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Introduction 

The low setup cost of online auction platforms has facilitated the creation of new 

varieties of auction formats. A popular new auction variety invented by a German 

company ‘Swoopo’ in 2005 requires participants pay a small fee at each time of bidding 

(Platt et al., 2012). It was named Penny Auction, as each bid increased the current 

price by a fixed small increment, which was usually one cent. Swoopo’s success has 

brought hundreds of competitors running similar format pay-to-bid auctions around the 

world (Zimmerman, 2011). Swoopo remained one of the market leaders from its 

founding until it filed for bankruptcy in early 2011. At its peak, Swoopo operated 

internationally in 22 regions (including the United States and most EU countries), 

earned a profit of $28.3 million in 2008 and had 2.5 million users in 2009 (Oswald 2008; 

Stone 2009). Since then, more than 150 market entrants including BidCactus, BigDeal, 

and Quibids have tried to capture a piece of the market (Stone 2010), which swelled to 

300,000 U.S. visitors daily in 2011.  Table 1 shows the numbers of monthly unique 1

visitors of a few of the largest penny auction websites, monitored by Compete.com, a 

web traffic monitoring company, showing penny auctions website even reached around 

25% of eBay’s data at the end of 2010 (Wang Xu, 2016). 

Table 1. Monthly traffic of the largest penny auction websites 

Website Unique visitors

Feb 2010 Nov 2010 Apr 2011

Bidcactus.com 1,428,316 3,411,705 1,979,846

BigDeal.com 480,230 1,324,947 943,327

Quibids.com 173,142 4,541,783 4,586,523

Swoopo.com 286,142 171,141 Closed

Total number of sites 47 125 158

All sites 4,701,541 16,866,475 12,524,625

eBay.com 64,766,668 67,197,011 69,929,590

% of eBay traffic 7.3% 25.1% 17.9%

 As recorded by http://www.pennystats.com/ in March 2011. 1
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Different penny auction websites may have slight differences in their auction settings, 

such as charging different amounts of bidding fees, with some general rules followed by 

most of the auctioneers. In general, each penny auction starts at a price of zero with a 

specified closing time displayed in a countdown clock. To place a bid, a bidder is 

required to pay a small bidding fee (usually between $0.60 and $1), which can either be 

charged immediately at the time of bidding, or deducted from his/her pre-purchased 

bidding credits. After a bid is placed, the current price increases by a fixed amount 

(usually between $0.01 and $0.15), substantially smaller than the bidding fee. After the 

original closing time is reached, each new bid can extend the auction by a set short 

amount of time (usually between 10~30 seconds). If no other bid is placed before the 

time expires, the last bidder wins and pays the current price. It differs from English 

auctions, where the winner of a penny auction pays not only the winning bid, but also 

the bidding fees incurred throughout the entire auction, while the auctioneer gains his 

revenue not only from the winning bid, but also from the aggregate bidding fees paid by 

all participating bidders. It also differs from ordinary online auction platforms such as 

eBay and Amazon, where a penny auction website hosts all its auctions and lists 

selected brand new items of limited variety, such as popular consumer electronics, video 

game consoles, gift cards and packs of bidding credits, which have a relatively well-

defined market value. 

Penny auctions have drawn academic attention because of their similarity and 

differences to some well-known auction mechanisms such as Martin Shubik’s Dollar 

Auction, and War of Attrition and all-pay auctions (Hinnosaar, 2016). A variety of 

theoretical models based on complete information and risk neutral sellers and bidders 

predict zero expected profit, but data suggest otherwise. Empirical evidence has shown 

that bidding fees are primary revenue sources of penny auction operators who earn 

substantial and consistent profits, robust over time. Although some penny auctions 

ended with high profit margins, not all auctions were profitable, e.g. Swoopo only made 

positive profit in half of its auctions (Platt, Price et al. 2010; Byers, Mitzenmacher et al. 

2010). 

A simple example would help us understand the profitability of the mechanism more 

intuitively. Suppose in some penny auction, bidders pay $1 to place a bid, which raises 

the current price by $0.02, then for every $1 increase in the winning bid, the seller 

collects $50 additional revenue from bidding fees. Thus, as long as the winning bid 
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reaches 1.96% of the seller’s valuation, he would break even, and if the winning bid 

reaches 5% of his valuation, his profit margin would be 200%. Despite its profitability to 

the auctioneer, a penny auction may still look attractive to many bidders, especially the 

newcomers, who observe that the current price of an auction item is usually remarkably 

low and the winning bid of a closed auction is also usually low. Swoopo managed to 

deliver expensive consumer products at significantly low prices that beat all traditional 

retailers in most of its auctions, while retaining a high profit margin. Note that 

although Swoopo gained negative profits in around half of its auctions, the other half 

were successful enough to result in an overall profit margin of 50% from 166,000 

auctions spanning from September 2005 to June 2009. In fact, the median winning bid 

of Swoopo auctions is only 10% of the retail price of the auction items (Augenblick, 

2011). Despite these obvious pros, the tricky con is that costs spent on past bids are 

technically sunk and have no bearing on one’s likelihood of winning once being outbid, 

which is one of the reasons that newcomers often spend much more than they plan to. 

Note that placing a bid in a penny auction has a distinct interpretation from bidding in 

a traditional auction, in which a bid represents a bidder’s willingness to pay for the 

auctioned item and is not payable unless it turns out to be the winning bid, while 

money spent on bids in a penny auction is unrecoverable. 

Structures of most penny auction websites, including relatively small bidding fees and 

discounted packages of bidding credits, promote irrational bidding behaviours and 

exploit the sunk cost fallacy ; as bidders continue to participate in an auction, and they 2

spend more money on bids leading them to experience a higher psychological cost from 

leaving the auction (Eyster, 2002; Augenblick, 2011). On the other hand, for a 

newcomer of some penny auction websites with a bidding fee of $1, it is likely that he 

may not realise he has already spent $100 after placing 100 bids. Most penny auction 

websites do not provide full bidding histories to their visitors. For instance, when 

viewing a live, or completed auction on Swoopo, only the ten most recent bids are 

visible, and most other auctioneers provide between five to ten recent bids in live 

 One potential explanation for high auctioneer profits comes from the dollar auction (Shubik, 1971), 2

which shares many characteristics with the penny auction. In the dollar auction, two players sequentially 
bid slowly escalating amounts to win a dollar bill, but both are required to pay their last bid. The dollar 
auction is known as a “prototypical example” of the irrational escalation of commitment (also known as 
the sunk cost fallacy), in which players become less willing to exit a situation as their financial and 
mental commitments increase, even if these commitments do not increase the probability of success 
(Camerer and Weber, 1999). This suggests that the sunk-cost effect also could be playing a role in penny 
auctions, as players make similarly escalate financial commitments (in the form of bid costs) as the 
auction continues (Augenblick, 2011). 
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auctions; although BidCactus displayed a full list of all bidders and their total number 

of bids in completed auctions, full bidding histories were not provided. Furthermore, the 

bidding history of a bidder is usually not available for him/her to track either, so it is 

not obvious to a bidder how much he/she has spent so far in a live auction.  

