usual (connected!) ordering. {1, 2, 3} 6≤1−1 {4, 5} 6≤1−1 {1, 2, 3}. It

is usually fairly straightforward to check whether or not a lift preserves

symmetry, transitivity or connexity. It can be much harder to check

whether or not a lift preserves wellfoundedness. It turns out that there

is a connection between that question and the idea of finite character,

and it is to this that we now turn.

3.3 Finite character

Although this expression is a piece of mathematical slang, it is at least

mathematical slang, in the sense that the phenomenon it denotes plays

a rôle in mathematics. Being an incompletely formalised notion, it is

best illuminated by illustration. The following lifts (among others) have

finite character:
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(i) Q 7→ Q-lists under stretching;

(ii) Q 7→ finite Q-trees under ≤t;

(iii) Q 7→ 〈Pℵ0
(Q),≤∗〉;

(iv) Q 7→ 〈Pℵ0
(Q),≤+〉;

(v) The Lexicographic path ordering;

(vi) The Recursive path ordering;

(vii) The Multiset ordering.

The idea is that lifts of finite character preserve wellfoundedness, in

contrast to lifts of infinite character which tend not to. The claims

that the lifts listed above preserve wellfoundedness range from easy-

and-obvious to downright false.

PROPOSITION 7 If 〈Q,≤〉 is a wellfounded quasiorder, then Q-lists

are wellfounded under stretching.

Proof: Suppose not, and we had an infinite descending sequence of Q-

lists under stretching. They can get shorter only finitely often, so with-

out loss of generality we may assume that they are all the same length.

But the entries at each coefficient can get smaller only finitely often, so

they must eventually be constant.

PROPOSITION 8 If 〈Q,≤〉 is a wellfounded quasiorder, then finite

Q-trees are wellfounded under tree-embedding.

Proof: Suppose 〈Q,≤〉 is a wellfounded quasiorder and let 〈ti : i < ω〉

be a descending >t-sequence of Q-trees. We will derive a contradiction.

The number of children of ti is a nonincreasing function of i and must

be eventually constant: indeed the trees will be of eventually constant

shape, and we can delete the initial segment of the sequence where they

are settling down. Because the shape is eventually constant there are

unique maps at each stage, so for any one address the sequence of ele-

ments appearing at that address gets smaller as i gets bigger.

PROPOSITION 9 〈Pℵ0
(Q),≤∗〉 is not always wellfounded even if

〈Q,≤〉 is a wellfounded quasiorder.

Proof: Consider the identity quasiorder on IN. Then if we set Qi =: [1, i]

we find that Qi >∗ Qi+1 for all i.
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PROPOSITION 10 If 〈Q,≤〉 is a wellfounded quasiorder then

〈Pℵ0
(Q),≤+〉 is wellfounded.

Proof: Suppose we have an infinitely descending sequence 〈Qi : i ∈ IN〉

of finite subsets of Q under <+. Without loss of generality we can

assume that all the Qi are antichains, by throwing away from each Qi

all elements that are not maximal. This will ensure that any x that

appears in both Qi and in Qj with j > i must appear in all intermediate

levels: if x ∈ Qj then it must be ≤ something in Qj−1 and so on up to

Qi. Since Qi is an antichain this thing can only be x itself (or something

equivalent to it, which will do!) So any x that appears in infinitely many

Qi must appear in cofinitely many of them. But then it can be deleted

altogether. So we can assume that each q appears in at most finitely

many Qi.

For each x ∈ Q0 we can build a tree whose paths are sequences s

where the ith representative comes from Qi and for all i, s(i+1) ≤ s(i).

We need to show that all these paths are finite. If they were not, they

would have to be eventually constant, and we have just seen that we

can assume that each q can be assumed to appear only finitely often. So

the tree whose paths are these sequences is a finite branching tree all of

whose paths are finite, so it has only finitely many levels. But there are

only finitely many things in Q0, so eventually the Qi are empty.

PROPOSITION 11 Wellfoundedness of RPO

PROPOSITION 12 Wellfoundedness of LPO
Prove here

that ≤n

is well-

founded

if ≤ is.

(I think

i meant:

the nth

Barwise

approxi-

mant)

EXERCISE 5 We could try to prove that finite trees over a wellfounded

quasiorder are wellfounded as follows. If S is wellfounded, so is S<ω.

Therefore if Q and S are wellfounded quasiorders, then so is Q×S<ω. So

if Q is a wellfounded quasiorder so are all of Q×Q<ω, Q×(Q×Q<ω)<ω

and so on. Each embeds by end-extension into the next, so the direct

limit (which is finite Q-trees) is also wellfounded, by lemma 1.

What does this construction actually prove?

3.4 How do these operations affect rank?

Prove some theorems about lifts that preserve wellfoundedness, like tree-

of-bad-sequence, etc. And find some exercises on rank.
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WQOs

It seems that wellfounded quasiorders without infinite antichains are go-

ing to be objects of interest, since it seems that—and we will prove this in

remark 19—it is the absence of infinite antichains in a wellfounded qua-

siorder 〈Q,≤〉 that enables us to show that 〈P(Q),≤+〉 is wellfounded.

This motivates the following definition:

DEFINITION 13 〈Q,≤〉 is a wellquasiorder (hereafter “WQO”) iff

whenever 〈xi : i ∈ IN〉 is an infinite sequence of elements from Q then

there are i < j ∈ IN s.t. xi ≤ xj.

DEFINITION 14 A bad sequence (over 〈Q,≤〉) is a sequence

〈xi : i ∈ IN〉 such that for no i < j is it the case that xi ≤ xj. A se-

quence that is not bad is good. A sequence 〈xn : n ∈ IN〉 is perfect if

i ≤ j → xi ≤ xj.

Finite sequences 〈xi : i < k ∈ IN〉 too will sometimes be said to be bad

as long as they satisfy the remaining condition: i < j < k → xi 6≤ xj.

Thus a wellquasiorder is a quasiorder with no bad sequences. With

the help of Ramsey’s theorem we can prove that in a WQO not only

is every sequence good but that it must have a perfect subsequence.

(Notice that this is not the same as saying that in any quasiorder every

good sequence has a perfect subsequence!)

LEMMA 15 In a WQO every sequence has a perfect subsequence.

Proof: Although this theorem is very easy to prove, the usual (indeed

only) proof using Ramsey’s theorem is so natural and idiomatic, and

so important qua prototype for so many other applications of Ramsey’s

theorem, that it is worth doing in full.

24
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Let 〈Q,≤Q〉 be a WQO, and f : IN → Q a sequence. Partition [IN]2

into the two pieces {{i < j} : f(i) ≤Q f(j)} and {{i < j} : f(i) 6≤Q

f(j)}. An infinite subset monochromatic for the first piece would give us

a bad sequence, contradicting the assumption that 〈Q,≤Q〉 was a WQO,

and the set monochromatic for the second piece is a perfect subsequence.

A quibble: a set monochromatic for the first piece would be an infinite

subset X ⊆ IN such that whenever i < j, both in X , we have f(i) 6≤Q

f(j). Now this is not literally a bad sequence, since a bad sequence is

inter alia a function defined on IN not on an infinite subset of it. What

we have just seen is a situation where we have to do a bit of renumbering

of elements of an index set in order to make a claim literally true. This

particular case is so trivial that one hardly notices one is doing it, and

there is nothing to be gained at the time by flagging it, but we will find

later examples where we really have to be explicit about it.

A quasiorder is a WQO iff the strict version of the corresponding

partial order is wellfounded and has no infinite antichains. (miniexercise)

Notice this does not mean that for each x in a WQO there are only

finitely many things incomparable with x, nor even that there are only

finitely many equivalence classes of things incomparable with x. What

it does say is that if there are infinitely many things incomparable with

x, some of them will be comparable with some others.

This gives rise to an excluded substructure characterisation of WQO:

a quasiorder 〈Q,≤Q〉 is a WQO iff 〈IN, <IN〉 cannot be embedded into

the complement of 〈Q,≤Q〉 (the binary structure whose carrier set is Q

and whose binary relation is (Q×Q) \ (≤Q)).

A quasiorder 〈Q,≤〉 has the finite basis property iff whenever Q′ ⊆

Q then there is a finite Q′′ ⊆ Q such that (∀x ∈ Q′)(∃y ∈ Q′′)(y ≤ x).

LEMMA 16 WQOs have the finite basis property.

Proof: If 〈Q,≤〉 is WQO the relation x ≤ y 6≤ x is wellfounded, so if

we want a finite basis for Q′ ⊆ Q consider the subset of Q′ consisting of

elements minimal under this relation. This set may be infinite of course,

but we may consider its quotient under the corresponding equivalence

relation and this will be finite. Pick one element from each equivalence

class to obtain Q′′. (There are only finitely many equivalence classes so

we don’t need AC)

The finite basis property of WQOs has been very significant in com-

plexity theory. The existence of a finite basis can mean that there are
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only finitely many cases to check, and can result in the existence of al-

gorithms for checking properties that one might prima facie expect not

to be decidable. See [] on this.

The converse is of course true as well: a quasiorder with the finite basis

property is a WQO. This is not the same as saying that every subset Q′

has only finitely many minimal elements: it may have infinitely many,

but they must belong to finitely many equivalence classes under the

corresponding equivalence relation.

Now some basic facts about WQO’s, some with an algebraic flavour.

PROPOSITION 17

(i) Substructures of WQOs are WQO;

(ii) Homomorphic images of WQOs are WQO;

(iii) The pointwise product of finitely many WQOs is WQO;

(iv) The intersection of finitely many WQOs is WQO;

(v) Disjoint unions of finitely many WQO are WQO.

(vi) If ≤1 and ≤2 are both quasiorders of a set Q, and the graph of

≤1 is a subset of the graph of ≤2, and ≤1 is a WQO, then so is ≤2.explain

overload-

ing of

‘graph’

Proof:

(i). Any bad sequence in a substructure is a bad sequence in the whole

structure.

(ii). If f : 〈Q,≤〉 → 〈X,≤〉 is a quasiorder homomorphism and S a

bad sequence of members of X then f−1“S will be a bad sequence of

members of Q.

For (iii) (iv) and (v) it is clearly sufficient to deal with the case of two

WQOs. The proofs of all three use Ramsey’s theorem with exponent

2, or the perfect subsequence lemma (lemma 15). For (iii) consider the

product of two WQOs 〈Q,≤Q〉 and 〈X,≤X〉, and suppose we have a

bad sequence 〈〈xi, qi〉 : i ∈ IN〉. By the perfect subsequence lemma there

must be an infinite I ⊆ IN such that for i < j both in I we have xi ≤X xj .

Now consider the sequence of qi for i ∈ I. This must be a good sequence,

since 〈Q,≤Q〉 is WQO, so there are i < j both in I with qi ≤Q qj . So

〈〈xi, qi〉 : i ∈ IN〉 was not bad.

The proofs of (iv) and (v) are almost exactly the same.

Finally (vi) is obvious, but it will be generalised later so a bit of detail

may be helpful. A quasiorder is a WQO if the complement of its graph

does not contain a copy of 〈IN, <IN〉. This property of (the graph of ) a

relation is clearly preserved under superset.
Talk here

about

excluded

substruc-

tures?
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(vi) has the rather bizarre consequence that the WQOs on a fixed do-

main form a filter in the complete lattice of quasiorders on that domain.

(miniexercise) However the more immediate significance of (vi) is to be

found in the greedy algorithm in the proof of proposition ??. Let R1 be

{〈2n, 2n + 1〉 : n ∈ IN}) and R2 be {〈2n + 1, 2n + 2〉 : n ∈ IN}) Neither

of these is WQO but their union is, so the filter is not prime. If R and S

are quasiorders on a set X , define a quasiorder R ≤ S iffdf (∃Q ⊆ X2)(Q

a WQO R ∩Q ⊆ S. The corresponding equivalence relation gives us a

quotient.

However there are negative results as well.

PROPOSITION 18 The class of WQOs is not closed under direct limits

or projective (inverse) limits.

Proof:

(i) Direct limits. Consider the following sequence of Hasse diagrams

of WQOs:

. x

\ /

. x . .

\ / \ /

. x . . . .

\ / \ / \ /

. x . . . . . .

\ / \ / \ / \ /

x . . . .

Each WQO in this this sequence is obtained from its neighbour to the

left by replacing an ‘x’ by a

. x

\ /

.

The direct limit is not a WQO. This example shows that closure under

direct limits fails, even if we consider end-extensions only.

This is in contrast to the situation with wellfounded structures, the

class of which is closed under direct limits of end-extensions, as we saw

in lemma 1.

(ii) Inverse limits. Let An be {0, 1, . . . n} in their natural order, and
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λm.(m . 1) : Am+1 ։ Am: then the inverse limit is of order type 1+ω∗.

Not only is the inverse limit not WQO, it isn’t even wellfounded

In fact no way of tinkering with the definition of WQO will ever give

us a class of structures that is closed under direct limits and inverse

limits and we will not worry about these constructors further. However,

as we shall see, the class of WQOs is not closed under power set either,

and in contrast this does lead to interesting new definitions.

We have already checked that if 〈Q,≤〉 is a quasiorder, so is

〈P(Q),≤+〉. We are now in a position to come clean on the authorial

omniscience with which this chapter began.

LEMMA 19

Let 〈Q,≤〉 be a quasiorder. Then the following are equivalent

(i) 〈Q,≤〉 is WQO;

(ii) 〈P(Q),≤+〉 is wellfounded;

(iii) 〈Pℵ1
(Q),≤+〉 is wellfounded.

Proof:

(ii) obviously implies (iii).

(iii) → (i)

If 〈qi : i ∈ IN〉 is a bad sequence then set Qi =: {qj : j > i} for each

i ∈ IN. Then Q1 >+ Q2 >+ Q3 . . . is a <+-descending sequence of

countable subsets of Q.

(i) → (ii)

We will actually prove something slightly more refined, namely that

if 〈Q,≤〉 is wellfounded, and that Q0 >+ Q1 >+ . . . is a >+ descending

chain of subsets of Q, there is an infinite antichain ⊆ Q. This will be

sufficient to establish (i) → (iii).

For each i pick qi ∈ Qi 6≤ anything in Qi+1. So in particular, we

immediately have qi 6≤ qi+1. But since Qj <+ Qi for j > i it follows

that if j > i we cannot have qi ≤ qj since qj must be less than something

in Qi+1, and qi has been chosen not to be ≤ anything in qi+1. An

application of Ramsey’s theorem to the set {qi : i ∈ IN} gives either a

set of representatives which form an infinite descending sequence under

<, which is impossible by wellfoundedness, or an antichain, which was

what we wanted.

Do not allow the ease with which this lemma can be proved to lull
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you into thinking that it is a triviality. It is the key to WQO and BQO

theory. It touches the following themes:

(i) By showing how a fiddly combinatorial property (namely being a

WQO) of one structure (to wit 〈P(Q),≤+〉) can come to be equiv-

alent to the posession by some other structure (namely 〈Q,≤〉)

of another (less fiddly) property (to wit: wellfoundedness) it will

enable us eventually to express refinements of WQO-ness—some

of them very sophisticated—purely in terms of wellfoundedness.

(ii) The set-of-countable-subsets constructor behaves like the (full)

power-set constructor. This is an important fact which will be

very useful to us later, as it will enable us to substitute this

constructor (which does have fixed points) for the power set con-

structor (which famously does not have fixed points). But this is

actually a special case of:

(iii) All constructors of infinite character seem to behave like the full

powerset constructor with ≤+. The exercise which follows invites

the reader to prove that the ≤∗ constructor behaves in the same

way, as will all infinitary constructors. Indeed we shall see later

how the stream constructor behaves like the three constructors

of lemma 19, in that we could have added a fourth equivalent to

the list, namely:

(iv) 〈Qω,≤l〉 is wellfounded.

However, establishing the equivalence of (iv) with (i)—(iii)

needs lemma 23, and is on hold for the moment. (It will be

proposition 24.)

EXERCISE 6

Prove that the equivalent conditions of lemma 19 are also equivalent

to

(v) 〈Pℵ0
(Q),≤∗〉 is wellfounded; and

(vi) 〈P(Q),≤l〉 is wellfounded.

(vii) 〈P(Q),≤ℵ0〉 is wellfounded, where X1 ≤ℵ0 X2 iff for cofinitely

many x1 ∈ X1 there are infinitely many x2 ∈ X2 such that x1 ≤ x2.

REMARK 20 (Nash-Williams [?] [1965]) If P and Q are WQO then

the set of functions with finite support from P → Q quasiordered in the

style of definition 3 is a WQO.

Proof: Let ≤P , ≤Q be the WQO’s on P and Q and let ≤∗ be the relation
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on P → Q induced in the style of definition 3 on the functions in P → Q

with finite support.

Let 〈fi : i < ω〉 be a sequence of functions in P → Q with finite sup-

port. We will show that it is ≤∗-good.

By the usual arguments there is an infinite set I of indices such that

for i < j both in I we have support(fi) (≤P )+ support(fj). Because of

this we can suppose without loss of generality that we started off with

a sequence satisfying this property.

Now for i < j we have support(fi) (≤P )+ support(fj) but, un-

less the sequence is good we also have (∃x ∈ support(fi))(∀y ∈

support(fj)(fi(x) 6≤Q fj(y)).

