8888888

CDMTCS
Research
Report
Series

Proceedings of the
International Workshop on
Tilings and Cellular
Automata, 2004

Maurice Margenstern
University of Metz, I.U.T. of Metz, France

CDMTCS-253
December 2004

Centre for Discrete Mathematics and
Theoretical Computer Science

Preface

This volume contains the papers sent to the workshop Tilings and cellular
automata to be held in Auckland as a satellite workshop of DLT’04.

I am very thankful to the invited speakers, André Barbé, Jarkko Kari and
Kenichi Morita for their very important contributions. I am also very thankful
to the contributors who witness the wide and vivid activity of cellular automata
in tight connection with tilings.

I wish also to express my thanks to Martin Kutrib, Hiroshi Umeo and Lau-
rent Vuillon who helped me in the preparation of this workshop.

Last, but not at all the least, I am very thankful to Cristian S. Calude
for inviting me to organise this workshop and for his help to present these

proceedings.

Metz, November 24, 2004,

Maurice Margenstern

Invited Lectures

Coarse-graining invariant orbits of cellular
automata

André Barbé

Dept. of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,
3001 Leuven, Belgium
e-mail: andre.barbe@esat.kuleuven.ac.be

November 23, 2004

Abstract
This talk presents an introduction to our work on properties of coarse-

graining invariant CA-orbits. Coarse-graining is an operation that groups
together cell-states in tiles that cover the orbit space.

1 Tiling and coarse-graining a CA’s orbit

We start by considering a one-dimensional bi-infinite linear cellular automaton
with states in a finite field F, with ¢ = p™ elements, p being a prime. A
configuration (or global state) of the CA is thus a sequence (c¢(k))rez € FZ.
The configuration at time ¢ € N will be denoted as (c(t, k))kez. A configuration
at time ¢ € N updates to a configuration at time ¢ 4+ 1 according to a map

A2 S 2 (et k)rez — (et + 1, K))rez

which is defined by a local evolution rule

c(t+1,k) =Y r(jelt.k—j) (nFy), (1)

JEN

where N = {a,a+1,...,b—1,b} C Z defines a finite “neighbourhood”-set k—N =
{k—=b,k—b+1,...,k—a} containing those cells whose states determine the next
state of cell k, and where r(j) € F,. The orbit of the cellular automaton is the
two-dimensional sequence O = (c(t, k)) ¢ k)enxz, representing the evolution of
the CA-configuration over time. A specific orbit is completely determined by
the initial configuration (¢(0, k))rez, and is graphically represented with cell-
states at a given time displayed horizontally and with time pointing downwards.
Figure 1 shows an example.

cell position

fime

Figure 1: Part of an orbit of the CA with rule e(t+1,k) = c(t,k—1)+c(t, k+2)
in Fo = {0,1} with addition and product modulo 2, and with random initial
configuration (top row).

Now fix some ¢ € N and 7 € Z and define the corresponding ¢"-decimation
of the orbit, i.e., the sequence

Dg,f— = (dor(t, k)) (t,k)enxz = (c(¢"t +0,4"k + 7)) . k)enxz- (2)

Representing a sequence (s(k))xez as formal Laurent-series S(X) = Y, ., s(k) X",
and introducing the Laurent polynomial

R(X) =) r(j)X7, (3)
JEN
the above convolution (1) can be written as
Ct+1,X)=R(X)C(t,X). 4)

Iterating this for s time steps gives the configuration at time ¢+ s in dependency
on the configuration at time t:

C(t +5,X) = (R(X))*C(t, X). (5)
In the sequence domain, this corresponds to
c(t+s,k) = Y ra(i)e(t,k - j), (6)
JEN,

where 74(j) are the coefficients in the polynomial (R(X))® = > ,cy. rs()X7.
Taking s = ¢™ in the above formulas gives the configuration at time ¢ + ¢™ in
its dependency on the configuration at time ¢:

Clt+q", X) = (R(X))? C(t, X). (7)

Now we can use a well-known property of polynomials in F,, namely that
(R(x))?" = R(X9"). Thus, (7) becomes

Clt+q", X)=RXT)C(t, X). (8)

Reinterpreting this in terms of sequences, and taking into account that the
coefficient in R(X?") corresponding to X* equals 0 when k is not a multiple
of ¢", and equals r(j) when k = jg™, establishes the following relation between
the configurations (c(t + ¢", k))kez and (c(t, k))rez

c(t+q" k)= r(ielt,k — q"j) (9)
JEN
Now reconsider the decimation sequence as defined in (2). We have
or(t,k) = clo + "t +q"k) = Y _r(j)e(o +q"(t = 1), 7 +q"(k — j))
GEN
Invoking (2) again, this shows that
o7 (1K) = D _r(§)dor(t =1k =), (10)
JEN

meaning that the ¢"-decimation Dgﬁ of an orbit is an orbit of the same CA,
i.e. it satisfies the same local rule as specified in (1).
But there is even more. Define a basic (¢" x ¢"™)-tile T ¢, as the set of g™ x ¢"

orbit cells, specified by their coordinates, as given by
T070 = {(Z,Cj)|’t = O, 1, . ,qn_ 1,Cj :]+’yl73qn+ﬁl+6, j € {07 1, . 7qn— 1}}7

with each of the v; ;, 3; and § fixed integers. Figure 2 displays some 4 x 4-tiles.
Then the (k, v)-shifted tiles defined by

()

[TTT]
[TTT]

(@ (G

Figure 2: Examples of 4 x 4-tiles. As (d)shows, tiles may be unconnected.

THJ/ = TO,O + (anv an)

for (k,v) € N x Z are all disjoint and form a tiling of the orbit-support N x Z.
Let this tiling be denoted by

To ={Tx|(k,v) € N x Z}.

Then consider the coarse-graining operation on the orbit that aggregates the
states in each tile, by defining a new state S(x,v) on tile T} ,, as follows

Sty =Y (ke +rg"k+vg")= > ((tEk)dr(kv), (11)
(t,}{))ETO,o (t,k))eT0,0

where ((t, k) € F, weights the contribution of the cell-state at relative position
(t,c) in the tile.
Then (10) and (11) together imply that

S(k,v) = c(j)S(k — 1,v —j).

jeN

Le., (S(k,V))(x,v)enxz is also an orbit of the same cellular automaton.
Now there are ¢™ distinct tilings, namely

To=Tp+(0,0) ={Tx, +(0,0)|(k,v) eNxZ}, 6=0,1,...,¢" —1,

and one can consider the same coarse-graining of the CA-orbit as defined in (11)
on all these tilings, i.e.

Sk = D k)t +rg" k4 0+ vg"), (12)
(t,k)eTo,0

each one resulting in a new orbit that satisfies

S (k,v) = Zc(j)SG(m —1,v—7j).

jeN

2 Orbits that are invariant under coarse-graining

The fact that the above defined coarse-grainings of a CA-orbit preserve the
property of being an orbit for the same CA, evokes the question whether there
exist orbits which are invariant under these coarse-grainings. I.e., do there exist
orbits such that for all € {0,1,...,¢™ — 1}, it holds that

S%(k,v) = c(k,v), (13)

for all (k,v) € N x Z. Or, even more general, if we do not distinguish between
orbits ¢1(t, k) and ca(t, k) if c1(t, k) = ca(t, k + a) for some o € Z, then (13)
may be generalized into

S(k,v) = c(k, v+ ap) for all @ € {0,1,,...,¢" —1}. (14)

Finding coarse-graining invariant (CGI) orbits thus requires solving (14).
Because both S?(k,) and c(k, v) are orbits of the same CA, condition (14) can
already be restricted to the initial configurations (time 0) as the rest of the orbit
just follows by applying the CA’s local evolution rule. This restriction reads:

59(0,v) = ¢(0,v + ag) for all 6 € {0,1,,...,¢" — 1} and v € Z. (15)
Now,
S°0,v) = Y ket k+60+vq") (16)
(t,k)€To,0

and, using (6), this eventually reduces to the form

§°(0,v) =Y n(j)e(0,vq" + j +) (17)
j€z
where Z is some finite subset of Z which, like the n(j), depends on the CA-rule
and the tiling-parameters.
Thus, the coarse-graining invariance equations (15) become

Zn(j)o(o,yq” +7+60)=c(0,v+ag) forall § € {0,1,,...,¢" — 1} and v € Z.
jez
(18)

This is a set of difference equations in the initial configuration (¢(0, k))rez,
featuring rescaled arguments.

We will show, by means of an example, how these equations can be solved.
Notice that there is always a trivial solution, namely ¢(0,k) = 0 for all k € Z,
leading to an orbit which is overall 0.

Example. It concerns a CA with values in Fo = {0,1} with addition and
product taken modulo 2. Let the local evolution rule be given by

c(t+1,k)=c(t,k—1)+c(t,k+1), (19)

what corresponds to the polynomial form R(X) = X '+ X. Consider the gxq =
2 x 2 tiling (ie. ¢ = 2') with basic tile Ty o = {(0,0),(0,1), (1,0), (1, 1)}(i.e.,
v(,5) = 0,8; = 0 for ¢,j € {0,1}). For the coarse-graining, the states of the
cells in a tile are added with the same weight, i.e. ((¢,k) =1 for (¢t,k) € Tp .
The a-shifts are ag = 0, a; = 2. The tilings 7 and 77 are represented in Figure
3.

With these parameters, the coarse-graining states (16) become

S900,v) = ¢(0,2v) +¢(0,2v + 1) + ¢(1,2v) + ¢(1,2v + 1)

SH0,v) = ¢(0,2v+1) +¢(0,2v 4+ 2) + (1,20 + 1) + (1, 2v + 2) (20)

which, using (19) for ¢ = 0, and writing ¢(k) instead of ¢(0, k), reduces to the
form of equation (17)

S90,v) = c2v)+e2v+1)+e(2v —1) +e(2v + 1) + e(2v) + c(2v + 2)
= c2v—-1)+c(2v+2)
SH0,v) = c(2v) +c(2v + 3).
(21)

cell at position (0,0)

te '”,.1 0 m,l p 2
1,0
: 7 iling .
cell atf position (0,0)
. 7, -tiling .

Figure 3: The tilings 7y and 77 of the Example. The small thin squares represent
the orbit-cells, the fat squares represent the tiles. The coarse-graining under
consideration adds the states of all cells in a tile.

With ag = 0 and a3 = 2, the coarse-graining invariance equations (18) thus

become
c2v—1)+c(2v+2) = ¢(v)

c(2v) +c2v+3) =c(v+2), (22)
for all v € Z.

These equations can be rewritten in a so-called left-propagating way:
c(2v—1)=c(2v +2) + ¢(v) (23)
c(2v) =c(2v +3) + c(v +2),

and also in a right propagating way:
c(2v+2)=c(2v—1) + ¢(v) (24)

c(2v+3) =c(2v) + c(v+2),

Inspection shows that, if the values ¢(—1),¢(0),¢(1) are known, then the left-
propagating form can be used to “grow” the solution c¢(k) for k < —1, i.e. to the
left, while the right propagating form can be used to determine c¢(k) for k& > 1.

S

(el
i O

R
e

Figure 4: (a), (b), (c): three of the eight coarse-graining invariant solutions for
the Example. The remaining solutions are similar to (b) and (c) (without being
identical). Solution (a) is self-similar, solutions (b) and (c¢) are kind of quasi-
periodic. (d) displays the addition modulo 2 of orbit(c) and a shifted version
itself (here a horizontal shift over 1 cell).

So there are eight solutions, as the values ¢(—1), ¢(0), ¢(1) can be freely chosen
to be either 0 or 1.

Figure 4 displays a few of the solutions. These solutions show quasi-periodic
properties, and display a hidden structure that appears when the image is added
modulo 2 with a shifted version of itself (see Figure 5).

The procedure followed in the above example for solving the CGI-equations
is generic: it is always possible to determine an interval [kmin, kmaz] such that
knowledge of the initial configuration in this interval allows to propagate the
whole solution. Only, it may be possible that the values in this interval are not
independent (this is the case when all arguments in some of the CGI-equations
lie inside this interval: the dependencies are of course given by the related CGI-
equation [1].

In general, coarse-graining invariant orbits display interesting complexities,
which range from total order (periodicity) to complete disorder (randomness),
over quasi-periodic, locally periodic, self-similar, and quasi-random structures.
The quasi-periodic and quasi-random structures have surprising hidden features
which appear by comparing these structures with shifted versions of themselves.

(@) ()

G}

U]

Figure 5: Further additions modulo 2 of orbit (¢) from the previous Figure and
its (h,v)- shifted versions (h denotes the horizontal shift, v the vertical shift).
(a): (h,v) = (5,0); (b):(h,v) = (4,0); (c)(h,v) = (24,0); (d)(h,v) = (24,8);
(€):(h,v) = (24,7); (£)(h, v) = (24,20).

See [2] for additional examples.

Another property of these two-dimensional coarse-graining invariant orbits
is that they are p-automatic sequences (whereby the state of a cell in the orbit
can be generated by a finite automaton whose input is the p-adic representation
of the cell’s position)[3].

Similar three-dimensional coarse-graining invariant orbits also exist for two-
dimensional CA. But in this situation, there are generally an infinite number of

solutions (except for the coarse-graining which reduces to a pure decimation),
most of which are not automatic any longer [4].

Coarse-graining invariant orbits of CA are special cases of coarse-graining

invariant sequences that satisfy equations like (18), but without being neces-
sarily related to cellular automata. The special case of decimation invariance,
whereby coarse-graining reduces to picking just one cell in each tile (relative
position of the cell in each tile the same) has been considered in [5], [6].

References

1]

A. Barbé, F. von Haeseler, H.-O. Peitgen, G. Skordev, Coarse-graining
invariant patterns of one-dimensional two-state linear cellular automata,
International Journal of Bifurcation and Chaos, Vol.5, no.6, 1995, 1611-
1631.

A. Barbé, Coarse-graining invariant orbits of one-dimensional Z, linear
cellular automata, International Journal of Bifurcation and Chaos, Vol.6,
no.12A, 1996, 2237-2297.

A. Barbé, Complex order from disorder and from simple order in coarse-
graining invariant orbits of certain two-dimensional linear cellular au-
tomata, International Journal of Bifurcation and Chaos, Vol.7, no.7, 1997,
1451-1496.

A. Barbé, H.-O.Peitgen, G. Skordev, Automaticity of coarse-graining in-
variant orbits of one-dimensional linear cellular automata, International
Journal of Bifurcation and Chaos, Vol.9, no.1, 1999, 67-95.

A. Barbé, G. Skordev, Decimation-invariant sequences and their automatic-
ity, Theoretical Computer Science, 259, 2001, 379-403.

A. Barbé, F. von Haeseler, genralized decimation-invariant sequences in
dimension N, International Journal of Bifurcation and Chaos, Vol.12, no.4,
2002, 709-737.

The tiling problem and undecidability in Cellular
Automata

Jarkko Kari*

Department of Mathematics
FIN-20014 University of Turku, Finland
e-mail: jkariQutu.fi

November 23, 2004

Abstract

Many questions concerning one- and two-dimensional cellular automata
can be proved undecidable via a reduction from the tiling problem of
Wang tiles. Examples include nilpotency (in 1D and 2D), reversibility (in
2D) and surjectivity (in 2D) problems of CA. We review the basic ideas
of these reductions. We also discuss variants of the tiling problem that,
in turn, can be proved undecidable using similar constructions.

1 Introduction

Berger’s classic result on the undecidability of the tiling problem is the basis of
many undecidability proofs concerning cellular automata (CA). Variants of the
tiling problem have been used in reductions to prove, for example, that there
are no algorithms to determine if a given two-dimensional CA is reversible or
surjective [10, 13], or whether a given one-dimensional CA is nilpotent [12]. Also
there is no algorithm to compute the topological entropy of a CA [9]. The ideas
developed for the undecidability proofs concerning CA have also contributed to
tiling problems. One particular example is the snake tiling problem [1, 16]. In
the following we review the basic ideas of the reductions. We start by briefly
recalling the definitions and some basic results on cellular automata and Wang
tiles.

1.1 Cellular Automata

In this paper we consider synchronous cellular automata only, where the under-
lying topology is an infinite rectangular grid. The cells are hence the squares of

*Research supported by the Academy of Finland grant 54102

an infinite d-dimensional checker board, addressed by Z?. We are in particular
interested in the one- and two-dimensional cases.

The states of the automaton come from a finite state set S. At any given
time, the configuration of the automaton is a mapping ¢ : Z — S that specifies
the states of all cells. The set SZ° of all configurations is denoted by C(d,S),
or briefly C when d and S are known from the context. Constant functions are
called homogeneous configurations.

The cells change their states synchronously at discrete time steps. The next
state of each cell depends on the current states of the neighboring cells according
to an update rule. All cells use the same rule, and the rule is applied to all cells
at the same time. The neighboring cells may be the nearest cells surrounding
the cell, but more general neighborhoods can be specified by giving the relative
offsets of the neighbors. Let N = (&1,%s,...,&,) be a vector of n distinct
elements of Z?. Then the neighbors of a cell at location Z € Z% are the n cells
at locations

T+ 2;, fori=1,2,... n.

The local rule is a function f : S™ — S where n is the size of the neighborhood.
State f(ai,as,...,ay,) is the state of a cell whose n neighbors were at states
ai,as, ..., a, one time step before. This update rule then determines the global
dynamics of the CA: Configuration ¢ becomes in one time step the configuration
e where, for all # € Z¢,

e(Z) = f(e(@+ &), e(Z+ Ta),...,c(T + Ep)).

We say that e = G(c), and call G : C — C the global transition function of the
CA.

In summary, cellular automata are dynamical systems that are homogeneous
and discrete in both time and space, and that are updated locally in space. A
d-dimensional CA is specified by a triple (S, N, f) where S is the state set,
N € (SZd)" is the neighborhood vector, and f : S — S is the local update
rule. We usually identify a cellular automaton with its global transition function
G, and talk about cellular automaton function G, or simply cellular automaton
G. In algorithmic questions G is however always specified using the three finite
items S, N and f.

In the one-dimensional case d = 1 a radius-r CA uses the neighborhood
(=ry—r+1,...,7 —1,7) of size 2r + 1. A one-dimensional CA that uses the
neighborhood (0, 1) is sometimes called a radius—é CA. This neighborhood is not
symmetric, and no information can flow to the positive direction, but Figure 1
shows how the neighborhood can be made to look symmetric by shifting the
cells to the right.

The shift functions are particularly simple CA that translate the configu-
rations one cell down in one of the coordinate directions. More precisely, for
each dimension ¢ = 1,2, ..., d there is the corresponding shift function o; whose
neighborhood contains only the unit coordinate vector €; and whose local rule is
the identity function. The one-dimensional shift function is the left shift o = oy.

A
ARARARRARRRR |

Figure 1: Dependencies in one-dimensional, radius—% cellular automata.

Translations are compositions of shift functions. Translation 73 by vector ¥ is
the CA with neighborhood (%) and the identity local rule.

Sometimes one state ¢ € S is specified as a quiescent state. It should be
stable, which means that f(q,q,...,q) = q. The quiescent configuration Q is
the configuration where all cells are quiescent: Q(Z) = ¢ for all ¥ € Z4. A
configuration ¢ € SZ% s called finite if only a finite number of cells are non-
quiescent, i.e. the support

{#€8% | (@) # ¢}

is finite. Let us denote by Cr(d, S), or briefly Cr, the subset of SZ* that contains
only the finite configurations. Because of stability of ¢, finite configurations
remain finite in the evolution of the CA, so the restriction G of G on the finite
configurations is a function Cp — Cp.

A periodic configuration, or more precisely, a spatially periodic configuration
is a configuration that is invariant under d linearly independent translations.
This is equivalent to the existence of d positive integers t1,to,...,ts such that

Yi(c) for every i = 1,2,...,d, that is,

c=o0;

c(Z) = (X 4+ t;€;),

for every ¥ € Z¢ and every i = 1,2,...,d. Let us denote by Cp(d, S), or briefly
Cp, the set of periodic configurations. Cellular automata are homogeneous in
space and consequently they preserve periodicity of configurations. The restric-
tion Gp of G on the periodic configurations is hence a function Cp — Cp.
One must take care not to confuse (spatially) periodic configurations with
temporally periodic configurations. Configuration ¢ is temporally periodic for
cellular automaton G if G*(¢) = ¢ for some k > 1. If G(c) = c then c is a
fized point. Every cellular automaton has a temporally periodic configuration
that is homogeneous: this follows from the facts that there are finitely many
homogeneous configurations and that cellular automata functions preserve ho-
mogeneity. Configuration c is eventually periodic if it evolves into a temporally

periodic configuration, that is, if G™(c) = G™(c) for some m # n. This is equiv-
alent to the property that the (forward) orbit c,G(c),G?(c),... is finite. Every
spatially periodic configuration is eventually periodic.

Cellular automaton G is called nilpotent if G™(C) is a singleton set for suf-
ficiently large n, that is, if there is a configuration ¢ and number n such that
G™(e) = c for all configurations e. Since homogeneous configurations remain
homogeneous we immediately see that configuration ¢ has to be homogeneous
and a fixed point.

Let G1 and G5 be two given cellular automata functions with the same
state set and the same dimension d. The composition G1 o G5 is also a cellular
automaton function, and the composition can be formed effectively. If N; and
N are neighborhoods of G; and G5, respectively, then a neighborhood of G10G2
consists of vectors & + g for all Z € N7 and i € Ns.

The equivalence of two given cellular automata G; and G, is decidable:
If the neighborhoods N; and N; are the same then the local rules must be
identical, and if the neighborhoods are different then one can take the union of
the two neighborhoods and test whether the two cellular automata agree on the
expanded neighborhood.

Sometimes it happens that G; o Go = G2 o G; = id where id is the identity
function. Then cellular automata G and G5 are called reversible and G; and
G are the inverse automata of each other. One can effectively decide whether
two given cellular automata are inverses of each other. This follows from the
effectiveness of the composition and the decidability of the cellular automata
equivalence.

1.2 Cantor topology

A seminal paper in the topological investigation of cellular automata is by Hed-
lund [8]. This paper is remarkable in several ways. It marks the beginning of
symbolic dynamics, the study of bi-infinite words and the shift function.

Let us define a topology on the configuration space SZ". The topology we use
is the Cantor topology, obtained as the infinite power of the discrete topological
space S. This topology is compact by Tychonoff’s theorem. A useful basis of the
topology consists of the cylinder sets. Radius r cylinder containing configuration
c is the set

Cyl(c,r) ={e € SZ° | e(Z) = ¢(&) whenever ||Z||oo <7 }

where
(1,22, .., 2d)|leo = max{|z1], |z2l,. .., |zal}

is the max-norm. In other words, Cyl(c,r) consists of those configurations that
agree with ¢ at all cells whose coordinates are within distance r from 0. For
every fixed r there are finitely many radius r cylinders, and these cylinders are
disjoint. Hence the radius r cylinders partition SZ%. Tt follows that each cylinder
is clopen, that is, both open and closed in the topology. The complement of a
radius 7 cylinder is namely the union of the other radius r cylinders.

It is easy to see that cellular automata functions are continuous in this
topology. Trivially they commute with the shift functions o;, that is,

ogjoG=Gooj

for every cellular automaton G and j = 1,2,...,d. The converse also holds.
This is the Curtis-Hedlund-Lyndon theorem:

Theorem 1.1 ([8]) A function G : S — S s the global transition func-
tion of a cellular automaton if and only if

(i) G is continuous, and
(i) G commutes with the shifts ;.

If G is a reversible CA function then G : C — C is by definition a bijec-
tion. Conversely, every CA function G that is bijective is reversible. Indeed,
it’s inverse function clearly commutes with the shift. The inverse function is
also continuous because the space C is compact, and therefore it is a cellular
automaton function. We have

Corollary 1.1 ([8]) A cellular automaton G is reversible if and only if it is a
bijection.

1.3 Wang tiles

Wang tiles were introduced by logician H. Wang in 1961 [25]. They are relevant
to cellular automata theory for several reasons. Some decision problems con-
cerning cellular automata can be formulated as tiling problems, and the famous
undecidability results concerning Wang tiles can then be employed to establish
undecidability results in cellular automata. Aperiodic tiles can be used to pro-
vide interesting examples of two-dimensional cellular automata. Wang tiles are
also used in one-dimensional CA where space-time diagrams can be viewed as
tilings and this provides insight to the dynamics of the CA.

A Wang tile t is a unit square with colored edges. Let us denote by ty,
tg, ts and ty the colors of the north, east, south and west edges of tile t,
respectively. A tile set T is a finite collection of Wang tiles. A Wang tiling
with T is a mapping ¢ : Z2 — T, that is, copies of tiles in T are placed at
integer lattice points, without rotating or flipping the tiles. Tiling ¢ is valid at
point (z,y) € Z? if the the colors of tile t(z,y) match with the colors of the
neighboring tiles,that is, if

tz,y)y = tx,y+1)s,
t(l’,y)s = t(CC,y—l)N,
t(‘r7y)E' = t(’JJ + lvy)Wa and
txz,y)w = tlz—-1,9)g.

Tiling ¢ is valid if it is valid at every point (z,y) € Z2. We say that tile set T’
admits a valid tiling if at least one valid tiling exists.

The set 7% is given the compact Cantor topology discussed in the previous
section. Then the set of valid tilings forms a compact subset of T, Moreover,
if T' admits valid tilings of arbitrarily large squares then it admits a valid tiling
of the entire infinite plane.

The tiling question is the decision problem to determine if a given tile set
T admits at least one valid tiling. The question was proved undecidable by
R.Berger in 1966:

Theorem 1.2 ([3, 22]) It is undecidable whether a given finite tile set T ad-
mits a valid tiling.

Analogously to configurations, a tiling ¢ is called periodic if it is invariant
under two non-parallel translations. These translation can be chosen horizon-
tal and vertical, which means that a periodic tiling consists of horizontal and
vertical repetitions of a tiled rectangle. A tile set T' that admits valid tilings is
called aperiodic if it does not admit a valid periodic tiling. Already H. Wang
observed [25] that if no aperiodic tile sets existed then the tiling problem would
be decidable. One could namely try to tile larger and larger rectangles until one
of the following two things happens: A rectangle is found that cannot be tiled,
or a period of a periodic tiling is found. In the first case the tile set does not
admit a tiling, in the second case it does. Only aperiodic tile sets fail to halt.
So, as a corollary to Theorem 1.2, we have

Corollary 1.2 Aperiodic tile sets exist.

In fact, Berger’s proof of Theorem 1.2 contains a construction of one ape-
riodic tile set. Currently, the smallest aperiodic set of Wang tiles contains 13
tiles [5, 15], and it is an open problem whether one of the tiles in this set is in
fact superfluous.

When space-time diagrams of one-dimensional, radius—% cellular automata
are described using Wang tiles it turns out to be natural to consider tile sets in
which the colors of two edges uniquely determine each tile. We call tile set T

NW-deterministic if for every s,t € T' we have

=t
SN N }:>s:t.
sw =tw

This means that in a valid tiling each tile is uniquely determined by its neighbors
to the north and to the west. The idea of NW-tile sets is that any valid tiling
can be viewed as a space-time diagram of a cellular automaton with state set
T, where the configurations are read along the infinite SW/NE-diagonals of the
tiling.

The following observations were made in [12]:

Theorem 1.3 ([12]) The tiling problem is undecidable when restricted to NW-
deterministic tile sets. There are NW-deterministic, aperiodic tile sets.

An other undecidable variant of the tiling problem is the finite tiling problem,
in which we are given a Wang tile set that contains a particular blank tile B.
The blank tile has all its edges colored identically. Blank tiling of the plane is
the trivial tiling where all tiles are blank. A finite tiling is a tiling that contains
only a finite number of non-blank tiles. The finite tiling question asks whether a
given tile set with the blank tile admits valid finite tilings other than the trivial
blank tiling, and this problem is seen undecidable through a simple reduction
from the halting problem of Turing machines [13].

Theorem 1.4 [t is undecidable whether a given tile set T with a blank tile
admits a valid, finite and non-trivial tiling of the plane.

Note that the undecidability of the finite tiling problem is much easier to
establish than Theorem 1.2. Note also a fundamental difference between the
two tiling problems: In the finite tiling problem there is a semi-algorithm to
detect if a non-trivial finite tiling exists, while in the general tiling problem it
is semi-decidable if a tiling does not exist.