From sellers’ points of view, unlike traditional auctioneers who earn from the winning 

bids, bidding fees are the primary source of revenue for penny auction websites. Their 

mechanisms and auction settings (such as tiny bidding increments) promote the total 

number of bids placed in each auction. In a traditional online auction, most bids are 

placed at the beginning and within the last minutes before it ends, and because the  

bidding increment is customisable, simply placing a bid may not make a bidder the 

current leader, which may discourage some bidders from participating. However, in a 

penny auction, an operator would prefer to keep participants bidding steadily 

throughout the auction, so settings such as zero starting price, fixed tiny price 

increment per bid, and high valuation of auction items, which maintain the 

attractiveness of placing a bid throughout the auction. Similarly, a penny auction 

operator would also want to maximise the auction’s length.  

In traditional online auctions, bidders tend to wait until the last moment to place their 

bids (Roth and Ockenfels, 2002). The dynamic countdown clock in a large bold font is a 

key feature adopted by all penny auction websites. Together with super short extension 

periods (usually 10~30 seconds) being counted down in seconds, it builds a great 

atmosphere to attract new bidders to join in as well as encouraging current participants 

to place bids continuously, resulting in auto-extension periods that can last for hours, 

and even days. For instance, 120 bids that only increase the current price by $1.20 could 

take up to one hour in an auction with a 30-second countdown timer.  

However, it is not reasonable to expect ordinary bidders to remain active by placing 

bids manually in an online auction for hours or days, thus automatic bidding tools such 

as BidButler of Swoopo, are available to all bidders. For example, a bidder can set his 

BidButler to place a bid on a certain auction every time when the countdown clock 

reaches the last second, such that he can stay in the auction as long as he has bidding 

credits remaining (MacDonald, 2011). Besides this, large operators such as Swoopo and 

BidRivals run their auctions internationally, so that bidders living in different time 
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zones across the globe can compete in every single auction, which contribute to 

extending the auction’s length. 

In my study, I collect my original dataset of over half a million auctions over a 

timeframe of four years from BidCactus.com, one of the market leaders after the 

shutdown of Swoopo. The data show wide variability in profitability across categories of 

items and overall high profitability. I first replicate the Maximum Likelihood 

methodology of Platt et al. (2013) to estimate risk parameters implied by bidding 

behaviour for my original dataset, and found evidence of bidders’ experiences affecting 

the profitability, which was consistent with evidence from earlier studies using other 

datasets that reveal differential bidding behaviour based on experience. I therefore 

extend the Platt et al. (2013) model to allow for multiple types of bidders with different 

prior experiences and estimate type-specific risk parameters via Maximum Likelihood 

when there are up to three types of bidders in an auction. Bidders in different 

experience groups in our dataset are shown to have significantly different risk attitudes. 

When bidders are separated into two bidding groups of inexperienced bidders with 

participation experience of less than 20 prior auctions with the rest being experienced 

bidders, I observe that the more experienced bidders were more risk-seeking and bidding 

more aggressively, which contributes more to the seller’s revenue, regardless of whether 

they competed with rivals of the same type, or otherwise.  

Another interesting fact that was observed, was that 0.2% of bidders participated in 

1,000 or more auctions, and placed over 20% of all bids. If we separate this small 

proportion of bidders into a new group called the super-experienced bidders, and called 

the rest of the experienced bidders as ordinary-experienced bidders, we observed that 

the super-experienced bidders whose behaviours are usually affected by type 

composition of rivals. They play more aggressively than the other two types when 

playing only against rivals of their own type; while they play more conservatively 

compared to the ordinary-experienced bidders (those with 20~1000 prior auction 

experiences) when there exist rivals of other types in an auction. Implication of bidders’ 

experience types on seller’s profitability are discussed in more details in Chapter 6 and 

7. 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Chapter 1. Literature Survey 

Theoretical Literature 

Past theoretical literature has established a baseline model which features risk neutral 

participants and complete information, and which implies zero profitability. Data, as we 

explained in the Introduction, suggests otherwise. Various authors attempt to explain 

the observed excess revenue by extending the basic model to capture risk-loving 

preferences (Platt et al., 2013), sunk cost fallacies (Augenblick, 2015; Hinnosaar, 2016), 

information asymmetry, collusion and shill bidding (Byers et al., 2010), signalling 

strategies (Augenblick, 2012; Byers et al., 2010), and additional utility from auction 

participation (Hinnosaar, 2016).  

Platt et al. (2013) proposed and tested a model of penny auctions to predict the 

distribution of ending prices, which suggests that bidders are risk-seeking to some 

extent. Their symmetric complete information model is set up as follows:  3

The auctioneer sells an object with a known, objective value of !  dollars to !  

potential bidders who are risk-neutral, and the state of the auction is described by the 

number of elapsed periods !  and the identity of the current winning bidder, 

! . The auction starts at price ! . For every bid that is placed 

successfully, the bidder must pay a bidding fee of !  dollars to the auctioneer, and the 

current price is raised by !  dollars. Thus, the current price at period !  is ! . 

During each period ! , the !  non-leaders (or !  non-leaders at initial period 

! ) simultaneously choose whether to place a bid. If no one places a bid, the auction 

closes and the current leader wins the object and pays the current price ! . It is 

assumed that if !  bidders place a bid, one of them is randomly selected with 

probability !  to become the new leader, and is the only one to pay the bidding fee. 

In addition to common initial wealth of ! , each bidder has the same von Neumann-

Morgenstern (vNM) utility function of ! and ! . 

 v N

t

i ∈{   1,   ...,N}  p0 = 0

c

 s t pt = st

t > 0 N − 1 N

t = 0

pt

K > 1

1/K

W

   u(i) u(W ) =W

 Slightly different notation to that in Platt et al. (2013) is used in this literature review for consistency 3

throughout the thesis and for easier reading. 
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In the symmetric Markovian Subgame Perfect Equilibrium, each player’s next move is 

predicted by the last move of the other player, not by earlier history of moves. All non-

leaders at period !  employ the identical Markov strategy with the same probability 

!  of attempting to place the ! bid. Thus the aggregate probability of the 

! bid occurring ! , where ! is the probability of the ! bid being 

placed by any non-leaders in the ! period,  solved by backward induction.  

There exists the maximum number of periods possible, as no bidders would be willing to 

place a bid once the current price plus the bidding fee exceeds the item's value. Let 

!  for ! , and assume !  is an integer for easier analysis. Even if this 

assumption does not hold, players would strictly prefer to bid in the !  period, 

since no one would bids in the !  period. No bidder in the ! period or beyond is 

willing to place a bid, i.e. no one is willing to place the ! bid. Because if a bidder 

places a bid and becomes the new leader in the !  period, the new current price 

will be ! , and her expected payoff is negative as 

! . Therefore, we must have !  for 

! . 

For any non-leader in the periods ! , placing a bid brings her a positive payoff 

only if her bid is accepted and no one else bids in the next period. She is indifferent 

between placing the ! bid and not placing the ! bid, so that ! . 