There are infinitely many j > i but only finitely many things in the

support of fi so there is an x ∈ support(fi) such that for infinitely many

j > i (∀y ∈ support(fj))(fi(x) 6≤Q fj(y)).

Pick such an x0 for f0 and discard all fj such that ∃y ∈

support(fj)(fi(x0) ≤Q fj(y)). By choice of x0 there will be infinitely

many left. Renumber the survivors and repeat by picking an x1 in the

support of f1 similarly, and so on for all fn.

We now have an infinite sequence 〈xi : i < ω〉 of elements of P . We

don’t know that i < j implies xi 6≤P xj but we do know that if xi ≤P xj

with i < j then fi(xi) 6≤Q fj(xj).

Finally we invoke Ramsey’s theorem to obtain a bad sequence in P or

a bad sequence in Q.

(References in the literature (like Laver’s Fräıssé conjecture article p

92) suggest that this is first proved in

H I A T U S

a few thms and exercises on rank

REMARK 21 If Q is a WQO of rank α, Qω under stretching is of rank

αω.

Proof: If R is a relation let R′ be that relation whose domain is the

graph of R and is defined by 〈x, y〉 R′ 〈u, v〉 iff 〈y, u〉 ∈ R.

Notice that R′ is wellfounded iff R is, and has the same rank.

Now let < be the strict part of the quasiorder of Qω by stretching.

Think about <′. Each ordered pair 〈l1, l2〉 in its domain can be replaced

by the initial segment of l1 in virtue of which the greedy algorithm

discovered that l1 does not stretch into l2. <′ on the graph of Qω under
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stretching is obviously isomorphic to the strict part of stretching on

Q<ω.

But what is the rank of Q<ω under stretching—given that ρ(Q) = α?

By considering Q2, Q3, . . . we see that it must be at least αn for all

n ∈ IN. But it cannot be more than the rank of the set of finite sequences

ordered first by length and then by product (all the singletons first, then

all the pairs . . . ) since it is a subset of that ordering. So it must be

exactly αω .
Presumably

we will

later be

able to

prove that:

If Q is a

β-good

WQO of

rank α,

Qβ under

stretching

is of rank

αβ .

Finite character again

Now we can return to the constructors of finite character and ask

whether or not they preserve WQO-ness.

Make

these

claims

more ex-

plicit,

and set

them out

properly

(i) Q 7→ Q-lists under stretching;

(ii) Q 7→ finite Q-trees under ≤t;

(iii) Q 7→ 〈Pℵ0
(Q),≤∗〉;

(iv) Q 7→ 〈Pℵ0
(Q),≤+〉.

(v) The Lexicographic path ordering

(vi) The recursive path ordering

First ≤+. Let 〈Q,≤〉 be a WQO and suppose 〈Qi : i ∈ IN〉 is a bad

sequence of finite subsets under ≤+. For each i > 0 there is x0,i ∈ Q0

with x0,i 6≤+ y for all y ∈ Qi. But because Q0 is finite, infinitely many

of these x0,i are the same. Pick x0 from {x0,i : i > 0} such that for some

infinite J ⊆ IN+ we have x0 6≤+ y for all y ∈ Qj and all j ∈ J . Discard

all the Qi whos subscripts are not in J and renumber, giving the first

one the subscript 1. Now repeat what we have just done to obtain x1,

x2 and so on. Then we use DC to construct a bad sequence 〈xi : i ∈ IN〉.

So this constructor preserves WQO-ness. (This was proved by Higman

[26].)

(iii) Finite subsets under ≤∗. Suppose 〈Qi : i ∈ IN〉 is a >∗-descending

chain of finite subsets of Q, where 〈Q,≤〉 is WQO. Let x0 be anything

in Q0 and thereafter pick xi ∈ Qi s.t. (∀y ∈ Qi−1)(xi 6≥ y). The xis

then form a bad sequence. This shows that if ≤ is WQO, then ≤∗ is at

least wellfounded. (We proved the converse to this by considering the

identity quasiorder on a countable set). Jančar [1999] shows that RADO

(which we shall see later) is a counterexample that shows that it need

not be WQO.

This shows that if the power set isn’t wellfounded under >∗ then even

the finite sets aren’t.
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4.1 The minimal bad sequence construction

Any quasiorder that is wellfounded but is not WQO has bad sequences,

and has some that are in some sense minimal. This “minimal bad se-

quence” is a key idea. A precise definition will be given later
1
: for the

moment our approach is a two pronged one: (i) How do we make one?

(ii) What can it do for us once we have got it?

How do we make one?

Let 〈X,≤〉 be a wellfounded quasiorder that is not WQO. Let x0 be a

minimal member of {x : there is a bad sequence whose first member is

x}. Let xn+1 thereafter be a minimal member of {x : there is a bad

sequence whose first n members are 〈x0 . . . xn−1〉 and whose n + 1th

member is is x}. This is a kind of greedy algorithm. Let us say that a

sequence constructed by it is an MBS (“minimal bad sequence”).Fuss about

how it uses

DC and

Π1
1 com-

prehension

The following remark is not needed until chapter 7 but crops up natu-

rally here. If we topologise Qω in the usual way by giving Q the discrete

topology and Qω the product topology, we find that if Q is a quasiorder

that is not WQO then the set of MBSs is a closed subset of Qω in the

product topology. The set of bad sequences is closed too.

Beware: altho’ a subsequence of a bad sequence is a bad sequence, it’s

not obvious that a subsequence of an MBS is an MBS.

EXERCISE 7 A MBS over 〈Q,≤Q〉 is a special kind of Q-stream. We

have seen various ways of lifting ≤Q to P(Q) and Qω. Use these lifts

to characterise the way in which the output of the greedy algorithm is

minimal.

What can it do for us once we have got it?

The significance of MBSs is that any sequence derived from objects in

some suitable sense “below” an MBS must be good. This will enable

us to elaborate proofs that certain obviously wellfounded structures are

additionally WQO by “minimal counterexample” arguments—which is

to say, proofs by induction.

For example:

LEMMA 22

1 By the reader!
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Let 〈Q,≤Q〉 be a wellfounded quasiorder, and let 〈xn : n ∈ IN〉 be a

minimal bad sequence. Consider Q′ = {q ∈ Q : ∃xi q <Q xi}. Then Q′

is WQO by ≤.

Proof:

Let 〈qn : n ∈ IN〉 be a bad sequence of elements of Q′. We prove by

induction on n that (∀i)(qi 6< xn).

n = 1. We cannot have qi < x1 because the (tail of tail of . . . )

subsequence 〈qj : j ≥ i〉 is certainly bad, being a subsequence of a bad

sequence, but its hd is below the hd of the MBS 〈xn : n ∈ IN〉.

Now assume the induction hypothesis for all n′ < n, and suppose

qi < xn. Consider now the sequence consisting of those qj with j > i,

preceded by 〈x1 . . . xn−1〉. This is a bad sequence, for where could a

“good pair” be found? It can’t be an xi ≤ xj because the x’s are bad,

and it can’t be a qi ≤ qj because the q’s are bad. Can we have xi ≤ qj?

By hypothesis qj < xk for some xk, and by induction hypothesis this k

is at least n so we would have xi ≤ xk with i < k contradicting badness

of 〈xi : i ∈ IN〉, so: no, the sequence is bad. The first n− 1 coordinates

of this bad sequence are the result of the greedy algorithm. What about

the nth? It is qj , and qj < xn. But then the greedy algorithm could not

have chosen xn, as it would not have been minimal. So 〈qn : n ∈ IN〉 is

not bad and there is no such bad sequence.

These properties of MBSs will be exploited in the the proof of

Kruskal’s thm. (theorem 25)

EXERCISE 8 Let 〈Q,≤〉 be a WQO with an automorphism σ and con-

sider Q with the relation x ≤ σ(y). Is this a WQO? Prove or give a

counterexample.

EXERCISE 9 Give counterexamples to the assertion that if 〈Q,≤〉 is a

WQO the corresponding strict partial order is embeddable in the point-

wise product Onn for some finite n.

howabout onon?

EXERCISE 10 Can (the strict partial ordering corresponding to) a

WQO always be embedded in the set of ω-sequences of ordinals with

finite support and the pointwise product ordering?

I’ve now

forgotten

why i ever

tho’rt this

was a sen-

sible ques-

tion....Provide

an answer

to this
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4.2 Kruskal’s theorem

Next we show that (finite) lists over a WQO are WQO.

LEMMA 23 If 〈X,≤〉 is a WQO, so is 〈X<ω,≤l〉.

Proof: We use reductio ad absurdum. Suppose that 〈X,≤〉 is a WQO

but that 〈X<ω,≤l〉 is not. We know by now from proposition 7 that

〈X<ω,≤l〉 is wellfounded, so let us construct a minimal bad sequence

〈ai : i ∈ IN〉 of lists. Look at the heads of the lists in the minimal bad

sequence. These are WQO by hypothesis so (by lemma 15) there must

be an infinite subsequence 〈bi : i ∈ IN〉 of 〈ai : i ∈ IN〉 such that for i < j,

hd(bi) ≤ hd(bj). Throw away all the other lists in this bad sequence.

We now have a bad sequence of lists whose heads, at least, form an

increasing sequence. Now consider the tails. We want to show that

the tails are WQO as well, for that will complete the proof for us by

using the third clause of definition 3.2.1. We know from page 19 that

tl(l) <l l always, so these tails belong to a collection of things below this

minimal bad sequence, 〈ai : i ∈ IN〉, in the sense of lemma 22. Therefore

the sequence of tails of elements of 〈bi : i ∈ IN〉 is not a bad sequence.

So there are i < j such that tl(bi) ≤l tl(bj). Therefore (by the third

clause in the inductive definition of ≤l) bi ≤ bj , so 〈bi : i ∈ IN〉 is not a

bad sequence, and 〈ai : i ∈ IN〉 is not bad either.

Before we complete the proof of Kruskal’s theorem (the last step of

which is analogous to the proof of lemma 23 that we have just seen) let

us make a brief digression to complete the agenda set up by lemma 19.

PROPOSITION 24 The equivalent assertions of lemma 19 are equiva-

lent to the assertion that

(iv) streams over Q are wellfounded under stretching.

Proof:

(iv) → (i)

If Q is not WQO, then it has a bad sequence f0 =: 〈qi : i ∈ IN〉. Set

fi+1 =: tail(fi). This is a descending sequence in 〈Qω,≤l〉.

(i) → (iv)

Let 〈fi : i ∈ IN〉 be a strictly descending ω-sequence of elements of Qω

under stretching, where 〈Q,≤Q〉 is a WQO. We will derive a contradic-

tion.

There is an obvious greedy algorithm for seeking a map in virtue of

which one Q-stream g will stretch into another Q-stream f , and if there
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is a 1-1 increasing map IN→ IN in virtue of which g ≤l f then the greedy

algorithm will find it.

h(0) =: µk.(f(k) ≥Q g(0))

h(n + 1) =: µk > h(n).f(k) ≥Q g(n + 1)

Thus if f and g are infinite lists and f does not stretch into g there is

a finite initial segment of f that doesn’t stretch into g.

For each i set gi to be the initial segment of fi in virtue of which fi

does not stretch into fi+1. But if gi doesn’t stretch into fi+1 it doesn’t

stretch into any later f either, since fi+k stretches into fi so the gi form

a bad sequence of finite lists. But now we appear to have a bad sequence

of (finite) Q-lists, and this we can’t have, because Q is WQO, and lemma

23 tells us that lists over a WQO are WQO under stretching.

Notice that we do not use DC in getting a bad sequence of Q-lists

from a bad sequence of Q-streams. This is in contrast to the case of

countable subsets.

Now we can prove

THEOREM 25 (Kruskal) Finite trees over a WQO are WQO.

Proof: By wellfoundedness of <t, if there is a bad sequence there is a

minimal bad sequence, and let 〈ai : i ∈ IN〉 be one. Look at the roots of

the trees. Since the roots are from a WQO there must be an increasing

ω-subsequence 〈bi : i ∈ IN〉 from 〈ai : i ∈ IN〉 such that if i < j then (root

of bi) ≤ (root of bj). (lemma 15) Let li be the list of children of ai.

We know that the roots of the ai form a strictly increasing sequence.

What we now have to look at is a countable sequence of lists of children

of the trees we started with. Because of lemma ?? these trees form a

collection of trees below (in the sense of lemma 22) the minimal bad

sequence we started with. So, by lemma 22 they are WQO, so lists over

them are WQO as well. Therefore there are i < j with li ≤l lj, so (by

the third clause in the definition of ≤t) it follows that ai ≤t aj . Thus

〈ai : i ∈ IN〉 is not bad.

this needs

to be re-

vised in

the light

of the

treatment

of MBSs

(This proof of Kruskal’s theorem is based on a précis by Laver [38] of

a proof by Nash-Williams. )

must get

the NW

reference

There is also the possibility of defining stronger quasiorders on the

set of finite trees. Stronger means fewer ordered pairs means more and

bigger antichains means that the tree of bad finite sequences partially
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ordered by reverse end-extension has higher rank. But of course this

works only if we can show that the quasiorder is a WQO.

The idea of the following quasiorder is Friedman’s.

DEFINITION 26 An n-labelled tree is a finite tree whose vertices have

been labelled with natural numbers from 1 to n, represented as an ordered

pair of a tree and a labelling function. We say f is a gap-embedding

from 〈T1, l1〉 into 〈T2, l2〉 if

(i) (∀x ∈ T1)(l1(x) = l2(f(x)))

(ii) If y ∈ T1 is an immediate successor of x ∈ T1 then (∀z ∈

T2)(f(x) < z < f(y)→ l2(z) ≥ l2(f(y)))

The proof that it is in fact a WQO is due to Křiž (1989).need to

moti-

vate this

definition.

See Tzameret [64].

4.3 Ranks again

We should never forget that ordinals first came to the attention

of mathematicians as that-kind-of-number-that-measures-the-length-of-

transfinite-processes.

Nobody ever lives long enough to execute a transfinite process but, if

they did, they would presumably have the same interest in economy and

despatch that finite beings do. If we are trying to define by recursion on a

wellfounded relation R, a function f defined on the domain of R, then the

rank of R is the ordinal that is an absolute lower bound on the number

of stages in the computation of all the values of f . We can compute

f(x) at stage ρ(x) but not before. And we achieve this lower bound by

making maximal possible use of parallelism—the ability to compute f

simultaneously for all arguments of the same rank. However we might

also be interested in spinning out the computation as long as possible,

by not processing all arguments of the same rank simultaneously, but

one after the other. How long might we take if we make no use of

parallelism at all? If we have an infinite antichains then we have a

countably infinite set of arguments that can be wellordered to the length

of any countably ordinal α, and if we take its members in that order we

can clearly take at least α steps. This means that if there ids an infinite

antichain there is no countable bound on the time we can take. However,

there are circumstances in which we can put a countable bound on the

amount of time we can take. A countable bound is of course to be

had only if dom(R) is countable, so let us assume that. The interesting
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circumstance is now that where the rank quasi-order is WQO. Then

there is a countable bound. What is a

rank quasi

order?REMARK 27 Let 〈X, R〉 be a WQO. Consider the (downward-

branching) tree 〈B, <〉 of bad sequences ordered by reverse end-extension

(each bad sequence is above all its bad end-extensions). 〈X, R〉 is a WQO

(no infinite bad sequences) so 〈B, <〉 is wellfounded and therefore has a

rank. Now suppose that there is a surjection π : X →→ the set of ordinals

below α such that xRy → π(x) < π(y). Then the rank of 〈B, <〉 is at

least α.

Proof: Every decreasing sequence of ordinals below α pulls back (via

π) to a bad sequence of members of X . Now it’s easy to check that

the set of decreasing sequences of ordinals below α—ordered in the style

of 〈B, <〉—has rank α. (In the partial order of decreasing sequences of

ordinals inversely p.o.’d by end extension the rank of each decreasing

sequence is its smallest (i.e. last) member.)
At this

point we

really need

a discus-

sion of

some illu-

minating

examples

EXERCISE 11 Check also that the ordinal we get from the WQO of

lists in the sense of remark 27 is indeed (at least) ωω.

EXERCISE 12

Let ≤α and ≤β be wellorderings of IN of length α and β respectively.

Their intersection is a WQO because of lemma ??. What is the rank of

the tree of bad sequences in this new WQO?
Provide

answer
If we

have two

wellorder-

ings of the

same do-

main, one

to length

α and the

other to

length β,

how com-

plicated

can their

intersec-

tion be?

Think

about a

bad se-

quence

in this

new, in-

tersection,

ordering.

Each point

has two

labels, one

from each

ordering,

and thus a

new label

The tree of bad sequences in IN × IN is of length ω2, despite the fact

that this product order has rank only ω The fact that IN × IN has the

ordinal ω2 associated with it will prepare us for exciting examples still to

come of WQOs where every element is of finite rank but the tree 〈B, <〉

of bad sequences ordered by reverse end-extension has truly enormous

rank.