Finally we discuss one particular tile set called SNAKES from [13]. This tile
set is aperiodic. The tiles have also an arrow printed on them. The arrow is
horizontal or vertical and it points to one of the four neighbors of the tile. Such
tiles with arrows are called directed tiles. Given any tiling, valid or invalid,
the arrows determine paths, obtained by following the arrows printed on the
tiles. The tile that follows tile ¢(z,y) on a path is the neighbor of t(x,y) in the
direction indicated by the arrow on t(x,y). Note that a path may enter a loop,
or it may visit new tiles indefinitely.

The tile set SNAKES has the following plane filling property: Consider a
tiling ¢ and a path P that indefinitely follows the arrows as discussed above. If
the tiling is valid at all tiles that P visits, then the path covers arbitrarily large
squares. In other words, for every N > 1 there is a square of N x N tiles on
the plane, all of whose tiles are visited by path P. Note that the tiling may be
invalid outside path P, yet the path is forced to snake through larger and larger
squares. In fact, SNAKES forces the paths to follow the well-known Peano curve
shown in Figure 2.

2 Garden of Eden

One of the earliest discovered properties of cellular automata were the Garden-
of-Eden theorems by Moore and Myhill in 1962 and 1963, respectively. These
results relate injectivity and surjectivity of CA with each other. A cellular
automaton is called injective if the global transition function G is one-to-one.
It is surjective if G is onto. A CA is bijective if G is a both onto and one-to-one.
We have seen in Corollary 1.1 that bijectivity is equivalent to reversibility.

If G is not surjective then there exist Garden-of-Eden configurations, that
is, configurations without a pre-image. A trivial property of finite sets is that
a function from a set into itself is injective if and only if it is surjective. In
cellular automata the same is true only in one-direction: an injective CA is

[1 1| 1|]
e e e
N 1| []
| I 11 |
1 1|
111 I 11
. siis]
e e e
T 111 |
| 111 I 11 |
||
11
iy ellzes==
R T
§ 317]
|| ||
T 11
: slls]
allzeemelizalieel iz =zl1z
e g e

Figure 2: The Peano curve forced by SNAKES.

always surjective, but the converse is not true. However, finite configurations
behave more like finite sets: G is injective if and only if G is surjective. This
result, the two directions of which are due to E.F. Moore [18] and J. Myhill [20],
is one of the oldest results in the theory of cellular automata:

Theorem 2.1 (Garden-of-Eden theorem [18, 20]) Gf is injective if and
only if G is surjective.

It is trivial that the injectivity of the full function G implies the injectivity
of its restrictions Gr and Gp, so we immediately get the following corollary:

Corollary 2.1 Injective CA are also surjective. Hence injectivity, bijectivity
and reversibility are equivalent.

It is also easy to see that the surjectivity of Gp or G p implies the surjectivity
of G. This is a direct consequence of the compactness of the configuration space
C. The next theorem summarizes these and other known relations. The proofs
are straightforward and can be found, for example, in [7]. The results are
summarized in Figures 3 and 4.

Theorem 2.2 The following implications are true in every dimension d:
o If G is injective then Gp and G are injective,
o If Gp or G is surjective then G is surjective,

o If Gp is injective then Gp is surjective,

o If G is injective then G is surjective.

In addition, the following implications are true for one-dimensional CA:
o If Gp is injective then G is injective,
o If G is surjective then Gp is surjective.

Finally, to establish that some implications are not true we use three cellular
automata: one-dimensional automata XOR and CONTROLLED-XOR, and two-
dimensional SNAKE-XOR.

XOR is a one-dimensional radius-1 cellular automaton with state set {0,1}
and the local rule

flz,y)=z+y (mod2).

State 0 is the quiescent state. XOR is easily seen injective on finite configura-
tions. It is not surjective on finite configurations: for example a configuration
with a single state 1 has two infinite predecessors but no finite predecessors.

CONTROLLED-XOR is also a one-dimensional radius—% cellular automaton.
It has four states 00, 01, 10 and 11. The first bit of each state is a control
symbol that does not change. If the control symbol of a cell is 0 then the cell is
inactive and does not change its state. If the control symbol is 1 then the cell
is active and applies the XOR rule on the second bit. In other words,

ab’ ifa= 0,
flab,ed) = { a(b+d (mod?2)), ifa=1.

State 00 is the quiescent state. CONTROLLED-XOR is surjective on finite config-
urations. It is not injective on unrestricted configurations as two configurations,
all of whose cells are active, have the same image if their second bits are com-
plements of each other.

XoR and CONTROLLED-XOR prove the two non-implications in Figure 3.
In higher dimensional spaces the rules are applied in one of the dimensions
only. Then X0OR and CONTROLLED-XOR prove five of the six non-implications
in Figure 4. For the remaining

Gp injective #= G injective

we need SNAKE-XOR, a two-dimensional cellular automata that uses the SNAKES
tile set described in Section 1.3.

SNAKE-XOR is similar to CONTROLLED-XOR. The states consist of two
layers: a control layer and a xor layer. The control layer does not change: it
only indicates which cells are active and which neighbor cell provides the bit to
the XOR operation. In SNAKE-XOR the control layer consist of SNAKES -tiles.
Only cells where the tiling on the control layer is valid are active. Active cells
execute the modulo two addition on their xor layer. The arrow of the tile tells
which neighbor provides the second bit to the XOR operation.

SNAKE-XOR is not injective: Two configurations ¢y and ¢; whose control
layer consist of the same valid tiling have the same image if their xor layers are

Ginjective=<—= Gp injective

‘ %
\ 4/

Gr injective =—= G surjective =<— Gp, surjective

Figure 3: Implications between injectivity and surjectivity properties in one-
dimensional CA.

complementary to each other. However, SNAKE-XOR is injective on periodic

configurations, as the plane filling property ensures that on periodic configura-

tions any infinite path that follows the arrows must contain non-active cells.
Notice that Figure 4 contains three implications whose status is unknown.

3 The reversibility and surjectivity questions

Reversibility is a fundamental property of microscopic physical systems, implied
by the laws of quantum mechanics. Cellular automata simulating such systems
should obey the same laws, hence be reversible. Moreover, a massively parallel
computer that optimally uses physics to compute must itself be reversible. Non-
reversibility always implies energy dissipation, in practice in the form of heat.
It is therefore not surprising that reversible cellular automata have received
particular attention since the early days of CA investigation.

Hedlund [8] and Richardson [21] independently proved that all one-to-one
cellular automata are reversible (Theorem 1.1). In [24] T. Toffoli demonstrated
that any d dimensional cellular automaton can be simulated by a d 4+ 1 dimen-
sional reversible cellular automaton, which immediately implies the existence of
computationally universal, two-dimensional reversible CA. A particularly nice
example is the billiard ball CA by N. Margolus [17]. Later it was shown that
even reversible one-dimensional CA can be computationally universal [19].

Theorem 3.1 ([19]) One-dimensional reversible cellular automata exist that
are computationally universal.

10

=

Gp injective
o -
\ P l

‘\?‘\‘X
\ //
//’_)

/

Gr injective =—= G surjective

Figure 4: Implications between injectivity and surjectivity properties in two-
and higher dimensional CA.

It was determined already in 1972 by S. Amoroso and Y. Patt that it is
possible to decide if a given one-dimensional CA is reversible. In the same
paper they also provided an algorithm to determine if a given CA is surjective:

Theorem 3.2 ([2]) There exist algorithms to determine if a given one-dimen-
stonal cellular automaton is injective or surjective.

Elegant decision algorithms based on de Bruijn graphs were later designed
by K. Sutner [23]. In higher dimensional spaces the questions are however much
harder. It was shown in [10, 13] that

Theorem 3.3 ([13]) There are no algorithms to determine if a given two-
dimensional cellular automaton is injective or surjective.

The proof for injectivity is a reduction from the tiling problem using the
tile set SNAKES from Section 1.3. For a given set T of Wang tiles we construct
a two-dimensional CA, similar to SNAKE-XOR of Section 2. The CA has a
control layer and a xor layer. The control layes in turn consists of two layers:
one with tiles 7' and one with tiles SNAKES. A cell is active if and only if
the tiling is valid at the cell on both tile components. Active cells execute the
modulo two addition on their xor layer, and the arrow on the SNAKES tile tells
which neighbor provides the second bit to the xor. The plane filling property of
SNAKES guarantees that if two different configurations have the same successor
then arbitrarily large squares must have a valid tiling. Conversely, if a valid
tiling exists then two different configurations with identical control layers can

11

have the same successor. Hence the CA we constructed is injective if and only
if T does not admit a valid tiling, and this completes the proof.

The proof concerning the surjectivity is an analogous reduction from the
finite tiling problem introduced in Section 1.3. The analogy is based on the
fact that surjectivity is equivalent to injectivity on finite configurations (The-
orem 2.1). But note the following fundamental difference in the injectivity
problems of G and Gp: A semi-algorithm exists for the injectivity of G (based
on an exhaustive search for the inverse CA) and for the non-injectivity of Gp
(based on looking for two finite configurations with the same image).

Even though Theorem 1.1 guarantees that the inverse function of every in-
jective CA is a cellular automaton, Theorem 3.3 implies that the neighborhood
of the inverse CA can be very large: there can be no computable upper bound,
as otherwise we could test all candidate inverses one-by-one. In contrast, in
the one-dimensional space the inverse automaton can only have a relatively
small neighborhood. In one-dimensional radius—% cellular automata the inverse
neighborhood consists of most s — 1 consecutive cells where s is the number of
states [6], and this bound is tight [11].

4 Limit sets

In cellular automata dynamics there are configurations that are transient in the
sense that they can only exist early in the evolution. For example, Garden of
Eden configurations can not appear after the first update. The concept of a
limit set captures the configurations that are important in the long run, that is,
configurations that are not transient.

The limit set A = A [G] of cellular automaton G consists of all the configura-
tions that can occur after arbitrarily many computation steps. In other words,
it consists of those configurations that are not Garden-of-Eden configurations
for any G”. Define A" = G™(C) for every n > 1.Then the limit set of G is

A= ﬁ A,
n=1

The finite time sets form a decreasing chain
A 2 A2) AB®) D...

Each A(™ is compact as an image of the compact set C under continuous map-
ping G™. Consequently, the limit set is compact as an intersection of compact
sets.

The limit set can never be empty: it must contain at least one homogeneous
configuration. This follows from the fact that every CA has temporally peri-
odic homogeneous configurations. In fact, the limit set is either a singleton set
(containing only the quiescent configuration) or it is infinite and contains some
non-periodic configurations. It was shown in [4] that if the limit set is a single-
ton set then A = A for some n, that is, all configurations become quiescent
in at most n steps, which means that the CA is nilpotent.

12

It is a natural question to ask what kind of local rules make cellular automata
nilpotent. It turns out that no easy characterization exist:

Theorem 4.1 ([4, 12]) For every d > 1, it is undecidable whether a given
d-dimensional CA is nilpotent or not.

In two-dimensional case this can be seen as follows [4]: For any given finite
set T of Wang tiles we construct a two-dimensional cellular automaton whose
state set is TU{q} and the local update rule keeps the state of a cell unchanged
if the tiling is correct at the cell, otherwise the state becomes q. This CA
is nilpotent if and only if 7" does not admit a valid tiling of the plane. The
undecidability of the nilpotency problem now follows from the undecidability of
the tiling problem (Theorem 1.2).

To show undecidability in the one-dimensional case [12] we use NW-determ-
inistic tiles defined in Section 1.3. For any given NW-deterministic tile set T'
we construct a one-dimensional CA with state set T'U {q}. The neighborhood
of the CA is (0,1) and the local update rule f is defined so that f(a,b) = ¢
if a,b,c € T and c is a tile that match in color when a and b are placed on
its western and northern side, respectively. Since T is NW-deterministic there
is at most one matching ¢ for every a and b. In all other cases f(a,b) = q. A
valid tiling by T is then a valid space-time diagram where the SW/NE diagonals
are the configurations. So if a valid tiling exists then the CA is not nilpotent.
Conversely, if no valid tiling exist then every starting configuration will produce
state g at bounded intervals, and these ¢’s spread to cover the entire line in a
finite number of steps. We see that the nilpotency problem must be undecidable
as otherwise we could solve the NW-deterministic tiling problem, contradicting
Theorem 1.3.

In [4] several properties of the limit sets were proved undecidable. Soon it was
discovered that in fact all non-trivial properties of limit sets are undecidable [14].
A property of limit sets simply means any family of cellular automata such that
any two cellular automata that have the same limit set (regardless of their state
set) either both are in the family or not in the family. The property is non-trivial
if the family is not empty but does not contain all cellular automata. In [14]
the nilpotency problem was successfully reduced to all non-trivial properties of
limit sets, proving that there is no algorithm do determine if the limit set a
given CA has the property or not.

Theorem 4.2 (Rice’s theorem for limit sets [14]) For every d > 1, all
non-trivial properties of d-dimensional limit sets are undecidable.

Note that in the previous theorem the state set of the input CA can be
arbitrary. It is an interesting open question to determine what happens when
the state set S is fixed. Then surjectivity becomes a property of the limit set:
a CA is surjective if and only if its limit set contains all configurations over
the state set S. Since surjectivity is decidable in dimension one (Theorem 3.2),
there is at least one decidable property of limit sets with restricted alphabet.
No other decidable properties are known.

13

5 Snake tilings

So far we have discussed decision problems that concern various properties of
cellular automata. The tile set SNAKES turned out to be a useful tool. In this
section we discuss decision problems that concern Wang tiles and that can be
proved undecidable using tile set SNAKES .

In the infinite snake tiling problem we are interested to form a valid tiling of
infinite chains of consecutive grid positions. More precisely, let I = Z, I = N or
I=1{1,2,...,n} for some n > 1. A snake is an injective function s : I — Z2
such that for every i,i+1 € I positions s(i) and s(i+1) are immediate horizontal
or vertical neighbors. Positions s(¢) and s(i+ 1) are called consecutive positions
of the snake. Injectivity of s means that the snake may not overlap itself. The
snake is called two-way infinite, one-way infinite or finite if I = Z, I = N or
I ={1,2,...,n}, respectively. In the last case, n is the length of the snake.

Any subset P C Z2 of positions is called a region of the plane. The region
can be finite or infinite. Region P is connected if any two positions in P are
connected by a snake contained in P. In particular, if s : I — Z2 is a snake
then its range s(I) is a connected region, called a snake region.

A tiling of region P is an assignment f : P — T of tiles into all positions
in P. Tiling f is valid if the colors of any two neighboring tiles in P match. If
P = s(I) is a snake region then a valid tiling of P is called a strong tiling of
snake s.

Notice that a strong tiling of a snake requires that the tiles in any two
neighboring positions of the snake region match, even if the positions are not
consecutive in snake s. In other words, if the snake makes a loop and returns
back to touch itself then the colors have to match at the touching edges. In
contrast, if only the consecutive positions of a snake are required to match
then the tiling is a weak tiling of the snake. So a weak tiling of snake s is an
assignment f : s(I) — T of tiles such that for every i,i + 1 € I the adjacent
edges of tiles in positions s(i) and s(i + 1) have the same color. Notice that a
weak tiling of snake s is not necessarily a valid tiling of region s(I), and that
a tiling of a snake region P can be either weakly valid or not weakly valid
depending on the ordering of the elements of P in the snake.

The following easy observations were proved in [16]:

Theorem 5.1 Let T be a tile set. The following are equivalent:
(a) T admits a strong tiling of some two-way infinite snake,
(b) T admits a strong tiling of some one-way infinite snake,
(¢) T admits strong tilings of finite snakes of all lengths,

(d) T admits a tiling of some infinite connected region P,

Theorem 5.2 Let T be a tile set. The following are equivalent:

(a) T admits a weak tiling of some two-way infinite snake,

14

(b) T admits a weak tiling of some one-way infinite snake,
(c) T admits weak tilings of finite snakes of all lengths,
In the following we sketch the proof of the following main result from [1]:

Theorem 5.3 It is undecidable if a given tile set T admits a strong (weak)
tiling of an infinite snake.

Berger’s tiling problem will be reduced in two stages. First we prove the
undecidability of a directed variant of the problem, which is then reduced further
to the actual snake tiling question of Theorem 5.3. Recall that a directed tile
is a Wang tile that has an arrow printed on it, pointing to one of the four
neighbors. The arrows are used to define snakes: the arrow of a tile specifies
which neighbor follows the present tile on the snake.

A strong directed tiling of a snake s : I — 7% with directed tile set D
is an assignment f : s(I) — D of directed tiles to the snake such that the
colors match between any two neighboring positions both in s(I), and for every
i, 4+ 1 € I the arrow of tile f(s(i)) points to position s(i + 1). We only need
the strong snake tiling variant here — weak directed tiling could be defined
analogously.

Now the plane-filling property of SNAKES tiles from Section 1.3 states that
any one-way infinite snake s that can be tiled with SNAKES necessarily covers
arbitrarily large squares. (This statement is slightly stronger than the original
plane filling property presented in Section 1.3 because now we do not assume
that the neighborhood of the snake can be filled with tiles that match with the
tiles on the snake. However, the SNAKES tile set in [13] can be modified to
satisfy the stronger form of the plane filling requirement.)

Lemma 5.1 It is undecidable if a given directed tile set admits a strong directed
tiling of some one-way infinite snake.

Proof. We reduce Berger’s undecidable tiling problem to the directed snake
tiling question: Let T" be an arbitrary (undirected) tile set, which is the input
instance to the tiling problem. Let us construct directed ”sandwich” tiles that
consist of two tile components: one tile from 7T and one from SNAKES. In a
valid tiling both tile components must match. The direction is inherited from
SNAKES.

Let us prove that a strong directed tiling of some one-way infinite snake is
possible if and only if 7" admits a tiling. If T' correctly tiles the full plane then
it also correctly tiles every region, including every snake region. Let us take any
snake that SNAKES correctly tiles and combine the correct tilings according to
T and SNAKES to form a valid directed tiling of s.

Conversely, assume that a strong directed tiling of some one-way infinite
snake s is possible. Then the plane filling property of SNAKES forces s to be
plane-filling, that is, s covers arbitrarily large squares. The T' components form a
valid tiling of s(I) so that T" admits valid tilings of squares of all sizes. Therefore
T also admits a tiling of the entire plane.

15

The result now follows from the undecidability of the tiling problem (Theo-
rem 1.2). 0

To prove Theorem 5.3 we use a motif construction. For any given set D of
directed tiles we construct a set T of undirected tiles that admits a tiling (weak
or strong) of an infinite snake if and only if D admits a strong directed tiling of
an infinite snake. Let n be some large integer. Each directed tile d € D (called
a macrotile) will be simulated by a sequence of tiles of T' (called minitiles) that
are forced to form a finite snake (called motif) that follows the borders of an
n x n square (see Figure 5).

On each side of the square the motif forms a bump or a dent. A bump fits
inside a dent if they are aligned properly. The south and the east sides of a
motif contains a bump and the north and the west sides a dent. The position of
the bump and the dent is determined by the color of the corresponding edge in
the macrotile. Each color used in D corresponds to a unique location for bumps
and dents. As a result, two motifs can be placed side-by-side without overlaps
if and only if the colors of the corresponding macrotiles match (see Figure 6).

Each motif has two free ends from which it may be linked to another motif.
The exit end is in the middle of the side given by the direction of the macrotile,
and the entry point is in the middle of any other side of the motif. Hence each
macrotile is represented by three different motifs: one for each possible entry
direction. The free ends are labeled in such a way that a motif exit may be
connected only to the entry of another motif. This can be established by using
labels N,E,S and W to indicate direction: label N is used on any exit tile on the
north side and any entry tile on the south side of the motifs. The other labels
E,S and W are used analogously.

Formation of motifs by minitiles can be forced by using sufficiently many
unique colors. Each minitile in every motif is unique, and its colors only fit with
the next and the previous minitile in the motif. There is freedom of choice only
at the free ends of the motifs where one can choose the next motif to link into
the previous motif.

It is easy to see that the minitiles admit a tiling of a one-way infinite snake
if and only if D admits a strong directed tiling of a one-way infinite snake. The
minitile snake is obtained from the macrotile snake by replacing each macrotile
by its motif. Notice that there is no difference between weak and strong tiling
of an infinite snake with the minitiles because the tiles are such that no weakly
tiled infinite snake can return to touch itself. This completes the sketch of the
proof of Theorem 5.3. 0

Notice that in the previous construction the minitiles were of the specific
type that each tile has two sides that do not match with any other tile. Hence
each tile uniquely determines the direction where the snake continues. It follows
that the infinite snake tiling question is undecidable even when restricted to such
special types of tiles.

In [16] a cyclic variant of the snake tiling problem was introduced. A cycle ¢
of length n > 3 is a snake of length n whose first and last positions are neighbors.

16

Figure 5: A motif.

In other words, it is an injective function
c: I — 172

where I = {1,2,...,n}, and for all ¢ € Z positions ¢(¢ mod n) and ¢(i+1 mod n)
are neighbors. A strong tiling of cycle c¢ is an assignment

fie(l)—T

of tiles in the cycle such that tiles in any two neighboring positions ¢(7) and ¢(j)
match. A weak tiling only requires that tiles in consecutive positions ¢(i mod n)
and ¢(i + 1 mod n) match.

We have the following natural decision question: Is there an algorithm to
determine if a given tile set admits a valid (weak or strong) tiling of some cycle ?
In [16] a technique analogous to the proof of Theorem 5.3 was used to prove the
following result:

Theorem 5.4 [t is undecidable if a given tile set T admits a strong (weak)
tiling of a cycle.

In the proof, a reduction from the finite tiling problem of Theorem 1.4 is
used instead of Berger’s tiling problem. This difference is, once again, reflected
also in the following difference in the semi-decidability in infinite and cyclic
snake tiling problems: There is a semi-algorithm to determine if some cycle can
be tiled, and a semi-algorithm to check if no infinite snake can be tiled. There

17

(@) (b)

Figure 6: A bump and a dent when the colors (a) match, (b) do not match.

are namely only a countable number of different cycles and they can be easily
enumerated. Each cycle can be tiled in a finite number of different ways. In
contrast, in the infinite snake tiling problem the negative instances are semi-
decidable: if no infinite snake tiling exists then by Theorem 5.1 there exists n
such that no finite snake of length n can be tiled. For each n there are only a
finite number of different snakes of length n to check.

It would be interesting to find simple, direct reductions between the re-
versibility question of CA and the infinite snake tiling question, and between
the surjectivity question of CA and the cyclic snake tiling question. Existence
of such direct reductions seems quite possible: The undecidability proofs were
quite similar, they were based on the specific tile set SNAKES and a reduction
from the tiling or the finite tiling problem.

Conclusion

We have indicated a close connection between decisions problems concerning
Wang tiles and decision problems concerning cellular automata. This is not
surprising since both structures are based on a homogeneous rectangular lattice
of cells that store a finite element, called either a tile or a state. A major differ-
ence, of course, is the fact that cellular automata are dynamic while tilings are
static. However, by including the time as a new dimension even the dynamic
evolutions of CA can be viewed as tilings of the higher dimensional space. Fi-
nally, we have demonstrated the usefulness of the tile set SNAKES, as it was
applied in both cellular automata theory and Wang tiles to prove certain prop-
erties undecidable.

References

[1] L. Adleman, J. Kari, L. Kari, D. Reishus. On the decidability of self-
asssembly of infinite ribbons. Proceedings of FOCS’2002, 43rd Annual Sym-
posium on Foundations of Computer Science, 530-537, 2002

[2] S. Amoroso and Y. Patt, Decision Procedures for Surjectivity and Injectiv-
ity of Parallel Maps for Tessellation Structures, Journal of Computer and
System Sciences 6 (1972) 448-464.

18

[3]

R. Berger, The Undecidability of the Domino Problem, Memoirs of the
American Mathematical Society 66 (1966).

K. Culik II, J. Pachl and S. Yu, On the limit sets of cellular automata,
SIAM Journal on Computing 18 (1989) 831-842.

K. Culik II, An aperiodic set of 13 Wang tiles, Discrete Mathematics 160
(1996) 245-251.

E. Czeizler and J. Kari, A tight linear bound on the neighborhood of inverse
cellular automata, to appear.

B. Durand, Global properties of 2D cellular automata, in: Cellular Au-
tomata and Complex Systems, E. Goles and S. Martinez (Eds.), Kluwer,
1998.

G. Hedlund, Endomorphisms and automorphisms of shift dynamical sys-
tems, Math. Systems Theory 3 (1969) 320-375.

L. P. Hurd, J. Kari and K. Culik, The topological Entropy of Cellular Au-
tomata is Uncomputable, Ercodic theory and dynamical systems 12 (1992)
255-265.

J. Kari, Reversibility of 2D cellular automata is undecidable, Physica D 45
(1990) 379-385.

J. Kari, On the Inverse Neighborhoods of Reversible Cellular Automata,
in: Lindenmayer Systems, Impacts on Theoretical Computer Science, Com-
puter Graphics, and Developmental Biology, G. Rozenberg, A. Salomaa
(Eds.), 477-495, Springer-Verlag, 1992.

J. Kari, The nilpotency problem of one-dimensional cellular automata.
STAM Journal on Computing 21 (1992) 571-586.

J. Kari, Reversibility and surjectivity problems of cellular automata, Jour-
nal of Computer and System Sciences 48 (1994) 149-182.

J. Kari, Rice’s theorem for the Limit Sets of Cellular Automata, Theoretical
Computer Science 127 (1994) 229-254.

J. Kari, A small aperiodic set of Wang tiles, Discrete Mathematics 160
(1996) 259-264.

J. Kari, Infinite Snake Tiling Problems, In: Proceedings of DLT’2002, De-
velopments in Language Theory, M. Ito, M. Toyama (Eds.), Lecture Notes
in computer Science 2450, 67-77, Springer-Verlag, 2003.

N. Margolus, Physics-like models of computation, Physica D 10 (1984) 81—
95.

19

[18]

[19]

E.F. Moore, Machine Models of Self-reproduction, Proceedings of the Sym-
posium in Applied Mathematics 14 (1962) 17-33.

K. Morita and M. Harao, Computation Universality of one-dimensional
reversible (injective) cellular automata, TEICE Transactions E72 (1989)
758-762.

J. Myhill, The Converse to Moore’s Garden-of-Eden Theorem, Proceedings
of the American Mathematical Society 14 (1963) 685-686.

D. Richardson, Tessellation with local transformations, Journal of Com-
puter and System Sciences 6 (1972) 373-388.

R.M. Robinson, Undecidability and Nonperiodicity for Tilings of the plane,
Inventiones Mathematicae 12 (1971) 177-209.

K. Sutner, De Bruijn graphs and linear cellular automata, Complex Sys-
tems 5 (1991) 19-31.

T. Toffoli, Computation and construction universality of reversible cellular
automata, Journal of Computer and System Sciences 15 (1977) 213-231.

H. Wang, Proving theorems by pattern recognition - II, Bell System Tech-
nical Journal 40 (1961) 1-42.

20

Pattern Formation in Cellular Automata
and Array Grammars

Kenichi Morita

Department of Information Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, Japan
e-mail: morita@iec.hiroshima-u.ac.jp

Abstract

This paper gives a survey on pattern formation problems in cellular au-
tomata (CAs) and isometric array grammars (IAGs). Based mainly on our
previous works, we discuss how CAs and TAGs can be used for generation
of patterns (symbol arrays), and how their abilities are. Among various
subclasses of TAGs, we investigate generating abilities of regular array
grammars and uniquely parsable array grammars, as well as their relation
to CAs. A special type of array generator /recognizer, and self-replication
of patterns in reversible CA are also discussed.

1 Introduction

Cellular automata (CAs) and isometric array grammars (IAGs) are useful tools
for generating and analyzing multi-dimensional patterns (symbol arrays). Here
we discuss how these frameworks can be used for pattern generation, and how
their abilities are. An IAG introduced by Rosenfeld [7, 11] is a kind of formal
grammar that generates two-dimensional symbol arrays. It can be thought as
a variant of tiling system, and also has some similarity to CAs. An isometric
regular array grammar (RAG) [1] is a subclass of IAGs having very simple ar-
ray rewriting rules. In spite of the strong constraint to the form of rewriting
rules, RAGs have a rich ability of generating patterns [14]. On the other hand,
several decision problems for RAGs become very hard. Especially, the member-
ship problem for RAGs is NP-complete, and thus analysis (parsing) of patterns
is intractable [8]. A uniquely parsable isometric array grammar (UPAG) [15]
remedies such shortcomings, where any derivation process of a pattern has a
“backward deterministic” nature, and hence parsing can be performed deter-
ministically. CAs are also a useful framework for generating and analyzing
patterns. We give a kind of pattern generator/recognizer based on reversible
partitioned CAs [10]. Finally, we discuss self-reproduction (or self-replication of
patterns) in two- and three-dimensional reversible CAs [2, 9].