Thus the probability of the ! bid occurring in the game is ! , and 

!  when ! .  

t

βt+1 ∈[0,1] (t + 1)th

tth 1− µt ≡ (1− βt )
N −1 µt tth

(t − 1)th

T ≡ v − c
s

s > 0 T

(T − 1)th

Tth Tth

(T + 1)th

(T + 1)th

pT+1 = s(T + 1) = s v − c
s

+ 1
⎛
⎝⎜

⎞
⎠⎟
= v − c + s

v − s(T + 1)⎡⎣ ⎤⎦(1− µT+1)− c = c − s⎡⎣ ⎤⎦(1− µT+1)− c < 0 µt = 0

t >T

1 < t <T

tth tth (v − st)(1− µt+1)− c = 0

tth µt = 1−
c

v − s(t − 1)

βt = 1− (1− µt )
1
N −1 = 1− c

v − s(t − 1)
⎛
⎝⎜

⎞
⎠⎟

1
N −1

1 < t ≤T
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Let ! , !  for ! , and !  for ! . 

Then the strategy profile !  and ! for !  constitutes a  

unique symmetric Markovian Subgame Perfect Equilibrium. There also exists other 

symmetric equilibria, in each of which the auction either ends in period 0 with no 

bidder, or ends in period 1 with one winning bidder. 

Using conditional probability !  (the aggregate probability of the ! bid 

occurring, given that the ! bid already has occurred), the probability density that the 

auction ends at exactly !  bids is constructed as follows 

!  

The expected revenue of the auctioneer ! ,  is shown to be equal 

to ! , which is independent of parameters such as bidding fees and bid increments, while 

variance of the expected revenue increases in !  and ! , and decreases in ! . As it is 

assumed that the auctioneer has the same valuation !  as the bidders, he would get zero 

expected profit from the auction.  

Platt et al. (2013) attempts to explain the significant profitability of penny auctions by 

relaxing the assumption of risk-neutrality and incorporating preferences towards risk, 

which seem natural, since placing a bid in a penny auction looks like paying a small fee 

to gamble that other bidders who will not place the next bid in order to win a big prize. 

Assume bidders have a Constant Absolute Risk Aversion utility function of 

! , where Absolute Risk Aversion equals ! . Similarly, the indifference 

condition between placing a risky bid and not placing a bid is calculated as: 

 µ1 ∈[0,1] µt = 1−
c

v − s(t − 1)
1 < t ≤T µt = 0 t >T

β1 = 1− (1− µ0)
1
N βt = 1− (1− µt )

1
N −1 t > 1

µt+1 (t + 1)th

tth

t

f (t) ≡ (1− µt+1) µj =
j=1

t

∏
   1− µ1                                                                                                                                                 if    t = 0

   c
v − st

µ1 1− c
v − s(j − 1)

⎛
⎝⎜

⎞
⎠⎟

                   if    0 < t ≤T
j=2
t∏

⎧

⎨
⎪

⎩
⎪

E[R ev ] = (c + s)t ⋅ f(t)
t=1

T

∑

 v

c v s

 v

u(W ) = 1−e
−αW

α
α
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!  

where ! is utility of winning the auction after placing the bid, and

!  is utility of being outbid after placing a bid. The solution of the 

indifference condition is !  and the corresponding symmetric 

equilibrium bidding function is ! . Note that the previous risk-

neutrality case corresponds to ! ; risk aversion corresponds to !  and risk 

seeking corresponds to ! . CARA utility enables us to eliminate the wealth effects 

in the indifference condition, which ensures wealth differences that arise during bidding 

do not create heterogeneous bidding incentives or alter equilibrium behaviour.  

The probability that the auction ends in period t is 

 

It can be shown that the expected number of bids is decreasing in . This implies 

that expected revenue is decreasing in , i.e. the auctioneer is able to extract more 

revenue and profit from more risk-loving bidders whose have risk parameters . 

The basic model of Augenblick (2012)  is similar to Platt et al. (2013), and also restricts 

attention to symmetric Markovian strategies, but assumes bidders are risk-neutral. The 

hazard function at time t, conditional on survival until time t or later, is defined as  

!  

(1− µt+1)
1−e−α(W +v−st−c)

α
+ µt+1

1−e−α(W −c)

α
= 1−e

−αW

α

1−e−α(W+v−st−c)

α

1−e−α(W −c)

α

µt =
1−eα(c+s(t−1)−v)

eαc −eα(c+s(t−1)−v)

βt = 1− (1− µt )
1
N −1

α = 0 α > 0

α < 0

f (t) ≡ (1− µt+1) µj =
j=1

t

∏ 1−eαc

eαc −eα(c+st−v)
1−eα(c+s(j−1)−v)

eαc −eα(c+s(j−1)−v)
⎛

⎝
⎜

⎞

⎠
⎟

j=1

t

∏

α,s,c

α

α < 0

!h(t,lt ) ≡ Pr every      bidder       i       chooses   Not   Bid      for      all      i ≠ lt reaching     t   with    leader    lt⎡⎣ ⎤⎦
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i.e. !  and ! is arbitrarily chosen. To make smoother 

empirical predications of hazard rates, on top of the model in discrete time setting, 

Augenblick (2012) builds a model with a continuous time setting by shrinking the size of 

the time periods to approach zero. !  is set to be a small length of time to remodel 

time points as ! , and the bidding cost is changed to ! . To 

compare survival and hazard rates across auctions of items with different valuations, 

time is normalised by item valuation. !  is defined as the time that an auction ends, 

and the normalised time period !  and !  is the normalised time that an auction 

ends. The survival function is defined as ! , and the hazard rate is 

defined as ! . Thus, the discrete equilibrium equivalent in the 

continuous time setting is:   

 and  for , 

when ! , !  and !  for ! . 

Augenblick (2015) proposes that the naive sunk cost fallacy is the most intuitive 

explanation of the differences between empirical findings and the theoretical model. He 

assumes that bidders become less and less willing to leave an auction as they place more 

bids, even though those costs are “sunk”. To capture sunk costs, Augenblick (2015) 

assumes that each player’s perception of the value of the good rises as she spends more 

money on biding costs. A player i who has placed si bids has sunk costs sic and 

perceives the value of the good as !  with !  defined as the sunk cost 

parameter. As this parameter rises, the player’s sunk costs cause her to bid with a 

higher likelihood in the auction. If this parameter is zero, the model reverts to the 

standard risk neutral model above.  

!h(t,lt ) = 
1− βt

i( )i=1
N∏
1− βt

lt    
!h(0) = 0

 Δt

  t ∈ 0,Δt,2Δt,3Δt...{ }  cΔt

 T

  
t̂ = t

v   ̂T

  
S(t) = lim

Δt→0
Pr(T > t)

  
h(t) = lim

Δt→0

S(t)−S(t + Δt)
Δt ⋅S(t)

h(t) = c
v − st

h(t̂ ) = c
1− st̂

t < v
s

s > 0 S(t) = 1− st
v

⎛
⎝⎜

⎞
⎠⎟

c
s

S(t̂ ) = 1− st̂( )
c
s t < v

s

v + θsic θ ≥ 0
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Assume that the player is naive about this sunk-cost effect, in the sense that she is 

unaware that her perception of value might change in the future and also unaware that 

other players do not necessarily share her perception of value. Without the first type of 

naivety, players would be aware that they will bid too much in the future and 

consequently require a compensating premium to play the game initially, thus leading to 

zero profits for the auctioneer (and violating the empirical observations). Without the 

second type of naivety, each player would have very complicated higher-order beliefs, 

being personally unaware of her own future changes in value perceptions, but being 

aware of other player’s changing perceptions and of other players’ (correct) beliefs about 

her own changing perceptions. Furthermore, due to the mechanics of mixed strategy 

equilibria, each player’s bidding probability would largely be determined by the sunk 

costs of other players rather than her own sunk costs.
 