This is the appropriate unravelling of the intuition that one can extract

an ordinal from a WQO by worrying about how its width increases with

height. One can of course use the fact that infinite antichains in X give

rise to infinite descending sequences in P(X), and that width informa-

tion in X turns into height information in P(X). The advantage of this

approach is that set-of-bad-sequences-ordered-by-reverse-end-extension

is a constructor of finite character, and those sequences are finite not

infinite. This will enable us to code this development in arithmetic not

analysis.
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4.4 Topics for discussion

It is very important that we can actually extract a concrete example of

a long wellordering from Kruskal’s theorem. The wellordering will be a

wellordering of sets of bad sequences.Expand

this Think of WQOs as a generalisation of (reflexive closures of) wellorder-

ings, and give definitions of the generalisation of club and stationary.

Also Neumer’s theorem etc. etc.

There is no good concept of clubset beco’ of the 2-ladder. Let A =

{ai : i ∈ IN} and B = {bi : i ∈ IN}. Then for x, y in A∪B, say x ≤ y iff

x = y or x’s subscript is strictly less than y. Then A and B are disjoint

clubsets.

4.5 Some more exercises

EXERCISE 13 Give an easy proof that the lexicographic product of two

WQOs is WQO.

EXERCISE 14 Consider the relation “x ∈ TC({y})” on the hereditarily

finite sets (also known as Vω). Is it a WQO?

EXERCISE 15 An incline is a structure with two associative and com-

mutative binary operations + and · satisfying

(i) (∀xyz)(x · (y + z) = x · y + x · z);

(ii) (∀x)(x + x = x);

(iii) (∀xy)(x + x · y = x).

We define a relation ≤ by x ≤ (x + y).

Prove that ≤ is a quasiorder.

Let 〈I, +, ·〉 be a finitely generated incline. Show that 〈I,≥〉 is a WQO.
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somewhere
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exponent
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We saw in remark 19 that the ‘+’ operation preserves reflexivity and

transitivity.

It wasn’t

in lem 19

that we

saw this.

We don’t

seem to

have set

out clearly

that the

lifts of

infinite

character

preserve

transitiv-

ity and

reflexivity

an d poss

connexity

It would be nice if in addition it were to preserve the condition on ω-

sequences so that 〈P(A),≤+〉 is WQO as long as 〈A,≤〉 is. We shall see

a counterexample due to Rado which will show that the Hoare ordering

of the power set of a WQO is not always a WQO. It is natural to ask

what extra conditions one has to add to those comprising WQOness to

get a property that is preserved under this construction.

First let us suppose that 〈P(Q),≤Q
+〉 is not WQO, and see what

implications this has for 〈Q,≤Q〉. So there is a bad sequence 〈Qi : i ∈ IN〉

where for i < j, Qi 6≤
+
Q Qj .

It would be nice if for each i we could pick a member qi in Qi to get

a bad sequence on Q, but there is no reason to suppose we can. After

all, each qi would have to “do infinitely many things”. Later we will see

examples where we definitely cannot pick a single qi in this way.

However, we can at least do the following. Qi 6≤+ Qj for i < j which

is to say that ¬(∀q ∈ Qi)(∃q′ ∈ Qj)(q ≤ q′) so for each pair i, j with

i < j we can pick an element qi,j ∈ Qj s.t. (∀q ∈ Qj)(qi,j 6≤Q q). So,

using countable choice we can pick a family of elements of Q indexed by

pairs of distinct natural numbers, such that (∀i < j < k)(qi,j 6≤Q qj,k).

This isn’t exactly a bad sequence: it’s a thing which we will call a bad

array, and the definition of ‘array’ will emerge later. With hindsight,

the (bad) sequences we have just encountered will come to be seen to

have been merely a special kind of (bad) array. Just as a sequence (of

widgets) is a map from IN to widgets, so an array (of widgets) will be a

map from a block to widgets. We will see the exact definition of block

later. For the moment an operational understanding will have to do,

and we take as our current interesting example of a block the structure

39
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whose carrier set is {{i, j} : i, j ∈ IN} equipped with a binary relation

� which for all i < j < k relates {i, j} to {j, k} and to nothing else.

The reader should try and think of the bad array that we constructed at

the start of this paragraph not as a family of elements of Q with bizarre

subscripts but as a map f from the block {{i < j} : i, j ∈ IN} to Q such

that (∀b, b′ ∈ B)(b � b′ → f(b) 6≤ f(b′)).

Sequences are special kinds of arrays, and the structure 〈IN, <〉 is a

special kind of block. The block we saw in the previous paragraph is the

first nontrivial example of a block, and it’s a block of a kind that one

might call quadratic: it is a set of ordered pairs, and in the lexicographic

order it is of length ω2. (One can think of arrays as quadratic as well,

when they are functions defined on quadratic blocks). One could think

of the block 〈IN, <〉 as a linear block and take note that it is of length

ω in the lexicographic order, but these italicised aides memoires are

not used formally and I mention them only to help the reader see that

〈IN, <, 〉 and 〈{{i < j} : i, j ∈ IN}, �〉 are creatures of the same kind, but

of different lengths. When we go up one stage, as we will soon, we shall

see cubic blocks. However there is another point that needs to be made

at this early stage, before we do that.

Given a bad (quadratic) array on Q we can construct a bad sequence

on P(Q) all of whose elements are countable sets: simply set Qi =: {qi,j :

j > i}. (The idea here “If there is a bad sequence of subsets there is a

bad sequence of countable subsets” is the first reappearance of the idea

first flagged on page 29.)

Now consider the case where 〈P(P(Q)), (≤+)+〉 is not WQO. We can

do exactly what we did in the case where 〈P(Q),≤Q
+〉 was not WQO to

get a bad array {Xi,j : i < j ∈ IN}, but this time of course the Xi,j are

subsets of Q, not elements of Q. So we repeat the process. Xi,j 6≤
+ Xj,k,

so there must be something in Xi,j which is 6≤ anything in Xj,k. We

will pick one such and call it Xi,j,k. Thus we get an analogous condition

on increasing triples from Q, namely: (∀i < j < k < l)(qi,j,k 6≤Q qj,k,l).

This is the condition which fails if 〈P2(Q), (≤+)+〉 is not WQO. This

gives us our third example of a block: {{i < j < k} : i, j, k ∈ IN}.

Similarly, given a bad array {qi,j,k : i < j < k ∈ IN} of triples we can get

a bad sequence X0, X1 . . .Xn . . . on P2(Q) of countable sets of countable

subsets of Q. Xi will be {Xi,j ⊆ Q : j > i} where Xi,j = {qi,j,k : k >

j > i}.
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Once the reader is entirely happy with the idea of sifting
1

information

about bad sequences in P2(Q) or P3(Q) to information about bad arrays

on Q, they should take on board the idea that this can be done for any

finite n.

So the development so far can be summarised as follows.

If Pn(Q) quasiordered by the result of applying the ‘+’ operation n

times to a given quasiorder ≤Q of Q is not a WQO, then there is a bad

(n+1)-ary array on Q, which is to say a map f from the set of unordered

n + 1-tuples of natural numbers such that

(∀i0 < . . . in ∈ IN)(f({i0 . . . in−1}) 6≤Q f({i1 . . . in}))

which we discover by sifting.
2

Aside for

logicians.

On the

face of

it, say-

ing that

Pn(X)

is well-

founded

under ≤+n

ought to

be nth

order in

Lω1ω1
but

sifting

enables us

to reveal

that it is

still only

first order.

Notice

that being

WQO is

not ob-

viously

second

order.

At some

point we

will have

to Say

something

about

how the

descending

chain con-

dition is

not nth or-

der for any

n—not el-

ementary.

There is a

probably

quite a lot

Further, that from the bad array on Q one can recover a bad sequence

on Pn(Q) whose elements are countable sets of countable sets ofn ele-

ments of Q. This is worth minuting.

PROPOSITION 28 If there is a bad sequence in Pn(Q) then there is

one consisting entirely of countable sets of . . . countable subsets of Q.

These sets are hereditarily countable.

Proof: We first sift a bad sequence in Pn(Q) to a bad array of elements

of Q, indexed by increasing n + 1-tuples from IN. Then we obtain suc-

cessively bad arrays on P(Q), P2(Q), and so on by setting Qs to be

{Qt : t = butlast(s)}, first for tuples s of length n− 1, then for tuples

s of length n− 2, and so on up to tuples of length 1, at which point we

have a bad sequence of hereditarily countable elements of Pn(Q).

Our first example of a block was the quadratic block {{i < j} : i, j ∈

IN} with the binary relation � which holds between {i < j} and {j < k}.

We saw the cubic block too, and its rather more complex definition.

Although I am still not planning to give a precise definition of blocks,

the reader can see how the process of pulling down a bad sequence in

Pn−1(Q) to a bad array on Q gives rise to a block consisting of unordered

n-tuples. This block is the canonical n-block. A quasiorder that has

no bad arrays whose domain (remember an array is a map from a block

. . . ) is the canonical n-block is said to be ωn-good. The ordinal alludes

1 “I am soft sift in an hourglass, mined with a motion, a drift . . . ” The Wreck of

the Deutschland, Gerald Manley Hopkins.
2 We are assuming ik < im when k < m. That is to say, we are thinking of

these objects sometimes as unordered tuples, and sometimes as increasing ordered
tuples.
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to the length of the canonical n-block in the lexicographic order. Thus,

in particular, a WQO is a quasiorder that is ω-good.

So we have proved

PROPOSITION 29

The following are equivalent

(i) 〈Q,≤Q〉 is ωn-good;

(ii) 〈Pn(Q), (≤Q)+
n

〉 is ω-good (i.e., WQO);

(iii) 〈Pn
ℵ1

(Q), (≤Q)+
n

〉 is ω-good (i.e., WQO).

(The reader is probably becoming impatient for a proper definition of

a block: we will postpone this until we want to make sense of the idea

of ωα-good for α ≥ ω. Enthusiasts should for the moment master their

impatience and redirect their energies into chewing over the 2-block and

attempting exercise 16.)

EXERCISE 16 The canonical n-block is clearly a binary structure with

carrier set a set of n-tuples (unordered n-tuples or increasing ordered

n-tuples, according to taste) of natural numbers, with a binary relation

�.

What is � exactly?

EXERCISE 17

If 〈X,≤〉 is a quasiorder, define ≤ℵ0 on P(X) as in clause (vii) of ex-

ercise 6. Show that if 〈X,≤〉 is an ω2-good quasiorder, then 〈P(X),≤ℵ0〉

is WQO.

Although there are some essentially new ideas in the study of WQOs

“of infinite exponent”, most of the challenge to the student comes in

scaling up for this new endeavour the old ideas from the finite exponent

case. Accordingly it is a good idea to properly master the finite exponent

case before going transfinite.

EXERCISE 18 Prove that IN<ω is not wellordered by the lexicographic

order but that the canonical n-block is.

Prove that the canonical n-block is of length ω in the colex ordering.In fact at

some point

we will

establish

that this

holds for

*any*

block

must

provide

answers to

these two

questions
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5.1 Rado’s quasiorder

So far we haven’t seen an actual example of a WQO that is ω-good

but not ω2-good. How might we construct one? What we are looking

for is a quasiorder with a bad array from the canonical 2-block. One

thing that leaps to mind is: try defining a quasiorder on the domain,

{{i < j} : i, j ∈ IN}, of the canonical 2-block, and make it disjoint from

the block relation �. That way we can set the array map to be the

identity function.

Let us try to build a quasiorder ≤new on {{i < j} : i, j ∈ IN},

greedily putting in as many ordered pairs as possible, while keeping

it disjoint from �. We do this by recursion on the lexicographic or-

der. We can allow 〈1, 2〉 ≥new 〈1, 2〉; 〈1, 3〉 ≥new 〈1, 2〉 is all right as

well. and so on for all 〈1, n〉. What about 〈1, 2〉 ≤new 〈2, 3〉? Clearly

not, because 〈1, 2〉� 〈2, 3〉. But then by the same token we can’t allow

〈1, n〉 ≤new 〈2, m〉 because we have already decided 〈1, 2〉 ≤new 〈1, n〉

and transitivity would give 〈1, 2〉 ≤new 〈2, n〉. Continuing in this way,

we construct the following quasiorder.

DEFINITION 30 Quasiorder {{i, j} : i < j ∈ IN} by {i < j} ≤ 〈i′ < j′〉

iff ((i = i′) ∧ (j ≤ j′)) ∨ (j < i′). Call this structure RADO.

Each pair {i < j} is of rank j, so everything is of finite rank, and the

rank of RADO itself is ω. For each i the set {{i, j} : i < j} is the ith

ray.

EXERCISE 19 Draw a Hasse diagram of RADO.

THEOREM 31 RADO is WQO.

Proof:

It is possible to give a more direct proof of this elementary fact, but,

with an eye to subsequent generalisation, I give a proof using Ramsey’s

theorem.

Suppose, per impossibile that f : IN → RADO were a bad sequence,

Partition [IN]2 by putting {i, j} into one of two pieces depending on

whether or not fst(f(i)) =fst(f(j)). A subset monochromatic in one

sense gives us a perfect subsequence of a ray, and a subset monochro-

matic in the other gives us a perfect “sideways” subsequence.
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THEOREM 32 RADO injects isomorphically into every quasiorder that

is ω-good but not ω2-good.

Proof:Need to

cite the

original

source

In fact we can show something slightly stronger. If 〈Q,≤Q〉 is ω-

good but not ω2-good, then every bad quadratic array has a subarray

isomorphic to RADO.

The idea is to start from such a bad quadratic array and chisel off,

Michaelangelo-fashion, the parts one doesn’t need. In fact the best way

to do it is the quick-and-dirty way using Ramsey’s theorem. I suspect

that one can derive some enlightenment by “eliminating the cuts” from

this proof, and proving only that part of Ramsey that one needs, but we

must keep an eye on the medium-term goal of proving the same theorem

for higher exponents, and there the quick-and-dirty option is the only

show in town.

Suppose f : RADO → Q is a bad quadratic array. Partition [IN]4 by

allocating quadruples {i < j < k < m} according to the truth-values

of the three propositions f({i, j}) ≤Q f({k, m}), f({i, j}) ≤Q f({i, k}),

and f({i, k}) ≤Q f({j, m}). This gives eight pieces, and it will turn out

that the only piece that can have an infinite monochromatic set is the

piece in which

f({i, j}) ≤Q f({k, m}), f({i, j}) ≤Q f({i, k}), and f({i, k}) 6≤Q

f({j, m}) all hold. The first two happen because otherwise there would

be a bad sequence in Q, and the third happens because otherwise we

would have things like f({1, 10}) ≤Q f({5, 15}) and f({5, 15}) ≤Q

f({10, 25}) which implies f({1, 10} ≤Q f({10, 25}) contradicting the

badness of f .

So let I be a set monochromatic for this partition. I claim that

〈f“([I]2),≤Q〉 is a copy of RADO(2).Don’t

we want

f |[I]2 to

be 1-1? Or

does this

happen

automati-

cally?

A colouring of a set of course gives (in some sense) a whole boolean

algebra of colours. The colours that we see usually are the atoms of a

boolean algebra, but if the algebra is free there are generators can be

tho’rt of as primary colours . . .

Here’s a better way to do it. The pieces of a partition are colours.

Unions of several pieces we will call hues and it’s obvious what we

must mean by saying that a set is monochromatic for a hue. Useful

obvious fact: if there is no set monochromatic for a hue, there is no set

monochromatic for any of its constituent colours. In this case there are

three hues, and each corresponds to one of the three primary colours

f{i, j} >Q f{k, m}, f{i, j} >Q f{i, k} and f{i, k} >Q f{i, m}.
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Clearly there can be no set monochromatic for the hue f{i, j} >Q

f{k, m}. Similarly there can be no set monochromatic for the hue

f{i, j} >Q f{i, k}. There can be no set monochromatic for the hue

f{i, k} >Q f{i, m} beco’s of transitivity burble.

So far we’ve considered ≤+ only: the time has come for another look

at ≤∗.

EXERCISE 20 Let 〈X,≤, 〉 be a WQO. Define ≤∗ on P(X) by:

Y ≤∗ Z iff (∀z ∈ Z)(∃y ∈ Y )(y ≤ z)

Is ≤∗ a WQO on P(X)? Prove or find a counterexample.

Let us remind ourselves of the nice properties RADO has. It is ω-good

but not ω2-good, and a quasiorder is ω2-good iff it does not have RADO

as a substructure. (cf dfn of wellfoundedness). And it has a very neat

bad array: namely the identity map from the canonical 2-block. This is

very neat, and it all comes about because of the clever way we engineered

RADO to be a sort of complement to the canonical 2-block. So is there

a cubic version of RADO? A quartic? Quintic? Yes, and we find them

by developing further the idea of a maximal quasiorder disjoint from a

block. copy this

in from

BQOpa-

per3.tex

The principle that “everything that happens, happens on a countable

set” (see e.g. proposition 28 or the discussion on p. 29) means that all

the facts about RADO analogues of finite exponent (the RADO(n) for

finite n) and the power set operation P work also for the RADO(n) and

the operation Pℵ1
that sends an argument to the set of its countable

subsets. Not surprisingly much the same goes for the operation sending

a quasiorder 〈Q,≤Q〉 to to the quasiorder of Q-streams under stretching.

THEOREM 33 (Marcone-Pouzet (??)) If 〈Q,≤Q〉 is an ωn-good qua-

siorder then Q(ωn) is WQO.