2 Pattern Formation in Array Grammars

An isometric array grammar (IAG) introduced by Rosenfeld [7, 11] is a formal
grammar for two-dimensional languages (see also [13]). An IAG has a set of
rules to rewrite symbol arrays. Each rule has an “isometric” property, i.e., both
sides of the rule must be the same shape of symbol arrays. This condition is
required to avoid a distortion (shear) of an array when applying the rule to a
host array. Due to this isometric nature, it acts as a kind of tiling system. It
is also regarded as a kind of asynchronous cellular automaton with block-to-
block updating rules. In this section, after giving definitions on IAG, we discuss
generating abilities of subclasses of IAGs as well as their relation to cellular
automata.

2.1 Definitions on Isometric Array Grammars (IAGs)

Let X be a finite set of symbols. A two-dimensional word over X is a non-empty
connected array of symbols in 3. The set of all two-dimensional words over X
is denoted by ¥2*. Similarly, the sets of all two-dimensional rectangular words
and square words are denoted by %" and X3, respectively.

Definition 2.1 [7, 11] An isometric array grammar (IAG) is defined by the
following 5-tuple.
G = (N7 T7 P7 S’ #)

A finite set of nonterminal symbols.

A finite set of terminal symbols (NNT = ().
A finite set of rewriting rules.

A start symbol (S € N).

A blank symbol (# ¢ NUT).

Each rewriting rule in P is of the form o — (3, and o, 3 € (NUT U {#})*+

must satisfy the following conditions (to be more precise see [11]):

(1) The shapes of o and B are geometrically identical (i.e., isomeric).

(2) « contains at least one nonterminal symbol.

(8) Terminal symbols in o are not rewritten by the rule o — (.

(4) The application of the rule a — [preserves the connectivity of the host
array.

oAz

A #-embedded array of a word £ € (N UT)?*t is an infinite array over
N UT U {#} obtained by embedding £ in a two-dimensional infinite array of
#’s, and is denoted by &x. (Formally, a #-embedded array is a mapping
Z? — (NUTU{#}).) We say that a word 7 is directly derived from a word & in
G if £4 contains a and 7y is obtained by replacing one of the occurrences of a
in & with g for some rewriting rule « — [in G. This is denoted by & :G> 1. The

reflexive and transitive closure of the relation ? is denoted by :;> We say that

a word 7 is derived from a word £ in G if £ :;> 1. The array language generated

by G is defined by L(G) = {w]|S = w, and w € T?** }.

Let G = (N, T, P, S,#) be an IAG. By restricting the form of a rewriting
rule @« — B of G, we can obtain three subclasses of IAGs.

Definition 2.2 [7] If non-# symbols in o are not rewritten into #’s, then G is
called a monotonic array grammar (MAG).

Definition 2.3 [1] If a consists of exactly one nonterminal and possibly some
#’s, then G is called a context-free array grammar (CFAG).

Definition 2.4 [1] If each rewriting rule is one of the following forms, then G
is called a regular array grammar (RAG), where A, B€ N, anda € T.

#A — Ba, A# — aB, ﬁ—>§7 ﬁﬁg, A — a.

2.2 Pattern Formation in RAGs

It is known that the class of TAGs and its three subclasses form a Chomsky-
like hierarchy [1]. The class of RAGs is the smallest one in this hierarchy.
However, RAGs have relatively high pattern generating ability in spite of the
very restricted form of their rewriting rules. As we shall see later, this generating
power comes from the “#-context-sensing ability” of an RAG (i.e., the left-hand
side of a rule may have # besides a nonterminal symbol).

Since each rule of an RAG rewrites at most one blank symbol (#) into a non-
blank symbol, a large number of rules may be needed to generate a meaningful
two-dimensional language. So, it is convenient to introduce a useful subclass of
TAGs equivalent to that of RAGs.

Let r = a — (3 be arule of a CFAG. r is called strongly linear if the following

conditions hold (to be more precise, see [14]).

(1) B contains at most one nonterminal.

(2) There is a single-stroke path covering all the symbols of « starting from
the position of the nonterminal in « to the (corresponding) position of the
nonterminal in § (or to some appropriate position if 8 has no nonterminal).

Definition 2.5 [14] Let G = (N, T, P,S,#) be a CFAG. If every rule in P is
strongly linear, then G is called a strongly linear array grammar (SLAG).

Example 2.1 Consider the following rule, where X, Y € N, a,be T.

bY
— aa
#X ba

It is easily seen that it is strongly linear. In fact, there is a single-stroke path
covering all the six symbols of the left-hand side starting from the X to the
upper-right # whose position corresponds to the Y in the right-hand side.

We can decompose the above rule into the following rules of an RAG along
the single-stroke path, where X7, X2, X3 and X, are new nonterminals.

#X - Xia F TP

Xo# — alXs # = X4
X3 a

X4# — bY

It is clear that the above five rules of an RAG correctly simulates the original
rule of an SLAG.

Generalizing the method in Example 2.1, the following theorem is obtained.
It states that the generating abilities of SLAGs and RAGs are the same (note
that the class of RAGs is a subclass of SLAGs).

Theorem 2.1 [14] For any SLAG G, we can construct an RAG G’ such that
L(G) = L(&).

With the aid of SLAGs, we can show that various geometrical patterns such
as all rectangles, all squares, etc. are generated by RAGs.

Example 2.2 [14] An SLAG that generates the set of rectangles over {a} of
size (6 +4) x (47 +8) (4,5 € {0,1,---}).

GR = ({SVT7L7I7R7B}7{a}7PR757#>

The set Pg consists of the following 12 rules. It is easily verified that all these
rules are strongly linear.

(S) (T1) (T2)
S # # # aaaT T # # # # aaaaT T H# # # # aaaa R
#4277 L aa /R aa D —~ aa
D aa g aa D aa
(12) (11) (R1)
R a

aa # # aa # # aa

#* # aa # # aa # # aa
#H#HH#H#I - aaaaa #HH#HH#H#ITI — Taaaa H#H#H#H# — Taaa
aa # # aa # # aa
La # # aa # # aa
(L) (13) (14)

aa # # aa # # aa
L ## aa # # aa # # aa
HHHH — aaal I# #HH#H# — aaaal IT#H### — aaaaR
#* # aa # # aa # # aa
#* # aa # # aa # # aa
(B2) (B1) (R2)

R a

aa # # aa # H# aa

#* # - aa # # — aa HH — aa
#H#H##B aaaaa HH#HH##B Baaaa 44 Baaa

RIS S S S S
RIS S S S S
SRR
SRR
RIS S S S S
Heb S s IR
o o s3I
e o etttk
e S etttk
REEE S S S SIS i
BRSNS i
s o S FhARRRTRR
o o o FARRFRIRE
RIS S S S e

he

(T1)

SRR
SRR
RIS SIS IS i
RIS S S S S S
SRR
SRR
SRR
RIS S SIS e
RIS S S S S
RESESES S S S
e o etttk
s s 3R
o s 3R
RIS S S S S S 5551

ang

HHH
0k
RiSiss

RS S S S S
Fe s s o sk
IS o o SsHFRIIRRF
HS S o oo o
Fes s o~ S SRR
Fe s S 3R
Fe o o s3I
e o etttk
e o etttk
REEE S S S SIS S
REER S S S S S
Fe o o s FhARRR R
s o S Fh Rk
RS S S S S

&

(R1)

TR
A R
REER i S S SS S
Fe s S s3I
s o S FhARRRRR
F s o S FARRRRR
F s o FhaRRRRR
REEE S S S SIS S
e o Rt
e o etttk
e o etttk
Fe s s 3R
Fe s s 3R
RIS iS SIS S SS SSiai

fre

(T2)

Sttt
Fes s o YRR
IS o o SFFRIIRR
HS o oo o
Fes s oo s AR
Fes s oo s AR
Feo oo oo oIk
F s o o SRR
F s o ¥R
Fes s o kAR
ISR S S i
HS S oo ok
Feo s oS o FARIk
RS S S S S S

—~

&

(12

R
IS o o SsHFRIRIRR
Fe s s o sk
Fes s oo s ARk
HS S oo o
Ho S oo ok
Hs s s o
Fes s o AR
Fe o o o~ Ikt
e o FedhthtaR R
e o FedhthtaR R
Fes s 3R
Fe s s 3R
RiSiS S SIS SiSiai

—

&

(11

RIS IS S S SIS SiEE
33 S S SHFHFRIRAIFRII
SIS S S SiaiS 5
Fo s oo o sHIARIR
RIS ISR S SIS S
HFIS3I3 33~ 333
IS IS SIS SHIk
HS S 333 S I
H3 S 333 S SHIHFH*
FH 33333 3IFHIIFIt
FHS 33333 3FHIIFI
Hsss33SSS3HFH
ESSESESECESESESESESE S8
RiSISIS SIS S S S S SIS

—~

&

(13

RIS SISISSISS S5 5
ko o o SFIHRFIHG
RSISISICE S S SIS SiSE
RIS ISR S SSS S
Fo s oo o sHIARIR
Fo s o oo sHIARIR
Fs s o oS sHARR
RESISISICE S S SIS SiSE
RESISISICE S S SIS
H3S S 333 S~FIIHH
EESCASESESIESIIS SIS IS S S
S SSESESECESECECECECE: -3
S SSESESECESECECECECE: 3
RS SIS SIS S S S

—

&

(L

RiSIS SIS SIS S SSISiSS
B SSESESECESIECECECICECE -3
B SIS ESESESESESESESESE S
EESCESESESESISESESESESE S
Fss3s3I33Is3MIk
S SSESESECESIECESECICE S +3
IS IS
H3S S 333 S I
H3 S 333 S I
FH 33333 3FHHIIIt
FHS 33333 3FHHIIIt
S ASESESESISESESESE S8
ESSESESECESESESES IS E S8
RiSIS SIS S S SIS S

&

(R2)

SRR
#3333 S I IRIRFR
FH3 33333 3IFHHII
S SSESESECESIESESECICE S +3
EESCASESESESISESESESE S8
EESCESESESESISESESESE 518
EESSASESESESISASESESE =13
FH 33333 3FHHIIIt
B SSESESESESESECE S ST
H3S S 333 S SIHIFHFH
HS S 333 S SFHIFHFH*
Fss333 333
S SSESESECES SIS E: 3
RS S S S SIS S S i

—~

&

(14

RIS SIS S SIS
B SSESESICESECECECECECE -3
B SIS ACASESECESIS RS E -
EESCESESESESISESESESECE S
S SSESESICESICECICECECE 3
S SSESESICESICECICECECE 3
33333333k
EESCESESESESISESESESECE S
EESSESESESESISASESESESE S
B SSESESICESICECICICECE 3
S SSESESICESICECCECECE 3
EESCESESESRSISASESESESE S
B SSESESECESESESESRCESE -3
RiSISIS SIS S S S SIS S

fr&

(B2)

FRARFRFR IR
B SIS S SIS SIS ES IS E S
B SSESESICES SIS ECE 3
B SSESESICESICECICECECE 3
EESCESESESESISESESESESE S
EESCESESESESISESESESIESE S
EESCESESESESESASESESESE S
S SSESESICESICECECECECE 3
SIS I3 3IMIk
H3S 3333 S SFHIFHFH
HS 3333 S SFHIFHFH
S SSESESICES SIS E S 3
S SSESESICES SIS E: 3
RS S S S S S S S i

fr&

(B1)

Figure 1: A derivation process of a rectangular word by G of Example 2.2.

Figure 2.2 shows a derivation of a rectangular word of size 10 x 12.

A derivation process of a rectangular word is as follows. First, the rule (S) is
used. Then, (T1) is applied repeatedly (0 times or more) to form the top edge
of a rectangle. If (T2) is used, rightward growth of the top edge terminates.
At this point “shape codes” are formed on the second and the third rows of
the generated array. A shape code consists of a projection and a notch formed
by the symbol a’s. One bit of information is represented by a pair [projection,
notch] or [notch, projection]. The left/right end and the inner part of a word
are distinguished by such a pair.

At the right end, either (R1) or (R2) can be used. If (R1) is used, then (I1)
is repeatedly applied to grow the inside of a rectangle. It should be noted that
the rule (I2) cannot be used in the inside, since the positions of projections and
notches do not match between the host array and the left-hand side of the rule.
The rule (I12) is used only at the left end to terminate the leftward growth. Note
that the shape codes are transmitted to the lower rows after the applications of
these rules.

At the left end the rule (L) is used, and then (I3) is repeatedly applied. The
rule (I4) is used at the right end to terminate the rightward growth.

If (R2) is applied at the right end, then the downward growth stops. Re-
peated applications of (B1) makes the bottom edge of a rectangle. The whole
derivation process terminates by applying (B2) at the south-west corner of a
rectangle. []

By adding appropriates rules to Gg in Example 2.2, we can obtain an SLAG
(hence, RAG) that generates {a}%", the set of all sizes of rectangles. It is also
possible to give an SLAG (RAG) that generates the set of all squares.

Theorem 2.2 [14] There are RAGs that generate {a}%" and {a}%".

2.3 Uniquely Parsable Array Grammars (UPAGs)

As shown in the previous section, RAGs have relatively high generating ability
of geometrical patterns. On the other hand, however, several decision problems
on RAGs become very hard to solve. It is also due to the #-context-sensing
ability. For example, emptiness problem for RAG languages is undecidable [8].
As for the membership problem, the following result is known. Hence, in general,
pattern analysis (or parsing) based on RAGs is not performed efficiently.

Theorem 2.3 [8] The membership problem (given an IAG G and a word x €
T%*, decide whether x € L(G) or not) is NP-complete for the class of RAGS.

In order to remedy such inefficiency of parsing, a uniquely parsable array
grammar (UPAG) was introduced [15]. In this subsection we first give a survey
on two-dimensional UPAGs, and then three-dimensional ones.

The subarray of a whose symbols are not changed (i.e. rewritten to the
same symbols) by the application of « — [is called the context portion of a.

The subarray of o where each symbol is rewritten to a different symbol is called
the rewritten portion of . The context portion and the rewritten portion of §
are also defined similarly.

Definition 2.6 [15] Let G = (N, T, P,S,#) be an IAG. If P satisfies the fol-
lowing conditions, G is called a uniquely parsable array grammar (UPAG).
1. The right-hand side of each rule in P contains a symbol other than # and S.
2. Letry = a1 — B and ro = as — By be two rules in P (may be r1 = ra).
Superpose 31 and B2 at all the possible positions variously translating them.
For any superposition of 81 and Bz, if all the symbols in overlapping portions
of them match, then
(a) these overlapping portions are contained in the context portions of /1 and

B2, or
(b) the whole B1 and B2 are overlapping, and r1 = ro.

For example, the pair of rules aB — ab and Ca — ca satisfies the condition
2(a) of Definition 2.6, but the pair #B — ab and Ca — ca does not.

Example 2.3 [15] A UPAG that generates the set of all squares over {a} of
size larger than or equal to 2 x 2.

GS = ({S,D,G,E},{a},PS,S,#)

The set Pg consists of the following 9 rules.

#

S# — a S aS# — aa# #SS — #aD

S # G # S
#

DS — D DG — D D —
s G 2T T
#SG — #aFE ES — E E# — a#
a a aa z 4

We can verify that Gg is a UPAG (since it is rather tedious to check it, we
did it by computer). The following is a derivation example in Gg.

S=aS=aaS=aaaS=aaaqa=aaqaa=>aaaa

S S S SSS SSSG aDSG aaDG
S S S
=>aeaaqaaa=>aaaa=>aaaa=>aaaa=aadada
aaaD aaaa aaaa a a aa a aaa
SS G SSGS aDGS a aDS a aaD
S S G SGS
>aaaa=>aaaa=>aaaa=aaaa=aadada
aa a a aaaa aaaa aaada a aaa
aa a a aaaa aaaa a a aa a aaa
SGS S aESS aaFES aaalk aaaa

A rewriting rule & — f is said to be reversely applicable to n at (i,), iff 5
occurs in 7y at the position (i, j), where the position of an occurrence means the
x-y coordinates of the leftmost symbol of its uppermost row. If £ is obtained
by reversely applying « — 3 at (4,75), we say & is directly reduced from n by
the reverse rewriting with the label L = [— (3, (i,7)]. This is denoted by
n L &. Apparently, n L Eiff & X n. Ifn a G1 2 Co++Cn1 o & for some
C1,Cay e, Cu1, we also write it by 1 <& €.

The following theorem states that if n < S, then every reduction starting
from 7 always reaches the start symbol S in n steps without backtracking.

Theorem 2.4 [15] Let G = (N, T, P, S,#) be a UPAG. Let o — (3 be any rule
in P that is reversely applicable to n € (N UT)*t at (i,5). If n & S, then for
the label L = [a — 3, (i,7)] there exists a reduction 1 L ¢ =g for some (.

This theorem can be generalized to the case of parallel reduction.

Let G = (N,T,P,S,#) be a UPAG, and let oy — B1, -+, am — Bm be
rewriting rules in P that are reversely applicable to n € (N UT)?** at the posi-
tions (41,71), **+, (4m,Jm), respectively, and let Ly = [— Bk, (i, jx)] (kK =
1,---,m). We assume these labels differ each other. Since G is a UPAG, any
two of these reverse applications do not overlap except in their context portions.
Therefore, these reverse applications can be performed simultaneously (i.e. in

{Lle;_;l/m,} C,

Theorem 2.5 [15] Let G = (N,T,P,S,#) be a UPAG. Let Ly, -+, Ly, be

different labels which are reversely applicable ton € (NUT)**. Ifn & S, then
the following reduction exists for some (.

parallel). We write such parallel reduction by 7

n {ngrn} ¢ n—m g

It is possible to extend the framework of two-dimensional IAGs to three-
dimensional ones. In [2] a three-dimensional UPAG that generates all cubes is
given. Figure 2 shows a parallel parsing process of a cube.

2.4 Notes on the Relation to Cellular Automata

There is a close relation between IAGs and CAs. A main difference between
IAGs and CAs is that the operation of the former is sequential, while that of the
latter is parallel. So, by using a framework of nondeterministic asynchronous
CAs, derivation and parsing processes of TAGs can be simulated. Note that, be-
cause of the “isometric” nature of IAGs, each rewriting rule of an IAG is directly
simulated by a block-to-block updating rule rather than a usual von Neumann
neighborhood rule. It is also easy to see that such a CA can be converted into
a CA with von Neumann neighborhood by increasing the number of states.
On the other hand, it is possible to use CAs to perform parsing based on
UPAGs. By Theorems 2.5, parsing can be derterministically executed by parallel

Figure 2: Parallel parsing of a cube based on a three-dimensional UPAG [2].

reverse applications of rewriting rules. Hence, parsing processes of UPAGs can
be directly simulated by deterministic synchronous CAs. In fact, Figure 2 can
be interpreted as a parallel parsing process performed by a three-dimensional

CA.

3 Pattern Formation in Cellular Automata

3.1 Pattern Generation and Parsing by Reversible CAs

Based on the idea noted in Section 2.4, it is possible to give nondeterministic
reversible cellular automata that are used both generating and parsing patterns.
A partitioned cellular automata array generator (PCAAG) [10] is a framework
that generates a set of two-dimensional patterns in parallel. If a given PCAAG
is reversible, it is also used as a deterministic parsing system like a UPAG.

Figures 3 and 4 shows an example of a PCAAG that generates all rectangles
over {a} [10]. As shown in Figure 3, a cell is divided into five parts, and the
next state of each cell is determined by a center part of this cell, lower part
of the upper neighbor cell, left part of the right cell, upper part of the lower
cell, and right part of the left cell. This PCAAG is nondeterministic, since two
rules have multiple entries of next states. By this, it can generate all sizes of
rectangles. In addition it is reversible, since there is no pair of rules that have
a common next state on their right-hand side. Hence, its evolution process can
be traced backward uniquely, and thus we can use it as a parser (or recognizer)
of rectangles.

[a] — a 1 |e) — C c| [a] — alC
A B
s| [] — alA B — a[B Al [— a[B
B A
B
C
Al O — alA a B — a Bl] — |B
A s B B
B A C
— a|B ClalA A — alA C| — al$
B
9
C
J— — a
C C
C
Figure 3: Rules for generating all rectangles by PCAAG [10].
t=0 t=1 t=2
S alA a alA
B A
a(B
B
t=3 t=4 t=5
c
T
a a a A a a a a a a a a
B
a a|Bj a a a|B] a a a a
A B
Cla]Al Cl [a al A alC| |a alAl
t=6 t=17 t=8
a a a a a a a a a a a a
C
[a a a a a a a a a a a
C
a alC] [a alB a a alC| [a a a a al$

Figure 4: A generating process of a rectangle by PCAAG [10].

10

3.2 Self-Reproduction in Reversible CA

It is well known that von Neumann [12] first designed a self-reproducing CA.
He showed it is possible to construct a Turing machine that can reproduce
itself in a 29-state cellular space. Later, Langton [6] showed a very simple
self-reproducing cellular automaton by posing so-called Langton’s criterion, i.e.,
self-reproducing objects need not have computation-universality, but the con-
struction of a daughter object should be actively directed by its mother by using
its “gene” properly.

Morita and Imai [9] showed that self-reproduction of Langton type is also
possible in a reversible CA. They gave a two-dimensional reversible partitioned
CA called SRg. Each cell of SRg has 8° states (i.e., each of five parts of a cell
has 8-state). As in the models of von Neumann and Langton, SRg also makes
use of a genetic code (description of the object’s shape). That is, the body of a
daughter object is constructed by interpreting the description.

If a self-reproducing object can encode its shape into a description by check-
ing its body dynamically, there is no need to keep the entire description. In
fact, there have been a few models that performs self-reproduction in such a
manner [4, 5, 9]. The method employed in SRg is called a “shape-encoding”
mechanism. By this method, a variety of objects named “Worms” and “Loops”
of arbitrary shape can self-reproduce. Hence, SRg can be thought as a kind of
pattern self-replication mechanism.

A Worm is a simple signal wire with two open ends: a head and a tail.
At the tail cell the shape of the Worm is “encoded” into commands and the
tail retracts one by one. The commands are sent to the head along the wire.
At the head of the Worm, commands are decoded and executed to extend the
head. Therefore, it crawls in the space keeping its shape cyclically. By putting
a “branch” command, which makes a head branch, a Worm can self-reproduce
as in Figure 5.

Figure 5: A self-reproducing Worm in SRg [9].

11

A Loop is a simple closed signal wire. It can also reproduce itself in a similar
way as in a Worm by extending a “constructing arm” as shown in Figure 6.
t=20

AA
+

T

A
AHAA

W %

o]

HAAH-

o~
Il

w

S

T
>
>

BB
>
>
t
>
>
Wt

HAAHD *H+AAHBAHAAHBAHBAH-CAH-

-
I

o

%

z
>
>
i

AA
+
A
A

A
AHAA HAA

B B

2>
B+

g

HAAHA HAAHA

Figure 6: A self-reproducing Loop in SRg [9].

It is possible to extend SRg to a three-dimensional model. Imai et al. [3]
gave a 7-neighbor RPCA called SRy, and has 9 states in each of seven parts of
a cell (hence each cell has 97 states). As in SRs, Worms and Loops of various
shapes can reproduce themselves in SRy.

In the three-dimensional cellular space, varieties of possible shapes and ar-
rangements of Worms and Loops are much greater than that of two-dimensional
one. Figure 7 shows a simple self-reproduction process of a three-dimensional
Loop. By controlling a position of a constructing arm by a command sequence,
we can design a Loop such that it produces a semi-infinite chain as in Figure 8.
Another example of a Loop that forms a pile of Loops is shown in Figure 9.

t=122

Figure 7: Self-reproduction of a three-dimensional Loop [3].

12

Figure 9: A more complex self-reproducing Loop [3].

4 Concluding Remarks

In this survey we discussed several aspects of pattern formation problems in cel-
lular automata and isometric array grammars. Though these two frameworks
have natural similarities, we saw each of them has its own characteristic prop-
erties. As for the self-reproducing cellular automata shown here, all reproduced
objects are mere patterns, and have no function (e.g., computing) at all. So,
it will be interesting to devise a cellular automaton in which functional objects
can reproduce themselves in a simple fashion.

Acknowledgement. This work was supported in part by Grant-in-Aid for
Scientific Research (C) No. 16500012 from JSPS, and the Telecommunications
Advancement Foundation of Japan.
References

[1] Cook, C.R., and Wang, P.S.P, A Chomsky hierarchy of isotonic array gram-

mars and languages, Computer Graphics and Image Processing, 8, 144-152
(1978).

13

2]

[15]

Imai, K., Matsuda, Y., Iwamoto, C., and Morita, K., A three-dimensional
uniquely parsable array grammar that generates and parses cubes, FElec-
tronic Notes in Theoretical Computer Science, 46 (2001).

Imai, K., Hori, T., and Morita, K., Self-reproduction in three-dimensional
reversible cellular space, Artificial Life, 8, 155-174 (2002).

Ibanez, J., Anabitarte, D., Azpeitia, 1., Barrera, O., Barrutieta, A., Blanco,
H., and Echarte, F., Self-inspection based reproduction in cellular au-
tomata, in Advances in Artificial Life (eds. F. Moran et al.), LNAI-929,
Springer-Verlag, 564-576 (1995).

Laing, R., Automaton models of reproduction by self-inspection, J. Theor.
Biol., 66, 437-456 (1977).

Langton, C.G., Self-reproduction in cellular automata, Physica, 10D, 135—
144 (1984).

Milgram, D.L., and Rosenfeld, A., Array automata and array grammars,
Information Processing 71, North-Holland, 69-74 (1972).

Morita, K., Yamamoto, Y., and Sugata, K., The complexity of some de-
cision problems about two-dimensional array grammars, Information Sci-
ences, 30, 241-264 (1983).

Morita, K., and Imai, K., Self-reproduction in a reversible cellular space,
Theoret. Comput. Sci., 168, 337-366 (1996).

Morita, K., Ueno, S, and Imai, K., Characterizing the ability of parallel
array generators on reversible partitioned cellular automata, Int. J. Pattern
Recognition and Artificial Intelligence, 13, 523-538 (1999).

Rosenfeld, A., Picture Languages, Academic Press, New York (1979).

von Neumann, J., Theory of Self-reproducing Automata (ed. A.W. Burks),
The University of Illinois Press, Urbana (1966).

Wang, P.S.P. (ed.), Array Grammars, Patterns and Recognizers, World
Scientific, Singapore (1989).

Yamamoto, Y., Morita, K., and Sugata, K., Context-sensitivity of two-
dimensional regular array grammars, Int. J. Pattern Recognition and Arti-
ficial Intelligence, 3, 295-319 (1989).

Yamamoto, Y., and Morita, K., Two-dimensional uniquely parsable isomet-
ric array grammars, Int. J. Pattern Recognition and Artificial Intelligence,
6, 301-313 (1992).

14

Contributed Papers

Tilings {p, q} of the hyperbolic plane are
combinatoric

Kamel Chelghoum!, Maurice Margenstern'? Benoit Martin?,
Isabelle Pecci', Gencho Skordev?

LLITA, EA 3097,
UFR MIM, University of Metz,
Ile du Saulcy,
57045 Metz, France
e-mail: {chelghou,margens,martin,pecci}@sciences.univ-metz.fr

2 CeVis, Fachbereich Mathematik,
Universitat Bremen,
Universitatsallee, 29, 28359 Bremen, Germany
e-mail: skordev@cevis.uni-bremen.de

November 4, 2004

Abstract

Tilings {p, q} of the hyperbolic plane are generated by the reflections
in its sides and, recursively, in the sides of its images, of a regular polygon

2 -
with p sides and with vertex angle ZT We show that these tilings are

combinatoric, an important property which was devised by the second
author. We investigate also important particular cases when ¢ = 3 and
q =4 and also when p=5and p=7.

1 Introduction

1.1

Hyperbolic geometry attracts more and more researchers. Recently, a new com-
binatorial approach appeared, see [12] and [15] where around thirty papers are
quoted on this topic. There are presently much more.

*Corresponding author

Due to the very restricted place of this extended abstract, we cannot insert
an introduction to hyperbolic geometry. It is just required that the reader knows
what is Poincaré’s model in a disc. We refer the reader to [15] for a very short
introduction and to [21] for more information.