With this  dual naivety 

assumption, a player simply plays the game as if the value of the good matches her 

perceived value, which includes a portion of her own sunk costs. 

The sunk costs faced by a player at a specific time t depend on the realizations of the 

player’s own mixed decisions, the mixed decisions of the other players, and the 

realization of the leader’s selection process. Define !  as the total sunk bids player i has 

placed up to time t in an auction, so that that bid probabilities !  in the Markovian 

equilibrium strategies are restricted to only depend on t  and sunk costs ! . 

With sunk costs, for any game with ! : 

When ! , !  and !  for all i, in any Markov Perfect Equilibrium, the 

symmetric Markov Perfect Equilibrium strategies are: 

ξi
t

βi
t

ξi
t

s > 0

 t > 1 β0i > 0 β1i > 0
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!  

It is shown that bidders overbid significantly due to the fallacy of sunk costs, and the 

auctioneer earns a considerable profit from this overbidding. 

Hinnosaar (2016) argues from a different sunk cost perspective from Augenblick (2015) 

that individuals might not consider c to be at the same monetary scale as v and p, 

since it is partly sunk. As in practice bidders are able to buy “bid packs” with 50 or 100 

bids at a time, therefore, with some probability an individual has marginal cost of next 

bid less than c. When bidders consider the cost of bid ! , and expected revenue is 

greater or equal to the valuation, that it is possible to earn profit. 

Hinnosaar (2016)’s analysis of Swoopo is among the first few working papers on penny 

auctions. A major difference of Hinnosaar (2016) compared to all other theoretical 

works is the treatment of simultaneous bidding attempts by two or more bidders if one 

or more of the non-leaders submit a bid, each of them will be the leader in the next 

period with equal probability, but each of these players pays the bidding fee to the 

seller, so the price increments by s times the number of simultaneous bids received. At 

each period ! , the non-leaders simultaneously choose to either submit a bid or pass. If 

!  non-leaders submit a bid, each of them will be the leader in the next period 

with equal probability of ! , the price increases to !  and each of 

these !  players pays !  dollars to the seller. Since each player makes her decision 

independently, the probability of player i becoming the new leader after she submits a 

bid, when each of !  other non-leaders are bidding with probability !  is  

βt
i = 

      1                                                                                         t = 0

      1− c
v − st + θξi

tc

n−1
                      for    0 < t ≤T          

     0                                                                         for    t >T
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which is shown to be strictly decreasing in !  and N, i.e. one is less likely to become the 

leader if there are more opponents or if the opponents bid more actively. 

The symmetric Stationary Subgame Perfect Nash Equilibria (SSSPNE) are considered, 

where SSSPNE are that satisfy both Symmetry (players’ identities do not play any 

role) and Stationarity (players only condition their behaviour on the current price and 

number of active bidders, NOT on the whole history of bids or identities of leaders). It 

is shown that at any SSSPNE, the game is finite, and there exists a point in time where 

the game has ended with certainty; expected revenue is less than or equal to the 

valuation of the item; and when the object is sold, revenue is greater and less than the 

valuation with positive probabilities. However, the observed average profit margin of 

penny auctions is significantly higher than zero, that the model needs to be extended 

further to achieve an outcome where expected revenue may be significantly higher than 

the value of the object. 

Hinnosaar (2016) argues that the suggested retail value is higher than the cost to the 

seller, which is around the value that the customers expect to pay, and that the bidders 

get some positive utility from participating, ! , so that ! , where !  is 

the buyer’s value, including the participation utility, ! and !  is the seller’s value. The 

buyer's value could also be an increasing function of N (the utility value of beating N-1 

opponents is increasing in N). Other possible ways to model this entertainment value 

are: modelling it as a lump-sum value just from participating, as a positive income that 

is increasing in the number of bids, or assuming that “Saving” money gives some 

additional happiness that instead of ! , a risk-neutral player would have some 

increasing and convex utility functions ! . This sort of utility gain is generated 

through analysis of bidders’ risk attitude in Platt et al. (2013). 

In all above literature, information asymmetry and asymmetric equilibria in which 

homogeneous bidders employ different mixed strategies at a particular period, are not 

considered. Byers et al. (2010) first analyse the impact of information asymmetry 
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broadly, as well as Swoopo’s features such as bid packs and the buy-now option 

specifically, to quantify the effects of imperfect information in these auctions. It was 

found that even small asymmetries across players (cheaper bids, better estimates of 

other players’ intent, different valuations of items, committed players willing to play 

“chicken”) can increase the auction’s duration well beyond that predicted by previous 

work and thus skews the auctioneer’s profit disproportionately, even with fully rational 

players. If players overlook, or are unaware of any of these factors, the result is outsized 

profits for pay-per-bid auctioneers. Behavioural factors are also examined through the 

dataset of live auctions, such as the power of aggressive bidding.  

Byers et al. (2010) start with their basic symmetric model and analysis of Swoopo 

auctions based on Platt et al. (2013) with all players playing identical strategies and two 

original datasets. One outcomes dataset with 121,419 Swoopo auctions and limited 

information about an auction such as the product description, the retail price, the final 

auction price, the bid fee, and the price increment: and one traces dataset of 4,328 live 

auctions recorded using their own recording infrastructure, with detailed bidding 

information for each auction including the time and the player associated with each bid.


A rational player’s strategy in the basic model depends on his/her assessment of the 

probability of winning the auction by bidding, based on the auction’s parameters such 

as the current bid, the number of bidders, the bid fee, and the value of the item. 

Arguing that the information asymmetries arise naturally in players’ perceptions of 

penny auction parameters, the impacts of asymmetry on profitability are analysed 

together with adoption of the Markov chain for modelling general asymmetries. For 

instance, although the basic model assumes that the number of players is known to all 

players in advance, there is no way of knowing exactly how many players are actively 

participating or monitoring the auction at any time in practice, especially with Swoopo 

only displaying the list of bidders active in the last 15 minutes. It shows that an 

underestimation in the number of bidders’ increases profitability, as well as certain 

mixtures of underestimation/overestimation, and even small asymmetries in beliefs in 

the number of active players can lead to dramatic changes in overall auction revenue, 

which can grow sharply as the estimates vary from the true number of players.  
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Other assumptions of the basic model also challenged, are that all players share an 

identical valuation to an auction item and pay the same bidding fee to place a bid. 

Different valuations among bidders are obvious, considering Swoopo operates the same 

auction internationally with a suggested retail price in different currencies that are 

usually higher than Amazon’s list price. The more players that overestimate the item, 

the larger its impact on profitability. Players who occupy bid credits at a discounted 

price by winning bidpack auctions, or purchasing sets of prepaid bids beforehand, have 

lower bidding fees compared to other participants, without their knowledge in general. 

Players having a lower bidding cost have both a decided information advantage and a 

tactical advantage. A shill bidder (an extreme case of zero bidding costs) bids on behalf 

of the auctioneer and does not claim any winning item if he wins, and all revenue from 

bids placed by other bidders are profit for the seller. While Byers et al. (2010) do not 

suggest the presence of shill bidding in penny auctions, they do show that it would have 

a striking impact on seller profitability.  