Proof: Suppose 〈Q,≤Q〉 is ωn-good. Let’s show that Qωn

is WQO.

Suppose 〈fi : i < ω〉 is a bad sequence from Qωn

. Ask yourself, why

does fi 6≤l fj? It’s because there is a big value of fi that happens too

soon. Notice that the greedy algorithm for finding a map α → α that

witnesses f ≤l g will find such a map if there is one and if it fails there a point to

be made

about

closed sets

again?

is a first point at which it fails: this point is the excrescence. So for each

i < j we have fi,j which is an initial segment of fi with a last element.

fi,j is the shortest initial segment of fi on which the greedy algorithm

fails and is the shortest initial segment of fi which 6≤l fj.
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The idea is that we now run, on fi,j and fj,k, the process we ran on fi

and fj , and so on, until we get down to sequences of length 1, which is to

say, members of Q. Then we argue that the rank of the block indexing

this bad array of members of Q will be ωn at most.

But for this to work we have to be sure that the process of cutting

down functions by taking initial segments will halt, and will halt with a

member of Q. The process must indeed halt, because ωn is an ordinal,

and so the lengths of these initial segments are also ordinals, and any

descending sequence of ordinals is finite. Can we be sure that the process

halts with a member of Q at each point in the array? What is to

preclude the possibility of an fs 6≤ ft where the excresence that prevents

fs ≤ ft is the last member of f? Nothing, apparently. But it turns out

that in these circumstances we can discard everything in fs except the

excresence, and still have a bad array on Q. What we have to do now is

prove that the rank of the block indexing this array is bounded somehow

by ωn.

Consider the (downward-branching) tree of truncated fs: where fs is

below ft if s is an end-extension of t. By induction on the rank of this

tree we can prove that ρ(fs) ≤ length(fs).finish this

off prop-

erly. The

result is

goo, by

repeated

applica-

tions of

proposi-

tion ???

and the

fact that

(Qω)ω

has fewer

ordered

pairs than

Qω2

This is

actually

the version

for infinite

exponent.

Dupli-

cate and

simplify

notation

for length

of a se-

quence

One construct that will be of interest later is the operation that takes

a WQO and returns the (downward-branching) tree of bad sequences or-

dered by (reverse) end-extension. The empty sequence is at the top, and

the end-extensions of any sequence s come below s. If we started with a

WQO the tree that this construction gives us must be wellfounded, and

must therefore have a rank. It will be of interest later because some very

long ordinals can arise in this way from quite humble beginnings. If we

do this to the best-behaved WQOs, like wellorderings, nothing happens.

If we consider the WQO of ordinals below α, for example, the bad se-

quences are just the descending sequences, and in the tree the rank of

each descending sequence is simply its last member, so the rank of the

tree is just α.

The RADO structure is interesting in this connection because al-

though it has rank ω (every pair has finite rank) the rank of the tree of

bad sequences is transfinite.

Given a bad sequence s, what is its rank? The first thing to notice

is that the possible ways of extending a bad sequence to a longer bad

sequence depend only on the members of the sequence, and not on the

order in which they appear. So the same goes for the rank. A bad

Notice

that this

doesn’t

hold for

finite bad

*arrays*!

The order

matters

sequence s excludes the ith ray for all i > second component of any pair



5.2 Finite exponent stuff to be ironed out 47

in s. So we think about the rays that aren’t excluded. A ray may be

entirely available in the sense that any element of it may be placed on

the end of s, or it may be only finitely available, because some member

of it is already in s. As soon as we add to s an element from a ray that is

entirely available, it becomes merely finitely available, and will be used

up in finitely many steps. But the first time we pick an element from a

ray, we can pick it as late as we like, and thereby choose at that stage

how large the finite number of steps is to be, So each entirely available

ray represents something that raises the rank by ω. So a first stab at

the rank of s will be: ω · n where n is the number of entirely available

rays.

So here’s how to compute the rank of a bad sequence. Discard from

the carrier set of RADO every unordered pair that is ≥RADO a pair

in s. We now have finitely many rays (or initial segments of rays) left.

Count ω for each ray that is entirely available, and count n for a finitely

available ray, where n is the number of pairs available in that ray. Now

add up the numbers pertaining to the rays, but from right to left. The

result is the rank of s.

Like the rank of RADO, the rank of RADO(n) is ω, whatever n is.

What is the rank of the tree of bad sequences, ordered by (reverse)

end-extension, of RADO(n)?

5.2 Finite exponent stuff to be ironed out

Must mention somewhere that the rank of the RADOn is precisely ω.

The following exercise is strongly recommended as a preparation for

the harder analogues of infinite exponent that await us.

Look back at proposition 17.

EXERCISE 21

(i) Show that substructures and homomorphic images of ωn-good

quasiorders are ωn-good.

(ii) Prove the analogue of proposition 17 part (vi) for ωn-good qua-

siorders.

Notice that the counterexamples of proposition 18 establish also that

the class of good quasiorders of finite exponent isn’t closed under direct

limit or inverse limit either. However it is closed under power set.

EXERCISE 22 Prove analogues of the perfect subsequence lemma
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(lemma 15) for ωn-good quasiorders, and use it to establish the ana-

logues of the later parts of proposition 17, namely (iii) that the product

of finitely many ωn-good quasisorders is ωn-good; (iv) that the inter-

section of (the graphs of) two ωn-good quasiorders on the same carrier

set is ωn-good, and (v) that a disjoint union of finitely many ωn-good

quasiorders is ωn-good.

Also minimality of RADOn.

5.3 Loose ends

The key fact about ω-good quasiorders (WQOs) is lemma 19 that Q is

WQO iff our favourite lift of infinite character is wellfounded. We want

to generalise this to higher finite exponents, so that we prove something

like:

LEMMA 34 Let K be one of the constructors: power set, set-of-

countable subsets, or streams. Then, for all quasiorders Q and all

n, m ∈ IN:

Kn(Q) is ωm+1-good iff Kn+1(Q) is ωm-good.

This is easy for power set and for set-of-countable-subsets, and these

two cases are left as a morale-building exercise for the reader. Streams

are another matter. We should expect this: stretching on streams is a

stricter order than ≤+ on countable subsets so we must expect to have

to work harder to show that if Q is ωn+1-good then Q-streams are ωn

good (than we have to work to infer that countable subsets are . . . )

However, one direction at least is easy. Suppose f is a bad quadratic

Q-array. Then the rays of f form a bad sequence of Q-streams. This

shows that Qω ω-good implies Q ω2-good.
3

It’s the other direction that

we must expect to be hard. Given a bad sequence of Q-streams we get

a bad quadratic array of Q-lists, and we need a binary version of lemma

23 to complete the circle. (This shows that lemma 23 is not just a cute

fact, but an important structure theorem, that is part of a large theorem

that sez that streams behave like countable subsets)

Now how are we to prove the n-ary version of lemma 23? If we are to

prove it the way we proved the original theorem we will need a notion

of a minimal bad array. This is not as easy as it might sound.

3 Readers with an eye for constructive proofs will have noticed that we proved this
implication by proving its contrapositive. This is typical in WQO theory!—MOVE
THIS REMARK EARLIER
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Let us start with the challenge of proving that Q-lists under stretching

are ω2-good if Q is ω2-good.

We could try establishing a chain of biconditionals:

Q<ω is ω2-good iff (by lemma 34)

P(Q<ω) is ω-good iff

(P(Q))<ω is ω-good iff (by lemma 34)

P(Q) is ω-good iff (by lemma 19)

Q is ω2-good.

The problem is with the inference from the second line to the third.

There is no obvious reason why P(Q<ω) and (P(Q))<ω should be iso,

nor even that (Q<ω)ω and (Qω)<ω should be iso, or one be WQO iff

the other is. Come to think of it, why should (Qα)β be isomorphic to

(Qβ)α? Ordinal multiplication is not commutative, after all. But it

turns out that that is not the reason, as (Qω)ω and Qω2

are not even

always isomorphic!

(It’s a miniexercise to see that although (Qω)ω being WQO obviously

implies that Qω2

is WQO there is no reason to believe the converse.
4
)

So it looks as if we will have to prove it directly, by finding the correct

generalisation of lemma 23: specificially, by establishing an analogue of

the minimal bad sequence argument used to prove the original version.

5.3.0.1 Minimal bad arrays of finite exponent

We suppose that 〈Q,≤Q〉 is ω2-good, and that Q-lists are not. We

then start working on a minimal bad array f of Q-lists, where what we

mean by ‘minimal bad’ will emerge later. We have done exercise 22
5

so we are armed with a perfect subarray lemma, which we use to find

a subarray of lists whose heads form a perfect array. Let this subarray

be g. Then we argue that the array of the tails of the lists in g cannot

be bad. We can get a handle of what the correct concept of minimal

bad array is by consider the senses in which g is less than f . Certainly

every ray gi of g, considered as an ω-sequence of Q-lists, is less than the

corresponding ray fi of f in the pointwise product order. That is to say,

(∀n)(gi(n) <Q fi(n))

4 Let f , g be ω2-sequences from Q. f might stretch into g considered as an ω2

sequence but not if both are considered as streams of streams. Suppose, for each
n, that the head of the nth stream fits into the 2nth stream of g, and the tail of
the nth stream from f stretches into the 2n+1th stream of g. Then f , considered
as an ω2-sequence, stetches into g, considered as an ω2-sequence, tho’ perhaps not
when they are considered as streams of streams. There is a failure of currying, so
the exponential notation is misleading.

5 And if we haven’t we can look up the model answer!
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So we want a minimal bad array lemma that says that if there are

bad arrays of Q-lists then there is a bad array f such that whenever g is

an array s.t. every ray of g is < some ray of f in the pointwise product

order, then g is not bad. Now can we prove such a lemma?

To do so, we need an analogue of the greedy algorithm for constructing

MBSs. How about this? Let the first ray of f be a ray that, among those

rays that are the first ray of an infinite bad array of Q-lists, is minimal

under pointwise product. Then the second ray is one that among those

rays that are the second ray of an infinite bad array of Q-lists beginning

with our choice of the first ray, is minimal under pointwise product. And

so on.

Now we have to show that g is not a bad array. The obvious thing to

try is a generalisation of the proof of lemma 22. We try to prove that

if f is an output of the MBA greedy algorithm, and g is an array s.t.

every ray of g < some ray of f in the pointwise product, then g is not

bad.

Assume g is bad. We attempt to prove by induction on n that no

ray of g < (under pointwise product) any of the first n rays of f . OK

for n = 1, since if the ith ray of g < the first ray of f then the greedy

algorithm would have picked the ith ray of g instead. How about later

n?

Assume true for 1, 2 . . . n− 1, and suppose that the ith ray of g < the

nth row of f under pointwise product. Why did the greedy algorithm

not pick the ith ray of g at stage n? Could it be that the array that

kicks off with the first n−1 rays of f and then continues with g, starting

with the ith ray of g, isn’t bad? If so, there must be a “good pair”, and

it must be that one of the fs can see one of the gs. As it might be,

f(〈1, 10〉) ≤Q<ω g(〈10, 33〉). But g(〈10, 33〉) is the tail of f(〈10, 33〉) so

we have f(〈1, 10〉) ≤Q<ω f(〈10, 33〉), contradicting badness of f . So, on

the assumption that the ith ray of g < the nth row of f under pointwise

product, the greedy algorithm could have picked the ith ray of g at stage

n, and should not have picked the nth ray of f . So this assumption was

wrong, and we have the contradiction we wanted.

The induction works, so what have we proved? No ray of g is strictly

below (under pointwise product) any ray of f . But this contradicts the

fact that rays of g are strictly below the corresponding rays in f . So g

was not bad after all.

We complete the proof that f was not bad in the same way as in the

proof of lemma 23.
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EXERCISE 23 What would go wrong if in the MBA construction we

had used minimality under stretching rather than the pointwise product?

5.4 Diestel’s lemma or something like that

See Diestel [14].

So far we have been considering the results of lifting quasiorders on a

set X to P(X), or Pℵ1
(X) and beyond. We obtain somewhat simpler

structures by taking not the set of all (countable or not) subsets of X

but all directed (countable or not) subsets of X—and beyond.

In general we cannot expect a WQO to be a chain-complete quasi-

order. Even such a well-behaved WQO as 〈IN,≤IN〉 is not. What do

we have to do to obtain a chain-complete quasi-order from an arbitrary

quasi-order 〈Q,≤Q〉? (Miniexercise: think a bit about how the definition

of chain-complete quasiorder might differ from that of a chain-complete

poset) Clearly the first thing we must do is add sups to all chains. We can

do this concretely by taking the quasiorder of chains in Q and ordering

them by ≤+, and it is not hard to see that this operation is idempotent,

up to isomorphism. (This is the usual trick used to deduce Zorn from

the assertion that every chain-complete poset has a maximal element.)

The same goes for the operations involved in the endeavour to find the

completion of Q with respect to sups of countable chains, or of countable

directed subsets, or of arbitrary directed subsets: all these operations

are idempotent up to isomorphism.

Miniexercise: Complete RADO with respect to countable chains.

What is the result?

If we think about trying to add elements to an arbitrary quasiorder

〈Q,≤Q〉 to obtain a countably complete quasiorder (one wherein every

countable subset has a sup) we notice that the operation is not idempo-

tent.

Miniexercise: verify that to obtain a quasiorder from RADO that is

countably complete one has to add sups of countable chains twice. And

that to to obtain a quasiorder from RADO(3) that is countably complete

one has to add sups of countable chains thrice. Careful. If

one wants

a chain-

complete

quasiorder

one only

has to

add sups

of chains

once - i

think! A

sup for

each ray

does it i

thihk - but

check it.

to make it

complete,

yes, you

have to do

it twice i

agree

In RADO the rays form a countable family of subsets, each of them di-

rected, and they must all have different sups, so we can find a countable

antichain in the countable-chain-completion of RADO. Significantly

these rays, altho’ they are each directed, are not maximal directed sub-

sets: RADO itself is a maximal directed subset: in RADO there is a

unique maximal directed subset, namely RADO itself. There is a strik-
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ing result of Diestel’s that says that any quasi-ordering has a unique

decomposition into maximal directed subsets.

burble: don’t need the whole thing

Let us say that a subset Q′ ⊆ Q is incompatible if no two members

of Q′ have an upper bound. Clearly, if 〈Q,≤Q〉 is WQO then there

can be no infinite incompatible subset, as every incompatible subset

is an antichain. But we can do more than this. Suppose there were

incompatible subsets of arbitrarily large finite size, then by countable

choice we could pick an ω-sequence of incompatible subsets of strictly

increasing size. Now if 〈Q,≤Q〉 is WQO, so is 〈Pℵ0
((Q),≤+〉 by lemma

?? so this sequence must be ≤+-good. Without loss of generality we can

even take it to be perfect. Now let Qi and Qj be incompatible subsets

from this perfect sequence, with i < j. No two things in Qi can be

below any one thing in Qj . So if we draw an edge between things in Qi

and things in Qj by putting an edge between ≤-comparable elements

we find that for i < j there must always be either (i) something in Qj

6≥Q anything in Qi or (ii) something in Qi is dominated by more than

one thing in Qj . By means of Ramsey’s theorem we can cut down to

a subsequence such that (i) always happens or (ii) always happens. (If

(ii) is not blindingly obvious, just remember that the perfect binary tree

(upward-branching version) is not WQO.) Either way we can extract an

antichain in Q from such a sequence.

So we have proved

REMARK 35 (Diestel)

If 〈Q,≤Q〉 is a WQO then there is a finite number n such that if

Q′ ⊆ Q is incompatible then |Q′| ≤ n.

One might call this number the Diestel number of a WQO.

EXERCISE 24

Let 〈Q,≤Q〉 and 〈R,≤R〉 be WQOs. In terms of the the Diestel num-

bers of 〈Q,≤Q〉 and 〈R,≤R〉 what are the Diestel numbers of (i) Q⊔R;

(ii) Q × R; (iii) P(Q); (iv) Pℵ0
((Q); (v) Pℵ1

((Q)? (vi) What is the

Diestel number of RADO(n)?

exploit the 2-ladder p 38.
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If a man can build a better quasiorder, the world will beat a path to his door.
1

Ralph Waldo Emerson Voluntaries

That man was Crispin Nash-Williams.

At this point we could direct our attention to the class of quasiorders

〈Q,≤〉 such that, for all n ∈ IN, the result of doing + n times to it

is a WQO, the class we have been calling “good quasiorders of finite

exponent”, and notice that this class is closed under +, unlike the class

of WQOs. This would give us a definition of a distinguished class of

WQOs: namely the largest class of WQOs closed under +, and one could

hope that this would turn out to be the resting place for this intuition for

tidying up the definition of WQO. However we have to wring this idea

out a little further, since there remains much to be gained by considering

transfinite iterations under +. This is because one will then be able to

generalise the array condition to something that has no finite bound on

the length of the sequences. The class of WQOs thus obtained will have

even nicer closure properties than the class of good quasiorders of finite

exponent. It would

be nice to

have an

example

of of some

construc-

tor of

infinite

character

under

which the

class of

good qua-

siorders of

finite ex-

ponent is

not closed.