We first present the splitting method and the notion of combinatoric tiling
which ensues from the former. The method is applied to tilings of the hyperbolic
plane or the hyperbolic 3D and 4D spaces, see [20, 16], which are generated from
a single regular tile by reflections in the sides and, recursively, in the sides of the
images. The regular tile is a regular polygon in the case of the plane, a regular
polytope in higher dimension.

In the second section, we study the classical examples of tilings {5,4} and
{7,3} named, respectively, rectangular pentagrid and ternary heptagrid,
for short, respectively pentagrid and heptagrid. In a second part of the
section, we extend the results to the case of tilings {p,4} and {p+2,3}. In the
third section, we show how the splitting method applies to the general case
of tilings {p,¢}. In the fourth section, we consider the coordinates which are
attached to the tiles by the splitting method for the case of tilings {p,4} and
{p+2,3}. We go then to the general case {p,q} in a second part of the section.
In the fifth section, we apply these tools to a problem of the localisation of a
tile containing a given point and how this can be used for initialising cellular
automata in the context of these grids.

1.2 The splitting method

On the basis of [12], a new notion was introduced in [13].

Definition 1.1 Consider finitely many sets Sy, ..., Sk of some geometric met-
ric space X which are supposed to be closed with non-empty interior, unbounded
and simply connected. Consider also finitely many closed simply connected
bounded set Py, ..., Py with h < k. Say that the S;’s and P;’s constitute a
basis of splitting if and only if:
(1) X splits into finitely many copies of S,
(i) any S; splits into one copy of some P;, the leading tile of S;, and
finitely many copies of S;’s,
where copy means an isometric image, and where, in the condition (i), the
copies may be of different S;’s, S; being possibly included.
As usual, it is assumed that the interiors of the copies of Py and the copies
of the S;’s are pairwise disjoint.
The set So is called the head of the basis and the P;’s are called the gen-
erating tiles and the S;’s are called the regions of the splitting.

Consider a basis of splitting of X, if any. We recursively define a tree A which
is associated with the basis as follows. First, we split Sy according to the
condition (i¢) of the definition 1. This gives us a copy of say Py which we call
the root of A. In the same way, by the condition (i7) of the definition 1, the

splitting of each S; provides us with a copy of some Py, the leading tile of S;:
these leading tiles are the sons of the root. We say that these tiles and their
regions are of the first generation. Consider a region S; of the n*® generation.
The condition (74) of the definition provides us with the leading tile P,, of S;
which corresponds to a node of the n'* generation, and copies of S;’s which are
regions of the n+1'" generation. The sons of P, are the leading tiles of the S;’s
being involved in the splitting of S;. Also, the sons of P,, belong to the n+1th
generation.

This recursive process generates an infinite tree with finite branching. This
tree, A, is called the spanning tree of the splitting, where the splitting refers
to the basis of splitting S, ..., Sk with its generating tiles Py, ..., P.

Definition 2 — Say that a tiling of X is combinatoric if it has a basis of
splitting and if the spanning tree of the splitting yields exactly the restriction of
the tiling to Sy, where So is the head of the basis.

Now, we shall turn to the application of this method to tilings {p, ¢}, starting
with particular cases and then studying the general case. The main goal of the
paper is to prove the following result:

Theorem 1.1 — Tilings {p,q} are combinatoric.

From [13], we know that when a tiling is combinatoric, there is a polynomial
which is attached to the spanning tree of the splitting.
More precisely, we have the following result:

Theorem 1.2 — (Margenstern, [13]) Let T be a combinatoric tiling, and denote
a basis of splitting for T by So, ..., Sk with Py, ..., P, as its generating tiles.
Let A be the spanning tree of the splitting. Let M be the square matriz with
coefficients m;; such that m;; is the number of copies of S;j_1 which enter the
splitting of S;_1 in the condition (ii) of the definition of a basis of splitting.
Then the number of nodes of A of the nt" generation are given by the sum of
the coefficients of the first row of M™. More generally, the number of nodes of
the n'® generation in the tree which is constructed as A but which is rooted in a
node being associated to S; is the sum of the coefficients of the i+1*"" row of M™.

This matrix, which is an incidence matrix of the splitting relation between
regions of the basis, is called the matrix of the splitting. We call polynomial
of the splitting the characteristic polynomial of this matrix, being possibly
divided by the greatest power of X which it contains as a factor. Denote the
polynomial by P. From P, we easily infer the induction equation which allows
us to compute very easily the number u,, of nodes of the n*® level of A. This
also gives us the number of nodes of each kind at this level by the coefficients
of M™ on the first row: we use the same equation with different initial values.
The sequence {up }nem is called the recurrent sequence of the splitting.
First, as in [12, 13], number the nodes of A level by level, starting from
the root and, on each level, from left to right. Second, consider the recurrent

sequence of the splitting, {un}n>1: it is generated by the polynomial of the
splitting. As we shall see, it turns out that the polynomial has a greatest

real root § and that # > 1. The sequence {un},>1 is increasing. Now, it is
k

possible to represent any positive number n in the form n = Zai.ui, where
i=0

a; € {0..| 8]}, see [2], for instance. The string ay, . . . ag is called a representation
of n. In general, the representation is not unique and it is made unique by an
additional condition: we take the representation which is maximal with respect
to the lexicographic order on the words on {0..b} where b = |3]. We also call
coordinate of a tile this representation of the number attached to the tile. The
set of coordinates is called the language of the splitting.

In section 4, we shall go back to this other side of the general method to
complete the theorem.

2 Tilings {5,4}, {7,3} and {p, 4}, {p+2,3}
First, we examine the particular cases of tiling {5,4} which we call the penta-

grid, following [17, 12], and then the properties of tiling {7,3} which we call
the ternary heptagrid.

2.1 Pentagrid and heptagrid

As was already shown in [17, 12], the pentagrid is combinatoric. Figure 1.a

gives a general look of the pentagrid and figure 2.a illustrates the splitting of

a quarter of the hyperbolic plane. It shows that the splitting gives rise to two

regions: the quarter, Sy and what we call a strip, see region S in figure 2.a.
The spanning tree of the splitting is illustrated in figure 2.a.

Figure 1: Tilings {5,4}, left-hand side, and {7, 3}, righ-hand side

Looking at figure 2.a, we see that the splitting gives rise to the following
incidence matrix:

So St
So 31
Sh 2 1
The spanning tree of the splitting is generated by simple rules for defining
the sons of a node:

1. 3-node or white node, in white circle in figure 2.b, at the end of a blue or
green arc in figure 2.a, has three sons: to the left, a 2-node, in the middle
and to the right, in both cases, 3-nodes.

2. 2-node or black node, in black circle in figure 2.b, at the end of a red arc
in figure 2.a, has two sons: to the left a 2-node, to the right a 3-node.

Figure 2: Splitting {5,4}, left-hand side, and {7, 3}, righ-hand side,
On the left-hand figure: tiles reached by the tree rooted in
Su, @ € {0,1} constitute region S,.

From [17, 12], we know that the tree is a spanning tree of the dual graph of
the tiling. It is not difficult to restore the dual graph from the tree: we need
only to append one edge to each node. The new edge connects a node with the
leftmost son of its right-hand neighbour.

On figure 2.b, we see that a very similar splitting holds for tiling {7,3}, as
it was established in [5]. The proof of this property is illustrated by figure 3,
below. It relies on an idea that we shall see in section 3 already used in [18] and
on the use of lines of mid-points which pairwise join mid-points of consecutive
sides of a heptagon, only two sides per heptagon.

Figure 3: Tiling {7,3}: the two regions and mid-point lines; the splitting.

2.2 Rectangular and ternary tilings

We turn now to the case of any number of sides for rectangular regular polygons
whose angle vertex is always g We do also the same for the regular polygons

2
with angle vertex T which we call ternary.

Indeed, the properties of the pentagrid can be extended to rectangular tilings
as was proved in [19]. Namely, we have the same kind of splitting, with a quarter
and a strip, and the matrix is:

So Si
So p—2 1
S1 p—3 1

For tilings {p+2,3}, we have a very similar property. The splitting also
involves two regions which can be defined using mid-point lines as this was the
case for the ternary heptagrid, see figure 4. We get the same matrix for the
same value of p when considering the splitting matrix of tiling {p,4}.

The reason is that the spanning tree is the same for both tilings. However,
the way to restore the dual graph of the tiling from the spanning tree is not
the same for both tilings, as this was the case for tilings {5,4} and {7,3}. But
again this difference is easy to be explained: the basic tile of the dual graph is a
quadrangle in the case of tilings {p,4} and it is a triangle in the case of tilings
{p+2,3}. As a quadrangle is the union of two triangles, we have the connection
between the rules applied to the spanning tree to get the dual graph. In the
case of tiling {p+2, 3}, we append a new edge which represents one diagonal of
the quadrangle of the dual graph.

This can be seen on figure 5 for the ternary heptagrid. Red dotted edges
already come from the case of the pentagrid and they correspond also to a
connection which belongs to the dual graph of the heptagrid. Blue dotted edges

are new connections induced by the heptagon. They are the above diagonals
splitting the quadrangles of the pentagrid dual in two triangles.

3 Numbering and languages of the splitting for
tilings {p,4} and {p+2,3}

We remember that when a tiling is combinatoric, we can associate a matrix to
the splitting and with the help of the characteristic polynomial of the matrix
and its greatest real root, we define the language of the splitting.

Figure 4: Tiling {p+2, 3}: the two regions and mid-point lines; the splitting.

We use the words of the language as coordinates of the tiles by numbering
the nodes of the spanning tree from the root to the sons, level by level and,
on each level, from left to right. It is enough to associate each tile to the
maximal greedy representation of the umber attached to the corresponding node
of the spanning tree. In the case of rectangular and ternary regular tilings, we
have surprisingly nice properties of this association. We see them first for the
pentagrid and the heptagrid and then we generalise to rectangular and to ternary
tilings.

3.1 The particular cases: tilings {5,4} and {7,3}

In this case, we do not use exactly the greedy representation associate to the
greatest root of the polynomial of the splitting but to the greedy representation
with respect to the Fibonacci sequence as the number of tiles at distance n is a
constant multiple of the terms of the Fibonacci sequence with odd index. This
property was already noticed in [3]. Papers [17] and, mainly [12] shed a new
light to explain these properties. What we said in the previous paragraph about
the connection between the spanning trees and the dual graphs gives the final
reason of the property simply noticed by [3].

The main property of the languages are:

Theorem 3.1 — The language of the splitting is reqular in the case of tilings
{5,4} and {7,3}.

The property was proved in [12] for what is the pentagrid. It is a consequence
of what we have seen in the previous section and was established in [8].

The result of theorem 3.1 follows from the following property established in
[12] and called the preferred son property:

Theorem 3.2 For each node of the spanning tree of the pentagrid, if v is its
coordinate, there is exactly one node among its sons whose coordinate is v00
which is called the preferred son. Moreover, for white nodes the preferred son
is the second son and for black nodes it is the first.

1
O
1
2 4
S (o @)
0. 0 0
5 6 7 8 9 10 11 12

1o o e T Tk \
0 0 0 0 0 %, 0
0 0 1 0 0 0~ |1\ \~ 2
0 1 0 0 1 0 -0
: : D - 1 0 D 1

13/ 14 15/ 16 17 1 19 20 20 22 28 24 2526 97-28 29 \30- 31 \32\33

1111111111111 11111111
00 0O0OO0OOOOOOOOSODOSOSOOTODQODQ OO
0 00O0O0O011100O0O0O0O0ODO0ODO0ODO0TIITI1T111
0 o00110O0O0O0OO0OO0OO0ODO0ODI1ITTI1ITI1ITO0O0O0O0TO0O0
00100O0OO0OI1O0O0OO0OTI1110O0O0OOTO0OO0OTI1?1
01001010O0O0OT1O0O0O0O0OI1IO0O0T1IO0TO0

01001010010 01

Figure 5: Restoring the dual graph of the ternary heptagrid from its Fibonacci
tree

From theorem 3.1, it is possible to devise easy rules to compute the coordi-
nates of the neighbouring tiles of a tile from its coordinate. It is possible also
to compute the coordinates of the nodes which are on the path from the node
to the root of the spanning tree. Moreover, as this was first indicated in [14], it
is possible to perform such computations by linear algorithms. Details of these
algorithms are found in [12, 14].

As the preferred son property is a tree property and as it holds for the
spanning tree for the pentagrid which is the same as the spanning tree for the

ternary heptagrid, see below figure 5, the algorithms of the pentagrid can easily
been extended to the case of the ternary heptagrid. A detailed presentation of
such an extension is is given in [8, 7].

3.2 The cases of tilings {p,4} and {p+2,3}

In the generalised context of tilings {p,4}, we consider the maximal representa-
tion which is associated to the recurrent relation attached to the greatest real
root of the polynomial of the splitting. The property of the preferred son ex-
tends to tilings {p,4} as it was done in [19]. Here, if the coordinate of node «
is v, the continuator is the node whose coordinate is 0. In this context, the
preferred son property says that for each node, its continuator appears exactly
once among its sons and the corresponding son is said preferred.

According to what we reported in section 2, the same property holds for
tilings {p+2,3} as the preferred son property is a property of the spanning tree
and as the spanning trees are the same for tiling {p,4} and for tiling {p+2, 3}.
The precise formula for the neighbours in the case of tiling {p+2,3} will be
given in a forthcoming paper.

4 Tilings{p, ¢}

In this section, we shall see that the splitting method can also successfully be
applied to the general situation of tilings {p, ¢} for other values of p and ¢ than
the one we considered in the previous sections.

However, we have to introduce a distinction between two cases: the case
when ¢ is even and the case when it is odd. Notice that this distinction also
appears in the study of the groups acting on the hyperbolic plane and whose
fundamental domains are regular polygons. Roughly speaking, the situation
when both p and ¢ are even is nice, the others are bad, see for instance, [1].

4.1 The splitting when ¢ is even

In this section, we define the splitting of the hyperbolic plane which we use to
prove that tiling {p, ¢} is combinatoric when ¢ is even.

2
We take as Sy, the angular sector of angle T Let q = 2h. As q is even,

we see that the complement of a tile heading the sector can receive h—1 copies
of Sy on the left border of the sector, see the left-hand side of figure 6. This
can be repeated on the other sides, each time applying a rotation centred in the

2
centre of the tile and of angle —W, until the right-hand border is reached: in

that case, what remains is a different region which we call S;. The right-hand
side of figure 6 indicates how S is to be split.
We see that except the borders, everything is similar. On the left-hand

2 2
border, there only an angle of (h—2).§ is left instead of (h—l).?ﬂ- in the case

of Sp. On the right-hand border, a similar reason appears and this prevents us
to put S; on the same place as in the case of Sy. Hence the splitting indicated
by the right-hand side of figure 6.

Figure 6: The splitting associated to tiling {p, ¢} when ¢ is even

4.2 The splitting when ¢ is odd

When ¢ is odd, the main problem is that the border defines an angle of 7 at
points A and B, see the left-hand side of figure 7, the case of Sy. Inside Sy, it

27 27
remains m — — which is not an integral multiple of a = —, the vertex angle
q

q
of the polygon.

Figure 7: The splitting associated to tiling {p, ¢} when ¢ is odd

There is a way to overcome the difficulty. Let us take the example of ver-
tex A. What is missing at this point is a sector of angle f, which is the half of

a. If we append such a sector, we get a integral multiple of a. It is not difficult
to see that we get then the h copies of Sy which are announced in figure 7. Now,

10

as we append a half sector, we have to remove it somewhere: we do that on the
next vertex, A;. Doing that, we have in A; for the next side the same situation
as we had in A: indeed, we obtain it by the already indicated rotation. Finally,
we find a region which is similar to S, removing also at B a sector of half «.

The same argument works word for word in the case of S; which gives the
splitting indicated by the right-hand side of figure 7.

4.3 Matrices, polynomials and languages

Using the information provided by figures 6 and 7, we obtain the following
matrices of incidence of the splitting, with the even case on the left-hand side
matrix and the odd case on the right-hand side one:

S(] 51 SO Sl
So ((p—3)(h—1) 1) So ((p—S)h 1)
S1 p-2)(h—-1)—2 1 S1 p—-2h-3 1

From these matrices, we get the following polynomials:

Po(X)=X2—=((p—3)(h—1)+1)X — h+ 3, when q is even,
P (X)=X2—((p—3)h+1)X — h + 3, when ¢ is odd.

And so, we get the following result of [18]:

Theorem 4.1 — (Margenstern, Skordev) Tilings {p,q} are combinatoric and
the language of the splitting is regular.

Consider an initial tile and replicate it by reflection in its sides. By definition,
the new tiles belong to the first generation. Next, define generation n+1 as
the set of new tiles obtained from the tiles of generation na by reflection in
their sides. Notice that in the previous situations, the levels of the spanning
tree correspond to the just described notion of generation: nodes of level n
correspond to the tiles of generation n which belong to Sy. This is no more the
case here, for almost all values of p and ¢. In this new situation, it is possible
to obtain at once nodes which belong to several generation. It is an interesting
question to handle the correspondance between levels of the spanning tree and
generations in an algorithmic way. This goes out the room available in this
extended abstract and it will appear in a forthcoming paper.

5 Localisation and initialisation

From what we established in the previous sections, we have tools to implement
cellular automata in any regular grid of the hyperbolic plane, especially in grids
associated with tilings {p,4} and {p+2,3}. Reports [10, 11, 6, 7] give a full
account of such an implementation in the case of the pentagrid and of the
heptagrid. Other interesting implementation details can be found in [4] for
the pentagrid and in [14] for the pentagrid again and for a triangular tiling
connected with the pentagrid.

11

First, we look at the localisation problem from which we can solve the ini-
tialisation one. We shall see that there is a hidden problem in the localisation:
namely a precision problem.

5.1 Localisation

This problem can be stated as follows: Given a point of the hyperbolic space by
its euclidean coordinates in Poincaré’s disc, find a tile which contains it. This
problem was first solved in [5] for the pentagrid. In [8], it was also solved for
the heptagrid. We have:

Theorem 5.1 — (see [5]) There is an algorithm which for any point (z,y) in
Poincaré’s disc with x? + y? < 1 finds a tile of tiling {5,4} in linear time with
respect to a binary representation of x, y.

Indeed, for implemenations, it is clear that points are given as rational num-
bers in binary representation and not as genuine mathematical real numbers.

The idea of the proof is to consider the successive lines which define the
tiling. In the model, these lines are represented by circles whose equation is of
the form X2 + Y2 — 2aX — 2bY + 1 = 0 where (a,b) is the euclidean centre of

the circle whose radius is v/ a2+b2—1 and we know that a® + b > 1. As the set
of points (u,v) which are outside the circle satisfy u? +v* — 2au — 2bv + 1 > 0,
from the splitting process, we easily know in which region of the splitting the
point falls. Then, we search such a region that the point falls within its leading
pentagon.

However, at this point, we are faced to a precision problem: what is the
nature of points (a,b) when the considered circles support lines of the tiling? If
we had there arbitrary computable real numbers, the problem would turn out
to be algorithmically unsolvable: indeed if the point is not on the circle, we
shall eventually find whether it is inside or outside the disc. But if the point is
on the circle, we may never know due to the undecidability of the equality of
computable real numbers with zero.

In [5] a solution was found for the pentagrid which relies on the following
remark. The lines defined by sides of tiles in tiling {5,4} are not any lines. Going
back to the equation of a circle supporting a line in the model, a suitable choice
of the first tile allows us to assume that a,b € @(¥), where 9 is the greatest
real number such that 94 + 492 — 1 = 0. Now, as it is thoroughly proved in [6],
it is not difficult to show that for rationals z,y, it is decidable whether (x,y)
belongs to the circle centred at (a,b) when a,b € Q(9). Moreover, as proved in
[6], the localisation of (z,y) is linear in the binary representation of z and y.

These arguments were later extended to any tiling {p,4}, see [8]. We may
also extend them to tilings {p+2,3} at the proce of another remark. Already
for tiling {7, 3}, the application of the previous argument is not straightforward.
The reason is that the border of a region is no more defined by a line but by
infinitely many ones. However, there is another way which relies on another
splitting giving rise to a similar tiling and which is illustrated by figure 8, see
also [8, 7].

12

Theorem 5.2 — (see [8]) There is an algorithm which for any point (z,y) in
Poincaré’s disc with x> + y? < 1 finds a tile of tiling {7,3} in linear time with
respect to a binary representation of z, y.

Figure 8 indicates the regions, there are three of them, and it indicates also
the elements of the displacements which allow to prove that the regions generate
the tiling. Notice that here we have two generating tiles and that the incidence
matrix associated to this splitting provides us with the same polynomial of the
splitting.

Figure 8: The other splitting associated to tiling {7,3}

All these properties can be extended to tilings {p,4} and {p+2,3}. This was
more or less proved in [19] for tilings {p,4}. It is also possible to extend them to
tilings {p+2, 3}, even for what is the location agorithm. Much more, it is also
possible to extend these arguments to the general cases of tilings {p, ¢}. This is
straightforward for the case of even ¢’s. For the case of odd ¢’s, we can extend
the principle of another tiling as suggested by figure 8 which is almost clear for
tilings {p+2,3}. A precise account of all these properties will be given in the
announced forthcoming paper.

5.2 Imitialisation

In this section, we briefly indicate a general procedure to initialise cellular au-
tomata in the regular grids of the hyperbolic plane. The method relies on the
localisation algorithm and the following protocole. Assume that the problem
which has to be solved by the considered cellular automaton has an initial con-
figuration which is constructed starting from the spatial density of some param-
eter. A lot of problems solved by cellular automata are of this kind, for instance
in modelling diffusion-reaction phenomena. This density can be materialised by

13

the number of particles which can be found in a unit of space. In the case of
the hyperbolic plane, a natural frame for this is the number of points which fall
in a given tile.

The algorithm of the previous subsection can be used for this purpose. When
we know in which tile the point falls, it is enough to update the statistics of that
tile. When the set of points is completely performed, it is then easy to compute
the denisty.

This situation is more precisely discussed in [5, 8, 9]. It can be also adapted
for any tiling {p, ¢} as this was mentioned for the location process. The an-
nounced forthcoming paper will also give an account of this point.

Acknowledgement

The corresponding author and the last one thank the University of Metz and
the University of Bremen, namely professor Heinz-Otto Peitgen, for giving them
the best conditions to their cooperation.

References

[1] H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete
Groups, 11 Ed., Springer, Berlin, (1965).

[2] A.S. Fraenkel, Systems of numerations, American Mathematical Monthly,
92 (1985), 105-114.

[3] H. Harborth, Concentric cycles in mosaic graphs, Applications of Fibonacci
Numbers, 3, Kluwer Academic Publications, (1990), 123-128.

[4] F. Herrmann, M. Margenstern, An interactive processing of cellular au-
tomata in the hyperbolic plane, Proceedings of SCI’2002, vol. V, (2002),
406—410.

[5] K. Chelghoum, M. Margenstern, B. Martin, I. Pecci, Locating Points in
the Pentagonal Regular Tiling of the Hyperbolic Plane, Proceedings of
SCI’2003, vol. V, (2003), 25-30.

[6] K. Chelghoum, M. Margenstern, B. Martin, I. Pecci, Cellular automata in
the pentagrid of the hyperbolic plane: tools for interactions, Publications
du LITA, N°2004-101, (2004), 63p.

[7] K. Chelghoum, M. Margenstern, B. Martin, I. Pecci, Cellular automata in
the ternary heptagrid of the hyperbolic plane: tools for interactions, Publi-
cations du LITA, N°2004-101, (2004), 63p.

[8] K. Chelghoum, M. Margenstern, B. Martin, I. Pecci, Tools for implement-
ing cellular automata in grid {7,3} of the hyperbolic plane, Proceedings of
DMCS, workshop under ICALP’04, Turku, July 2004, (2004), 13-26.

[9] K. Chelghoum, M. Margenstern, B. Martin, I. Pecci, Cellular automata
in the hyperbolic plane: proposal for a new environment, Lecture Notes in
Computer Science, proceedings of ACRI’2004, to appear.

[10] M. Margenstern, Cellular automata in the hyperbolic plane, Technical re-
port, Publications du GIFM, I.U.T. of Metz, N°99-103, ISBN 2-9511539-
3-7, (1999), 34p.

14

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Margenstern, Cellular automata in the hyperbolic plane, (II), Techni-
cal report, Publications du GIFM, L.U.T. of Metz, N°2000-101, ISBN 2-
9511539-7-X, (2000), 43p.

M. Margenstern, New Tools for Cellular Automata of the Hyperbolic Plane,
Journal of Universal Computer Science, 6(12), (2000), 1226-1252.

M. Margenstern, A combinatorial approach to infinigons and infinigrids of
the hyperbolic plane, Proceedings of SCT'2002, vol. V, (2002), 417-422.

M. Margenstern, Implementing Cellular Automata on the Triangular Grids
of the Hyperbolic Plane for New Simulation Tools, Proceedings of the Busi-
ness and Industry Symposium, ASTC’2003, (2003), 14-21.

M. Margenstern, Cellular Automata and Combinatoric Tilings in Hyper-
bolic Spaces. A Survey, Lecture Notes in Computer Science, 2731, Pro-
ceedings of DMTCS 2003, (2003), 48-72.

M. Margenstern, The tiling of the hyperbolic 4D space by the 120-cell is
combinatoric, Journal of Universal Computer Science, to appear.

M. Margenstern, K. Morita, NP problems are tractable in the space of cel-
lular automata in the hyperbolic plane, Theoretical Computer Science, 259,
(2001), 99-128.

M. Margenstern, G. Skordev, The tilings {p,q} of the hyperbolic plane are
combinatoric, Proceedings of SCI’2003, vol. V, (2003), 42—-46.

M. Margenstern, G. Skordev, Fibonacci Type Coding for the Regular Rect-
angular Tilings of the Hyperbolic Plane, Journal of Universal Computer
Science, 9(5), (2003), 398-422.

M. Margenstern, G. Skordev, Tools for devising cellular automata in the
hyperbolic 3D space Fundamenta Informaticae, 58(2), (2003), 369-398.

H. Meschkowski, Noneuclidean Geometry, Academic Press, NY, 1964.

15

Cellular Automata and Parallel Array Systems
Rudolf FREUND* and Fritz TAFILL

Technische Universitat Wien
Fakultat fiir Informatik
Institut fir Computersprachen
Favoritenstr. 9, A-1040 Wien, Austria
e-mail: rudi@emcc.at

Abstract

The concept of n-dimensional parallel array systems is a useful means
for the formal syntactic description of n-dimensional cellular automata.
As n-dimensional parallel array systems are a more general model than n-
dimensional cellular automata, they not only allow for the correct formal
description of algorithms for n-dimensional cellular automata, but even
allow for representing simpler solutions of complex problems.

1 Introduction

As we shall elaborate in this paper, n-dimensional parallel array systems (e.g.,
see [3]) are useful tools for the formal syntactic description of n-dimensional
cellular automata ([15]). For the two-dimensional case, a survey of possible ap-
plications of array automata like picture recognition is given in [8]; theoretical
results concerning two- and three-dimensional array systems as well as appli-
cations of various such models are described in [2] and [14]. As n-dimensional
parallel array systems are a more general model than n-dimensional cellular
automata, they allow us to construct simpler algorithms for complex problems,
e.g., in the area of distributed systems. Attributed parallel array systems have
already been shown to be a useful tool for the formal description of the static
and dynamic characteristics of neural networks; because of the underlying grid
structure, Kohonen’s model of self-organizing feature maps (e.g., see [11]) is
especially well suited for being represented by n-dimensional parallel array sys-
tems (see [5], [6]). Using the concept of different levels of scaling like in [4], even
hierarchical networks can be modelled by attributed parallel array systems.

In the second section of this paper we recall the definitions of n-dimensional
arrays as well as n-dimensional parallel array systems (Lindenmayer systems);

*Corresponding author

moreover, we give a few examples and state some well-known important results.
In the third section we show how cellular automata can be represented as par-
allel array systems. In the fourth section we elaborate various algorithms on
cellular automata in the model of n-dimensional parallel array systems as well
as attributed n-dimensional parallel array systems. Finally we discuss various
extensions of the results presented in this paper.

2 Definitions and Examples

In the main part of this section we introduce the definitions and notations
for n-dimensional arrays and parallel array systems; moreover we give some
explanatory examples and recall some of the most important results. For basic
notions from the theory of formal languages the reader is referred to [13].