It is claimed that even small asymmetries across players (cheaper bids, better estimates 

of other players’ intent, different valuations of items, committed players willing to play 

“chicken”) can increase the auction’s duration significantly and thus skew the 

auctioneer’s profit disproportionately. Intrinsic aspects of the penny auction’s 

mechanism are able to derive profit from even rational, risk-neutral players who 

correctly model sunk costs, if the players overlook, or are unaware of any of these 

factors.  

Other interesting aspects including behavioural factors that are difficult to models 

analytically, are examined empirically, e.g. whether aggressive bidding is an effective 

strategy. Empirical finding shows that the most aggressive bidders contribute the lion’s 

share of profits to Swoopo although aggressive bidders win more often. It is also shown 

that the profitability of penny auctions is potentially fragile, especially in cases where 

signalling by committed players willing to play a game of chicken, or collusion between 

players, can end the auction earlier.
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Empirical Literature 

Past empirical research with original data collections have shown significant profitability 

of the penny auction mechanism (Augenblick, 2012; Byers et al., 2010; Goodwin, 2012; 

Platt et al., 2013), and attempt to explain the excess revenue of auctioneers and 

bidders’ behaviour by different approaches (Augenblick, 2012; Goodman, 2012), 

discussing sustainability of the mechanism (Wang and Xu, 2012) and bidders’ retention 

(Stix, 2012; Zheng et al., 2011).   

Platt et al. (2013) tested their model against the observed bids on over 126,000 Swoopo 

auctions of 1,958 unique items between September 2008 and May 2010. Their key 

theoretical prediction is that the final number of bids in a given auction is a random 

variable with distribution ! . If a given item type is repeatedly auctioned, whether 

this sample distribution is consistent with its theoretical counterpart can be tested, by 

performing statistical tests (Pearsons ! Test and K-S test to compare distributions, t-

test to compare means) to quantify how closely the estimated theoretical distribution 

matches the observed sample distribution. In particular, the role played by the bidders’ 

common valuation and risk preference in replicating the observed behaviour with the 

theoretical model is examined by estimating the unobserved parameters !  and ! . The 

item valuation is not observed, not only because bidders may have private valuations, 

but also because even retail price such as Amazon’s price might not reflect the true 

valuation, e.g. an auctioned item frequently consists of a package of several goods; some 

items offered by Swoopo, such as newly-released video games, were at times difficult to 

find through traditional outlets. 

To estimate these parameter values, Maximum likelihood is used; i.e. choosing the 

parameter(s) to maximise ! , where !  represents each observed auction of 

a given type of item, !  is the ending number of bids in that auction. Four sets of 

empirical tests are performed in four settings of model parameters ! and ! , and 

summary of the results is shown in Table 2. Each cell under the three goodness-of-fit 

tests reports the percentage of items for which there is no significant difference between 

the theoretical prediction and observed data (with p-value greater than .05 or .10), 

repeated for each of the four specifications. It indicates how often the theory is able to 
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explain observed auctions, depending on how much flexibility is allowed in parameter 

choices. 

Table 2. Statistical tests comparing theoretical estimates in different settings 

!  

The Base Specification model (risk-neutrality ! , ! Amazon price) provides 

predictions that fit the actual distribution well only for a small fraction of items, and 

the statistical tests show poor goodness-of-fit. The Value Specification models (risk-

neutrality ! , !  is found by Maximum Likelihood) has limited improvement in 

matching part of the actual distribution, because the risk-neutral model cannot generate 

the observed hump shape in the distribution of final prices as shown in Figure 1. The 

statistical tests show a better goodness-of-fit compared to the Base Specification. The 

Risk Specification model (risk-loving, ! , found by Maximum Likelihood, !

Amazon price) estimates a risk parameter !  for majority of items and !  for 23 

items. The negative alpha estimators indicate that bidders are mildly risk loving, 

primarily in the range of -0.003 to -0.03, with a few estimates as low as -0.09. Most were 

well below the estimated risk preferences of bettors at horse race tracks; only 9 items 

found α greater than -0.055 estimated by Jullien and Salanie (2000). The improvement 

in fit over the Base Specification is remarkable; the K-S test now only rejects 30% 

(rather than 90%) of the items at the 5% significance level as having observed 

distributions inconsistent with the Risk Specification. Note that the risk-loving model is 

able to match the hump shape of the distribution, as !  will first rise then fall if !  is 

sufficiently negative; thus, early bidders are more likely to bid than risk neutrality 

would imply. The Full Specification model (! and !  are jointly estimated in Maximum 

Table 2: Statistical tests comparing theoretical distribution with observed data.

Pearsons �2 Test K-S test t-Test
(compares distributions) (compares means)

Specification N p � .10 p � .05 p � .10 p � .05 p � .10 p � .05

Base: ↵ = 0, 172 9.3 13.3 7.0 10.5 8.1 9.3
v = Amazon

Value: ↵ = 0, 172 48.3 54.7 43.6 54.1 73.8 76.7
v = MLE

Risk: ↵ = MLE, 169 56.0 66.9 57.4 69.8 91.1 92.9
v = Amazon

Full: ↵ = MLE, 169 73.4 76.9 82.2 87.0 96.4 97.0
v = MLE

Notes: The number reported in each cell is the percentage of items for which the particular
test statistic has a p-value larger than the threshold indicated in each column. N refers to
the number of unique items. K-S refers to the Kolmogorov-Smirnov test.

results.

4.3 Incremental Auctions: Value Specification

Next, we consider the value specification, in which risk neutrality is still assumed, but

the valuation is found via maximum likelihood. Returning to Figure 2, the dashed lines

indicate the theoretical distribution under this specification. Note in figures (a) and (b),

the valuation, and hence the predicted distribution, is nearly unchanged. However, the fit

in figure (c) is greatly improved as a consequence of raising the valuation. At the same

time, changes in v o↵er little improvement for the items in the lower row of Figure 2. Quite

simply, the risk-neutral model cannot generate the observed hump shape in the distribution

of final prices.

The second row of Table 2 repeats our statistical tests using the value specification as

the theoretical prediction. The goodness of fit of our model dramatically increases; 93 of

the 172 items (or 54%) are consistent with the predictions of value specification (based on

a .05 p-value cuto↵ in the K-S test).17

17As a robustness check, we also generated the equivalent of Table 2 restricted to items that were auctioned
at least 200 times (instead of 100 times). This reduces the number of items by 60%, but the results are
nearly identical. On the other hand, if we include all items auctioned at least 45 times (which doubles the
number of items), the fraction of items that are rejected in any of the tests falls by 10 percentage points. Of
course, as the number of observations per item falls, the tests become less powerful (and thus fail to reject
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Likelihood) estimated !  has a similar range as in the Risk Specification model, 

typically between -0.001 to -0.03, with only three items requiring !  < −0.055.19. In 

most cases, the estimated valuation remained reasonably close to the Amazon price (on 

average, 15% greater) and statistical tests show goodness-of-fit improvement. 