I bet its

infinite

trees

However, to do this, we need to consider expressions like Pα(Q) where

α is a transfinite ordinal. One can hardly imagine a better reason for

stopping with the ideas of the preceding paragraph than the obvious fact

that such a notation, prima facie at least, simply makes no sense. How

can it, when the Pn(Q) were all be taken to be formally disjoint? If we

wish to iterate + and P transfinitely we need the Pn(Q) to be somehow

cumulative not disjoint. Given X and Y , both subsets of
⋃

{Pn(Q) : n ∈

1 With apologies to Emerson. The correct quotation is “If a man can write a better
book, preach a better sermon, or make a better mousetrap than his neighbour,
though he build his house in the woods, the world will make a beaten path to his
door”

53
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IN}, how are we to compare them with respect to the quasiorder we will

eventually call ≤∞? We will have to be able to compare everything in X

with everything in Y , and this means comparing things from Pn(Q) and

Pm(Q) for m 6= n. To make sense of this it will be sufficient to identify,

once and for all, every element of Q somehow with a subset of Q, for

then we can propagate this identification up the cumulative hierarchy of

sets built up from Q. Now although there are many ways in which this

identification can be done, there is one way that is obviously the simplest,

namely to identify each q ∈ Q with its singleton. Objects identical to

their own singletons are called Quine atoms. Making this identification

has the great advantage that when asking whether or not q ≤ q′ under

the new dispensation (in which every q ∈ Q is simultaneously a subset of

Q and a member of Q) it doesn’t make any difference whether we think

of q and q′ as subsets of Q or elements of Q, since for all q and q′ we

always have q ≤ q′ iff {q} ≤+ {q′}. Notice also the important triviality

that if f is an injection from 〈Q1,≤Q1
〉 into 〈Q2,≤Q2

〉 then λx.f“x

is an injection from 〈P(Q1), (≤Q1
)+〉 into 〈P(Q2), (≤Q2

)+〉. Putting

these two together enables us to think of 〈Pm(Q), (≤Q)m+〉 as an end-

extension of 〈Pn(Q), (≤Q)n+〉 whenever n ≤ m.

It is not customary to write ‘Pα(Q)’ to be the result of applying the

power set operation α times to a set Q, taking unions at limits to keep

things cumulative. In these circumstances it is customary to use the

letter ‘V ’ instead, thus:

DEFINITION 36 V0(Q) = Q; Vα+1(Q) =: P(Vα(Q)), taking unions at

limit ordinals.

Then VΩ(Q) is the union of all the Vα. VΩ(Q) sometimes called the

Zermelo Cone over Q.)

λX.(P(X)∪Q) is thus a monotone function from the complete poset

〈V,⊆〉 into itself. Theorem ?? now tells us that this operation has a

greatest and a least fixed point. The least fixed point is of course VΩ(Q)

. The greatest fixed point we notate ‘V (Q)’. VΩ(Q) is the wellfounded

part of V (Q).

The + operation on quasiorders now becomes a monotone function

from the complete poset of quasiorders of V (Q), partially ordered by

inclusion, into itself. This too will have greatest and least fixed points,

both of which we will notate ‘≤∞’.

Now why might this be a natural thing to do? And how far should

we go, now that we can iterate transfinitely? Over all ordinals, as my
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invocation of VΩ(Q) apparently portends? The legions of the squeamish

will complain that V (Q) might not be a set.

It was with just this pending problem in mind that I prepared the

ground earlier (p. 29) by making the point that if there is a bad se-

quence of subsets of X under ≤+, then there is a bad sequence of count-

able subsets of X under ≤+, and indeed, for each n if there is a bad

sequence of elements of Pn(X) there is a bad sequence of (countable

sets)n of members of X . That means that whatever new mathematics

we discover by iterating the power set operation, we can discover by it-

erating instead the set-of-all-countable-subsets operation. This is much

less problematic. If we repeatedly apply the function λX.(Pℵ1
(X)∪Q),

starting at ∅, and take unions at limits, we will reach a fixed point after

ω1 steps. This (least) fixed point is notated Hℵ1
(Q), and is the hered-

itarily countable sets over Q. Now, by thinking of Q as a set of

Quine atoms as before, we can lift ≤Q transfinitely often by + to be

defined on the whole of Hℵ1
(Q). To be a bit more precise, we consider

the complete poset of quasiorders of Hℵ1
(Q) that extend ≤Q, ordered by

inclusion, and note that + is a monotone function from this poset into

itself, and must have a fixed point. It is this fixed point that interests

us. The more adventurous can relax and accept the application of this

process to the poset of quasiorders of V (Q) ordered by inclusion. We

will use the same notation—≤∞—for both these quasiorders. (The first

is simply the restriction of the second to Hℵ1
(Q).)

(It is at this point—where we claim that ≤∞ can be defined on the

whole of V (Q)—that we use the fact that ‘+’ is being applied to qua-

siorders not to partial orders: the collection of partial orders of V (Q) is

not a complete lattice under inclusion but only a chain-complete poset,

and we cannot appeal to Tarski-Knaster. [?])

Armed with the concepts of Hℵ1
(Q), V (Q) and ≤∞, we can now

define a more robust concept than wellquasiordering. A quasi-ordering

〈Q,≤Q〉 was ωn-good if the result of lifting ≤Q n times by + to Pn(Q)

was WQO. Or, which is equivalent by lemma 34, if the result of lifting

≤Q n + 1 times by + to Pn(Q) is wellfounded.

We now say

DEFINITION 37

A quasi-ordering 〈Q,≤Q〉 is BQO if 〈Hℵ1
(Q),≤∞〉 is wellfounded

Of course this is equivalent to 〈V (Q),≤∞〉 or 〈VΩ(Q),≤∞〉 being well-

founded (or indeed BQO-ed!!)
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But we still haven’t given a proper definition of block!

6.0.1 Blocks and Gamesput dis-

cussion

of games

and fixed

points

in intro

chapter?

It is nowadays widely understood that there is a connection between

greatest fixed points and open games, and we can indeed characterise

≤∞ by means of a game, and the game will give us the correct definition

of block and a combinatorial definition of BQO that is in the same format

as the definition of ωn-good quasiorder.

Things in V (Q) can be thought of as downward-branching trees (possi-

bly with infinite branches) all of whose leaves are labelled with members

of Q. (They satisfy various extensionality conditions which it is not

illuminating to dwell on here.)

The game GX≤∞Y is played as follows.

false picks a member X ′ of X , true picks a member Y ′ of Y . If

their two choices are both in Q, true wins if X ′ ≤Q Y ′ and false wins

if not. If neither of them are in Q they continue, playing GX′≤∞Y ′ . (If

one is in Q and the other isn’t then we procede as if neither were: since

we have identified each q ∈ Q with {q} we can take elements of Q to

be subsets of Q when this is necessary—as now.) If the game goes on

forever player true wins. The game is open so, by ??, one or the other

player has a winning strategy.

If false has a winning strategy in GX≤∞Y —and plays according to

it!—the play will end with player true picking a member of Q.

Let us say X ≤∞ Y iff player true has a winning strategy.

We are now going to turn our attention to identifying those WQO’s

〈Q,≤Q〉 such that 〈V (Q),≤∞〉 is also a WQO. It will turn out that they

have a nice combinatorial characterisation.

We start out by noticing that if x is an illfounded member of V (Q)

then (∀y ∈ V (Q))(y ≤∞ x). This means that 〈V (Q),≤∞〉 has (up to

equivalence) only one more element than 〈VΩ(Q),≤∞〉. This is not going

to make one a WQO when the other is not. Accordingly we can restrict

our attention to 〈VΩ(Q),≤∞〉.

Now suppose that ≤ wellquasiorders Q but ≤∞ does not wellqua-

siorder V (Q). Let us see if we can simplify this to something sensible.

We start with a bad sequence 〈Xi : i ∈ IN〉 of members of V (Q). Some

of these elements might be members of Q. They cannot all be, because

Q is WQO by ≤, by hypothesis. We are going to leave alone all Xi that

are in Q, and elaborate the others until they, too, turn into members of
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Q. (The complication in this transfinite case is that we do not know in

advance how often we are going to have to unwrap each set).

Start off with {Xi : i ∈ IN}, and a digraph which initially is simply

the usual wellordering on IN, so there is an arrow from Xi to Xj iff i < j.

We will make ω passes.

When we consider xs we first check to see if it is a member of Q. If it

is, it is then ratified which means it will never be replaced. If it is not

a member of Q life is a bit more complicated. For each Xt such that

there is an arrow from Xs to Xt we choose a member of Xs that is not

≤∞ anything in Xt, and we call it X(s;t) (for the moment at least). We

discard Xs and redirect all arrows ending at Xs to X(s;t) (so we replace

each old arrow by a host of new ones) and we replace the arrow from

Xs to Xt with a new arrow from X(s;t) to Xt.

After ω passes everything has been ratified or discarded. The well-

foundedness of 〈VΩ(Q),∈〉 ensures that there can be no infinite sequence

of Xs with later subscripts always end-extensions of earlier subscripts.

The subscripts are a bit of a mess at the moment: every subscript is

an ordered pair of earlier subscripts. Notice that at stage one the only

new subscripts we construct are pairs of natural numbers where the

first component is smaller than the second, and the only new arrows we

generate are things like X(1;3) 6≤∞ X(3;5). So there must be a member of

X(1;3) that 6≤∞ X(3;5) and we call it X((1,3);(3,5)). Since this is the only

way we can invent new things at this level, we might as well rewrite it

as ‘X1,3,5’ to remove the duplication of the ‘3’. The second component

of the first pair and the first component of the second pair are always

the same!

Now for what subscripts s do we know that X1,3,5 6≤∞ Xs? (All

arrows going into X1,3,5 arose from arrows going into X1,3.) The only

arrows going from X1,3,5 go to X3,5 in the first instance, and thereafter

to things with subscripts that are end-extensions of {3, 5} should X3,5

not be a member of Q and have to be replaced.

The upshot is that we can take subscripts to be increasing finite se-

quences of natural numbers, and we only ever arrange for an arrow from

Xs to Xt when t is an end-extension of the tail of s.

This will lead us to the correct definition of block.

Now consider a set S of finite sequences from IN that arises from a bad

Q-sequence in this way. We will show that every increasing ω-sequence

from IN has a unique initial segment in S. Let f : IN→ IN be increasing.

Is 〈f(0)〉 in S? It will be if Xf(0) ∈ Q, and if that happens we are

done. If 〈f(0)〉 is not in S this must be because Xf(0) 6∈ Q and in these
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circumstances we have discarded Xf(0) and replaced it by the infinitely

many Xf(0),j for j > f(0). In particular we will have done this for

j = f(1). So is 〈f(0), f(1)〉 ∈ S? It will be unless Xf(0),f(1) 6∈ Q. In

those circumstances we discarded Xf(0),f(1) and replaced it by each of

Xf(0),f(1),j for j > f(1). And so on. Eventually we hit a member of Q

and at that point we have an element of s that is an initial segment of

f . Notice that we only ever put into S a sequence s if we have already

discarded all initial segments of s, so that the initial segment in S of our

infinite sequence is unique.Rearrange:

(Finally

we will

need a

notation

for the

subscript

we in-

vent when

we find

something

in virtue

of which

qs 6≤ qt,

and we

will write

it qs;t.

Thus, for

example,

q1,3 6≤ q3,4

because of

q1,3,4.)

At some

point

must make

a fuss

about the

unique-

initial-

segment

condition.

This is

what en-

ables us to

generalise

(using

Open

Ramsey)

all the

theorems

using

finite-

exponent-

ramsey.

This motivates the definitions which follow.

DEFINITION 38 A block is a set B of strictly increasing finite se-

quences of naturals with the property that every strictly increasing ω-

sequence of natural numbers has a unique initial segment in B. We

write s � t if t is the tail of an end-extension of s.

Several missable points to note here:

(i) � is not transitive except in the unique case of a block all of

whose elements are singletons;

(ii) We really do mean “tail of an end-extension” not ‘end-extension

of the tail’: which would allow 〈3〉� 〈2〉.

(iii) Although all blocks that crop up naturally do not have two tuples

in them like 〈2, 3〉 and 〈3〉 there is nothing that forbids this.

Notice that this agrees with our picture of the canonical n-blocks for

finite n.

EXERCISE 25 Look back at exercise 18. Extend the results of that

exercise from n-blocks to arbitrary blocks.

If B is a block, the ith ray of B is the set of those unordered tuples

in B that have i as their smallest element.

For each X ⊆ IN the set B|X =: {b∩X : b ∈ B} is a subblock of B.

For j > i there is a natural surjection from the jth ray onto the ith

ray. Given an element of the jth ray, cons i onto the front. The result

is an end-extension of a unique member of the ith ray. This sujection

respects the lexicographic order.

Notice that the ith ray of B is isomorphic to a subblock of B in the

sense that if we think of the elements of the ith ray as lists then tl is

a bijection mapping the ith ray onto the subblock B|{j ∈ IN : i < j}.

This bijection is an orderisomorphism wrt the lexicographic order.
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We also need the notion of a derivative of a block. You remember

the construction of a bad array on X from a bad sequence of subsets of

X? What this construction does is accept as input a bad array on the

power set of X indexed by a block B, and returns a bad array on X

indexed by the derivative of B. That’s what a derivative is. (Thus for

example if B contained {1, 10} and {10, 15}, then the derivative would

contain {1, 10, 15}.
2
)

DEFINITION 39

Thus D(B) := {hd(b)::b′ : b �B b′}.

copy into here some material from 5BQO.

Let’s clarify our tho’rts by thinking about what lh(D(B)) must be

in terms of lh(B). We obtain the derivative of B by taking all b in B

and prefixing each one, once, by each number smaller than its bottom

element. Now classify the elements of D(B) according to their first

element, as *rays*. The nth ray of D(B) is obtained from the set of those

elements of B whose bottom elements are greater than n, and consing n

on the front. Let γn be the length of the initial segment of B consisting

of those elements whose first element is n at most. 〈γn : n < ω〉 is (either

eventually constant or is) a fundamental sequence for lh(B). The nth

ray of D(B) is thus of length lh(B)− γn. Then lh(D(B)) is the sum

(lh(B)− γ1) + (lh(B)− γ2) + (lh(B)− γ2) + · · ·

Either way we get lh(D(B)) = α · ω.

Can we show: ρ(hd(b1) :: b2) = ρ(b1) · ω + ρ(b2)? Must

somewhere

make the

point that

lh(B) is

always a

power of

ω, which

is to say

a limit

of limits.

This is

beco’s

every ray

of a block

is iso to

another

block. So

presum-

ably there

is an ar-

gument to

the effect

that it

must be

a limits

of limit of

limits and

so on...

can’t be

ωω+ωω for

We will find ourselves making use of the following rather unexpected

fact.

LEMMA 40 Every block is the same length as all its subblocks.

Proof: We need an observation on sums of nondecreasing ω-sequences

of ordinals. The sum of an infinite subsequence of a non-decreasing

ω-sequence of ordinals is the same as the sum of the sequence. One

direction of the inequality is obvious. For the other we reason as follows.

The infinite sum is the sup of the sums of the initial segments of the

sequence. Since the sequence is nondecreasing it follows that every sum

of an inital segment of the original sequence is bounded by a sum of an

initial segment of the thinned sequence.

2 Marcone ([?] p645 calls this new block B2.
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A block is a concatenation of rays, each of which is isomorphic to

a block. The rays of a subblock of B is obtained from the rays of

B by discarding some, and replacing others by ‘subrays’. A subray is

obtained from a ray as the ray that corresponds to a subblock of the

block corresponding to the ray.

We can now prove by induction on α that every subblock of a block

of length α is of length α. Let B be a block of length α, whose rays are

of length 〈αi : i ∈ IN〉. Let B′ be a subblock of B. The rays of B′ are

subrays of rays of B and by induction hypothesis on α are all the same

length as the rays of which they are subrays, so by the observation on

sums of nondecreasing ω-sequences of ordinals we conclude that lh(B′) =

lh(B)).

However it is equally natural to wellorder blocks by the lexicographic

ordering, and this is more informative, in the sense that blocks can get

lengths other than ω under this scheme. For example, the graph of < on

IN is a block of length ω2. For B a block, we write ‘lh(B)’ for the length

of B in the lexicographic order. ( ‘lh(〈B, �B〉)’ might be a bit misleading

co’s it doesn’t depend on �B but only on the internal structure of the

carrier set B thought of as a set of tuples of natural numbers. We will

wrie it for the length of B where drawing attention to �B helps.)

A quasiorder that has no bad arrays indexed by blocks of length < α

is said to be α-good. This is consistent with our earlier usage of the

word ‘good’ (see p. 41).

So, in the first instance, a block is a set of increasing sequences of

natural numbers with special properties. If we rub out the tuple in-

formation and just keep the graph information, so that we think of a

block as 〈B, �B〉 where the elements of the carrier set have no internal

structure, can we recover the tuple information? It turns out that we

can, and we do it as follows.

EXERCISE 26

Whatever else it is, a block 〈B, �B〉 is, at the very least a wellfounded

binary structure of height precisely ω, so it has a rank function ρ.

(This seems a non-sequitur)

(i) If you are given a block 〈B, �B〉, show how to ascertain from �B

what tuples of natural numbers the elements of B must be.