2.1 N-dimensional arrays

Let Z denote the set of integers, let N denote the set of positive integers,
ie, N ={1,2,..}, and let n € N. Let V be a (finite) alphabet and let #
be a symbol not in V, which is called the background or blank symbol. Then
an n-dimensional array A over V is a function A : Z® — V U {#} with finite
support supp(A), where supp(A) = {ve Z" | A(v) # #}. We usually shall
write A = {(v, A (v)) | v € supp(A)}.

The set of all n-dimensional arrays over V is denoted by V*™. The empty
array in V*™ with empty support is denoted by A,,. Moreover, we define V" =
V*n —{A,}. Any subset of V" is called a A-free n-dimensional array language.

Let v € Z™. Then the translation 7, : Z™ — Z™ is defined by 7, (w) = w+v
for all w € Z™, and for any array A4 € V*" we define 7, (A), the corresponding
n-dimensional array translated by v, by (7, (4)) (w) = A (w —v) for all w € Z"™.
The vector (0, ...,0) € Z™ is denoted by €,,.

In the literature arrays are often regarded as equivalence classes of arrays
with respect to linear translations (e.g., see [10], [12], and [14]), i.e., only the
relative positions of the symbols # # in the plane are taken into account, yet
in this paper we shall use n-dimensional arrays as defined above.

Example 2.1 Let V = {a,b}, A: Z? = {a,b,#}, A(0,1) = A(1,0) = a and
A(0,0) = b. Then supp(A) = {(0,0),(0,1),(1,0)}, and the two-dimensional
array A can also be written as A = {((0,0),b),((0,1),a),((1,0),a)}.

In order to be able to define the important notion of connectedness of n-di-
mensional arrays, we need the following definitions:

An (undirected) graph g is an ordered pair (K, E) where K is a finite set of
nodes and E is a set of undirected edges {z,y} with z,y € K. A sequence of
different nodes zg,x1, ..., Zm, m € N, is called a path of length m in g with the
starting-point z¢ and the ending-point z,,, if for all ¢« with 1 <i < m an edge

{zi—1,2;} in E exists. A graph g is said to be connected, if for any two nodes
z,y € K, x # vy, a path in g with starting point and ending point y exists.

Let W be a non-empty finite subset of Z™. For any k € N U {0}, a graph
g, (W) = (W, Ey) can be assigned to W such that Ej, for v,w € W contains
the edge {v,w} if and only if 0 < ||v — w|| < k, where the norm ||ul| of a vector
w € Z" u = (u(l),...,u(n)), is defined by |lu|| = max{|u (i) |1<i<n}.
Then W is said to be k-connected if gr (W) is a connected graph. Observe
that W is 0-connected if and only if card (W) = 1, where card (W) denotes the
number of elements in the set .

Now let V' be a finite alphabet and A an n-dimensional array over V, A #
A,. Then A is said to be k-connected if gy, (supp (A)) is a connected graph;
gk (supp (A)) is called the k-neighbourhood graph of A. Obviously, if A is k-
connected then A is m-connected for all m > k, too. The norm of A is the
smallest number k¥ € N U {0} such that A is k-connected, and is denoted by
]

Example 2.2 A = {((0,0),b),((0,1),a), ((1,0),a) € {a,b}™ is k-connected
for every k € N, and therefore ||A|| = 1.

On the other hand, B = {((0,0) ,a), ((k,k),a)} € {a}*? is m-connected only
for every m > k, and therefore ||B|| = k.

As many results for n-dimensional arrays for a special n can be taken over
immediately for higher dimensions, we introduce the following notion:

Let n,m € N with n < m. For n < m, the natural embedding i, , : 2" —
Z™ is defined by ipm (v) = (v, Qp_y) for all v € Z"; for n = m we define
ingn: L™ = Z" by in, (v) = v for all v e Z™.

To an n-dimensional array A with A = {(v, A (v)) | v € supp (A)} we assign
the m-dimensional array ip,m (A) = {(in,m (v), A)) | v € supp (A)}.

2.2 N-dimensional parallel array systems (n-dimensional
Lindenmayer systems)

An n-dimensional parallel array production over an alphabet V' is a triple
(X, {(v,X,) |v e U},Y),

where U is a finite subset of Z™ — {Q,} and X,Y, and X,, for all v € U, are ele-
ments of V. In the sequel, a parallel array production (X, {(v,X,) |v € U},Y)
will also be called an X-production. A finite set T of parallel array productions
over the alphabet V' is called a table of parallel array productions. An array
By € V*" is said to be directly derivable from the array By € V*™ by T, if and
only if for each w € Z™ a parallel array production (X, {(v,X,) |v € U},Y)
exists such that By (w) = X, By (w) =Y, and By (v+w) = X, for all v € U,
and we write By =7 Bs.

Moreover we shall make the convention that the blank symbol # can only
be replaced in the non-empty context by a symbol of V, i.e., Y # # is allowed

for X = # only if X, # # for some v € U. As a consequence of this convention
changes in an n-dimensional array by using a table of parallel productions are
restricted to a finite area of the space Z™.

An n-dimensional parallel array system is a quintuple
S = (HJVJE’#JP)’

where n € N is the dimension of the system, V — ¥ is a set of non-terminal
symbols, ¥ is a set of terminal symbols, # is the blank symbol, and P is a finite
set of tables of n-dimensional parallel array productions over V.

An array B> € V*" is said to be directly derivable from the array By € V*"
in S, if and only if there is a table T' of n-dimensional parallel array productions
in P such that By =71 B>, and we write B, =>g Ba; ==§ denotes the reflexive
and transitive closure of the relation —g .

For a parallel array production of the form (X,{(v,X,)|v € U},Y), the
norm is defined as max {||v|| | v € U}; the norm of an n-dimensional parallel
array system S = (n,V, %, #,P), ||S]|, is defined as the maximum of the norms
of all productions of tables T in P.

Let S = (n,V, X%, #, P) be an n-dimensional parallel array system and A C
V*™ be a finite set of azioms. Then G = (S, A) is called an n-dimensional parallel
array grammar. An array Bs € V*™" is said to be directly derivable from the
array By € V*" in G, if and only if By =5 B2, and we write B =g Bs; =
denotes the reflexive and transitive closure of the relation =>¢ .The language
of n-dimensional arrays generated by G, L (G), is defined by

L(G) ={Be X" |C = B for some C € A}.
The norm of G is the maximum of the norms of S and the elements of A.

Example 2.3 Conway’s game of life (e.g., see [7]) can be described by the two-
dimensional parallel array system S = (2,{1},{1},#, P) with

P P1UP2UP3UP4;
P = {(1,{(v,Xy) |veUn},1)|card({ve Uy | X, =1}) € {2,3}},

Py = {(1,{(v,Xy) [vE€Um},#) | card({v € Un | Xy = 1}) ¢ {2,3}},
Py = {(#{(v,Xy) |v € Unm},#) | card({v € Un | X, =1}) # 3},
Py = {(#,{(v,X,) |veUn},1)|card({ve Uy | X, =1}) =3},

where Uy is the Moore-neighbourhood Uy = {v € Z* | |jv|| = 1} ; hence, we
obtain ||S|| = 1.
In Figure 1, four successive derivation steps starting from the aziom A with
supp(A) = {(0,0),(1,0),(2,0),(2,1),(1,2)}
are depicted showing the periodicity of the evolving structures. Thus, for G =
(S,{A}), L(G) is infinite, although it contains arrays of only four different
structures.

Figure 1: “The Glider”

2.3 N-dimensional attributed parallel array systems

Let V be an alphabet and I" be a set of attributes with ¢ € I', ¢ being a special
attribute called the empty attribute. An n-dimensional attributed array over
(V,T) is a pair (A,~) where A is an n-dimensional array over V and v : Z" - T'
is an attribution function such that v (u) = € for all u € Z™ with A (u) = #
(i.e., non-empty attributes can only be assigned to vectors u in the support of
A). We shall also write

(A7) ={(u, A(u),7(u)) | u € supp (A)}.
The set of all n-dimensional attributed arrays over (V,T) is denoted by (V,T)*".

An n-dimensional attributed parallel array production over (V,T') is a pair
(p, f), where p is an n-dimensional parallel array production over V, p = (X,
{(v,X,) |v €U},Y), f is a computable function, f : TV %} 5 ' U is a
finite subset of Z™ — {Q,} and X,Y, and X,, for all v € U, are elements
of V. A finite set T of n-dimensional attributed parallel array productions
over (V,T) is called a table of n-dimensional attributed parallel array produc-
tions. An attributed array (Ba,v2) € (V,T)*" is said to be directly derivable
from the attributed array (Bi,v1) € (V,I)*" by T, if and only if for each
w € Z™ an attributed parallel array production ((X,{(v,X,) |veU},Y),)
exists such that By (w) = X, Bo(w) = Y, and By (v+w) = X, for all
v € U, as well as {(u,1 (w+u)) | v € UU{NQ,}} is in the domain of f and
7 () =f ({(t, 31 (w +u)) | u € UU{R}}); we write (Bi,m) =1 (B,) -

An n-dimensional attributed parallel array system is a sextuple
S=V,5,#T,P),

where n € N is the dimension of the system, V — ¥ is a set of non-terminal
symbols, ¥ is a set of terminal symbols, # is the blank symbol, T is a set of
attributes, and P is a finite set of tables of n-dimensional attributed parallel
array productions over (V,T).

An attributed array (Ba,v2) € (V,T)™" is said to be directly derivable from
the attributed array (By,71) € (V,T)*" in S, if and only if there is a table T of n-
dimensional attributed parallel array productions in P such that (B1,71) =7
(Ba,72) , and we write (B1,71) =>s (B2,72); =% denotes the reflexive and
transitive closure of the relation —g .

Example 2.4 The absolute positions of the cells in the space Z2 can be assigned
as attributes to the two-dimensional arrays B we dealt with in FExample 2.3
(Conway’s game of life) by means of the attribution functions vy : Z2 — Z? U
{e} with v (u) = u for all u € supp (B); this information about the absolute
positions of the cells in the space Z? can be carried over from an aziom by the
attributed parallel array productions in the two-dimensional attributed parallel
array system S' = (2,{1},{1}, P',#) with P' = P/ U P; U P} U P;, where P},
1 < i < 4, is obtained from P; by assigning suitable attribution functions f; to
the parallel array productions in P; :
Pl = {(L{(v,Xy) |veUn},1), f1) |,
card({v € Uy | X, = 1}) € {2,3}},
Jr ({(u,y (W) [w € Un U{D2}}) =7 (Q2),
Py = {((L{(v,Xy) |veUn},#),/f2) |
card({v e Uy | X, = 1}) ¢ {2,3}},
f2({(u,y () v € Un U{D2}}) = ¢;
Py = {((# A, X)) [veUnt,#),f3) |,
card({v e Uy | X, = 1}) # 3},
fs ({(u,y (w) | v € Un U{Q2}}) = &;
Pzi = {((#7 {(/UaXv) | vE UM}) 1) ’f4,{(’l),Xu)|'UEUM}) |
card({v e Uy | X, =1}) =3},
fa (o, x0) wevny {7y (w) [v € Un U{Q2}}) = v (u0) — uo
where ug is the smallest vector in the set {v € Uy | X, = 1},
for arbitrary functions v : Uy U {Q2} — Z2 U {e}.
The functions fi {(v,x,)|vcUr} guarantee that the correct positions are taken
over from cells alive at time t to cells newly born at time t + 1.

The example given above already shows how models of cellular automata
extended by suitable sets of attributes respectively attribution functions can be
described by means of attributed parallel array systems. We shall return to
such models in the following sections.

3 Representation of Cellular Automata

The example of Conway’s game of life (Example 2.3) already indicates how
cellular automata can be described by means of n-dimensional parallel array
systems. In fact, an n-dimensional cellular automaton can be seen as a specific
type of an n-dimensional parallel array system meeting special conditions:

An n-dimensional parallel array system S = (n,V, X, #, P) is called an n--
dimensional cellular automaton if and only if it fulfills the following conditions:

1. There exists only one uniform neighbourhood in only one table of parallel
array productions in P, i.e., there exists a U C Z" such that every paral-
lel array production in P is of the form (X,{(v,X,) |v € U},Y); in the

following, we shall consider P itself as the single table of parallel array
productions.

2. The set of parallel array productions P is deterministic in the sense that
if
(X,{(v,X,) | v € U},Y) and (X,{(v, X}) | v € U}, V")
are two different X-productions with Y’ # Y, then
{(v, Xo) |[ve U} #{(v,X;) |veU}.

As derivations in S from a single axiom C are deterministic, we shall write
St (C) for the array obtained after ¢ times applying S to C, t > 0, i.e., recursively
we define S° (C) = C and S**! (C) = S(S*(C)), where for any array B by
S (B) we denote the array which is obtained by once applying S to B, i.e.,
B=5 S (B).

An n-dimensional attributed parallel array system S = (n,V, X, #, P) with
only one table of n-dimensional parallel array productions is called an n-di-
mensional (attributed) cellular automaton if and only if it fulfills the following
conditions:

1. There exists only one uniform neighbourhood in the attributed parallel ar-
ray productions in P, i.e., there exists a U C Z" such that every attributed
parallel array production in P is of the form ((X, {(v, X,) |v € U},Y), f).

2. The set of attributed parallel array productions P is deterministic in the
sense that if

((Xa{(vaXv) | v € U}:Y) Jfl) and ((X:{(U)XII)) | vE U}JYI):fZ)

are two different X-productions in P, then either

(a) {(v, Xy) [ve U} #{(v,X;) [veU}or
(b) the domains of f; and f, are disjoint.

Obviously, the two-dimensional (attributed) parallel array system represent-
ing Conway’s game of life (Example 2.3 and Example 2.4, respectively) is a
two-dimensional (attributed) cellular automaton according to this definition.

Usually we only consider n-dimensional parallel array system without ex-
tended symbols and without attributes when speaking of cellular automata, yet
for some applications this notion is suitable for n-dimensional attributed parallel
array systems with extended symbols, too.

4 Algorithms

The formal model of n-dimensional cellular automata introduced in the previous
sections can be used to formulate various algorithms in different application
fields and to prove these algorithms in this formal setting. In the following

we shall give a few characteristic examples for such typical basic algorithms
that concern problems to be found in the areas of distributed systems and of
cellular automata. For neural networks, especially for Kohonen’s model of self-
organizing feature maps, specific results were elaborated in [5].

The first result we elaborate can be proved by using n-dimensional cellular
automata without attributes, whereas the next algorithms make use of the spe-
cific properties offered by the use of suitable sets of attributes. In general, all
results hold true for the n-dimensional space Z", where n is arbitrary, although
in practice n € {1,2, 3} might be sufficient for most applications.

In the following lemma we show how we can use n-dimensional cellular au-
tomata to check the condition whether all cells in an underlying array are in
specific states or not:

Lemma 4.1 Let C € V™ with ||C|| = k, let wo € supp (C) with C (wo) = ¢ and
¢ #C(u) for allu € supp (C)—{wo}, let Vg CV, and letto = 2(d + 1), whered
is the mazimal distance of a vector u € supp (C) from wy in the k-neighbourhood
graph of C. Moreover, let h® : V. — V@ i € {1,2}, be morphisms with
RO (X)=X® for all X € V.

Then we can construct an n-dimensional cellular automaton S with

S = (n7VIJE7 #7P)7

VI = VU (M (V) xUs) U () (V) x Up),
T = (MO (V)xUp),
Up = {ueZ"||ull <k},

which checks whether C (u) € Vg for all u € supp (C) in such a way that if this
condition holds true for C then

1. supp (St (C)) = supp (C) for all t > 0;
2. (§%71(C)) (wo) # (5% (C)) (wo) and (5% (C)) (wo) = (A (¢),{}),

which at position wo indicates that the condition for C is fulfilled; more-
over, for tog we also have

3. Stotk (C) = St (C) for all k > 0, i.e., St (C) is a stable configuration that
is not changed any more by an application of S, and St (C) € L1, i.e.,
Sto (C) is a terminal array.

Proof. Let U = Uy — {Q,,}; then U is the uniform neighbourhood used in the
following parallel array productions in P:
L (e {(u, Xu) [u € U}, (bW (c),)
where X,, € Vg U {#} for every u € U;
2. (X, {(u, Xu) [ue U}, (b (X),n({(u, Xu) | u € U})))
for all X € V and all {(u, X,) | u € U} such that
P(X,{(u,Xy) |ueU}), and

(X, {(w, X,) | u € U}, X)

for all X € V and all {(u, X,) | u € U} such that

P (X, {(w,X,) [ueTY),

where the predicate P (X, {(u, X,) | v € U}) is true if and only if
X € Vg and Xy, € (hY) (V) x Up) for some ug € U; in this case,
w({(u, Xy,) | w € U}) denotes the smallest vector u in U such that
Xy € (R (V) x Up) ;

3. (A (X),u0) , {(u, Xu) | u € U}, () (X) ,u0))
for all ug € Up and X € V as well as all
{(u, Xy,) | v € U} such that Q (X, {(u,Xy) | v €U}, ug), and
(MY (X),u0),{(u, Xu) |u € U}, (A (X),up))
for all ug € Uy and X € V as well as all
{(u, Xy) | v € U} such that =Q (X, {(u, Xy) | u € U},uo),
where the predicate Q (X, {(u, Xy) | v € U}, up) is true if and only if
X € Vg and for all u € U, X, € ((hY (Vg) UR®) (V) x Up) U {#}
as well as X, € ((h(Y) (V) Uh® (V) x {~uo}) implies
Xy € (B (Vi) x {-uo});

4. (M (X),u0), {(u, Xy) |u € U}, (AP (X),u0))
for all ug € Up and for all X € V, X,, € V' U {#} for all u € U;

5. (#,{(u,Xy) | u € U}, #) for arbitrary X, € V' U{#},uv e U.

By the production in (1), an impulse from position wy is initiated, which is
propagated forward from wg by the productions in (2) for which the predicate
P holds true and which is only possible if the cell under consideration is in a
state from Vg. In this way, a tree with root wg that is a subgraph of the k-
neighbourhood graph of C is generated, where each non-blank cell remembers
its ancestor in the vector u ({(u, X,) | © € U}). By the productions in (3) this
impulse will be reflected from the “borders” of the k-neighbourhood graph;
according to the predicate (), a cell can only take a terminal state from X
if all its children in this spanning tree generated in the forward propagation
period have already changed to a terminal state. The backward propagation
successfully ends in wg (after exactly 2 (d + 1) steps) if and only if C fulfills the
desired condition. 0

Observe that we do not take care of what happens if C does not fulfill the
desired conditions; in this case the derivation with the system S is blocked
without yielding a terminal array or a terminal state at wg. Yet it is an easy
exercise to modify the algorithm in such a way that after ty steps we reach

a stable terminal array which at position wy shows by corresponding states
whether C fulfills the desired condition or not.

In a similar way, we can also construct an n-dimensional cellular automaton
that allows us to check whether there exists at least one non-blank cell in C
which has its state in Vg.

The cellular automaton in the preceding proof was constructed in such a
way that the non-blank cells at positions # wy have to wait until the forward
impulse from wy “activates” them. On the other hand, the algorithm even works
if the cells do not work in a synchronized way, although in this case we cannot
guarantee the exact upper bound 2 (d + 1).

The following algorithm only works for synchronized cells and uses suitable
attributes to guarantee that all cells in a synchronized way take their terminal
state after exactly 3d + 4 steps; this problem in an obvious way resembles the
FSSP (Firing Squad Synchronization Problem), which is well-known from lit-
erature in the area of cellular automata (e.g., see various contributions in [9]).
The specific (linear one-dimensional) structure of the squad in the FSSP has
allowed the construction of many sophisticated solutions; yet the problem we
discuss in the following works for arbitrary dimensions and arrays of arbitrary
structures.

Lemma 4.2 Let C € V™ with ||C|| = k, let wo € supp (C) with C (wg) = ¢
and ¢ # C (u) for all u € supp (C) — {wo}, let Vg C V, and let to, = 3d + 4,
where d is the mazimal distance of a vector u € supp (C) from wq in the k-
neighbourhood graph of C. Then we can construct an n-dimensional attributed
cellular automaton S = (n, V', X, #,T, P) which checks whether C (u) € Vg for
all u € supp (C) in such a way that if this condition holds true for C then

1. supp (St (C,08)) = supp (C) for all t >0,

where § is the empty attribution function with § (u) = ¢ for all u € Z™;
2. 84(C,6) € (V! =X,T)™ for all t with 0 < t < to,

Sto (C,8) € (£,1)*", and S*' (C,8) = St (C,8) for all t' > to,

i.e., in a synchronized way all cells change to a stable terminal state after
ezactly to steps thus indicating that C fulfills the desired condition.

Proof. Let hD : V — V) for i € {1,2,3,4} denote the morphisms with
h® (X) = X for all X € V. Then we define

Uo={u€ Z" |[ju]| <k}, U ="Uo—{Q},
Vi=vVu ((U1§i§4 h®) (V)) X Uo) ,

T = (k" (Vg)) x Up, and

= (NU{0})’U{e}.

10

P contains the following attributed parallel array productions (for arbitrary
functions v : Uy — I'):

L. ((e,{(u,Xu) |u€ U}, (MY (c),Q)), f1) , where X,, € VgU{#} for every
u €U, and fi ({(u,7(u)) | u € Us}) =(0,0);

2. (X {(u, Xy) [ue U}, (M (X), u({(u, Xu) | u € U}))),
fo{(u,x)wevy) for all X € V and all {(u, X,) | u € U} such that
P(X,{(u,Xy) |ueU}), and

(X, {(u, Xy) |ueU},X), fo) for all X € V and all {(u,X,) |ueU}
such that

P (X, {(u, X.) |u € UY),

where the predicate P (X {(u, X,) | u € U}) is true if and only if

X € Vg and X,,, € (hY) (V) x Up) for some ugy € U; in this case,

u({(u, Xy,) | w € U}) denotes the smallest vector u in U such that

X, € (MY (V) x Up) ;

Jo ({(u,7 (w)) [u € Up}) =7 ()5

foqwxywevy {(u, 7 (w) v € Usl) =7 (n{(u, Xu) [v € U}) +(1,0);
3. (MM (X),u0) , {(u, Xu) | u € U}, (M) (X) ,u0)) ,

F3,({(u,X (w))[ueU},u0)) for all ug € Up and X € V as well as all

{(u, Xy) | v € U} such that Q (X, {(u,Xy) | v €U}, ug), and

(P (X),u0) , {(u, Xu) | u € U}, (D (X) ,u0)) , fo)

for all ug € Uy and X € V as well as all

{(u,Xy) | w € U} such that -Q (X, {(u, Xy) | v € U}, u),

where the predicate Q (X, {(u, Xy) | v € U}, ug) is true if and only if

X € Vg and for all u € U, X,, € ((hM (V) UR®) (V) x Up) U {#}

as well as X, € ((h(V) (Vg) Uh® (VE)) x {~uo})

implies X, € (h® (Vi) x {~uo});

f3,({(w,x) et uo) {(u, 7 (0) [u € Up}) = ((v (2m));

max ({(7 ()} U{(v (@), | u € U, Xy € (h® (V) x {~uo})}))

where for each (a1,as) € (N U {0})* we define

(a1,a2); = a; and (a1,a2), = a as well as gy = €3 =¢;
4. (((h® (), Q) {(u, Xu) | u € UY,BP) (0)) , fa)

for arbitrary X, € (h® (Vi) x Up) U {#}, u € U;

fa({(u,y (W) [w € Uo}) =7 (Qn);

11

5. (M) (X),u0) , {(u0, Xug) } U {(, X)) | u € U = {uo}},h® (X)),
F5,u0) if Xug € (B (Vi) x Up) and
(R (c) ;u0) , {(u0, Xuo) } U {(u, X)) | u € U = {uo}}, h® (X)), fo)
if X, € (h? (Vg) x Up), for arbitrary X € (Vi) — {c}, and
X, € (M (VE) UL®) (VR)) x Up) U {#} for u € U — {uo};
fsuo ({(uw; v (w) | w € Uo}) = ((7 (), (7 (u0))y — 1);
6. (((h®) (X),u0) ,{(u, Xu) | w € U}, h) (X)), fo)
for arbitrary X € Vg, ug € Up, and
Xy € ((R® (V) UR®) (V) x Us) U {#} for u € U;

((7 (Qn))1 , ('7 (Qn))Q - 1) if
fo (v () | w € o) = (), >0,

else undefined,

i.e., this attributed parallel array production is only applicable if the value
of the second component of the attribute of the cell under consideration
is positive;

7. (((h® (X),u0) , {(u, Xu) | u € U}, h® (X)), fr)
for arbitrary X € Vg, ug € Uy,
and X, € (h® (Vi) x Up) U {#} for u € U;

Fr ({7 (W) | uw € Up}) = { (7 (@)1 ,0) i (7 (), =0,

else undefined,

i.e., this attributed parallel array production is only applicable if the value
of the second component of the attribute of the cell under consideration
is 0;

8. ((#,{(u,Xy) |ue U}, #), fc) for arbitrary X,, € V' U{#},u € U,
fe (u,y (W) | v € Uo}) =&

9. (((h™ (X),u0) , {(u, Xu) | u € U}, h (X)), fo)
for arbitrary X € Vg, ug € Uy, and X, € (M (Vg) x Up) U {#}, u € U.

The productions in (1), (2) and (3) work in a similar way as already described
in the proof of Lemma 4.1, yet now in the first component of the attribute the
distances of the cells from wy with respect to the k-neighbourhood graph of C
are computed by the productions in (2), whereas in the backward propagation
phase the productions in (3) guarantee that after a total number of exactly
2(d+1) steps the cell at wo knows this maximal distance d, which is propa-
gated in the second components of the attributes. The attributed parallel array
production in (4) then starts the “synchronized firing” process, i.e., if d,, is
the distance of a cell at position u from wg then after exactly d, further steps
by a production in (5) this cell gets to know in the second component of its

12

attribute how long it has to wait before turning into the terminal state from
(R (Vi) x Up) . By the productions in (6) this value in the second compo-
nent is decremented until suitable productions in (7) become applicable, which
in a synchronized manner make all cells from supp(C) turn into a terminal
state after a total number of exactly 2(d+ 1) + (d +2) = 3d + 4 steps. The
productions in (9) guarantee that this terminal array is stable, i.e., we obtain
St(C,8) = {(u,h™ (C (u)),(dy,0)) | u € supp(C)} for all t > 3d + 4. O

Whereas the second part of the algorithm described above obviously only
works for synchronized cells, the first 2 (d + 1) steps again also work for unsyn-
chronized cells, which shows how even in this case the maximal distance in the
k-neighbourhood graph of C from a given cell at position wy can be computed
and then be realized as an attribute of the cell at position wg. In order to prove
this additional result we chose a more complex algorithm than it would have
been necessary to prove the statement of Lemma 4.2 only: As from Lemma 4.1
we already know that it takes exactly 2 (d + 1) steps until the impulse initiated
from wg comes back to wyg, it would be sufficient only to count these steps in
the cell at position wy and then to propagate this d as shown in the productions
in (4) to (9).

The algorithms elaborated in Lemma 4.1 and in Lemma 4.2 were controlled
by a specifically marked cell (the so-called “general” in the FSSP), which also
allowed us to realize the result of the computation from the state of this single
cell only. Yet it is also possible to obtain the results desired in Lemma 4.2, i.e.,
that in case all cells in the support of C are in Vg then all cells in the support
of C change to terminal states after a certain number of steps in a synchronized
way, without starting from such a specifically marked cell, but instead by an
algorithm which starts in parallel in all non-blank cells of the axiom C.

Conclusion

In this paper we have shown how specific variants of the model of n-dimensional
(attributed) parallel array systems (e.g., see [3]) can be used for represent-
ing n-dimensional cellular automata. Various algorithms for specific problems
were elaborated by constructing suitable n-dimensional (attributed) cellular au-
tomata and proved in the corresponding formal framework of n-dimensional
(attributed) parallel array systems. The ideas of the proofs immediately carry
over to other topologies than the Fuclidian space Z", e.g., to cellular automata
on a hexagonal grid (see [1]).

In fact, the algorithms even work on arbitrary graph structures with bounded
node degree. A more thorough discussion of these topics is far beyond the scope
of this paper, yet offers a wide field for future research. Another possibility
for further investigations is to consider special structures of the starting ax-
ioms, e.g., n-dimensional full cubes; taking advantage of specific features of
such special structures allows for considerable improvements of the general case
algorithms elaborated in this paper.