Figure 1. Theoretical and observed distribution of ending bids in four specifications 

Thus it is concluded that the Base Specification is clearly inadequate, and that risk 

preferences contribute more towards explaining observed auction outcomes. Adjusting 

!  achieved a much better fit than adjusting ! ; and even when both were adjusted, the 

Full Specification only explained a small additional set of mostly cheaper items. The 

Risk Specification is particularly satisfactory with more reasonable parameters, which 

explain perceived profits in most auctions.  
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Augenblick (2012) captured two datasets of Swoopo auctions: an auction-level dataset 

containing 166,000 auctions from September 2005 to June 2009, and a bid-level dataset 

containing 18,000 auctions from late February 2009 to June 2009. The first empirical 

finding shows that a penny auction consistently produces revenue above the market’s 

value, which does not match the zero profitability finding in the theoretical analysis. On 

average, bidders collectively pay 51% over the adjusted value of the goods in an auction.  

Retail prices of items sold on Amazon are used as the adjusted value, which are on 

average 79% of Swoopo’s listed prices. Moreover, the profit margin of an auction varies 

across item types; for instance, consumer goods and bid packages generating average 

profit margins of 33% and 201% respectively. To understand the deviation from the 

theoretical model, Augenblick (2012) investigate fit of the data to the predicted hazard 

function at both the auction level and individual level. 

In the auction level data, the empirical hazard function is very close to the equilibrium 

prediction by equilibrium analysis at the beginning of the auction. However, deviation 

increases significantly over time. Although the empirical profit margin starts near zero, 

it rises to over 300% through the course of the auction. If the auction runs long enough, 

a bidder is willing to pay $0.75 for a stochastic good with an expected value of only 

$0.25. Thus, rather than having a constant profit throughout the auction, the auctioneer 

makes a large amount of instantaneous profit at the later stages of the auction.  

While auction-level empirical hazard rates do not contain information about bidder 

heterogeneity, the probability of an individual bidder exiting an auction, given the 

number of bids already placed in the auction up to that time period is observable – this 

probability is called the pseudo hazard rate. We consider a bidder as exiting an auction 

if he does not place anymore bids in the later periods. The theoretical model suggests 

that the probability that a player does not bid should rise slightly as the auction 

progresses, if the number of users in the auction stays constant. However, the observed 

pseudo hazard rate declines significantly as the number of bids placed in the auction 

increases, which is not caused by the decline in number of active bidders. 

Since the above results are aggregated over all bidders, the concern is whether the 

heterogeneity of bidders or auctions are the driving causes. Linear regressions are 

performed to regress the probability of a bidder dropping out of an auction, on the 
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logged number of past bids, various fixed effects and other control variables such as 

bidder experience levels. The results have shown that the probabilities of auctions 

ending are less than the theoretical predication, because as the auctions progress 

bidders are less likely to leave the more bids they have already placed within the 

auction. Any explanation of these results must include a factor that changes as an 

auction progresses, since any fixed effect would only drive constant deviations from the 

theoretical predication. Augenblick (2015) recommends the naive sunk cost fallacy as 

the most intuitive explanation: bidders become less and less willing to leave an auction 

as they place more bids, even though those costs are “sunk”. 

Augenblick (2015) also discusses the two types of learning of bidders: learn to either 

stop bidding, or learn to bid in a way that generates consistent profit. It was found that 

learning occurs, but the latter learning process is slow. The majority of bidders learn to 

stop playing the game quickly (75% of bidders stop bidding before placing 50 bids, and 

86% stop bidding before placing 100 bids). The other learning process, according to 

which more experienced bidders gain higher expected payoffs, was examined by a set of 

regressions of instantaneous profit on experience and other variables. Regression results 

indicate a positive, concave relationship between the profit from a bid and the bidder’s 

experience level. For instance, a bidder with no experience has an expected loss of $0.60 

cent per bid, while some heavily experienced bidders gain slightly positive expected 

payoffs per bid (it takes 10,000 prior bids to raise an expected, instantaneous profit per 

bid to near zero). The most active of bidders (11%) contribute to 50% of Swoopo’s 

profit, and as the learning process is slow the experienced bidders place a large amount 

of negative-return bids before they learn to break even. There is also evidence showing 

that experienced bidders learn to apply aggressive bidding strategies to increase their 

winning probabilities. The aggressive strategy demonstrated by such bidders is to bid 

immediately whenever possible, showing their determination to win in a war of attrition. 

Wang and Xu (2012) argue that a penny auction is not a sustainable selling mechanism, 

as experienced and strategically sophisticated bidders exploit penny auctions, while 

inexperienced bidders who happen to be biased receive negative feedback consistently so 

that they learn to quit quickly. Using a behavioural game theory approach emphasising 

that players in a new game may be inexperienced and have limited strategic 

sophistication, the complete bid history at BigDeal, a major penny auction website, is 

studied. Wang and Xu (2012) argue that bidders’ behaviour in penny auctions is better 
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understood through the lens of learning and strategic sophistication than through an 

equilibrium model that presumes all bidders are fully rational. This suggests that a 

penny auction is not a sustainable selling mechanism and requires a continuous supply 

of new bidders.  

The empirical evidence shows that the auctioneer profits from a revolving door of new 

bidders, but loses money to experienced and strategically sophisticated bidders. The 

vast majority of new bidders who join the website on a given day, only play in a few 

auctions, place a small number of bids, lose some money, and then permanently leave 

the site within a week or so. This finding reflects the simple logic of individual 

rationality: no matter how effective a penny auction might be in exploiting bidder 

biases, it offers an immediate outcome (win or lose) to bidders, so losing bidders can 

quickly learn to stop participating. A very small percentage of bidders are experienced 

and strategically sophisticated – winning most of the auctions and earning substantial 

profits. Thus, penny auction websites cannot survive without continuously attracting 

new customers.  

The fact that most penny auction websites impose win limits likewise suggests that 

some bidders play better than others. Wang and Xu (2012) attempt to link bidders’ 

winnings or losses with their strategic sophistication by measuring a bidder’s strategic 

sophistication by the frequency of their placing a bid in the middle of the countdown 

period during an auto-extension of the auction duration. Placing a bid in the middle of 

the timer is assumed to be inferior to placing the bid at the end of the same period, as 

the latter has some informational advantage. This measure of strategic sophistication is 

predictive of experienced bidders’ overall winnings or losses, and shows that 

sophisticated bidders learn to earn more money per auction as they play in more 

auctions, but unsophisticated ones do not. Two types of learning are discussed: learning 

to play better and learning to quit. Most new bidders learn to quit quickly, which 

suggests that a firm’s ability to exploit consumer biases is limited by consumer learning.  

While most bidders are exploited by penny auctions, some strategically sophisticated 

bidders take advantage of the penny auction format. For instance, the winner of a 

penny auction is often not the bidder who places the most bids. The winner’s total 

number of bids is strictly smaller than that of at least one losing bidder in 40.9% of the 

77,944 regular auctions with two bidders or more. The winners of such auctions often 
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are ‘jumpers’ in that they used the strategy of jumping in: starting to bid in an auction 

only after a large number of bids have already been placed in the auction. Another basic 

equilibrium result, that the number of bidders does not affect auction revenue, also does 

not hold; for instance, when using various proxy variables, it is shown that an auction’s 

profit increases in the number of potential bidders. 