(ii) (For logicians only) Why is there no first-order theory of blocks?
Need to

be careful:

if we have

a sensible

notion

of block

morphism

then i

should call

B|X a

subblock.

There may

be other

subblocks.

Tim Gowers made a few remarks about blocks that set me off in the

right direction. Think of IN<ω as increasing finite sequences, and µ(f)
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is rthe bottom element of f when f ∈ IN<ω. Hα is the αth fast-grtowing

function. Then

{f ∈ IN<ω : |f | = Hα(µ(f))}

is a block. For that matter, so is

{f ∈ IN<ω : |f | = fHα(µ(f))(µ(f))}

Probably comes down to the same thing...

Now we can give the combinatorial definition of BQO, the one that

uses blocks:

DEFINITION 41 Let 〈Q,≤Q〉 be a quasiorder and B a block. A map

f : B → Q is an array. An array is good if there are s � t ∈ B such

that f(s) ≤Q f(t).

Then 〈Q,≤Q〉 is a better-quasiorder (hereafter “BQO”) iff for ev-

ery block B every array f : B → Q is good.

THEOREM 42 The two definitions of BQO, 37 and 41 are equivalent.

Proof: The definition of block was cooked up precisely to make this true.

EXERCISE 27 Let 〈Q,≤〉 be a quasiorder such that for all q ∈ Q,

{q′ ∈ Q : q 6≤ q′} is finite. Must 〈Q,≤〉 be BQO?

There are some further equivalences we should take note of, and they

will follow from the following observations (all either easy or estab-

lished previously) that (i) Hℵ1
(Q) is identical to the set of its countable

subsets, and (ii) 〈Pℵ1
(Q),≤+

Q〉 is wellfounded iff 〈Q,≤Q〉 is WQO. (iii)

〈Hℵ1
(Q),≤∞〉 is WQO iff it is wellfounded. (CHEXCK THIS: IS THIS

WHAT I MEANT??)

THEOREM 43

The following are equivalent for a quasiorder 〈Q,≤Q〉:

(i) 〈Q,≤〉 is BQO;

(ii) 〈VΩ(Q),≤∞〉 is wellfounded;

(iii) 〈Hℵ1
(Q),≤∞〉 is wellfounded;

(iv) The free countable completion is wellfounded. stuff miss-

ing here
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Proof: We have already shown (i) implies (ii), and (ii) implies (iii) be-

cause any substructure of a wellfounded quasiorder is wellfounded. It

remains only to show that (iii) implies (i). We will prove the contrapos-

itive.

Suppose 〈Q,≤〉 is not BQO. Then there is a block S0 and a bad array

f : S → Q. The idea is now to “reverse-sift” this bad array (on Q)

into a bad array (on Hℵ1
(Q)) on a shorter block. We extend f to a

map f∗ defined on the set S∗ of all initial segments of sequences in S

by recursively setting f∗(s) =: {f∗(t) : s = butlast(t)}. This recursion

can fail only if there is an infinite sequence {si : i ∈ IN} ⊆ S where for

all i, Si is an initial segment of s1+1. This is impossible by the “unique

initial segment’ clause in the definition of block.

We then find that if S′ is a subset of S∗ that is a block, then the

restriction of f∗ to S′ is a bad array on Hℵ1
(Q). In particular f∗ re-

stricted to IN is a bad sequence on Hℵ1
(Q). But a bad sequence in

Pℵ1
(X) always gives rise to an infinite descending sequence in X , and

Hℵ1
(Q) = Pℵ1

(Hℵ1
(Q)), so Hℵ1

(Q) must be actually illfounded as well

as not being a WQO.

We have seen this recursion in the proof of proposition 28. It gives

us another way of associating a rank with a block. For any block B

the recursion will produce a bad sequence in Hℵ1
(X) from a bad array

f : B → X , but it produces sequences in Hℵ1
(X) from arrays on X , be

they bad or not. One can then ask about the (set-theoretic) rank of the

sequence in Hℵ1
(X) that the recursion builds from an array f : B → X .

Clearly the rank of the sequence does not depend on the array map f

but only on B. We can see this by turning B into a tree by closing under

shortening. (see ??. Order this set of finite tuples) by shortening, so

that a sequence is preceded by all its end-extensions. This is wellfounded,

because of the “every infinite sequence has a unique initial segment in

B” clause in the definition of block. So the tree has a rank.

Miniexercise: what is the rank of the canonical n-block?

In fact we can strengthen theorem 43 further.

THEOREM 44 If 〈Q,≤Q〉 is BQO, so is 〈V (Q),≤∞〉.

Proof:

Suppose there is a bad array over V (Q). We will show how to refine

it into a bad array on on Q. This is merely a more developed version of

the process we applied to Pn(Q) earlier on.
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Let {Xs : s ∈ B} be a bad array over V (Q). For each pair s, t in

B with s � t we have Xs 6≤∞ Xt. Player false has a winning strategy

σXs 6≤∞Xt
in the game GXs≤∞Xt

.

All the games GXs≤∞Xt
will be played simultaneously. Indeed many

plays of these games will be going on simultaneously. To be precise,

there is a play for each infinite ascending �-sequence.

It is convenient to describe what happens in terms of an ω-sequence

of what one might as well call passes.

At the first pass, in each game GXs≤∞Xt
, false uses his strategy

to pick a member of Xs. This will become Xs;t. At the second pass

(and all subsequent passes) each play of GXs≤∞Xt
multifurcates. At the

first pass there was only one play of each game. For false to decide

what to do as his second move in GXs≤∞Xt
he deems true’s move in

this game to be false’s move in GXt≤∞Xu
, for t � u. Thus he deems

true to have played Xt;u. Since he does this for each u such that t � u,

the one play of GXs≤∞Xt
which was proceeding at pass one has become

infinitely many. In each play he continues to use σXs 6≤∞Xt
and—since

this strategy is winning—each play will terminate with a win for player

false. This tells us that after ω passes every play of every game will

have terminated in a win for player false.

Of course, since there is an entire bad array out there, we must expect

to have to deal with Xt 6≤∞ Xu for various u as well. For each game

GXt≤∞Xu
where t�u player false in that game uses his winning strat-

egy to pick Xt;u. Player false in the game GXs≤∞Xt
now has infinitely

many replies to contend with, but he uses σXs 6≤∞Xt
to reply to each,

and the play multifurcates, but false can continue to use σXs 6≤∞Xt
in

each.

Since all the strategies σXs 6≤Xt
are winning for false, this process

must halt with player true picking elements of Q. This gives us a bad

array on Q.

This implies that 〈Q,≤Q〉 is BQO iff 〈Q,≤Q〉 belongs to the

largest class of WQOs closed under the operation taking 〈X,≤〉 to

〈Hℵ1
(X),≤∞〉. (Or, equivalently, to 〈V (X),≤∞〉 or 〈VΩ(X),≤∞〉.)

Indeed, since 〈Q,≤Q〉 is WQO iff 〈P(Q),≤+〉 is wellfounded we can

strengthen this to the remarkable

COROLLARY 45 〈Q,≤Q〉 is BQO iff 〈Q,≤Q〉 belongs to the largest
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class of wellfounded quasiorders closed under the operation taking 〈X,≤〉

to 〈Hℵ1
(X),≤∞〉. (Or, equivalently, to 〈V (X),≤∞〉 or 〈VΩ(X),≤∞〉.)

EXERCISE 28

If 〈X,≤〉 is a quasiorder, define ≤ℵ0 on P(X) as in clause (vii) of

exercise 6. Show that if 〈X,≤〉 is a BQO, so is 〈P(X),≤ℵ0〉.

Hint: use the fact that any block, ordered colex, is of length ω.

If the cone above every element of 〈X,≤〉 is cofinite, then 〈X,≤〉 is a

BQO (every point in a bad array has infinitely many things not above

it) so in particular all (reflexive closure of) wellorderings are BQO.Let’s have

some more

exercises

here

Theorem 43 says that two definitions of BQO are equivalent. Some

facts about BQOs are more easily proved for one definition than another.

The definition in terms of blocks and arrays makes it very easy to show

that any substructure of a BQO is BQO. The definition in terms of

Zermelo cones makes it possible to prove that a disjoint union of two

BQOs is BQO.

There are analogues of proposition 17 saying that every substructure

or homomorphic image of a BQO is a BQO, and the proofs are exactly

analogous.

PROPOSITION 46

.

Substructures of BQOs are BQO.

Refinements of BQOs are BQO.

Homomorphic images of BQOs are BQO.

Notice that the counterexamples of proposition 18 establish also that

the class of BQO’s isn’t closed under direct limit or inverse limit either.

The following is very much harder.

LEMMA 47 The disjoint union of two BQOs is BQO.

Let 〈A,≤A〉 and 〈B,≤B〉 be two BQOs. We will take the dfn of BQOs

in terms of good sequences on Zermelo cones.

Define by recursion two functions DA : VΩ(A ⊔ B) → VΩ(A) and

DB : VΩ(A ⊔B)→ VΩ(B) as follows.

• for a ∈ A set DA(a) =: a and DB(a) undefined;

• for b ∈ B set DB(b) =: b and DA(b) undefined;

• Thereafter DA(s) =: DA“s and DB(s) =: DB“s.
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We then prove by induction on ∈ × ∈ on VΩ(A⊔B) that for all si and

sj in VΩ(A⊔B) we have si ≤∞ sj ←→ (DA(si) ≤∞ DA(sj)∧DB(si) ≤∞

DB(sj).

Now let 〈si : i ∈ IN〉 be an ω-sequence of things in VΩ(A⊔B). Consider

the sequence 〈DA(si) : i ∈ IN〉. This has a perfect subsequence. Consider

the indices that appear in that perfect subsequence, and the sequence of

values of DB applied to si for i an index of the perfect subsequence. This

sequence is good, so there are two naturals i < j with DA(si) ≤∞ DA(sj)

and DB(si) ≤∞ DB(sj) whence si ≤∞ sj and 〈si : i < ω〉 is ≤∞-good.

There is of course a shorter, hi-tech, proof which uses Open Ramsey

??, and the perfect subarray lemma.

The “fixed point” characterisation of BQOs enables us to prove the

following, for which there is no analogue for WQO’s.

COROLLARY 48 If Q and S are BQO then Q → S ordered as in

definition 3 is a BQO as long as Q and S are.

Proof: The (graphs of) the functions in Q→ S are elements of Pk(S⊔Q)

for some k and ≤∞ quasiorders (the extensions of) these functions in

precisely this way. Then we use the fact that substructures of BQOs are

BQO.

Sadly we cannot use the fixed-point characterisation of BQOs to prove

an analogue of Kruskal’s theorem for BQOs—true tho’ it is. This is

beco’s—since + preserves connexity—≤∞ will be connected if ≤ is and

≤l won’t in general—but substructures of connected connected qua-

siorders are likewise connected.

The (locally) minimal bad array lemma

(This is a standard treatment lifted from the literature—specifically

Marcone)

Let 〈Q,≤Q〉 be a quasiorder. We will say of a transitive subset of the

graph of ≤Q that it is compatible with ≤Q.

Any compatible relation R induces a relation on Q-arrays thus: say

f ≤(R) g if dom(f) ⊆ dom(g) and (∀s ∈dom(f))(〈f(s), g(s)〉 ∈ (R ∪ I)).

(R∪I is of course the reflexive closure of R). Similarly we write f <(R) g

if f ≤(R) g and (∃s ∈dom(f))(〈f(s), g(s)〉 ∈ R).

A Q-array f is locally minimal bad with respect to R if it is bad

and no g <(R) f is bad.
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LEMMA 49 The (locally) minimal bad array lemma

Let 〈Q,≤Q〉 be a quasiorder, let R be a wellfounded relation compatible

with ≤Q, B a block and f : B → Q be a bad Q-array. Then there is

g ≤(R) f which is locally minimal bad with respect to R.

Proof:

Let T be the set of all finite sequences S of the form

〈〈s0, q0〉 . . . 〈sk−1, qk−1〉〉 where the si are pairwise distinct elements of

B and the qi are in Q, and S can be extended to a bad array g <(R) f .

T has a natural tree structure.

We now define two infinite sequences 〈si : i ∈ IN〉 and 〈qi : i ∈ IN〉. The

intention is that every initial segment tk of zip of these two sequences

will belong to T .

Suppose we have got the first k elements of both sequences, so we’re

trying to find sk and qk. We do at least know that there are s and q

such that the k + 1-list consisting of the zip so far with 〈s, q〉 on the

end belongs to T . (T contains finite sequences that can be end-extended

to bad arrays). We will choose sk and qk to be minimal among these in

the following sense.

We want max(sk) to be minimal among the s ∈ B such that there

is a q with tk ⌢ 〈s, q〉 ∈ T . (Marcone sez: notice that if i < k then

max(si) < max(sk).). Now pick qk to be R-minimal among the q such

that tk ⌢ 〈sk, q〉 ∈ T .

Let B∗ =: {sk : k ∈ IN} and define an array g : B∗ → Q by setting

g(sk) =: qk. We claim that B∗ is a subblock of B and that g <(R) f is

locally minimal bad wrt R.

6.0.2 Here’s how to use minimal bad array and Open Ramsey.

The perfect subarray lemma

First explain the concept of a subblock. You can work out what this

must be . . .

If B is a block and X ⊆ IN is infinite then the subblock B|X is the

set of those finite sequences in B whose components are all in X . That

is to say, it’s B ∩X<ω.Unpublished

fact: every

subblock

of a block

is the same

length in

the lex

ordering!
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6.1 Laver’s proof of Fräıssé’s conjecture

Simpson sez we need a notion of partial ranking to expolit the minimal

bad array lemma. This will come from Hausdorff’s recursive character-

isation of SCAT.

DEFINITION 50 A linear order type is scattered if one cannot embed

the rationals in it.

Alternatively we could adopt a recursive datatype declaration saying

that a scattered ordering is either the one-point total order or is a

wellordered or reverse-wellordered union of scattered orderings.

Hausdorff proved that these two definitions are equivalent. We do so

as follows.

One direction is easy: we prove by induction on Haussdorff’s rectype

that everything in it is scattered.

Conversely, let L be scattered. define ∼ on dom(L) by x ∼ y iff the

interval [x, y] (open or closed, it makes no difference, and [y, x] will do

equally well) is in Hausdorff’s rectype. Now think about the quotient.

If it is nontrivial then it must be dense, because no element of the quo-

tient can have an immediate neighbour—the sum of two orders in the

Haussdorff rectype is also in the Haussdorf rectype. But if it’s dense

we can use DC to pick a subset of the quotient isomorphic to the ratio-

nals
3
, and then countable choice again to pick a set of representatives,

contradicting the assumption that L was scattered. So the quotient is a

single point. So all intervals [x, y] are in Haussdorff’s rectype. Now use

DC to pick a coinitial and cofinal ω∗ + ω sequence. This partitions L

into pieces each of which are in Haussdorf’s rectype, so L itself must be

as well. Can we get

round AC

by defining

scattered

as “has no

quotient

with a

dense sub-

set” (“No

dense

minor!!)

HIATUS

The proof procedes as follows. There is a generalisation of Kruskal

that sez that the set of (wellfounded, upward-branching) trees of height

ω is BQO under the usual (meet-preserving) embedding relation. This

remains true even when the nodes of the tree are labelled with elements

from an arbitrary BQO. (Laver op cit thm 2.2.)

Next we show by induction on the recursive datatype of scattered

order types that if α ∈ scat then Q ∈ BQO→ Qα ∈ BQO.

3 Let Q be the quotient. Let R be the relation on Pℵ0
(Q) defined by XRY iff there

is a point of Y between any two points of X. Then by DC there is an infinite
sequence, whose union is a copy of the rationals.
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6.1.1 Laver’s theorem is best possible
Best possi-

ble in what

sense, pre-

cisely?

Can we do

the same

thing to

the canon-

ical η1 set

instead of

the contin-

uum, for

example?

LEMMA 51 (Sierpinski [1950]) (AC) If E ⊆ ℜ and |E| = 2ℵ0 then

∃H ⊆ E |H | = 2ℵ0 and for all strictly increasing f : E → E (f“E) \H

is nonempty.

Consequently the order type of H is strictly less than the order-type

of E. (because there is an order-embedding H →֒ E but not conversely.)

Proof:

Let us suppose the continuum has a wellordering <c of length ωα.

The significance of this is that every initial segment of this wellordering

will be of size less than ℵα. Since |E| = 2ℵ0 the family of increasing

functions E → E is also of size 2ℵ0 . (This crucial fact depends on E

being a uncountable subset of the reals—it doesn’t work for the rationals

for example! The proof is left as an exercise.) This means there is a

wellordering <f of these strictly increasing functions E → E of order

type ωα. Now we define sequences 〈pi : i < ωα〉 and 〈qi : i < ωα〉 as

follows.

p1 is the <c-first real in E.

q1 is the <c-first thing in (f1“E)\{p1}, where f1 is the <f first strictly

increasing function E → E.

Thereafter for β < ωα we make the following recursive definition:

given Aβ = {pi : i < β} ∪ {qi : i < β}, set

A : pβ is the <c-first real in E \ Aβ . (There is such a thing because

|Aβ | < ℵα = 2ℵ0 and |E| = 2ℵ0 .)