13

References

[1]

[2]

[3]

[4]

(8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

K. Aizawa, A, Nakamura, Grammars on the hexagonal array, in: [14], 191-
200.

C. H. Chen, L. F. Pau, P. S.-P. Wang (eds.), Handbook of Pattern Recog-
nition & Computer Vision, World Scientific Publ., Singapore, 1993.

R. Freund, Aspects of n-dimensional Lindenmayer systems, in: G. Rozen-
berg, A. Salomaa (eds.), Developments in Language Theory. At The Cross-
roads of Mathematics, Computer Science and Biology, World Scientific
Publ., Singapore, 1994, 250-261.

R. Freund, Multi-level eco-array grammars, in: Gh. Paun (ed.), Artificial
Life — Grammatical Models, Black Sea University Press, Bucuregti, 1995,
166-174.

R. Freund, F. Tafill, Modelling Kohonen networks by attributed parallel
array systems, SPIFE’93, Innsbruck, Austria, 1993.

R. Freund, F. Tafill, Formal representation of neural networks, ICANN’94,
Sorrento, Italy (1994).

M. Gardner, The fantastic combinations of John Conway’s new solitaire
game “life”, Mathematical Games, Scientific American 223, 1970, 120-
123.

K. Inoue, I. Takanami, A survey of two-dimensional automata theory, In-
formation Sciences 55, 1991, 99-121.

M. Kutrib, Th. Worsch (eds.), Cellular Automata Workshop 1996 (Prepro-
ceedings), Schloss Rauischholzhausen, Germany, 1996.

D. L. Milgram, A. Rosenfeld, Array automata and array grammars, Inform.
Processing ’71, North-Holland, 1972, 69-74.

H. Ritter, K. Schulten, T. Martinetz, Neuronale Netze, Addison-Wesley,
Deutschland, 1990.

A. Rosenfeld, Picture Languages, Academic Press, Reading, MA, 1979.
A. Salomaa, Formal Languages, Academic Press, Reading, MA, 1973.

P. S.-P. Wang (ed.), Array Grammars, Patterns and Recognizers, World
Scientific Series in Computer Science 18, World Scientific Publ., Singapore,
1989.

S. Wolfram (ed.), Theory and applications of cellular automata, World Sci-
entific Publ., Singapore, 1986.

14

The geometry of Penrose tilings: projection and
renormalization

Jeroen S. Lamb, Edmund Harriss

Imperial College, London
London SW7 2A7Z
e-mail: jeroen.lamb@imperial.ac.uk

October 14, 2004

Abstract

In the early 1970’s, R. Penrose constructed a set of two tiles that can tile the
plane only nonperiodically. His proof uses a renormalization argument based
on the existence of substitution rules. In 1981, N. de Bruijn showed that Pen-
rose tiling also can be obtained by projection of a discrete plane in IR® (with
vertices in ZZ®) to the nearest two-dimensional hyperplane. In this talk we
show that projection tilings of this type admit (a countable infinity of different)
substitution rules if and only if there exists a ”quadratic” (partially) hyperbolic
lattice automorphism that commutes with the projection. As the latter condi-
tion is very easy to verify, we obtain a simple characterization (and many new
examples) of such renormalizable projection tilings.

On Algebraic Structure of Neighborhoods of
Cellular Automata
—full and one-way—*

Hidenosuke Nishio'! Maurice Margenstern?, Friedrich von Haeseler®

! Iwakura Miyake-cho 204, Sakyo-ku,
606-0022, Kyoto, Japan
e-mail: YRAO05762@nifty.ne.jp

2 LITA, EA 3097,
UFR MIM, University of Metz,
Ile du Saulcy,
57045 Metz, France
e-mail: margens@sciences.univ-metz.fr

3 KU Leuven, Dep. of Electrical Engineering,
Kasteelpark Arenberg 10,
3001 Leuven, Belgium
e-mail: friedrich.vonHaeseler@esat.kuleuven.ac.be

November 9, 2004

Abstract
Recently, we formulated and analyzed the structure of neighborhoods
of cellular automata based on the algebraic tool, where the space is pre-
sented by a finitely generated group and the neighborhood relation is
defined by a semigroup generated by the neighborhood [5][4]. This paper
is a continuation with focus on the full and one-way neighborhoods.

1 Introduction

A cellular automaton (in short CA) is a uniformly structured information pro-
cessing system defined on a regular cellular space, which is presented as a Cayley

*extended abstract for WTCA’04
fCorresponding author

graph of a finitely generated group [6]. Usually, the same finite automaton is
placed at every point of the space. On the other hand, the neighborhood (index)
specifies, for each point of a space, the extent where the information directly
comes from. The neighborhood is also assumed to be spatially uniform. Then,
the direct neighbors of a point p are obtained by semigroup (associative) oper-
ations of the neighborhood indices to p. Consecutive application of operations
gives the whole neighbors of p. Usually any cell is assumed to be able to commu-
nicate with any other cell of the space, sooner or later. Algebraically it means
that the subspace generated by a neighborhood coincides with (fills) the space
itself. This is the case for the space is 2-dimensional grid and the neighborhood
is von Neumann and/or Moore. By the way, a distinctive feature of such neigh-
borhoods is that a cell can communicate with neighboring cells in any directions.

In the literature, most authors assume a neighborhood which equals the set of
generators of the space itself, as is the case of the von Neumann neighborhood
for 2-dimensional space. It is, in a sense, a proper way of research, because most
problems that are pertinent to CA can be formulated and solved assuming a von
Neumann neighborhood. We should note, however, that E.F.Codd has shown a
two state self-reproducing CA with a neighborhood of size 85 [2]. Reducing the
number of cell states generally requires a larger neighborhood. Since then, the
study of neighborhoods has attracted many authors.

For example, the problem of a restricted communication (a restricted neigh-
borhood) of CA has been investigated by many authors. The first considered
restriction is one-way. One-way one-dimensional CAs have been extensively
investigated for topics as : one-way simulation, computational universality, re-
versibility, real/linear time language recognition including closure properties and
so on. As for higher dimensional CAs, however, the investigations on one-way
or restricted communication are still not many. For CAs defined on the Cay-
ley graph including Z¢, Z.Roka first showed that a d-dimensional CA with von
Neumann neighborhood can be simulated in d + 1 time by a one-way CA with
one-way von Neumann neighborhood [6]. V.Terrier recently discussed closure
properties of the rotation of 180° of 2-dimensional languages, when von Neu-
mann and Moore neighborhoods are restricted to one-way [7].

On the other hand, we formulated the whole neighborhoods defined for a CA
space and discussed the problem whether a neighborhood fills the space or not
[5]. Obviously, for a cell to communicate with any other cell, the neighborhood
must fill the space. In particular, for the space Z2, we proved the neighborhood
3-horse {(2,1),(—2,1),(1,—2)} fills. Also we gave a necessary and sufficient
condition for a general 3-horse {(a,b), (—a,b), (b, —a)} to fill [4]. In this paper,
we will show the generalization to d-dimensional Euclidean space and torus.
At the same time we will discuss the one-way neighborhood, comparing the
previous and the present definitions.

2 Preliminaries

A CA is defined by a 4 tuple (S, N,Q, f), where S is the regular space, at each
point of which the same cell is located. S can be infinite or finite. A regular
construct is typically represented by a Cayley graph of a finitely generated
group. N is the neighborhood (index) which consists of a finite number of
neighborhood indices. The same neighborhood is applied to every point of S.

N ={ny,ng,..,ns} C S

The set of states Q is a finite set of symbols. The local map f : QY — Q gives
a local state transition function, which is common to every cell.

The global dynamics of CA is defined as the global map F : C — C, where
elements of C = Q° are called global configurations. F is uniquely induced
from f by

F(e)(x) = f(c(xny), c(xng), - ,c(zng)),
for any ¢ € C and x € S. When starting from a configuration ¢, the behavior
(trajectory) is given by

F'*H(c) = F(F'(c)),
for any ¢ € C and t > 0, where F(c)

C.

2.1 Cellular space S and neighbors relative to S

Here we are interested in the structure of a CA and give an algebraic setup of
the space S and neighborhood N.

2.1.1 Space

We assume that S = (G | R), where G = {g1, g2, ..., g } is a set of finite number
of generators (symbols) and R is a finite set of relations (equalities) of words
over G and G1:

R={w; = w, | w;,w, € (GUG™)*i=1,...n} (1)

Every element (point) of S is presented as a word x € (G UG™1)*,

where G™! = {g7!| g € G} and g - g~! = 1, where 1 is the empty word or
the identity if S happens to be a (semi)group. A free group is expressed by
S ={(G| D).

2.1.2 Neighborhood and neighbors

Let a space S = (G | R) be given. A neighborhood (index) for S is expressed
by
N = {n1,ng,....,ns} C (GUG™)* (2)

Now we recursively define the neighbors of CA as follows.

(1) Let p € S, then the I-neighbors of p, denoted as pN, is the set
pN' = {pny,pna, ..., pns}. (3)
(2) The (m + 1)-neighbors of p, denoted as pN™*+1 are given as
pN™ = pN™ . N, m >0, (4)

where pN® = {p}.

Note that the computation of pn; has to comply with the relations R defining
S = (G|R).

We may say that the information contained in the cells of pN™ reaches the cell
p after m time steps. In the sequel, without loss of generality, we principally
treat the m-neighbors IN™ (N in short) of the origin 1 of S. The cardinality
of N™, denoted as #(N™), is called the neighborhood size.

(3) oo-neighbors of p, denoted as pN°, is defined by
oo
pN = U pN™. (5)
=0

(4) oo-neighbors of 1, denoted as N°°, is called neighbors (of CA).

Then we have an algebraic result, which is proved by the fact that the procedure
to generate a subsemigroup and the above mentioned recursive definition of N>
are the same. For a recursive procedure to generate subalgebras, we refer to
page 33 of [1].

Proposition 2.1
N = <N | R)sga (6)

where (N | R)sg means the semigroup generated by N with relation R.

Remarks: A subalgebra (A) generated by a set A is the smallest subalgebra
that contains A. A is called a set of generators. For a subalgebra there can be
more than one set of generators. To avoid confusion, the group (res. subgroup)
generated by G (res. G’) is denoted by (G | R)4 (ves. (G’ | R)sg). When R
is understood, we simply write as (G), (res.(G')sq). We also use the terms of
g-generate and sg-generate. A semigroup is an associative system. In addition
we assume here that the cancellation rule holds. Then we have,

Lemma 2.1
<917927 "'ﬂgTagflﬂgglv "'7gr_1>sg = <gl7927 "°7g'r>g (7)

2.1.3 Set of neighborhoods

For a fixed space S, we consider the set of all finite neighborhoods relative to
S and denote it as A*¥. In NS, we define special subclasses of neighborhoods
which will be studied later.

Definition 2.1 (Symmetric) If N = N~!, then N is called a symmetric
neighborhood. (For additive groups N = —N.)

Von Neumann and Moore neighborhoods are symmetric.

Definition 2.2 (One-way) If (NNN~Y)\{1} =0, then N is called a one-way
neighborhood.

Remarks on the definition: Z. Roka [6] defines one-way neighborhoods of p
by deleting every edge labelled with generators G of the space. So, the informa-
tion comes only from pg~!, g € G. In other words, the neighborhood of one-way
CA is G~!. The present definition allows a neighborhood N to be one-way, if
N C (GUGTY)* and (NNN~1)\{1} = (), which is a wider definition than Roka’s.
V. Terrier [7] treats two one-way neighborhoods; V; = {(0,0), (1,0), (0,1)} and
V3 = {(0,0),(1,0),(0,1),(1,1)}, both of which generate the NE-quarter of Z?
as shown in Examples below.

Theorem 4.1 shows that in case of one-way neighborhood N3y any pair of cells in
72 can communicate with each other (the time is generally different depending
on the direction), which is not true in the case of the ordinary definition of one-
way, including that of Roka and Terrier. The neighborhood of a 3-horse could
be said to be locally one-way but globally not. The plausibility of this definition
is left for future discussion.

2.1.4 Intrinsic neighbors

Define the intrinsic m-neighbors, denoted as [N™], as those cells that can reach
the origin in exactly m steps. That is,

[N™] = N™\N""H, (8)
where [N%] = {1}.

Evidently we see,

N* = [J[N™]. (9)

2.2 Examples of spaces and neighborhoods

e Set of integers Z = (a |()). Elementary CA has the neighborhood {a~!, 1, a}.

o S=74="{ala* =1) = {1,a,a?,a%} is a circle consisting of 4 points.
If Noa = {a}, then N} = {a},N3 = {a®’},N3 = {a®} and N} = {1}.
N = S. If Ng = {a*}, then N3 = {1}. N¥ = {1,a?}.

e 2-dimensional rectangular grid: Z? = (a,b | ab = ba).
The following examples are given in the additive group presentation with
generators {(1,0), (0,1)} with relation {(1,0) + (0,1) = (0,1) + (1,0)}.

(1) Von Neumann neighborhood Ny = {(0,0), (1,0), (0, —1), (—=1,0),(0,1)}.
(2) Moore neighborhood Ny; = {(x, y)|z,y € {—1,0,1}}.

(3) See Fig.1.
(3-1) Horse Ny = {(£2,+£1), (£1,£2)} =
{(2a 1)» (27 _1)7 (_27 _1)7 (_Qa 1)7 (17 2)a (17 _2)a (_17 _2)’ (_1a 2)}
(3-2) 3-horse N3y = {(2, 1), (—27 1), (1, —2)} C Ny.
(3—3) Keima Ni = {(1,2), (—1,2)} C Ny.

(4) See Fig.2 (North-East quarter of Z?) for an effect of the origin included
by a neighborhood. Many authors tacitly assume the origin (the cell
in question) to be included by the neighborhood or treat it as a special
argument of the local function.

One-way neighborhood Nyg = {(1,0)(0,1)}. For m > 1,
Nyg ={(,y)lz,y € No,z +y =m}

Now we include the origin in the neighborhood (5) and have another one-
way neighborhood Nyg = {(0,0),(1,0)(0,1)}. Then,

le\?E’ = {(‘T7y)‘xay € Ng,z + y < m}
We easily see,
NFg = Nyg,
N{'g = [NNE] = [NNe,

and
#(Nyp)=m+1, #(Nyp)=(m+1)(m+2)/2.

4
3
2

,3.2 1 0 1 2 3 '

2 0 <

1 1

0 2

1 3

-2 ° 4

-3 i 5

(a) Fig.1 Horses (b) Fig.2 NJ' and Ny'%

e Torus Z, X Z, = {a,b | ab=ba,a™ = 1,b" = 1) with m,n € N the set of
nonnegative integers.
Additive group with generators a = (1,0),b = (0,1) and relations ma =
(0,0) and nb = (0,0).

e Hexagonal grid (a,b,c | a® =1,b% = 1,¢* = 1, (abc)? = 1).
Note that ab # ba,ac # ca,bc # cb. Since a = a~!, any neighborhood is
symmetric.

e Triangular grid (a,b,c | abc = 1,acb = 1).
The commutativity ab = ba, ab = ba, bc = cb is derived from the relations.

3 Analysis of neighborhoods

In this section some basic properties of neighborhoods are analyzed, assuming
a space S = (G|R). p,q, .. stand for points of S and m,m’, .. € Ny.

Lemma 3.1 (transitivity) If ¢ € pN™ and r € qu/, then r € meer/.

Lemma 3.2 (slide) Ifq € pN™ then for anyr € S, qr € prN™. Particularly,
if ¢ € pN™, then qp~' € N™.

Proposition 3.1 If N is a symmetric neighborhood, then for any p,q € S and
nonnegative integer m,
pEGN™ < g€ pN™.

Corollary 3.1 If N is a symmetric neighborhood, then for any p,q € S

p €GN <= g€ pN*=.

Proposition 3.2
(N)g 2 N™.

Proof : The procedure of generating a group includes the procedure of making
m-neighbors for any m > 0.

Proposition 3.3 There are neighborhoods N such that (N), 2 N>.

Proof: We state some examples of one-way CAs.
(a) N ={a}. (N); =Z. But N* =N,.

(b) Keima Ng = {(1,2),(—1,2)}, which is a one-way neighborhood, sg-
generates a part of the sparse plane but does not fill it. In fact,

Ng ={(a—b,2a+2b) |a,b € No} S {(a —b,2a +2b) |a,b € Z} = (Ng),

Proposition 3.4 If N is symmetric, then (N)sqg = N°°.

Proof: Since N is symmetric, if N contains ¢ then it does g—!. Therefore, by
Proposition 2.1 and Lemma 2.1 we have (N), = N°°. The 3-horse provides an
example of a non-symmetric neighborhood N such that (N),, = Z? = N*°.

4 Filling problem of neighborhoods

As for the problem of limited communication of CA, we observed various one-
way neighborhoods for the space Z2, which do not sg-generate the whole space
Z2. In this section, we study on the condition for a neighborhood to fill the
space.

Definition 4.1 A neighborhood N is said to fill S if and only if N° = S.
Then, by Proposition 2.1, we have
Proposition 4.1 N fills S if and only if (N)sg = 5.

As for a typical non-standard neighborhood, we studied the horse power problem
and showed the following results [5][4].

Theorem 4.1 A 3-horse N3g = {(2,1),(—2,1),(1,-2)} fills Z>.

Note that N3g is not symmetric and one-way.

Theorem 4.2 The generalized 3-horse Hgsg = {(a,b),(—a,b), (b,—a)} fills
72, if and only if the following conditions hold.

condition 1: ged(a,b) = 1.
condition 2: a+b=1mod 2 , where a > b > 0.

We have generalized the problem to d-dimensional space and proved the follow-
ing theorem using the theory of integral matrices [3].

Theorem 4.3 Let x1,...,x5 € Z¢, where s > d + 1. Then the neighborhood
{z1,..., x5} fills the space or (x1,...,x5)sg = Z2, if and only if the following two
conditions hold.

condition 1: ged({det([xi,, ..., Tiz])|i1, -y ia € {1,...,8}}) = 1.
condition 2: 0 € int(conv({x1,...,x5}). (The zero of R? should be in the interior
of the convex hull of {x1,...,xs}.)

The theory of integer matrices also allows to state necessary and sufficient con-
ditions for a horse to fill the torus.

Theorem 4.4 If the horse moves on a d-dimensional torus T' = Zpy, X ... X Ly, ,
with m; € N and if the horse’s move are {x1,...,xs} C Z?, then the horse fills
the torus T if and only if

ged({det([y1, .-, ya))|yi € {z1, ..., x5, M1€1, ..., mgeq}) = 1,

where e; is the i-th unit vector.

5 Concluding remarks

Decision problems whether a neighborhood fills or not have been treated before
[4], but we have not entered the problem here. The conditions stated in Theorem
4.3 could be tested in polynomial time in s x d. Future research: As is defined
in Section 2.1.3, considering the class A"9of all finite neighborhoods for a space
S will lead to a new unified theory of CAs. For instance, assume a fixed space S
and a local function fs; with s arguments, then the set N, of all neighborhoods
{N € N9|#(N) = s} of cardinality s seems useful for the research of variable
communication CAs. What happens if the neighborhood is changed for a fixed
local function ? Which neighborhood of Nj is the best one for f 7

This research was done during the first author’s stay at Faculty of Informatics,
University of Karlsruhe, September-October 2004. Many thanks are due.

References

[1] Burris, S., Sankappanavar, H. P.. A Course in Universal Algebra, The
millennium edition, Open website, 2000.

S

Codd, E. F.: Cellular Automata, Academic Press, 1968.

=

Newman, M.: Integral Matricies, Academic Press, 1972.

=

Nishio, H., Margenstern, M.: An algebraic Analysis of Neighborhoods of
Cellular Automata, Submitted 2004.

[5] Nishio, H., Margenstern, M.: An algebraic Analysis of Neighborhoods of
Cellular Automata, Technical Report 1375, RIMS, Kyoto University, May
2004, Proceedings of LA Symposium, Feb. 2004.

[6] Roka, Z.: One-way cellular automtata on Cayley graphs, Theoretical Com-
puter Science, 132, 1994, 259-290.

[7] Terrier, V.: Cellular automata recognizer with restricted communication,
Technical Report 32, Turku Center for Computer Science, June 2004, Pro-
ceedings of DMCS’04.

10

State-Efficient 1-Bit-Communication
Solutions for Some Classical Cellular
Automata Problems

Hiroshi Umeo'* Masaru Kanazawa!, Koshi Michisaka! and
Naoki Kamikawa!

! Univ. of Osaka Electro-Communication
Faculty of Informatics
Neyagawa-shi, Hatsu-cho, 18-8, Osaka, 572-8530, Japan

September 10, 2004

Abstract

We propose several state-efficient 1-bit-communication algorithms for
some classical cellular automata problems. A 1-bit inter-cell communi-
cation model (CAj_p;;) studied in this paper is a subclass of cellular
automata (CA) whose inter-cell communication is restricted to 1-bit. We
study a sequence generation problem, a firing squad synchronization prob-
lem and an early bird problem, all of which are known as the classical and
fundamental problems in cellular automata.

First we consider the sequence generation problem. It is shown that
there exists a 1-state CAj_pit that can generate in real-time a context-
sensitive sequence such that {2"|n = 1,2, 3,...}. Secondary, we study the
firing squad synchronization problem on two-dimensional CAj_pi,. We
give a two-dimensional CA;_y;;, which can synchronize any n X n square
and m X n rectangular arrays in 2n — 1 and m + n + max(m,n) steps,
respectively. In addition, we propose a generalized synchronization algo-
rithm that operates in linear time on two-dimensional rectangular arrays
with the general located at an arbitrary position of the array. The time
complexities for the first two algorithms developed are one to two steps
larger than optimum ones proposed for O(1)-bit communication model.
In the last, we give a 1-bit implementation for an early bird problem. It
is shown that there exists a 19-state CA;i_pit that solves the early bird
problem in linear time.

*Corresponding author: umeo@cyt.osakac.ac.jp

1 Introduction

In recent years cellular automata (CA) have been establishing increasing inter-
ests in the study of modeling real phenomena occurring in biology, chemistry,
ecology, economy, geology, mechanical engineering, medicine, physics, sociology,
public traffic, etc. Cellular automata are considered to be a good model of com-
plex systems in which an infinite one-dimensional array of finite state machines
(cells) updates itself in synchronous manner according to a uniform local rule.

In this paper, we study a sequence generation problem [1, 4, 7, 19, 20],
a firing squad synchronization problem [2, 5, 6, 10-13, 15-17, 21-25] and an
early bird problem [3, 8, 9, 14, 23], all of which are known as the classical
and fundamental problems studied extensively on O(1)-bit communication mod-
els of cellular automata. An O(1)-bit communication model is a conventional
CA where the amount of communication bits exchanged at one step between
neighboring cells is assumed to be O(1)-bit, however, such bit-information ex-
changed between inter-cells has been hidden behind the definition of conven-
tional automata-theoretic finite state descriptions. On the other hand, a 1-bit
inter-cell communication model studied in this paper is a new CA whose inter-
cell communication is restricted to 1-bit. We call the model 1-bit CA in short,
and it is denoted as CAi_p;;. The number of internal states of the 1-bit CA
is assumed to be finite in a usual way. The next state of each cell is deter-
mined by the present state of itself and two binary 1-bit inputs from its left and
right neighbor cells. Thus the 1-bit CA can be thought to be one of the most
powerless and simplest models in a variety of CAs.

In the next section 2, we define formally a 1-bit communication cellular au-
tomaton (CAj_p;;) and give a computational relation between the conventional
CA and the CAj_pi. In section 3, we consider a sequence generation problem
on CAj_pi and give several non-regular sequences that can be generated in
real-time by CAj_pi;. In section 4, a synchronization problem is studied and
three 1-bit implementations of synchronization algorithms for two-dimensional
square and rectangular arrays will be given. In the last section, an early bird
problem is considered and an efficient 19-state implementation will be given.
Due to the space available, we omit the details of the proofs of theorems given
below.

2 One-Bit Communication Cellular Automata

A one-dimensional 1-bit inter-cell communication cellular automaton [13, 18-20]
consists of an infinite array of identical finite state automata, each located at
positive integer point. Each automaton is referred to as a cell. A cell at point
i is denoted by C; where ¢ > 1. Each C;, except Cq, is connected with its left
and right neighbor cells via a left or right one-way communication link, where
those communication links are indicated by right- and left-going arrows, as is
shown in Fig. 1, respectively. Each one-way communication link can transmit
only one bit at each step in each direction. One distinguished leftmost cell Cy,

Figure 1: One-dimensional cellular automaton having 1-bit inter-cell communi-
cation links.

the communication cell, is connected to outside world.
A cellular automaton with 1-bit inter-cell communication (abbreviated by
CA_pit) consists of an infinite array of finite state automaton A = (Q,), where

1. @ is a finite set of internal states.

2. 9§ is a function, defining the next state of any cell and its binary outputs
to its left and right neighbor cells, such that §: @ x {0,1} x {0,1} —
Q x {0,1} x {0,1}, where d(p,z,y) = (¢,2",¥'), p, ¢ € Q, z,2",y,y" €
{0, 1}, has the following meaning: We assume that at step ¢ the cell C;
is in state p and receiving binary inputs z and y from its left and right
communication links, respectively. Then, at the next step t+1, C; assumes
state ¢ and outputs =’ and y’ to its left and right communication links,
respectively. Note that binary inputs to C; at step ¢ are also outputs of
C;_1 and C;41 at step . A quiescent state ¢ € @ has a property such that
4(q,0,0) = (¢,0,0).

Thus the CA;_yi is a special subclass of normal (i.e., conventional) cellular
automata studied so far. Let N be any normal cellular automaton with a set
of states Q and a transition function & : @ — Q. The state of each cell on N
depends on previous states of itself and its nearest neighbor cells. This means
that the total information exchanged per one step between neighboring cells
is O(1)-bit. By encoding each state in Q with a binary sequence of length
[log, |Q|], sending the sequences sequentially bit by bit in each direction via
each one-way communication link, receiving them bit by bit again, and decoding
them into their corresponding states in Q, the CA;_pi can simulate one step
of N in [log, |Q|] steps. This observation gives the following computational
relation between the normal CA and CA1_pi.

Theorem 2.1 19 Let N be any normal cellular automaton with time complez-
ity T(n). Then, there exists a CAj_viy which can simulate N in kT (n) steps,
where k is a positive constant integer such that k = [log, |Q|] and Q is the set
of N'’s states.

3 Real-time Sequence Generation Problem on

CA it

Now we define the sequence generation problem on CA;_y;;. Let M bea CAq_pit
and {t,|n =1,2,3,...} be an infinite monotonically increasing positive integer

sequence defined on natural numbers such that ¢, > n for any n > 1. We have
a semi-infinite array of cells, shown in Fig. 1, and all cells, except Cyp, are in
quiescent state and output 0 to their left and right communication links at time
t = 0. The communication cell C; assumes a special state in Q and outputs 1
to its right communication link at time ¢ = 0 for an initiation of the sequence
generator. We say M generates a sequence {t,|n = 1,2,3...} in k linear-time
if and only if the left end cell of M outputs 1 to the outside world via its left
communication link at time ¢ = kt,,, where k is a fixed positive integer. We call
M real-time generator, when k = 1.

The 1-bit CA can be thought to be one of the most powerless and simplest
models in a variety of CAs. In spite of its simplicity, the CAj_p;; can generate
a variety of context-sensitive sequences given below.

Theorem 3.1 19 There exists a 3-state CA1_pi that can generate {n2|n =
1,2,3,...} in real-time.

Theorem 3.2 19 There exists a 9-state CAj_vy, that can generate Fibonacci
sequence in real-time.

Theorem 3.3 29 Prime sequence can be generated in real-time by a 34-state
CA1-pit-

A class of 1-state CAq_pj is the simplest one in CAj_p;;. We show that
there exists a context-sensitive sequence that can be generated in real-time
by a l-state CAj_pi. The context-sensitive sequence is such that {2"|n =
1,2,3,...}. A transition rule set for the CAj_yix M that generates {2"|n =
1,2,3,...} in real-time is as follows: M = {Q, ¢}, where Q = {a, ¢},0(a,0,0) =
(a,0,0),6(a,0,1) = (a,1,0),6(q,0,0) = (¢,0,0),6(¢,0,1) = (¢,1,1),0(¢,1,0) =
(¢,1,1) and 6(q,1,1) = (g,0,0). The leftmost cell C; always assumes a state a
and C;(i > 2) takes a state ¢ at any step. In Fig. 2, we show some snapshots for
the real-time generation of the sequence. Small right and left black triangles, »
and <, shown in the figure, indicate a 1-bit signal transfer in the right or left
direction between neighbor cells. A symbol in a cell shows its internal state.