Stix (2012) discusses bidder retention, a long term problem with penny auction 

mechanisms. Because as soon as the supply of new or inexperienced bidders runs out, 

the majority of the auctioneer’s income would evaporate. A few potential solutions 

include setup of win limit rules and special type of auctions that only selected bidders 

can participate. This reduces the auctioneers’ reliance on inexperienced bidders for 

profit. For example, beginner auction is a special type of penny auction offered by 

QuiBids, where only bidders who have not won any auctions may bid. Beginner auctions 

tend to be numerous and are usually for inexpensive items, as auctioneers attempt to 

give every new user a win early on in their bidding career, in order to encourage a 

bidder to become more committed to the website. Introduction of a buy-now price 

option allows bidders to contribute money they have spent in a lost auction towards the 

listed price of that item. This provides an extra sense of security to the bidder by 

limiting their loss to the difference between the marked up listed price and item 

valuation, (while also limiting an auctioneer’s profit) and bidders are less likely to be 

discouraged by the immediate winning or losing outcome of the auction. Most penny 

auction sites recognise the problem of bidder retention.  

In analysis of QuiBids’ profitability based on data collected on 37,233 auctions, 

standard penny auctions without a buy-now option are confirmed to be profitable on 

average, with an estimated average profit margin of 55.11%. Note that despite the high 

profit margin, the median profit per auction is still slightly negative, which is likely to 

be the result of one of QuiBid’s attempts to solve the customer retention problem. The 

negative median profit encourages new bidders by letting them gain positive payoffs on 

smaller items in an attempt to get them to bid in auctions for more expensive items, in 

which QuiBids makes an enormous profit. For instance, the most expensive 2.5% of 

items auctioned by QuiBids auctions generated almost 43% of its profit. Running many 

unprofitable auctions of inexpensive items seems to increase customer retention 

effectively - 76% of bids are submitted by experienced bidders who have placed more 

than 50 bids - that may give QuiBids large profits in higher-priced auctions later.  
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Stix (2012) argue that QuiBids survived, while Swoopo failed, due to differences in their 

initial rules on bidder-auction ratios and voucher bids , and claims that some optimal 4

bidder-auction ratios exist.  

The original penny auctioneers want the number of bidders per auction to be high 

enough to generate a significant profit. If this ratio is too high, the proportion of 

winners will be too small, such that new bidders would soon learn to stop participating, 

due to repeated losses before they have an opportunity to win an auction. Also, the 

bidder-auction ratio would not be maintainable due to a shortage of bidders, assuming 

there is no infinite supply of new bidders. The introduction of a buy-now price leads to 

both better bidder retention and lower profits. However, utilisation of the buy-now 

feature limits the profit the auctioneer can generate from each bidder, which may 

decrease the overall profits. Thus a significant increase in optimal bidder-auction ratios 

can be expected, and penny auction sites are inclined to increase their ratios to regain 

lost profits.  

The empirical evidence suggests that QuiBids actively maintained their chosen ratio by 

adjusting the numbers of auctions running at different time periods, and their average  

of 347 bidders in each auction is significantly larger than the ratio of 42 bidders per 

auction, prior to the Swoopo’s introduction of a buy-now price feature. Swoopo’s failure 

to increase its bidder-auction ratio in penny auctions utilised with buy-now price option 

would cause a significant drop in profit, which contributed to its bankruptcy.  

Stix (2012) shows although the utilisation of the buy-now feature educes 32% of 

estimated revenue, it has a positive effect of on customer retention such that QuiBids is 

still able to generate positive profits. QuiBids’ rule that voucher bids are ineligible to 

contribute toward a buy-now price is also considered by Stix. This feature significantly 

reduces the true value of voucher bids. It is shown that if bidders only care about 

monetary payoffs, they should avoid bidding in voucher bid auctions. If bidders 

 Voucher bids are listed as an auction item on QuiBids. Sold in packages, voucher bid auctions allow 4

users to bid in an attempt to win more bids for use on other auctions. Voucher bids are auctioned off 
using the same penny auction system as other products on QuiBids. This means that a user who wins a 
voucher bid pack auction on QuiBids gets a predetermined number of voucher bids. The only difference 
between purchased bids and voucher bids is that voucher bids are not eligible to contribute their cost to 
the Buy-Now feature. 
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rationally ceased participating in these bid voucher auctions, QuiBids would be making 

a loss. The fact of QuiBids being profitable indicates bidders are not behaving 

rationally.


Zheng et al. (2011) argue that the penny auction format and its extremely low winning 

price is a double-edged sword, which not only attracts the participation of new bidders, 

but also makes it challenging to retain existing customers, since only one winning bidder 

may derive a positive surplus, whereas all other bidderses suffer loss from the bidding 

fees incurred. Using a field experiment with a 16-week sample period, Zheng et al. 

(2011) analysed how auction rules can improve overall consumer retention and long-

term bidding participation. Three types of restrictions were implemented to reduce the 

participation capacity of the frequent aggressive bidders, such that other bidders, 

especially the inexperienced ones, have more opportunities of winning. Firstly, each 

bidder is allowed to win a maximum of eight auctions within 28 days, directly limiting 

bidder participation and distributing winning chances to a broader set of customers); 

Secondly, no bidder is allowed to bid for the same type of item more than once within 

28 days,  for instance, bidders are unable to get a lot of bid credits at low cost through 

winning bid pack auctions; and finally each bidder is allowed to participate in only X 

concurrent auctions where X is 8 minus the number of auctions won in the past 28 days, 

which further restricts the number of concurrent auctions that a bidder could 

participate in.  

Three regression models were estimated: a simple OLS regression model, a panel logistic 

regression on bidder retention, and a negative binomial regression on bidder 

participation with dummy variable of rule changes (indicating if the three rules have 

been implemented) as an independent variable, and dependent variables including 

consumer surplus, a modified Gini coefficient to measure disparity, a bidder 

participation dummy variable to measure consumer retention, and the number of 

auctions participated in, as well as the number of bids submitted by a unique bidder in 

one week, to measure auction participation. Control variables included bidder type 

(frequent bidders and occasional bidders), consumer surplus history, surplus gain and 

surplus loss that a bidder obtains in a week, cumulative life-time total surplus gain and 

surplus loss, number of products auctioned in one week, and popularity of products. 

The results of these analyses show that a skewed or lopsided consumer surplus 

distribution is highly positively correlated with bidder attrition. The implementation of 
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bidding restriction rules facilitates surplus distribution in a more equal manner, such 

that the Gini coefficients for consumer surplus drop by 10% after the rule changes. 

These coefficients ranged between 0.96 and 0.99 before implementation of the rules. 

Note that 0.99 indicates an extremely unequal distribution, which is consistent with the 

empirical fact that a small proportion of the bidders earn most of the consumer surplus.  

There is evidence that overall customer retention rates are higher after the rule changes. 

The coefficient of the dummy variable of rule changes has opposite and significant 

effects on occasional bidders and frequent bidders. It is significantly positive for 

occasional bidders (marginal effect on bidding probability of 0.11), but not statistically 

significant for frequent bidders (reducing their participation probability by 4%). Since 

there is a much larger number of occasional bidders, the overall effect is positive and 

beneficial to the auctioneer. The total number of auction participants, and the total 

number of bids placed in auctions, both increase after the rule changes. All estimated 

model coefficients on the control variables are very significant and in most cases show 

that implementation of the rules has a positive effect on occasional bidders but a 

negative effect on frequent bidders, both in terms of the numbers of auctions and bids, 

while the benefits exceed the loss or reduction in the auction bidding and participation 

activities by a small group of aggressive, frequent bidders. 