B : qβ is the <c-first thing in (fβ“E) \ {pi : i ≤ β}, where fβ is the βth

strictly increasing function E → E (in the sense of <f ). (There is such

a thing because |fβ“E| = 2ℵ0 and |{pi : i < β}| = |β| < ℵα = 2ℵ0).

Now set H = {pβ : β < ωα}

By construction the pβ are all distinct so |H | = ℵα = 2ℵ0 as desired.

Each qβ is in the range of fβ , so we want to know that qβ 6∈ H . Can qβ

be a pζ? It cannot be a pζ with ζ > β because of (A). It cannot be a pζ

with ζ < β because of (B). Therefore any strictly increasing f : E → E

takes at least one value outside H .

COROLLARY 52 The collection of order-types of linear orders of power

2ℵ0 is not wellfounded.
I do not

know if

corollary

52 can

be proved

without

assuming

that the

continuum

can be

wellordered.

Presum-

ably it’s

possible

to prove

with only

minimal
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Well relations

There are some refinements of this due to Marcone [1994]. Note first

of all that we can separate the “better” part of being a BQO from the

ordering part of being a BQO. Thus a relation R is a well relation if

there are no bad R-arrays.

We can use this to refine the concept of a well relation. Let us say a

relation R is α-well if whenever B is a block of length α then every array

f : B → dom(R) is good. Obviously a WQO is merely a quasiorder that

is ω-well. A BQO turns out to be a quasiorder that is α-well for every

countable ordinal α.

Might be worth checking for which (if any!) α is it the case that the

intersection of two α-well relations is α-well.

OK, at the end we decide that a quasiorder is BQO if when you lift

it it remains wellfounded. Now there’s nothing about wellfoundedness

that ties it to transitive relations. Can we generalise this to arbitrary

relations? Not as obviously as one might hope: the point being that

the ‘+’ operation adds a certain amount of structure thru’ prolonged

iteration and you tend to end up with quasiorders anyway.
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The topological Approach

The Ellentuck topology. Descriptive set theory

Galvin-P.

Adrian, remind me what a borel map is (i’m thinking blocks and

BQOs....) IT usually means a map such that the preimage of any open

set is Borel (and hence the preimage of any Borel set is Borel)

The key paper here, and the original source of topological ideas in

BQO theory, is Simpson’s coda [59] to Weitkamp and Mansfield, [67]

Part of the definition of block is the unique-initial-segment condition:

if B is a block then every increasing function IN → IN has a unique

initial segment in B. This sounds fiddly and ad hoc but it is actually

very significant. Two points:

• There are lots of facts about good quasiorders of finite exponent that

one proves by means of Ramsey’s theorem of finite exponent. We

prove the analogues for good quasiorders of transfinite exponent by

exploiting the Open Ramsey theorem.

• A Q-array is a map f from a block to Q. A block is a set of finite

tuples. Simpson’s idea is that f can be thought of as a map from [IN]ωmust check

that this

is his-

torically

correct

rather than from a block. One thing we know about a block B is that

every increasing f : IN → IN has a unique initial segment in B. So if

we are to think as f as a map defined on [IN]ω (when all along it is

really a map defined on B) then whenever f is wondering what value

to give to an argument h ∈ [IN]ω, it is allowed to look only at that

unique initial segment of h that is in B. But this is just to say that f

is continuous in some suitable topology.

70
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Open Ramsey

Treatment brazenly nicked from Bollobas: Combinatorics, CUP pbk.

pp 160ff.

This can be done in terms of infinite sequences from IN or in terms of

infinite subsets of IN. Here we do it in terms of infinite subsets, tho’ i

do find myself thinking of them as strictly increasing sequences.

(A, X)ω is the set of infinite subsets of IN that have an initial seg-

ment in A and the corresponding terminal segment in X .
1

It will be

understood when this notation is used that A is finite, X is infinite and

sup(A) < inf(X). I think we shall also write ‘Xω’ for the set of infinite

subsets of X .

We say M accepts A (“into Y ”) if (A, M)ω ⊆ Y . M rejects A if no

infinite subset of M accepts A.

There is a standard natural topology on the infinite subsets of IN,

wherein, for any finite x ⊆ IN, the set of its supersets is a basis element.

Although this is the one we will use, developing the theory of infinite

exponent partition relations makes use of the Ellentuck topology which

has a basis of elements of the form (A, X)ω. This topology has more

open sets than the usual product topology on INω. For example the set

of increasing sequences of odd numbers is open in the Ellentuck topolgy

but not in the product topology.

Fix Y a set of infinite subsets of IN: think of it as a two-colouring of

the set of infinite subsets of IN. If there is an infinite monochromatic set

we say Y is Ramsey.

LEMMA 53 (The Galvin-Prikry lemma) Let Y ⊆ INω and M ∈ INω.

• If M does not reject the empty set then some infinite subset of

M accepts all its finite subsets;

• If M does reject the empty set then some infinite subset of M

rejects all its finite subsets.

Proof:

First bullet. Suppose M does not reject the empty set. That is to

say that some infinite subset L of M accepts the empty set—then this

L accepts all its finite subsets.

Second bullet. Suppose that M rejects the empty set. We will con-

struct inductively a sequence a1 < a2 < a3 . . . in M which rejects all

1 I don’t like the use of ‘ω’ instead of ‘ℵ0’ but i think this notation is standard.
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its finite subsets. More specifically we will construct an increasing se-

quence of as in M (start counting with 1 the first subscript) and a

⊃-decreasing sequence of infinite subsets of M (start counting with 0

the first subscript) such that ai ∈ Mi−1 and Mi rejects all subsets of

Ai = {a1, . . . ai}. The desired infinite subset of M is then the set of the

ais.

We can certainly begin this construction because we take M0 =: M

which rejects the empty set (which is A0—no as yet!)

Now for the recursive step. Suppose we have Mk and Ak but we

cannot find Mk+1 or ak+1. Rename Mk as N1 (we will be building a

whole string of Ni!). Let b1 be something in N1 bigger than ak. Now

by hypothesis we couldn’t set Mk+1 =: N1 and ak+1 =: b1 so there is a

subsequece N2 ⊆ N1 that accepts some subset F1 of Ak ∪ {b1}. Since

N2 rejects all subsets of Ak, F1 must be E1 ∪ {b1} for some E1 ⊆ Ak.

Now choose b2 ∈ N2 and b2 > b1—as before. Now—as before—

setting Mk+1 =: N2 and ak+1 = b2 won’t work, so there are N3 (an

infinite subset of N2 accepting some subset F2 = E2∪{b2}) with E2 and

b2 ∈ N2 bigger than b2 and so on . . .

That way we get sequences ak < b1 < b2 < . . . Mk = N1 ⊃ N2 ⊃

N3 . . . with bi ∈ Ni and Ni+1 accepts Ei∪{bi}. All the Ei are subsets of

Ak and so “by passing to a subsequence if necessary”(!!) we may assume

they are all the same. But if we then set B =: {bi : i < ω}, we find

that B is an infinite subset of Mk which accepts E ⊆ Ak, contradicting

assumption.

So the construction never fails, and the set of all the ai rejects all its

finite subsets.

COROLLARY 54 Open Ramsey Every set open in the Ellentuck topol-

ogy (and a fortiori the usual topology) is Ramsey.

LEMMA 55 Every array has a perfect subarray.

To understand how to use Open Ramsey to prove a perfect subarray

lemma, think about how we used binary Ramsey to prove the perfect

subsequence lemma (lemma 15). Of course the same idea works for

ωn-good quasiorders for any finite n, and we use Ramsey theorem on

partitions on unordered n-tuples into two pieces, as we have seen. With

BQOs there is no finite bound on the length of the finite sequences in

the block, so we cannot use ordinary n-ary Ramsey any more. but the

underlying idea is the same.
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Now the graph of the � relation of a block gives rise to another block.

Think about how IN itself is a block, then the graph of the relation on

that is another block, namely RADO! Recall the definition of derivative

of a block from page 59.

Suppose our array is a function f : B → Qω. We have to partition

the set of infinite subsets of IN. Each infinite subset X has a unique

initial segment which meets the derivative of B, and thereby identifies

a unique pair of sequences in B. For example, if X had started off

{1, 10, 15 . . .}, it would identify the two elements {1, 10} and {10, 15}

from the B considered above.

We then colour X blue if hd(f({1, 10})) ≤Q hd(f({10, 15})) and red

if not. This clearly is an open partition, since for any X there is a finite

initial segment (namely its intersection with the derivative of B) that

determines which colour it gets.

Now let Y be a set monochromatic for this partition. Consider the

obvious restriction of B to Y —which will be a block—and the restriction

of f to this block. Consider the heads of the values of f . These will

form either a perfect array or a bad array. They cannot form a bad

array because Q is BQO.

This is the perfect subarray lemma.
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BQOs and fast-growing functions etc

Abstract:

First present totality proofs that rely on compactness. Then show

that some of these results can be proved directly by induction on long

wellorderings. Finally try to extract some converses. The extraction

of converses has become a little cottage industry called “reverse mathe-

matics”.

What is so characteristic of the transfinite is that we then go on iterating the
iteration, iterating the iteration of the iterations, and so on, until somehow
our apparatus buckles; and the least transfinite number after the buckling of
the apparatus is how strong the apparatus was.

W.V.Quine: Set Theory and its logic

The reader who has done exercise 11 will have no difficulty thinking

of finite trees over IN as notations for ordinals below ǫ0 and concluding

that we can associate ǫ0 with the WQO of trees over IN. Such a reader

will be in the right frame of mind to read Cichon’s illuminating short

note [1983].

However we can contort ourselves into thinking of finite trees over IN

as notations for ordinals below bigger things than ǫ0.

REMARK 56 (Friedman) The rank of the set of all bad sequences in

the WQO of finite trees over the one-point WQO (partially ordered by

reverse end-extension) is at least Γ0.

Proof:

We will define a function h from finite trees over the one-point WQO

to the ordinals below Γ0.

• h sends the one-point tree to 0.

74
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• Thereafter we first look at how many successors the root has.

– If it has only one, so that T has precisely one child, T1 then set

h(T ) =: h(T1).

– If the tree has precisely two children T1 and T2 (with h(T1) ≥ h(T2))

then h will send it to h(T1) + h(T2).

– If the tree T has precisely three children T1, T2, and T3 with

h(T1) ≥ h(T2) ≥ h(T3) and h(T1) < φ(h(T1), h(T2)) send T to

φ(h(T2), h(T1)). If, on the other hand, h(T1) = φ(h(T1), h(T2), set

h(T ) =: h(T1) + h(T2).

– Finally if T has four or more children send it to φ(h(T1), h(T2)).

where h(T1) ≥ h(T2) are the two children with largest h.

The normal form theorem for ordinals below Γ0 ensures that h is onto.

We also have to check that T1 ≤t T2 → h(T1) ≤ h(T2).

Remark 27 will now ensure that the tree of bad sequences inversely

ordered by end-extension has rank at least Γ0.

(Even this is not best possible. By complicating the definition of the

map we can arrange to map the set of all finite trees onto longer initial

segments of the ordinals.)

The significance of this is that the fact that the finite trees as WQO

means that whenever we have a system of notations (using trees) for

some total order types which has the feature that when one ordertype

is less than another then the tree corresponding to the second doesn’t

stretch into the first, then we can show that this family of linear orders

is wellfounded.

8.1 FFF

Consider the one-point WQO, and suppose there is an integer k such

that for all n there is a bad sequence of length n:

T n
1 , T n

2 , T n
3 . . . T n

n

where T n
i is a finite tree (over the one-point WQO) with k + i nodes.

Then there will be an infinite triangular matrix of trees (one row for

each n):
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T 1
1

T 2
1 T 2

2

T 3
1 T 3

2 T 3
3

T 4
1 T 4

2 T 4
3 T 4

4
...

...
...

...

Consider the (multi)set {T n
1 : n ∈ IN}. Each tree in this set has only

k + 1 nodes, so only finitely many of them can be distinct. So at least

one of them must be present with infinite multiplicity. Pick on one such

and throw away all the rows that do not begin with this tree. Now

consider the second column. (We can do this canonically so we don’t

need DC). Iterate with all subsequent columns. Eventually we will have

constructed an infinite bad sequence of trees. But this would contradict

theorem 25. Therefore the initial assumption was wrong, so there is no

such k, and we have proved

THEOREM 57 ∀k∃n if T1 . . . Tn is a list of trees where Ti has k + i

nodes, then there are j < l ≤ n s.t. Tj ≤ Tl.

(This uses KL not full DC, for what it’s worth)

Notice that we could have replaced ‘k + i’ by ‘k + g(i)’ where g is

any total function. Worth noticing also that this works only if Q is

actually finite—o/w we can’t assume that each column contains only

finitely many distinct trees. So we assert it only for trees over the 1-pt

WQO.

EXERCISE 29 We have just seen how to extract a Π2 truth of arith-

metic from theorem 25. Show how, for each n, to extract a similar Π2

truth of arithmetic from the assertion that finite trees over the 1-point

BQO form an ωn-good quasiorder. (Hint: use the fact that blocks ordered

colex are of length ω.)

This proof is of interest because it proves a result about finite sets

which can only be proved by reasoning about infinite sets. The reader

may well be puzzled by this: isn’t IN defined as the intersection of an

infinite family of infinite sets? in which case are not actually-infinite

sets involved right from the start?

IN

is indeed defined in that way, so the point is well-made. However it

is possible to define IN in a way that gets round this objection.It seems
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to be due to Quine, but see also Parsons [50] Let P (n) be n− 1 if n > 0 REf for set

theory and

its logic.

and 0 otherwise. Define

IN∗ =: {m : (∀Y )((m ∈ Y ∧ (P“Y ⊆ Y ))→ 0 ∈ Y )}

(we can also say q(m) (for “m is a Quine natural”) iff (∀Y )((m ∈

Y ∧(P“Y ⊆ Y ))→ 0 ∈ Y ), in tandem with ‘N(m)’ for “m is a natural”.

We claim IN∗ = IN.

Clearly IN∗ contains 0 and is closed under S and so IN ⊆ IN∗. (i.e.,

we can prove q(m) for all m ∈ IN by induction). For the other di-

rection we will justify induction over IN∗: this will enable us to prove

that everything in IN∗ is in IN. Suppose (i) that F (0) and (ii) that

(∀n)(F (n) → F (n + 1)), and take a ∈ IN∗. Suppose, per impossibile,

that ¬F (a). Then {m : m < a∧¬F (m)} contains a and is closed under

P (by (ii)), and so must contain 0, contradicting (i).

Notice the parallel with the definition of ‘regular set’ in Set Theory.

The definition of IN∗ does not involve quantification over infinite sets

and so is meaningful even in contexts where we are not assuming the

axiom of infinity.

To complete the picture we would need to show that FFF cannot be

proved in Peano arithmetic. The proof of this is too fiddly to do here,

since it involves the use of ordinals in proof theory....

Well, here is a sketch. Any halfway sensible system N of notations for

an initial segment of the ordinals involves parse trees for the notations.

It’s probably possible to do it so the parse trees are naked (undecorated)

and that if N(α) ≤ N(β) (where N(α) is the tree that the notation N

gives to the ordinal α) then α ≤ β. Now suppose 〈αi : i ∈ IN〉 were

a strictly descending sequence of things which had notations. Then

〈N(αi) : i ∈ IN〉 would be a bad sequence of trees.

(What’s at work here is simply the elementary fact that any quasi-

order extending a WQO is wellfounded.)
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Answers to selected Exercises

Chapter 3

Exercise 2

Patter about V (X)

Might be better to treat + applied to arbitrary binary relations.

I shall use the letter ‘γ’ to range over fixed points and prefixed points

and postfixed points.

x ≤ f(x) is a prefixed point....

The first point to notice is that if R is reflexive then R+ is a superset

of ⊆. The operation is increasing in the sense that R ⊆ S → R+ ⊆ S+.

Suppose R ⊆ S and xR+y. Then for every z ∈ x there is w ∈ y R(z, w)

whence S(z, w) whence R+ ⊆ S+.

Now for limits. Suppose R∞ =
⋃

i∈I Ri. Clearly, for all i ∈ I, Ri
+ ⊆

R∞
+ so

⋃

i∈I Ri
+ ⊆ R∞

+. For the converse

xR∞
+y iff (∀z ∈ x)(∃w ∈ y)(zR∞w) iff (∀z ∈ x)(∃w ∈ y)(∃i)(zRiw)

so it is not cts at limits. (Presumably this is for the same reason that P

is not continuous.)

So + is monotone but not continuous

REMARK 58 ∈ ⊆ the GFP

Proof: If x ∈ y then (∀z ∈ x)(∃w ∈ y)(z ∈ w) . . . and the w is of course

x itself. That is to say ∈⊆∈+: ∈ is a postfixed point.The GFP

is the

union

of all

postfixed

points. Is

it that way

round...?

Obvious questions: does γ extend ∈? Is it connected? Is it well-

founded? Is γ restricted to wellfounded sets wellfounded? Is it a WQO

or a BQO?

There are other way of deriving a rank relation. We could consider

sets containing ∅ and closed under P and (i) unions or (ii) directed

unions or (iii) unions of chains. Then if X is such a set we say xγy if

82
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(∀Y ∈ X)(y ∈ Y → x ∈ Y ). For each of these three we can prove by

induction that the least fixed point consists (for any X ⊇ P(X), entirely

of sets in X . We should also prove that if X is a prefixed point under

the heading (i) (ii) or (iii) then every wellfounded set is in a member of

X .