Theorem 3.4 An infinite sequence {2™|n =1,2,3,...} can be generated in real-
time by a 1-state CA1_pjit.-

4 Firing Squad Synchronization Problem on

CA 1 pis

In this section, we study a famous firing squad synchronization problem on
the newly introduced 1-bit CA model for which solution gives a finite-state
protocol for synchronizing a large scale of cellular automata. The problem was
originally proposed by J. Myhill to synchronize all parts of self-reproducing
cellular automata [12]. The firing squad synchronization problem has been
studied extensively in more than 40 years [2, 5, 6, 10-13, 15-17, 21-25].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
IB¥(q] [a] (] [a] [a] (o] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] (o] [a] o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
IB.[a"{a] (] [a] [a] (o] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] [a] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] [a]
B [al[a"a] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a} [a] [a] [a] [a] o] [a] [a] [a] [a] [a] [a] [a] [a] [a]
IB.[a"{al[aPa] [a] (o] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B [a] () [al[a]a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a} [a] [a] [a] [a] o] [a] [a] [a] [a] [a] [a] [a] [a] [a]
1B (o] [al{aPal{aPla] [a] [a] [a] [a] [a] [a] [q] [a] [a] [a] [a] [a] (o] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] [a]
B [o)La]"{a] (o] (ak{aPa] [a] [a] [a] [a] (o] [a] [a] (o] [a] (] [a] [a] [a] [a] [a] [a] [a] [a] (o] [a} [a] [a] [a] [a] [a]
B.[o]"{al[aPalaP{al(aMa] [a] [a] [a] [a] [q] [a] [a] [a] [a] [a] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [} [a] [a] [a]
B [a] (o] [a] (] [a] [a] [allaP"{a] o] [a] [a] (o] [a] [a] [a] [a] [a] (o] [a] (a] (a] [a] (o] [a] (] [a] [a] [a] [a] [a] [a]
1B (o] [a] (] [a] [a] [al[aMal.[aPa] [a] [a] [q] [a] [a] (o] [a] [a] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B (o] (o] (o] o] [al{aP{a] [a) [alLa]"la] (] [a] [a] (o] [a] [a] [a] [a] o] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B (o] [a] (o] [alaP{al(aMal.{a]a].[a"{a] (] [a] [a] (o] [a] [a] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B (o] (o] [akla]"{a] [a] (o] [a] [a] [a] [al{a"{a] [a] (o] [a] (o] [a] [a] o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B (o] [al(aPalaa] (] [a] (o] [a)[a"{alLaPa] [a] [a] [a] [a] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [} [a] [a] [a]
B [a]aMa] [a] [al{aPa] o] [al[a]"a] [a] [aklaP"(a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [q] [a] [a] [} [a] [a] [a]
B.[oal(aPaklaM{ak(aMal{aPla)[e{al{aPalaa] (] [a] [a] (] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
A [q] [q] [o] [a] [} [a] [a] [a] [a] [a] [a] [a] [a] [a] [aklaP"{a] [a] [a] [a] [a] [a] o] [a] [a] [a] [a] [q] [a] [a] [a] [a]
1B [a] (o] (] [a] [a] (o] [a] [a] [a] [a] [a] [a] [q] [ala]lakaa] (o] [a] [a] [a] [a] [a] [a] [a] [a] [a] [} [a] [a] [a]
1B [q] [a] (] [a] [a] (o] [a] [a] [a] [a] [a] [a] [aklaP"(a] (o] [al{aPla] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
1B (o] (o] (o] o] (o) [a] (o] [a) [a] [a] [a] (a]{aPalaPal{aPallaMa] (o] o] (o] (] [a] (o] [a] [a] [a] [a] [a] [a]
1B [q] [a] (] [a] [a] (o] [a] [a] [a] [a] [alaPq] [a] [a] (o] [a] [a] [al[a]a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a]
B (o] (o] (o] (o] [a) (o] (o] [a) [a] [a)u[aPad{aPfa] (o] [a] (o] [allaMallala] (o] (] [a] [a] [a] [a] [a] [a] [a] [a]
1B [q] [a] (] [a] [a] (o] [a] [a] [al[a]"e] [a] [aka]"(a] [a] [al{aPa] [a] [al.aPa] [a] [a] [a] [a] [a] [a] [a] [a] [a]
23 [(o] [a] (o) [a] (o] (o] (o] [al[a]"{a)l[aP e} aPlal{aPTal{a ol aMallalaklaP{a] (o] (o] [a] [a] [a] [a] [a] [a]
1B (o] [a] (] [a] [a] (o] [al.{a]"{a] [a] [a] [a] [q] [a] [a] (] [a] [a] (o] [a] [a] (o] [al[a]"{a] [a] [a] [a] [a] [a] [a] [a]
1B [q] [a] [} [a] [a] [al[aMaldaPla] [a] [a] [q] [a] [a] [a] [a] [a] [a] [a] [a] [als[aPal(aPla] [a] [a] [a] [a] [a] [a]
1B (o] [a] (] [a] [al{aP{a] o] [al[a]"e] [a] [q] [a] [a] [a] [a] [a] [a] [a] [alu[aPa] [a] [alLaPa] [a] [a] [a] [a] [a]
B [q] [a] (o] [al{aPlal{aMald{aPal[aa] [a] [a] [a] [a] [a] [a] [a] [al{a{als[aPal(aPlakaPla] [a] [a] [a] [a]
1B [q] (o] (al[a"a] (o] [a] [a] [a] [a] [al[aPlq] [a] [a] [} [a] [a] [ak[a"{a] [a] [a] [a] [a] [a] (el a]Ta] [a] [a] [a]
B (o] [al{aPal{aPla] [a] [o] [o] (ol a"{al{aPla] [a] [a] [a] [al{aP{al{a"{a] [a] [a] [a] [aklaPlal{aPa] [a] [a]
B [o)La"{a] [o] (al{aPa] [a] [al{a]"la] (o] [al[ala] (o] [aklaPTa] (o] [alal{a] [a] [alLa]"la] [a] [al{aP{d] [a]
B.[o{al(aPalaPlal(aMal{aPla][a{alLaPlalaPlallaMal{aP{al.{a{a) (o]l aPlaklaPlal{aMal{aPa]
B [a] (] (o] [} (o] [a] (o] [a] [} [a] [a] [a) [a] [a) [a] [a] [a] [a] (] [a] (] [a] (o] [a] [a] (] [a] [a] [a] [a] [akla]”
33 B [} [a] [a] (o] [a] [a] (o] [a] [a] [a] [a] [a] [a] [} [a] [a] (] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [a] [ala{a]

© @~ oo s N R o

RRBGEE56HEERES

K R8BRIIZRR

Figure 2: Snapshots for real-time generation of {2"|n = 1,2,3,...} on a l-state
CA 1 _pit.

4.1 Synchronization Algorithm on 1-D Array

Before presenting our synchronization algorithms on 2-D CAj_p;, we review
two algorithms for synchronizing 1-D CAj_y;, with the general at the left end
or at an arbitrary position of the array. Nishimura, Sogabe and Umeo [13]
designed an optimum-step firing squad synchronization algorithm on CA;_p;,
where 2n — 2 steps are required for synchronizing n cells on 1-D array and the
general is located at the left end of the array. The algorithm, that is referred to
as NSU algorithm, is stated as follows:

Theorem 4.1 131 There exists a CA1_pix which can synchronize n cells with
the general on the left end in 2n — 2 steps. The CAi_vnix constructed has 78
internal states and 208 transition rules.

Theorem 4.2 given below is a generalized version of Theorem 4.1.

Theorem 4.2 221 There exists a CA1_pit which can synchronize n cells in
n+max(k,n — k + 1) steps, where k is any integer such that 1 < k < n and
a general is located on the kth cell from the left end of the array. The total
number of internal states and transition rules of the CA1_pi realized on a com-
puter is 282 and 721, respectively.

We develop some synchronization algorithms for 2-D 1-bit inter-cell com-
munication CA models. Fig. 3 shows a finite two-dimensional cellular array

t
1
)
I
1
o)

==k
Tl |
s
!
Tl
&=

—
[—
—
[

oot "
mcdZ [z [z [z = [d

Figure 3: Two-dimensional cellular automaton.

consisting of m x n cells. A cell on (7,7) is denoted by C; ;. Each cell is an
identical (except the border cells) finite state automaton. The array operates
in lock-step mode in such a way that the next state of each cell (except border
cells) is determined by both its own present state and the present binary inputs
from its north, south, east and west neighbors. All cells, except the general
cell, are initially in the quiescent state with the property that the next state
of a quiescent cell with four 0 inputs is the quiescent state again and outputs
0 to its four neighbors. Given an array of m x m identical cellular automata,
including a general on the C; ; cell which is activated at time ¢ = 0, we want
to give the description (state set and next-state function) of the automata so
that, at some future time, all the cells will simultaneously and, for the first time,
enter a special firing state. The set of states must be independent of m and
n. The tricky part of the problem is that the same kind of soldier with a fixed
number of states is required to synchronize, regardless of the size m and n of the
array. Several 2-D synchronization algorithms and their implementations have
been presented in Shinar [15] and Szwerinski [16] for O(1)-bit communication
models.

4.2 Synchronization Algorithm on Square Arrays

We present a new synchronization algorithm that runs in (2n—1) steps on n xn
square arrays. Our algorithm is one step slower than that of Shinahr [15] for
O(1)-bit communication model and operates as follows. By dividing the entire
square array into n L-shaped 1-D arrays such that the length of the ith L is
2n —2i+1 (1 < i< n), we treat the square firing as n independent 1-D firings
with the general located at the center cell. On the ith L, a general is generated
at C;; at time t = 2¢ — 1, and the general initiates the horizontal and vertical
firings on the row and column arrays. In our construction, we apply the previous
NSU algorithm [13] for each row and column firing. The array fires in optimum
time ¢ = 2i —1+2(n—4i+1) —2 = 2n — 1. We have tested our transition
rule set on squares of size 2 x 2 to 1000 x 1000. The total number of internal
states and transition rules of the CAj_p; realized on a computer is 127 and
405, respectively. Figure 4 shows snapshots of configurations of our 127-state

step 0 step | step 2 step 3 step4 step 5

step 6 step 7 step 8

step 15

Figure 4: Snapshots of the (2n — 1)-step square firing squad synchronization
algorithm with the general on the north west corner.

synchronization algorithm running on a square of size 8 x 8. Thus we have:

Theorem 4.3 There exists a 2-D CAy_vi; which can synchronize n X n cells in
2n — 1 steps.

4.3 Synchronization Algorithm on Rectangular Arrays

The generalized firing squad synchronization algorithm presented in [Theorem
6] can be applied to the problem of synchronizing rectangular arrays with the
general at the north-west corner. The configuration of the generalized firing
on 1-D arrays can be mapped on 2-D array. The rectangular array is regarded
as min(m,n) L-shaped 1-D arrays, where they are synchronized independently
using the generalized firing squad synchronization algorithm. We have imple-
mented the algorithm on a computer. In Fig. 5, we show snapshots of the
synchronization process on 5 x 8 rectangular array. The total number of inter-
nal states and transition rules of the CA;_y; realized on a computer are 862
and 2217, respectively. Thus we have:

Theorem 4.4 There exists a 2-D CAj_vi; which can synchronize m X n rect-
angular arrays in m + n+ maz(m,n) steps.

step 0 step | step2 step 3 step 4 step 5

step 18 step 19 step 20

Figure 5: Snapshots of our rectangular firing squad synchronization algorithm
with the general at the north-west corner.

4.4 Generalized Synchronization Algorithm on 2-D Rect-
angular Arrays

In this subsection, we study the generalized synchronization algorithm on rect-
angular arrays. Let r,s be any integer such that 1 < r < m, 1 < s < n. At
time ¢ = 0 the general cell C,.; is in fire-when-ready state that is an initiation
signal to the array. Before presenting the 1-bit algorithm, we show a simple and
efficient mapping scheme developed for O(1)-bit CA model that embeds any
generalized one-dimensional synchronization algorithms onto two-dimensional
arrays [21]. Now we consider a 2-D array of size m x n. We divide mn cells into
m+mn—1 groups gx, 1 <k <m+n — 1, defined as follows;

gk = {Ci’j|(i— 1)+ (] — 1) =k—- 1}.

That is,
g1 = {01,1}, g2 = {01,2702,1}, g3 = {01,3702,2703,1}7 -y Imtn—1 = {Cmn}

Let M be any one-dimensional CAj_y;; that fires ¢ cells in T'(¢, k) steps,
where the general is on Cp and k be any integer such that 1 < k < /. We
assume that M has m +n — 1 cells. We consider the one-to-one correspondence
between the ith group g; and the ith cell C; on M such that g; < C;, where
1 <i<m+n-—1. We can construct a 2-D CA;_pi N so that all cells in g;
simulates the ith cell C; in real-time and N can fire any m x n arrays with the
general C, s at time t = T'(m+n—1,r+s—1) if and only if M fires any 1-D arrays
of length m+n—1 with the general on C, ;51 at time t = T'(m+n—1,r+s—1).

Based on the generalized 1-D algorithm given in [Theorem 4.2], we get the
following 2-D generalized synchronization algorithm that fires in T(m,n,r,s)

step 0 step 3

step 5 step 8

step 10 step 13

step 16 step 17 step 18 step 19

Figure 6: Snapshots of our generalized rectangular firing squad synchronization
algorithm operating on an array of size 5 x 8 with the general on Cs 4.

steps given below. The total number of internal states and transition rules of
the CA;_yy realized on a computer is 300 and 2333, respectively. In Fig. 6, we
show snapshots of the 300-state generalized synchronization algorithm running
on rectangular array of size 5 x 8 with the general on Cs 4. Thus we have:

Theorem 4.5 There exists a 2-D 1-bit communication CAi_vi that can syn-
chronize any m x n rectangular arrays in T(m,n,r,s) steps, where (r,s) is an
arbitrary initial position of the general and T(m,n,r,s) is defined as follows:
T(m,n,r,s) =m+n+max(r+s,m+n—r—s+2)+0(1).

Szwerinski [16] proposed an optimum-time generalized 2-D firing algorithm
with 25600 internal states that fires any m x n array in m + n+max(m, n)—
min(r,m—r+1)—min(s, n—s+1)—1 steps. Our 2-D generalized synchronization
algorithm is relatively larger than the optimum one proposed by Szwerinski [16],
however, the number of internal states required for the firing is the smallest
known at present.

5 Early Bird Problem on CA;

In this section we study an early bird problem on CA;_y;. Consider a one-
dimensional CA consisting of n cells in which any cell initially in quiescent state
may be excited from the outside world. The problem is to give a description

]
E]

2
z|Bl8|c|o|o|e|o

z|z|z|z|z|:z

z
z
z
z
z

B
z
z
z
z
z

z|z|z|=z
z|z|z|=
z|z|z|z
z|z|z|=z

z|z|z|=z

Figure 7: Snapshots of a 19-state implementation of the early bird problem on
CA 1 _pit.

(state set and next state function) of the automata so that the first excitation(s)
can be distinguished from the later ones. The problem was originally devised by
Rosenstiehl, Fiksel and Holliger [14] to design some graph-theoretic algorithms
operating on networks of finite state automata. Biining [3] showed that a 5-state
solution developed by Legendi and Katona [8] is an optimum one in the number
of states on O(1)-bit communication model. We have got a 19-state implemen-
tation on CAj_p; that operates in 3n4+0(1) steps for one-dimensional CA1_p;
of size n. In Fig. 7, we show some snapshots of the 19-state implementation.

Theorem 5.1 Ther exists a 19-state CA1_v;iy that can solve the early bird prob-
lem in 8n+0(1) steps.

6 Conclusion

A sequence generation problem, a firing squad synchronization problem and an
early bird problem are known as the classical and fundamental problems which
have been studied extensively on O(1)-bit communication models of cellular
automata. In this paper, we have developed several optimum algorithms for
those problems and given their efficient implementations on CAj_y;. It has
been shown that there exists a context-sensitive sequence that can be generated
in real-time by a 1-state CA;_p;s. We have proposed several new synchronization
algorithms for two-dimensional CA;_p;; and implemented them on a computer.

10

Most of the algorithms proposed are one to two steps larger than optimum ones
proposed for O(1)-bit communication model. We are convinced that there still
exist interesting new synchronization algorithms, although more than 40 years
have passed since the development of the problem. A 19-state implementation
on CAj_p; is also given for the early bird problem.

References

(1

(2]

(3]

(4]

5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

M. Arisawa: On the generation of integer series by the one-dimensional iterative arrays of
finite state machines (in Japanese). The Trans. of IECE 71/8, Vol. 54-C, No.8, pp. 759-766,
(1971).

R. Balzer: An 8-state minimal time solution to the firing squad synchronization problem.
Information and Control, vol. 10(1967), pp. 22-42.

H. K. Biining: The early bird problem is unsolvable in a one-dimensional cellular space with
4 states. Acta Cybernetica, vol. 6(1983), pp.23-31.

P. C. Fischer: Generation of primes by a one-dimensional real-time iterative array. J. of ACM,
Vol., 12, No.3, pp. 388-394, (1965).

E. Goto: A minimal time solution of the firing squad problem. Dittoed course notes for Applied
Mathematics 298, Harvard University, (1962), pp. 52-59.

M. Hisaoka, H. Yamada, M. Maeda, T. Worsch, and H. Umeo: A design of firing squad syn-
chronization algorithms for a multi-general problem and their implementations (in Japanese).
Technical Report of IEICE NLP2002-133(2003), 103-108.

I. Korec: Real-time generation of primes by a one-dimensional cellular automaton with 11
states. Proc. of 22nd Intern. Symp. on MFCS ’97, Lecture Notes in Computer Science,
1295, pp. 358-367, (1997).

T. Legendi and E. Katona: A 5-state solution of the early bird problem in a one-dimensional
cellular space. Acta Cybernetica, Vol.5, No.2, pp. 173-179, (1981).

T. Legendi and E. Katona: A solution of the early bird problem in an n-dimensional cellular
space. Acta Cybernetica, Vol.7, No.1, pp. 81-87, (1984).

J. Mazoyer: A six-state minimal time solution to the firing squad synchronization problem.
Theoretical Computer Science, vol. 50(1987), pp. 183-238.

J. Mazoyer: On optimal solutions to the firing squad synchronization problem. Theoretical
Computer Science, vol. 168(1996), pp. 367-404.

E. F. Moore: The firing squad synchronization problem. in Sequential Machines, Selected
Papers (E. F. Moore ed.), Addison-Wesley, Reading MA., (1964), pp. 213-214.

J. Nishimura, T. Sogabe and H. Umeo: A Design of Optimum-Time Firing Squad Synchro-
nization Algorithm on 1-Bit Cellular Automaton. Proc. of The 8th International Symposium
on Artificial Life and Robotics, pp. 381-386, (2003).

P. Rosenstiehl, J. R. Fiksel, and A. Holliger: Intelligent graphs: Networks of finite automata
capable of solving graph problems. in Graph Theory and Computing (R. C. Read ed.), (1972),
Academic Press, New York, pp.219-265.

I. Shinahr: Two- and three-dimensional firing squad synchronization problems. Information
and Control, vol. 24(1974), pp. 163-180.

H. Szwerinski: Time-optimum solution of the firing-squad-synchronization-problem for n-
dimensional rectangles with the general at an arbitrary position. Theoretical Computer Sci-
ence, vol. 19(1982), pp. 305-320.

S. L. Torre, M. Napoli and M. Parente: A compositional approach to synchronize two di-

mensional networks of processors. Theoretical Informatics and Applications, 34 (2000) pp.
549-564.

11

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(28]

H. Umeo: Linear-time recognition of connectivity of binary images on 1-bit inter-cell commu-
nication cellular automaton. Parallel Computing, 27, pp. 587-599, (2001).

H. Umeo and N. Kamikawa: A design of real-time non-regular sequence generation algorithms
and their implementations on cellular automata with 1-bit inter-cell communications. Funda-
menta Informaticae, 52 (2002) 255-275.

H. Umeo and N. Kamikawa: An infinite prime sequence can be generated in real-time by 1-bit
inter-cell communication cellular automaton. Preproc. of The 6th International Conference
on Developments in Language Theory, Univ. of Kyoto Sangyo,(2002), pp.372-382.

H. Umeo, M. Maeda and N. Fujiwara: An efficient mapping scheme for embedding any one-
dimensional firing squad synchronization algorithm onto two-dimensional arrays. Proc. of the
5th International Conference on Cellular Automata for Research and Industry, LNCS 2493,
Springer-Verlag, pp.69-81(2000).

H. Umeo, M. Hisaoka, K. Michisaka, K. Nishioka and Masashi Maeda: Some new generalized
synchronization algorithms and their implementations for large scale cellular automata. Proc.
of The Third International Conference on Unconventional Models of Computation(C. S.

Calude, M. J. Dinneen and F. Pepper Eds.), 2002, pp.276-286.

R. Vollmar: On two modified problems of synchronization in cellular automata. Acta Cyber-
netica, Vol.3, No.4, pp. 293-300, (1978).

R. Vollmar: Algorithmen in Zellelarautomaten. Teubner, pp.192, Stuttgart, (1979).

A. Waksman: An optimum solution to the firing squad synchronization problem. Information
and Control, vol. 9(1966), pp. 66-78.

12

Self-reproducing self-assembling evolutionary
automata*

Jiti Wiedermann
Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodéarenskou vézi 2, 182 07 Prague 8, Czech Republic
e—mail jiri.wiedermann@cs.cas.cz

September 13, 2004

Abstract

We introduce a computational model of a so—called globular universe
which represents generalization of both classical cellular automata and
contemporary models of self-assembly. Similarly as the latter mentioned
model our model utilizes a multiset of globules which are endowed by self—
organizing ability controlled by a finite state mechanism; these computa-
tional units are not fixed in a predetermined structure. The environment
abounds in these units which are available at places where needed for a
self—assembly of various objects. Within a globular universe we define the
notion of self-reproducing evolutionary automaton. This notion refers to
an automaton being at the beginning of a lineage of self-reproducing au-
tomata which leads to self-reproducing automata with arbitrary complex
finite state control mechanisms via a series of mutations of intermediate
automata. The ideas presented in this paper complement von Neumann’s
results on self-reproducing automata in a static universe by offering a pre-
cise definition of what is meant by “evolutionary self-reproduction” and
by designing a dynamic nondeterministic universe with a self-reproducing
self-assembling evolutionary automaton.

1 Introduction

It seems that all experience of mankind points to the fact that machines can
produce only simpler machines than the original ones. The only exception have
been living beings if considered as machines: not only can an organism produce
an almost genuine copy of itself but, as Darwin has shown, in a long run, in an
evolutionary process these “machines” keep improving. It was von Neumann
who in late 1940 started a systematic quest for a logical, rather than material,

*This research was partially supported by grant No. 1ET100300419 within the National
Research Program “Information Society”.

basis of biological self-reproduction. He first proposed a mechanistic model. It
consisted of a “robot” operating in a sea of its own spare parts. The robot had
some elementary functions for moving around, identifying and collecting the
required parts and assembling them together and possessed a tape with instruc-
tions for building a copy of itself by making use of these elementary functions.
After constructing a replica of itself, the robot finally copied its instruction tape
and inserted it into the replicated robot which could then start the same activ-
ities. By this design, it is generally agreed that von Neumann discovered basic
principles for the process of biological self-reproduction. Namely, there had to
be a program, instruction sequence to be used in two different ways: (1) to be
interpreted as instructions for constructing an offspring, and (2) to be copied
passively, without being interpreted. Quite understandingly, von Neumann was
not able to construct a working model of his mechanistic self-reproducing au-
tomaton which would represent a convincing proof of soundness of his design
idea. However, in 1953, following Stanislaw Ulam’s vision of cellular automata,
he invented a cellular automaton implementation of his mechanistic model. His
cellular “robot” made use of a cellular automaton with 29 states per cell, con-
sisted of approximatively 200 000 cells and its description took more than 200
pages [6]. Thus the topic of self-reproduction entered the field of the automata
theory and since then cellular automata have been used in numerous applications
and variations. Interestingly, in the contemporary automata theory within the
computer science, only a limited attention has been paid to the self-reproducing
issue. Nevertheless, this issue has migrated into the field of artificial life where
it continues to be a subject of a vivid development. In this context, especially
two questions are of interest. First, what exactly was the problem to which von
Neumann gave his answer? And second, how good this answer was?

As far as the first question is concerned, von Neumann did not formulate the
problem of self-reproduction for cellular automata in such a way that it would
show that his solution is a satisfactory and complete answer to that problem.
This is because constructing an automaton, which is merely able to produce its
own copy, is interesting especially in a real world but less in the general frame-
work of cellular automata. Namely, as pointed out by several researchers (cf.
[3] for an extensive discussion of this problem), each cell of a cellular automaton
can “reproduce itself” by properly initializing a cell in its immediate neighbor-
hood. This cell can even posses universal computational properties, i.e., it can
act as a motile processor of a single—tape universal Turing automaton working
over a linear array of cells holding the input data. Thus, universality alone is
not a good enough reason for devising a self-reproducing cellular automaton
of an immense complexity as von Neumann did. Perhaps, von Neumann was
aware of this since in his Theory of Self-Reproducing Automata ([6], p. 92) he
asked: “Can the construction of automata by automata progress from simpler
types to increasingly complicated types? Also, assuming some suitable defini-
tion of “efficiency”, can this evolution go from less efficient to more efficient
automata?” Nowadays it appears that the final aim of von Neumann’s design
was not the universality but the “self-improvement” issue of a self-reproducing
automaton which, however, was not settled at all by von Neumann. As far as

the second question is concerned, in the past there were several trials to refine
the von Neumann design of a self-reproducing automaton (cf. [3]). Neverthe-
less, in the absence of a precise task definition it has been difficult to compare
the alternative solutions w.r.t. the given task and to judge in what sense the
alternative solutions were better. In these efforts an evolution has still not
been the main issue and that is why several authors, inclusively e.g. Herman
[1] and recently also McMullin [3] called for a mathematical definition of the
“evolutionary growth of complexity” (as it is called in [3]) of self-reproducing
automata.

In this paper we formulate a new mathematical model of self-assemblage
which is a generalization of both classical cellular automata and contemporary
models of self-assemblage. This model allows to introduce nondeterminism into
the self-assemblage process. Within this model we give a mathematical def-
inition of a self-reproducing evolutionary automaton which captures essential
aimes of von Neumann’s design: the requirement of self-reproduction and the
possibility of evolutionary changes leading “from simpler types to increasingly
complicated types”, as von Neumann put it. In our definition, the notion of
“efficiency” of an automaton is measured by the minimal number of states of
an equivalent finite control mechanism. Finally we describe nondeterministic
globular universe and a self-reproducing self-assembling evolutionary automa-
ton existing within this universe. This automaton is conceptually much simpler
than von Neumann’s proposal and includes a “built—in” nondeterministic evo-
lutionary mechanism which leads directly to the infinite evolutionary lineages
of automata with increasingly complex finite state control.

The structure of the paper is as follows: in Section 2 the globular universe
is defined. Section 3 shows the computational equivalency of the model with
cellular automata and Turing machines. Next Section 4 defines the notion of a
self-reproducing evolutionary machine. Finally, Section 5 describes the design
of a nondeterministic globular universe in which a self-reproducing evolutionary
globular automaton exists. Conclusions in Section 6 mention possible avenues
for a further research.

2 Globular universe

The basic particles possessing latent self-assembly properties in which our uni-
verse abounds and from which all our ensembles will be constructed are com-
putational units called globules. As their name suggests globules have a shape
of tiny balls. Each globule can be seen as an “embodied” finite automaton that
can find itself in one of the finite number of states. These states determine the
self-assembly properties of the globules, i.e., their abilities to bind with other
globules. The globules move freely in an empty 3D space — except of the glob-
ules and their complexes there is nothing else in the space. They are subject
to a random motion, occasionally colliding and possibly binding one with each
other. The behavior of globules on this occasion is determined by their state
at that moment and is described by an interaction function. This function de-

termines new states of the globules and their behavior after their interaction.
Prior to giving a formal definition which abstracts the previously given informal
view of a globular universe we will introduce few preliminaries.