We need to check that the LFP and the GFP are nontrivial. The

identity is a postfixed point and the universal relation is a prefixed point.

(Incidentally this shows that the GFP is reflexive) But LFP ⊆ GFP? It

is if there is a fixed point.

REMARK 59

The GFP is transitive

Proof: First we show that γ+ ⊆ γ ∧ γ′+ ⊆ γ′ → (γ ◦ γ′)+ ⊆ γ ◦ γ′.

Suppose 〈X, Z〉 ∈ (γ ◦ γ′)+. That is to say, (∀x ∈ X)(∃z ∈ Z)(〈x, z〉 ∈

γ ◦ γ′). This is (∀x ∈ X)(∃z ∈ Z)(∃y)(〈x, y〉 ∈ γ ∧ 〈y, z〉 ∈ γ). or

(∀x ∈ X)(∃y)(〈x, y〉 ∈ γ∧(∃z ∈ Z)(〈y, z〉 ∈ γ)). Then for this y we have

〈X, {y}〉 ∈ γ+ and thence 〈X, {y}〉 ∈ γ and 〈{y}, Z〉 ∈ γ′+ and thence

〈{y}, Z〉 ∈ γ′ which is to say 〈X, Z〉 ∈ γ ◦ γ′.

Similarly the set of post-fixed points is closed under composition,

which means that the GFP is transitive.

We can prove by ∈-induction that any fixed point is reflexive on well-

founded sets.

REMARK 60 Any two fixed points agree on wellfounded sets.

Proof: Let γ and γ′ be fixed points. We will show that for all wellfounded

x and for all y, 〈x, y〉 ∈ γ iff 〈x, y〉 ∈ γ′.

We need to show that P({x : (∀y)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′)} ⊆ {x :

(∀y)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′)}.

Let X be a subset of {x : (∀y)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′)}. Then for

all Y

〈X, Y 〉 ∈ γ iff

(∀x ∈ X)(∃y ∈ Y )(〈x, y〉 ∈ γ) which by induction hypothesis is the

same as

(∀x ∈ X)(∃y ∈ Y )(〈x, y〉 ∈ γ′) which is

〈X, Y 〉 ∈ γ′

We will also need to show that for all wellfounded y and for all x,

〈x, y〉 ∈ γ iff 〈x, y〉 ∈ γ′.

We need to show that P({y : (∀x)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′} ⊆ {y :

(∀x)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′}.
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Let Y be a subset of {y : (∀x)(〈x, y〉 ∈ γ ←→ 〈x, y〉 ∈ γ′}. Then for

all X

〈X, Y 〉 ∈ γ iff

(∀x ∈ X)(∃y ∈ Y )(〈x, y〉 ∈ γ) which by induction hypothesis is the

same as

(∀x ∈ X)(∃y ∈ Y )(〈x, y〉 ∈ γ′) which is

〈X, Y 〉 ∈ γ′

REMARK 61 If γ+ ⊆ γ then

(∀y ∈WF )(∀x)(〈x, y〉 ∈ γ ∨ 〈y, x〉 ∈ γ)

Proof:

We prove by ∈-induction on ‘y’ that (∀x)(〈x, y〉 ∈ γ ∨ 〈y, x〉 ∈ γ).

Suppose this is true for all members of Y , and let X be an arbitrary set.

Then either everything in Y is γ-related to something in X (in which

case 〈Y, X〉 ∈ γ+ and therefore also in γ) or there is something in Y

not γ-related to anything in X , in which case, by induction hypothesis,

everything in X is γ-related to it, and 〈X, Y 〉 ∈ γ+ (and therefore in γ)

follows.

REMARK 62

If γ ⊆ γ+ and P(X) ⊆ X then (∀y ∈WF )(∀x)(〈x, y〉 ∈ γ → x ∈ X).

If γ ⊆ γ+ and P(X) ⊆ X we prove by ∈-induction on ‘y’ that

(∀x)(〈x, y〉 ∈ γ → x ∈ X). Suppose (∀y ∈ Y )(∀x)(〈x, y〉 ∈ γ → x ∈ X)

and 〈X ′, Y 〉 ∈ γ. 〈X ′, Y 〉 ∈ γ gives 〈X ′, Y 〉 ∈ γ+ which is to say

(∀x ∈ X ′)(∃y ∈ Y )(〈x, y〉 ∈ γ). By induction hypothesis this implies

that (∀x ∈ X ′)(x ∈ X) which is X ′ ∈ P(X) but P(X) ⊆ X whence

X ′ ∈ X as desired.

COROLLARY 63 If γ ⊆ γ+, y ∈WF and x γ y then x ∈WF

One obvious conjecture is that if γ is a fixed point then x ∈ y →

〈x, y〉 ∈ γ.

There is an obvious proof by ∈-induction on ‘x’ that (∀y)(x ∈ y →

〈x, y〉 ∈ γ) but the assertion is unstratified and so the inductive proof is

obstructed, at least in NF.

Suppose γ+ ⊆ γ and x is an illfounded set such that y γ x→ y ∈WF.

Since x is illfounded it has a member x′ that is illfounded. ¬(x′γ x)
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because everything related to x is wellfounded. Now suppose yγx′. Then

{y}γ+x and {y}γx (since γ+ ⊆ γ) and {y} is wellfounded. So y is

wellfounded as well, and x′ is similarly minimal.

Now suppose x is such that G ◦ F (x) ⊆ x. Then F (x) ∈ x. G ◦ F (x \

{Fx}) ⊆ G ◦ F (x) ⊆ x As before, we want ‘x \ {Fx}’ on the RHS. So

we want

z ∈ G ◦F (x \ {Fx})→ z 6= Fx which is to say Fx 6∈ G ◦F (x \ {Fx}).

But this follows by monotonicity and injectivity of F and the fact that

F (x \ {Fx}) is the largest element of G ◦ F (x \ {Fx}).

So G ◦ F (x \ {Fx}) ⊆ (x \ {Fx}) and x was not minimal.

WQOs: chapter 4

Exercise 5

The direct limit in question is the direct limit of Qi where Q0 = Q and

Qi+1 is Q × (Qi)
<ω. How is Qi+1 an end-extension of Qi? any such

embedding must correspond to an attempt to think of trees of height i

as trees of height n + 1. So, given an injection from Qi into Qi+1 how

are we going to lift it to a map Qi+1 into Qi+2? A lot of

work to do

here!

Exercise 6

WRT (v) If 〈qi : i ∈ IN〉 is a bad sequence from Q then the set of (do-

mains of) terminal segments form a descending sequence under the 1-1

embedding. I can’t see how to do the other direction offhand; Laver [38]

asserts it but doesn’t prove it.

Further sketches of material relevant to an answer.

Suppose 〈Xi : i ∈ IN〉 is a >∗-descending chain of subsets of X . Let x0

be anything in X0. Thereafter, once we’ve cut down to a finite subset

Yi ⊆ Xi pick enough xs from Xi+1 to ensure that everything we have

picked from Xi is ≥ one of the xs. Then—just to be sure if we haven’t

already done it—add something that is 6≥ anything in Yi. The Yi now

form a >∗-descending chain of finite sets. This shows that if the power

set isn’t wellfounded then even the finite subsets aren’t. This last-

para could

be better

put
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Exercise 7

A minimal bad sequence is a bad sequence 〈xi : i ∈ IN〉 with the

property that if 〈yi : i ∈ IN〉 is a sequence such that ∀i ∈ IN ∃j ∈ IN

yi ≤ xj and ∃i ∈ IN ∀j ∈ IN xj 6≤ yi then 〈yi : i ∈ IN〉 is not bad.

This is the definition in Laver [38]

Alternatively:

f : IN→ Q is a minimal bad sequence if it is bad and for all g : IN→ Q

s.t. g“IN ≤+ f“IN ∧ f“IN 6≤∗ g“IN then g is not bad.

Notice that this is not minimal w.r.t. ≤+. If f is a bad sequence,

then tail(f) <+ f but the tail is bad too.

Exercise 8

The disjoint union of two copies of IN affords a counterexample.

Exercise 9

22 is the two-element boolean algebra. We cannot embed 223, the 8-element

boolean algebra, into IN× IN. Suppose we have embedded three atoms

a, b and c as 〈x1, y1〉, 〈x2, y2〉 and 〈x3, y3〉 with x1 > x2 > x3 and

y1 < y2 < y3. Then the element ac above both a and c must be above

b, which it shouldn’t be! This shows that 223 doesn’t embed in IN× IN.

Similarly we can show that 22k+1 doesn’t embed in INk. The killer blow

comes from reflecting on the WQO that is the result of concatenating

22k for all finite k.

Exercise 11

Make every list correspond to an ordinal below ωω. We define a function

ord on lists recursively as ord(l) =: ωlen(l) · hd(l) + ord(tl(l)).

Exercise 13

Give an easy proof that the lexicographic product of two WQOs is WQO.

The point is that the lexicographic product contains more ordered

pairs that the pointwise product (which we already know to be WQO)

and any superset of a WQO is WQO, by proposition 17, part (vi).
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Exercise 14

Consider the relation “x ∈ TC({y})” on the hereditarily finite sets. Is

it a WQO? No: set xn =: {ιn(∅), ιn+1(∅)}, where ιn(x) is the n-times

singleton of x.

Exercise 15

There is a proof in [5] Cao, Kim, Roush “Incline Algebras and applica-

tions” thm 1.1.7 page 7. This is my proof not theirs.

The distributivity law means that any polynomial can be expressed as

a sum of monomials (and the coefficients are all 1, because of idempo-

tence of addition). Commutativity and associativity of addition enable

us to think of each polynomial as a set of monomials. Suppose we could

prove that monomials in a fixed finite number of variables were WQO

would that be enough to show that polynomials are WQO under ≥?

It will be if we can show that the finite subsets of the carrier set of a

WQO are wqo under the 1-1 embedding, and this is a consequence of

the fact that finite lists over a WQO are WQO: send each list to its

carrier set and appeal to the fact that a homomorphic image of a WQO

is WQO. However in this case we can give a slightly easier direct proof

by exploiting idempotence of +.

Let X and Y be finite sums of monomials (tho’rt of as sets) and

suppose for each monomial x in X , f(x) is a monomial in Y s.t x ≥ f(x).

If f is injective we are done, as the 1-1 embedding is WQO. If it isn’t, we

just put in as many copies of each f(x) as we need to make f injective,

and appeal to idempotence of addition to claim that the extra copies

don’t do anything. That way X ≥ Y as polynomials iff X ≥+ Y as

finite sets of monomials.

So all we have to do is establish that monomials are wqo. This of

course is where we will need the fact that the incline is finitely generated.

Sse we are given a sequence 〈mi : i ∈ IN〉 of monomials. Each monomial

is a product of finite powers of generators. For each generator g two-

colour the complete graph on IN depending whether the exponent of g in

mi is ≥ or > the exponent of g in mj . By discarding monomials we can

end up with a subsequence wherein, for each generator g, the exponents

of g in the remaining monomials are nondecreasing. And we know that

x2 ≤ x.

I think this actually proves that its a BQO. For further details see [5].

This result is on page 7.
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Chapter 5

Exercise 16

If s and t are increasing sequences from IN of length n then s � t iff t is

an end-extension of tl(s).

Exercise 17

If 〈X,≤〉 is a quasiorder, define ≤ℵ0 on P(X) as in clause (vii) of exercise

6. Show that if 〈X,≤〉 is an ω2-good quasiorder, then 〈P(X),≤ℵ0〉 is

WQO.

Exercise 18

Prove that IN<ω is not wellordered by the lexicographic order but that

the canonical n-block is.

Prove that the canonical n-block is of length ω in the colex ordering.

Exercise 20

Is ≤∗ a WQO on P(X)? Prove or find a counterexample.

RADO is a counterexample. For every n let Bn = {〈i, n〉 : i < n}.

{Bn : n ∈ IN} is an antichain in the power set of RADO. If m > n then

〈n, m〉 ∈ Bm and is not above anything in Bn. Notice that the Bn are

all finite!

However:

REMARK 64 If 〈A,≤〉 is a BQO then 〈P(A),≤∗〉 is BQO.

Petr Jancar [27] proved that RADO embeds in any WQO 〈A,≤〉 st

〈P(A),≤∗〉 is not WQO.

(Marcone’s sketch of a proof of the remark)

If B is a barrier and f : B → P(A) is ≤∗-bad, consider the barrier

B(2) (defined in Milner’s paper on p.494) and define g : B(2) → A by

letting, for every b1 ∪ b2 ∈ B(2), g(b1 ∪ b2) to be an element of f(b2)

which is not above any element of f(b1). Such an element exists because

f is bad and hence f(b1) 6≤∗ f(b2). It is immediate to check that g is

bad and hence A is not BQO.

Using the “fine analysis” of the notion of bqo (see my paper in Trans-

actions of the AMS 345 (1994), 641-660) we can state this result as

follows: if α is a countable indecomposable ordinal and A is α-wqo then
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〈P(A),≤∗〉 is β-wqo for any β < α. In particular this means that any

counterexample to your original statement [that * preserves WQOness]

is a WQO which is not ω2-WQO, and is known (theorem 1.11 in Milner,

combined with the results in my paper) that any such wqo contains an

isomorphic copy of Rado’s counterexample. Thus you were right that

that counterexample is in a precise sense the only possible one.

Exercise ??

Not necessarily. Consider RADO(3). Then 〈2, 4, 7〉 6≤new 〈4, 5, 8〉 beco’s

〈2, 4, 5〉 is an impediment. But so is 〈1, 4, 5〉. Can there be infinitely

many impediments? check this:

i thought

it was ob-

vious but

the defi-

nition has

changed

Exercise 21

If ≤1 and ≤2 are both quasiorders of a set Q, and the graph of ≤1 is a

subset of the graph of ≤2, and ≤1 is an ωn-good quasiorder, then so is

≤2.

This is immediate given the excluded-substructure characterisation of

ωn-good quasiorders as quasiorders whose complements do not contain

a copy of RADO(n).

Exercise 22

“Prove analogues of the perfect subsequence lemma (lemma 15) for ωn-

good quasiorders.”

We treat the case n = 2 only, for the sake of ease of exposition.

Let 〈Q,≤Q〉 be an ω2-good quasiorder, and {qi,j : i < j ∈ IN} an array.

What would a perfect subarray be? Well, it must be a set {qi,j : i, j ∈ X}

for some infinite X ⊆ IN and qi,j ≤Q qj,k whenever i < j < k, all in

X . Now two-colour the triples from IN: {i < j < k} is red if qi,j ≤ qj,k

and blue otherwise. Clearly there cannot be an infinite subset of IN all

of whose triples are blue, and a set all of whose triples are red gives a

perfect subarray.

To show (iv) that the intersection of (the graphs of) two ωn-good

quasi-orders ≤1 and ≤2 on the same carrier set is ωn-good we procede

as follows. First use the perfect subarray lemma that we have just proved

to extract a perfect subarray in the sense of ≤1. Then any array on this

substructure must be good (with respect to ≤2) so there is a “good”

pair as desired.
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(iii) and (v) are similar.

Exercise 23

If Q is ω2-good then Q-streams are wellfounded under stretching, and

it seems positively luddite not to attempt to exploit this fact. Using

minimality under stretching one would get an MBA f all of whose rays

were perfect sequences, which sounds useful, and stretching is a weaker

relation than the pointwise product so an MBA constructed according

to stretching ought to satisfy more constraints. However minimality

under pointwise product neither implies nor is implied by minimality

under stretching, since in the definition of R-minimality the R has both

positive and negative occurrences.

The problem would come with the proof by induction on n that no

ray of g is strictly below any ray of f under stretching.

Chapter 6

Exercise 25

The lexicographic order on IN<ω is dense. Whenever s <lex t are finite

sequences of numbers, any end-extension of s is later than s but earlier

than t.Clarificatory

chat about

colex or-

dering

somewhere

pse

Exercise 26

(i) Easy to check that ρ(b) must be hd(b). This means that we can

read off the first elements of the tuples. What about the second

element of a tuple, if there is one? Consider the triple {2, 7, 9}

for example. We can tell that its first component is 2 beco’s we

know ρ({2, 7, 9}) = 2. What about the second component? The

only tuples b s.t. {2, 7, 9}�B b are tuples whose first component

is 7, and therefore the only tuples b s.t. {2, 7, 9}�B b are tuples

of rank 7. So we can tell that the second component is 7. So in

general if ρ(b′) = n for all b′ s.t b �B b′, the second component

of b must be n. If there is more than one n that is ρ(b′) for some

b′ � b then b does not have a second component. In general, the

0th component of b is ρ(b) and thereafter the n + 1th component

of b is k iff (∀b′�b)(the nth component of b′ is k). If this quantity

is undefined then b has at most k elements.
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(ii) In any block, for every b there are infinitely many b′ s.t. b � b′,

and this fact can be captured in a first-order way. However for

every b there are finitely many b′ s.t. b′ � b and this cannot be

captured in a first-order way.

Exercise 28

Chapter 8

Exercise 29