Let S be a geometrical sphere of a unit radius in a 3D Euclidean space. A
contact domain, or simply a contact on the surface of S is defined as the interior
of any closed convex curve on its surface; the curve itself is a part of the contact
domain. Each contact domain has a uniquely determined position on the surface
w.r.t. the given coordinate system. We will consider only such contact domains
whose boundaries are computable — i.e. there is a Turing machine algorithm
that will “draw” the domain at the required position on the surface of S. An
example of a contact domain is a single point on a sphere, or a “belt” drawn
around the “equator” of a sphere, a spherical circle drawn at a sphere’s pole,
etc. We will consider spheres with a finite number of contact domains on their
surface; domains can overlap. Each domain is endowed by certain properties
which are characterized by the color of the domain, and by the affinity of the
domain. We will see that the domains represent the mechanism underlying
the self-assembly properties of globules. We define the respective notions more
formally.

Definition 2.1 A globular configuration space is the set C = {Dy,..., Dy, X, T, 7},
where

e Di,..., Dy, for k > 0, are contact domains, or contacts defined on the
surface of a unit geometrical sphere;

e Y is the finite alphabet of contact domain colors;
o I' = {neutral, join} is the set of affinities !;

o : {Dy,....Di} — 2°*U is a function that for each contact domain
defines the admissible set of contact properties.

Any element of (X x T')¥ = Q is called a configuration (or a state, respec-
tively) of a globule from space C.

The state of a globule g can change when ¢ interacts with another globule
h. We say that ¢ interacts with h if and only if both globules come into a
contact, or if they are already in a contact — one with the other and one of the
two changes its state. If more than two globules interact simultaneously this
parallel multiple interaction is broken into a randomly ordered sequential series
of pairwise interactions. The configuration changes, during an interaction, are
governed by a so—called interaction function ® : Q2 — Q2. Let ¢,, cp, € 2 be the
states of g and h at the time of their interaction. Then ®(cy, c) = (¢}, ¢),) is to
be read as “after the interaction of g with h, the state of g changes from cy to

c, whereas the state of h changes from cy, to c),”.

I'We can also consider a richer set of affinities, e.g. of form T' = {neutral, attract, join, repel}
or affinities of a variable strength, given by an integer number; then the priorities among the
affinities must be stated similarly as in the case of a self-assembly model introduced in [4].

At the interaction times the behavior of the globules is governed by the
domain colors and the affinities. Consider two contact domains D; and D; with
7m(D;),m(D;) € £ x I and two globules g,h € C. Let (04,7,) € 7(D;) and
(on,vn) € m(D;) be the contact properties of the respective globules at these
contacts immediately after the interaction, i.e., after the application of ®. When
both colors and affinities match, i.e., o4 = o}, and v, = v, = 7 then the globules
will behave as follows:

e if v = neutral, then g and h are neither attracted to nor repelled from each
other via contacts D; and D;; that is, both globules will not be joined via
the respective contacts;

e if v = join, then g and & will join one with each other via a bond established
between the contacts D; and D;.

In all other cases the globules will behave as if both had a neutral affinity.

A bond between two globules can only be established when the globules have
not been already bonded to other globules in a position which prevents both
globules to enter a position allowing touching the contact domains needed for
a new bond. If a new bond can be established then both globules stabilize in
a relative position satisfying the needs of all existing bonds. If there are more
possibilities for such a positioning, one of them is chosen randomly.

Note that if contact domains are not point domains (i.e., if they have a pos-
itive area), then they can make a “movable” bond between any points within
their contact areas. This gives some freedom to globules which can for instance
self-assemble into an elastic structure with a variable curvature. For instance,
globules with an attracting contact domain in form of a belt around their equa-
tors can self-organize into a ball-shaped structure of a certain minimal and
maximal radius.

Summarizing formally our previous notions, we arrive at the following defi-
nition of a globular universe:

Definition 2.2 A globular universe U = (C,®) is a multiset of globules and
their ensembles with globules from the globular configuration space C interacting
via the interaction function ®.

Note that for some arguments ® need not be defined. That is, in fact ®
determines what kind of globules may interact in &/ and whether and how the
properties of globules will change on this occasion. For instance, it need not
be the case that the state of a globule can be changed into any other state or
that an originally neutral globule will ever bind to some other globule via some
sequence of interactions.

Next we will aim towards a definition of an evolution within a globular
universe. The idea is to see the evolution as a series of “snapshots” taken
at interaction times and documenting in this way the interactions of objects
within the universe. In the sequel we will consider only globular universes with
a finite number of finite globular objects, with a potentially infinite supply of

globules. The objects can consist of globules from the entire configuration space.
However, the configuration space of the supplied globules may be restricted.
Such globules will be said to arrive from the environment while the objects
under consideration will be said to find themselves in an observable part of the
universe. Once arriving from the environment and interacting with an object
within the observable universe a globule will become a part of this universe
unless stated otherwise. The globules arriving from the environment into the
observable universe will also be seen as an input into the observable universe.

A universe configuration reflects the static aspects of a situation in the ob-
servable universe at an interaction time. These aspects include the description
of all objects within the universe and their spatial relations. The dynamic as-
pects, i.e., the movements of objects leading to their collisions and state changes
of globules are captured through the interactions among the objects.

A globule represents a basic object. All other globular objects will essen-
tially be self-assembled objects formed by multisets of globules. In general, a
description of an object O is given by an adjacency graph where its nodes corre-
spond to the globules and its edges to the bonds among the globules. Of course,
the mapping between the nodes and the globules and that between the edges
and the bonds must be included in this definition. However, in many cases
we will deal with objects having a regular structure leading to their simpler
representation. In such a case an object O will be defined by

e its size, i.e., No. of elements in the underlying multiset from which it is
composed;

o the subset S C 2 of admissible states of globules potentially creating that
multiset;

e its spatial organization which is described as a computable invariant (pred-
icate) that holds for all globules in O and captures their adjacency relations
with their neighbors, i.e. it captures in fact bonds among the respective
globules (see examples of globular objects in the sequel).

The spatial relations among the globular objects are described with the help
of predicates which hold for all globules within the objects. Such a predicate
could be e.g. a binary predicate TOUCHES(A,B) with the meaning “object
A touches object B”. Other predicates could be e.g. OUTSIDE, INSIDE,
NEXT_TO and the like. In fact, all our predicates that will be used in the
sequel will be computable in a polynomial time w.r.t. the size of the objects
involved.

Let £ C U be the multiset of globules in the environment, O; be the set
of all objects in the observable part of I/ at an interaction time ¢, and let R;
be the set of spatial relations holding among the objects in O; at that time.
The (observable) universe configuration Cy = {Oy, R;} at time t is described by
the description of all globular objects in the universe and relations among them
at time ¢t. Let INTERACT; be the set of all interactions to be realized over
objects at time t. This set is given by the list of pairs of interacting globules

at that time. To each globule its state and membership in € or to an object in
O must be stated. Thus, an interaction can occur either between two globules
from the environment or between a globule from the environment and another
one from an object, or between two globules within the same object or within
different objects. The evolution starts at time ¢ = 0 in a certain initial universe
configuration Cj. The set of interactions INTERACT, is then applied to the
objects in Oy to get C7. In this way the evolution proceeds by applying inter-
actions to objects within configurations at interaction times ¢;, for i = 1,2,...
Note that due to the fact that dynamic information about globular objects is
not captured in a configuration and the states of globules arriving from £ are
in general unknown beforehand, the interactions among the objects cannot be
computed (e.g. by using Newton laws) and thus the entire evolution cannot be
determined from knowing the initial configuration only (as it is the case with
a classical cellular automaton). Under such a scenario an evolution is seen as
an on-line interaction between the objects and elements from £ (if any) repre-
senting the input into the observable part at that time. As a result, applying
INTERACT; onto objects in Cy we get Cpy1. Also note that by transiting from
C; to Cyy1 not only objects but also their spatial relations may change.

Next we will describe basic globular objects which we will need in the sequel.

A globule in a given state presents the simplest object. Interactions among
globules lead to emergence of more complex objects. For instance, after a colli-
sion of two globules, g and h, respectively, a pair g.h can emerge if the interaction
function is such that it results in joining g to h.

A simple globular object with a regular rigid structure is a grid. It is a two—
dimensional rectangular array with globules in identical initial states residing in
the array’s cells. Each globule has 4 neighbors (in the north, south, east, and
west direction) to which it is bonded once for all times and with which it can
interact and change their state.

A useful globular object is a strand. It is a linear string of globules concate-
nated via bonds. For each non—empty strand its first globule is defined and for
each globule in a non—empty strand, except the last one, its successor is defined.
The important operation over strands is an operation of extending a strand by
a globule; this globule is added behind the last globule of the strand. Another
operation is a copy operation; this operation will be described in Section 4. A
strand with both ends joined together is called a ring.

So far we considered in essence a deterministic globular universe: thanks to
the deterministic definition of the interaction function, from a given configura-
tion and the set of interactions to be performed over the objects described by
that configuration at that moment, the next configuration is computable in a
unique way (the notable exception could be “random serialization” of multiple
collisions). It is obvious that similarly as in the case of classical cellular au-
tomata probabilism could also be introduced into the model (e.g. in order to
model “mutations”), and also non—determinism. As we will see later, the latter
option is particularly convenient because it allows considering situations, which
are in principle possible without bothering much about their probabilities. In
this case, instead of an interaction function, we will consider a nondeterministic

interaction relation giving a finite number of possible outcomes for each inter-
acting pair of globules. In our considerations we will then always say explicitly
which “branch” of a nondeterministic development is to be used. In analogy
with the standard nondeterminism known from the automata theory, we will
consider that branch which will lead “where we need”, i.e., in the case of self—
reproducing automata to the self-reproduction of the automaton at hand, in
the case of evolving automata their evolution, etc.

Similarly, we will also consider nondeterministic universes in the following
sense: if the spatial constellation of existing objects leaves an access path free
for a globule to come from the environment, a globule in a required state will
“come flying” from the environment if available in £. That is, from among all
globules, which can in principle arrive, the one “we need” will arrive, indeed.
This is a similar condition as considered, e.g., in the tile assembly model where
tiles are available when and where needed. A nondeterministic universe will
be a universe with a nondeterministic interaction relation and nondeterministic
arrival of globules. Considering such universes enables concentrating on self-
assembly aspects of interactions.

Within any globular universe, by interaction of globules various complexes
of self-assembled globules can arise. We will be particularly interested in self-
replicating assemblies arising from certain initial universe configurations in cer-
tain universes. Prior to submerging into the related problems we will briefly
study the power of our model.

3 Globular Universe, Cellular Automata and Self—
assemblage

First of all, we show how one—dimensional cellular automata can be simulated
within a globular universe. For such a purpose we use the grid structure de-
scribed in the previous section. The respective globules will have four bonding
contacts spread equidistantly along their equators and each globule will simulate
one cell of our cellular automaton. It is obvious that starting from the “seed”
globules containing the input to the cellular automaton, any cellular automaton
can be simulated by such a grid.

The question of the reverse simulation of a globular universe on a cellular
automaton is a little more complicated. W.l.o.g. we can consider a Turing
machine in place of a cellular automaton. For a Turing machine it is possible to
keep on its tapes the representation of observable universe configurations and
to realize the respective operations needed for updating these configurations.
To do this in the finite control of a Turing machine at hand the complete table
describing the interaction function of the simulated cellular automaton must be
stored. The list of interactions to be performed over the objects represented
on the machine’s tapes will appear at the machine’s input after processing the
previous list of such operations. In this way the simulation can proceed as
needed.

As far as simulations of models of self-assembly are concerned, the situa-
tion is as follows. There seems to be no “referential” model of self-assemblage.
Therefore we will concentrate onto the elementary model, so—called tile assem-
bly model considered, e.g., in [4]. This model consists of tiles which possess
pre—defined self-assembly properties. These properties are described with the
help of interaction strength assigned to the sides of rectangular sides; the sides
bind when the total interaction strength exceeds a given parameter. This pa-
rameter corresponds to the affinity strength in our model (see the footnote in
the previous chapter) and therefore can be simulated by our model when us-
ing globules with four contact points equidistantly placed along the globule’s
equator instead of the square—shaped tiles. It is clear that the globular universe
presents generalization of the tile assembly model.

4 Self-reproducing evolving automata

For the definiteness of our subsequent discussion we will first define the notion
of a self-reproducing automaton in a globular nondeterministic universe. In
what follows we will always consider universe U with an observable part P C U
with the environment £& C U.

Definition 4.1 A globular object M in P is self-reproducible if and only if
there exists an evolution, starting in a configuration Cy; containing M as a
single object which, after carrying a finite number of interactions among the

globules from M and £ gives rise to a configuration with at least two occurrences
of M in P.

The notion of an offspring of a self-reproducing automaton is defined in an
obvious way:

Definition 4.2 We say that a self-reproducing object My is an ancestor of a
self-reproducing object Ms (or that My is an offspring of Ms) if and only if
there is an evolution from a configuration Cyr, containing exactly My into a
configuration Cpr, containing Ms.

Obviously, thanks to the nondeterminism an offspring of a self-reproducing
automaton M can be either an exact copy of M or a different automaton (if
different pathes in the evolution have been taken). It may happen that the
different offspring is still a self-reproducing machine. If this new automaton
is in a sense better than the old automaton we have embarked on a specific
“positive” evolution. In order to capture in what sense the new automaton
could be better we turn our attention towards the information processing ability
of the underlying machine. In the sequel we will consider automata controlled
by a finite state mechanism which is “made up” from globules. We will call
such class of automata globular automata. Obviously, the processing power of
a finite state mechanism is directly related to the number of its states. In
principle, automata with more states are able to distinguish among a greater

number of different situations and thus are able to generate a richer repertoire
of actions which can lead to a more sophisticated behavior and/or to a different
machine’s architecture. Yet in concrete cases it may happen that an automaton
has more states than needed in order to generate a given behavior. Thus, the
number of states alone is not an adequate indicator of an automaton’s power.
Therefore the complexity of a globular automaton should be defined by the
number of states of a minimal finite state mechanism controlling an automaton
in an identical way. Fortunately, in the sequel we will not need to know the
minimal automaton producing a given behavior; instead, we will show that in
principle such an automaton can be constructed in the process of evolution.

Definition 4.3 We say that a self-reproducing globular automaton M is a self—
reproducing evolving automaton (or that M has an evolutionary potential) in
U if and only if for any given finite state automaton A among the offsprings
of M in U there is a self-reproducing evolutionary globular automaton with a
control mechanism realizing A.

Obviously, a similar definition of a self-reproducing evolving automaton can
be given also for the case of classical cellular automata; however, a realization
of such an automaton need not be as simple as is the realization of such an
automaton in a nondeterministic globular universe.

5 Constructing a self-assembly evolutionary self—
reproducing globular automaton

The existence of a self-reproducing globular automaton within a given universe
depends much on the properties of the globules in /. For instance, in a universe
with single—state globules, no self-reproducing automata can exist. Similarly,
in universes with only neutral globules (i.e., no self-assembly is possible) no
complex objects can be built and therefore only single—globule self-replication
objects can exist in it, with no evolutionary potential.

The case where self-assembly works and the environment supplies globules
“as we like it” is more interesting.

Theorem 5.1 There exists a nondeterministic globular universe with a self-
reproducing evolving globular automaton.

A sketch of the proof: Let U = (C, ®) be a nondeterministic globular universe.
We will define explicitly neither its configuration space nor the respective inter-
action function; rather this will become clear from the course of the proof. Let
M be the globular automaton we are after. M will behave as follows: it will
react to the sequence of environmental changes which follow a certain regular
pattern described by a regular language R C Q* recognized by M. In such a
case, i.e., if and only if M recognizes a word w € R, M will either self-reproduce
or generate a self-reproducing offspring with a different behavior, possibly with
more states in its control mechanism than M had.

10

Let w = 0102 ...0r € Q" be a word. This word will be “presented” to M
as a series of “waves”, the first wave consisting of globules from environment
€ C U in state o1, etc. A “wave” means a situation when all globules arriving
from the environment are in state o;, for ¢ = 1,2,...,k. In this case, we can
imagine that as though has M floated in a sea of globules in state oy, then oy,
etc. and these globules interact with all globules on M’s surface. We say that
w is an input to M and that M accepts w if and only if M on input w will
generate either an equivalent offspring or a self-reproducible offspring with a
modified finite control mechanism (M must be able to generate either of the
two, not always an equivalent offspring).

Let A= (Q,X%,6,q0, F) be a nondeterministic finite state automaton recog-
nizing R. First we show how the transition function of this automaton will be
represented in M. For simplicity of explanation, assume first that the cardinal-
ity of both ¥ and @ is substantially less than the cardinality of C. Under such
assumption there is a 1 to 1 correspondence between @) and a subset of C' and
between ¥ and a subset of C' and there are sufficiently many globules which can
be used for other purposes rather than for representing sets () and X. Now we
can represent each element of these sets by a corresponding globule from C. In
the sequel we will not distinguish between the elements of these sets and their
globular representation. That is, we in fact assume that ¥,Q C C. Moreover,
instead of saying “a globule in state ¢” we will often say “a globule ¢”.

Especially note that there is a distinguished globule in state go € C. Then
§: Qx Y — 29 can be represented as a finite sequence of the segments of globules
of form po$q with p,q € Q and o € . Each segment represents a transition
of A of form &(p, o) = ¢. Of course, for such a representation we need a further
globule representing the separator $. Obviously, since § is a nondeterministic
relation in its representation as stated before, there can be transitions with the
same left—hand side. Assuming that the respective globules have strong bonds
on their poles the entire § can be represented as a linear strand of globules with
the given syntax. W.l.o.g. we can join the ends of this strand to form a ring.
To simplify the explanation we will call the first occurrence of) in the segment
$QILBQS as the “current state” whereas the second occurrence as the “new
state”. For technical reasons we will add to our representation of § a transition
of form §(qg,b) = qo, with b € ¥ and b & £ (i.e., a globule in state b will never
appear at the input to M).

In order to enable a smooth working of M we will further assume that the
basic structure of M is created by a double-ring: in parallel, and bonded to
the just described ring there exists a second auxiliary ring. This ring consists
of segments of form aba, with a € Q,b € ¥. The $ symbols match in both
rings and thus the globules in state a match the states from @ and the globules
in state b match elements from ¥ in the segment representation of § in the
original ring. This second ring is bonded to the first ring via bonds between the
corresponding globules. The original ring will be called the first track whereas
the auxiliary ring the second track.

Next M has to remember the current state ¢ € @@ of A. To represent the
current state of A we will mark the right—hand side of the transition rule whose

11

application has caused A to enter state . The marking will be realized in the
second track (under the new state in the respective segment in the first track)
by changing the state of the corresponding globule to state s & Q.

Now we need to define the input mechanism to our globular representation
of A. In accordance with the assumption that the globules will appear at places
when we need and where we need we will simply assume that the input globules
in state o; € ¥ will interact with all globules in the ring but only globules b in
track two will react to the input and change their states to o;.

Now we are in a position to describe one move of a globular automaton.

The situation before the move is as follows: under each globule from ¥ in the
first track there is a globule x = 0; € ¥ corresponding in the second track to the
symbol read by A at that time, under each globule, representing a state from
Q in each segment, there is an auxiliary globule in state a. The only exception
is in exactly one segment where under the second occurrence of a state from @)
there is globule s marking the current state of A. Initially, s is placed under the
second occurrence of g in the “artificially added” transition d(go,b) = qo.

Next we must first distribute the information on the current state of A into
all segments. To this end s will interact with ¢ and change its state to g. Then it
will interact with its left neighbor in order to propagate ¢ to the next segment
until the whole ring gets circumvented. After this action under the first two
symbols in each segment there is a pair (¢, x) denoting the current state and
symbol read by A. Then again the whole ring is circumvented by a signal to
see if there is a match between the pair (¢,z) and the globules above it. All
matches get marked by setting the states of globules under the new state in the
auxiliary ring to a distinguished state m ¢ Q.

If there is no match discovered, i.e., in the case that the computation of A
has stuck in a configuration from which there is no continuation, the initial state
qo is entered and the recognition of a new sequence of inputs will begin.

If there is a match, then we have identified the set of transitions that can
be potentially applied in this configuration of A. To apply a transition we non-
deterministically select one from among all marked transitions and mark it by
setting the state under the new state globule to state s. Then we “reset” all
globules in the second track, except the one in state s, to their initial values a
or b, respectively. Resetting is done by sending a signal around the ring and
changing the states of globules m to a and those of globules x to b. In the next
move, we assume that the globules from the previous input wave (i.e., globules
“read” by the globular automaton) have left the observable universe. If the state
marked by s is not a final state from set F' the globular automaton is ready for
the next move.

Otherwise, M enters the initial state of A, stops recognition and starts the
self-replication. The replication proceeds as follows. It starts in the segment
with the initial state. Therefrom a special signal is sent moving around the
double-ring and doubling its structure. The new ring is built from the incoming
globules by transcribing the states of the globules from the original ring into
the new ring. The new ring touches the old one only at the currently copied
segment. Of course, the newly copied parts do not remain attached to the old

12

ring — the respective bonds get cancelled. The new ring “grows” by inserting
further segments to it. The whole process looks as though the new ring “rolled”
over the old one and grew on this occasion. If the copying is done faithfully, the
result of this process will be an exact replica that is separated from the old ring.
However, the copying process can also be carried out nondeterministically, with
alternatives introducing changes into the segments of the replicated ring.

In the sequel we will describe the design of a nondeterministic evolutionary
mechanism which will generate an offspring with a modified transition function
of the underlying finite state automaton A. These changes will not be completely
arbitrary, e.g. they will preserve the chosen syntax of the transition relation.
The new transition relation can either have the same number of segments, or
more segments than the original relation.

The case with a transition relation having the same number of segments is
easy — it is enough to introduce nondeterministic alternatives into the process of
transcribing the elements of § from the original to its copy. The copying process
can be even designed so as to nondeterministically decide to skip copying of
certain segments. To remain consistent with the idea of two rings rolling one
on each other, the simplest way to achieve the desired effect of skipping one
segment is to copy a junk segment (i.e. one which could never be interpreted
due to its parameters) into the place of the skipped segment. Note that such a
process can lead to a “backward” evolution, in a sense that an off-spring can be
generated with a transition relation which might have been already generated
in a previous generation.

The case when the new transition relation will have more segments then the
original one is realized by letting the copying mechanism nondeterministically
decide to copy certain segments twice. This is done as follows: after copying a
given segment, the copying site (a signal, in fact) can change its direction and
instead of proceeding further and carrying out the copying process it will back-
track one segment without carrying the copying process, but freing the already
copied segment and binding the previous one in the original back to its coun-
terpart in the copy. As a result, the copied ring roles backwards on the original
ring by one segment. Then again the direction of the copying signal is reversed
and the copying process can be resumed. Note that by backtracking both in the
original and in the copied segment, the newly copied segment (and indeed, all
subsequent segments) will be copied before the already copied segment, but this
makes no harm since our representation of the transition relation is insensitive
to the order of segments in it. On the occasion of its second copying the copied
segment can be modified. It is clear that the new individuum can recognize a
different regular language and can, but need not be able to self-replicate.

Now it should be clear that over a fized set QQ and ¥ the evolutionary mech-
anism just described can generate arbitrary transition functions for A. That is,
we still cannot “enumerate” all finite state control mechanisms (over all sets of
states and all alphabets). In order to do so we must relax our assumption on the
size of cardinalities of @, ¥ and C. However, if the cardinalities of both ¥ and
Q@ are larger than the cardinality of C' we cannot map elements of () and X to
elements of C' as before. Then we must encode elements of ¥ and @ in a unary

13

notation into strings of identical globules from C. This will complicate the de-
sign of the self-replicating automaton but the above mentioned ideas will work
also in this case. Especially, the evolutionary mechanism will now be free to
generate “new” states and “new” symbols for A and this will enable evolutions
leading to arbitrary complex transition relations. In this case M will become
a real self-replicating evolutionary globular automaton according to Definition
4.3. This ends the sketch of the proof of theorem 5.1.

After presenting the construction of the previous self-reproducing evolution-
ary automaton two remarks are in order.

The first remark concerns the properties of universes in which self-reproducing
evolutionary globular automata cannot exist. Namely, it is clear that our con-
struction cannot be realized in case the cardinality of C is too small to al-
low encodings needed for a globular automaton to work as envisaged. Thus it
seems that there is a lower bound on the cardinality of globular configuration
space below which no self-reproducing evolutionary automata can exist even if
a self-assembly within the respective universe is possible. Moreover, even if a
configuration space of a given universe is sufficiently large, there still need not
exist transitions among the states of globules which would allow constructing a
self-reproducing evolutionary automaton.

The second remark concerns further properties of self-reproducing evolu-
tionary automata which we did not pay attention to in our design. It appears
that our self-replicating automaton can easily be made individuated in the fol-
lowing sense: arbitrary offsprings of a self-reproducing evolutionary automaton
will maintain their separate identities also in a direct contact. This can be
achieved by designing the universe and constructing M in such a way that the
globules from which the globular automata are made bind only with the glob-
ules from the environment. This condition for automata to be individuated has
been suggested by McMullin in [2].

6 Conclusion

In the paper we presented three main achievements. The first one was the de-
sign of a globular universe which enabled a study of self-assembly in a more
general setting than the previous models did. This has been mainly due to
getting rid of the rigid structure of cellular space (as in the case of classical
cellular automata) or of the necessity to deal with explicit dynamic aspects of
particle motion (as in the case of lattice gas automata). The introduction of
nondeterminism both into the self-assembly process and into the dynamic input
appearance in the observable part of the globular universe enabled concentra-
tion to principal existential questions related to the self-assembly of globular
objects. A view of a basically continuous evolutionary process as that of a fi-
nite series of configurations taken at interaction times and related via sets of
on-line interactions enabled a formal treatment of evolution much in the spirit
of the computational theory. An application of ideas from the computational
complexity theory has led to the second achievement, viz the formal definition

14

of a self-reproducing evolutionary automaton. Last but not least, the third
achievement was the design of a specific nondeterministic globular universe and
a constructive proof of the existence of a self-reproducing evolutionary automa-
ton within this universe. The automaton itself is substantially simpler than
the automata designed by other authors. Moreover, our automaton includes
a nondeterministic evolutionary mechanism which guarantees the existence of
evolutionary paths towards more complex automata thus answering positively
von Neumann’s question from the introduction in a constructive way.

We believe that the framework of a globular universe, or a similar one, will
enable a further, more detailed study of questions related to self-reproduction,
evolution and to the self-emergence of self-reproducing evolutionary machines.
As far as the latter machines are concerned, machines with “more complicated”
evolving bodies would be of interest. A possible avenue would be to consider the
ideas from theoretical biology related to artificial life synthesis (cf.[5]). Here cell-
like systems controlled by a genom and embedded in a membrane are considered.
The first ideas along these lines in the spirit of our modelling have been sketched
in [7]; in fact, the current paper emerged as a result of an effort to bring more
formalism into the respective research.

References

[1] Herman, G. T.: On universal computer constructor. Information Process-
ing Letters, Vol 2, pp. 61-64, 1973

[2] McMullin, B.: Some remarks on autocatalysis and autopoiesis. Annals of
the New York Academy of Sciences, Vol. 901, pp. 163-174, 2000

[3] McMullin, B.: John von Neumann and the Evolutionary Growth of Com-
plexity: Looking Backwards, Looking Forwards... Artificial Life, Vol 6.
Issue 4, Fall 2000, pp. 347-361

[4] Rothemund, P., Winfree, E.: The program-size complexity of self-
assembled squares (extended abstract). In Proceedings of the thirty-
second annual ACM symposium on Theory of computing, pages 459-468.
ACM Press, 2000.

[5] Szostak, J. W., Bartel, D. P., Luisi, P. L.: Synthesizing Life. Nature 409
(2001), pp. 389-390.

[6] von Neumann, J.: Theory of Selfreproducing Automata. A. Burks (Ed.),
University of Illinois Press, Urbana and London, 1966

[7] Wiedermann, J.: Coupling computational and non—computational pro-
cesses: minimal artificial life. Pre—proceedings of the Fifth Workshop on
Membrane Computing (WMC5), G. Mauri, Gh. Paun, C. Zandroni (Eds.),
Dept. of Comp. Sci., University of Milan — Bicocca, Italy, June 16-19,
2004, 444 p.

15