Goodman (2012) uses the risk-neutral Nash equilibrium benchmark model of  

Augenblick (2012), and both papers analyse bid-level data. While Augenblick (2012) 

describes the market, Goodman (2012) focuses on individual-bidder reputations and 

behaviour, by identifying and analysing the successful strategies employed by some 

users. Two datasets of Swoopo auctions are collected with one bid-level dataset of over 

52 million submitted bids from 64,000 auctions on Swoopo.com, covering 287,000 unique 

users, and broader auction-level data for auctions listed by Swoopo from 14 June 2019 

to 13 June 2010. There are a few noticeable facts: Swoopo makes positive profit of more 

than $1 million per month, not only novice users suffer losses, even experienced bidders 

frequently lose money. Over 90% of 1,387 unique auction items are sold fewer than 100 

times, while vouchers for 50 bids and vouchers for 300 bids – the two most common 

items – are jointly sold over 9,000 times. Only a small proportion of the 287,000 users 

bid heavily with the top 1% of users (by total bids placed) placing nearly half of all 

bids, while the bottom half of users only placed 3.4% of all bids, and the median users 

places 33 bids. Bidders appear to collectively overbid, as the average returns are 
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negative (based on listed price of auction item and bidding fee), and their outcomes are 

highest for auctions with reliably priced items (that is if, a contemporaneous Amazon 

price is accessible) and lowest for auctions with unreliably priced items such as bid pack 

vouchers.  

Analyses are executed in three levels: auction-level, bid-level and bidder-auction-level. 

The auction-level analysis focuses on survivorship, as the duration of an auction 

determines collective payments from bidders. To allow comparisons among auctions of 

different price levels and auction parameters, variables are normalised; for example, by 

measuring the number of bids (or periods) that have elapsed as a proportion of the 

maximum possible number of periods, and expressing the profit margin for an auction 

(sum of revenue from bidding fees and winning bid price, minus value of the item) as a 

percentage of the value of the item. The objective is to analyse whether Swoopo users 

bid inefficiently. For instance, if auctions last too long on average, the expected total 

revenue collected from bidders will exceed the value of the auction items. Auctions 

continue past the beginning stages more often than benchmark equilibrium would 

suggest, and the overall level of bidding is too high, which implies a negative expected 

return from bidding. On the other hand, the distribution of the profit margin shows 

that Swoopo sells goods below valuation 40% of the time, while the mean of the profit 

margin is 67%. Note that valuation of an auction item is considered to be the Swoopo 

suggested retail price (in 61% of total auctions) unless contemporaneous Amazon.com 

pricing can be found.  

In bid-level analysis, the expected immediate return on a bid is considered to be the 

probability of winning the auction in the next period multiplied by the value of winning, 

minus the cost of bidding. Note that the benchmark equilibrium implies that this return  

equals zero at all times.  

The key independent variables for analysing the expected return on a given bid are 

broken into four categories: user experience and user-fixed effects that depend only on 

the bidder; adjusted bid number and bidding runs that measure contemporaneous bid 

histories; bidding method, bidding speed and time, and day-fixed effects that record 

how the bid was submitted; and item fixed effects that account for auction 

characteristics. User experience is useful as a proxy for bidder strategies and 

characteristics. For a player, user experience measures how many lifetime bids he has 

!  of !28 128



submitted. The data provides an average return of -25.5 cents per bid, indicating 

possible correlation of user experience. This is examined by splitting observations of 

bids into bins based on the pre-bid experience level of their submitters, showing that 

inexperienced bidders do considerably worse than veteran bidders, and suggesting a 

quadratic relationship between mean outcome and log experience. Examination of 

results suggests that veterans employ superior strategies. New users are largely unaware  

of which bidding techniques are more successful, but participants who continue bidding 

figure it out. Learning appears to occur across all types of bidding strategies, and tends 

to be a more significant factor than survivorship bias in explaining the behaviour 

discrepancies across experience levels.


Recall that bidders are assumed to not condition on bid histories in the benchmark 

model implying that hazard rates are history independent. It is more realistic to allow 

bidders to adjust their bidding decisions based on past histories and future expectations, 

e.g., if a bidder perceives a high probability of future bidding by some aggressive 

participant, his expected chance of winning by placing a bid decreases, which would 

lower his probability of bidding in the current period. Possible signalling devices in a 

penny auction include frequency of placing bids, bidding runs, bid methods and bidding 

speed.  

Bidding frequently signals an interest in the auction and a willingness to spend. Bidding 

runs is a running count of how many bids in a given auction the bidder has already 

submitted, scaled by the maximum possible auction duration measured. Relationship 

between winning probability and bidding proportion (ratio of bidding runs to total bids) 

is estimated that when a bidder increases his share of bids within an auction, his odds 

of winning increase even faster. Bidding speed is a measure of wait time, and records 

how much time elapsed between a bid and its immediate predecessor, which is difficult 

to interpret. While short wait times are often signals of strength, alternative bidding 

strategies such as sniping (waiting until the auction timer approaches zero to submit a 

bid) make interpretation complicated. A bidding method refers to the three mutually 

exclusive ways a bid can be submitted in Swoopo: as a single bid (placed manually), a 

bid placed through BidButler (Swoopo’s auto-bidding agent), or by telephone, although 

an obvious conclusion of the best bidding method cannot be drawn from empirical 

results: for example, BidButler provides a higher outcome per bid and increases winning 

probability.  
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Since the expected immediate return on a bid seems to be correlated with bid histories 

and bidder characteristics, Goodman (2012) ran five regressions to test their correlation. 

A regression including only experience variables shows the value of experience is 

positive and increasing at a log-quadratic rate, which confirms the existence of an 

experienced premium. After the introduction of bid history and bidding manner 

variables, the coefficient of log experiences changes from positive to negative, which 

indicates that they do capture part of the strategies employed by the experienced 

bidders. This provides evidence that return per bid does vary widely from bid to bid, 

and its variance can be largely accounted for by the aggressive signalling variables of 

bidding runs, bidding speeds and bidding methods, while a normalised period of rivals’ 

bidding runs and cross effects have significant impacts as well. All aggressive bidding 

behaviours are shown to correlate with higher outcomes, while bidding runs appear to 

be the most effective tool for building an aggressive reputation. Effects of rivals’ bidding 

runs and cross effects are clearly not linear across the categories and more difficult to 

interpret. One explanation is sluggish adjustment, that bidders are slow in recognising 

aggression of their opponents, but they eventually notice it and start bidding less 

themselves. It is of similar nature to the Game of Chicken (if only one player in a penny 

auction is aggressive, he will have advantage; whereas if multiple players are aggressive, 

they may all lose in a costly bidding war).  

Note that bid-level data do not have independence among observations and an expected 

immediate return of a bid is not identical to the total impact of a bid in an auction.   

The expected immediate return of a bid is the probability of winning, times the value of 

winning, minus the cost of bidding, while there are other impacts of a bid. Analysis of 

data at the bidder-auction-level, wherein all bids placed by a bidder within the same 

auction are aggregated, allows for a more comprehensive look at bidder strategies and 

their impacts, with improved observation independence. Results of bid-level analyses 

indicate that aggressive strategies are correlated with higher outcomes, and that these 

bid-level variables need to be presented in an appropriately aggregate manner for 

bidder-auction-level analysis. For instance, instead of choosing the total outcomes of 

each bidder (number of bids placed by each bidder vary in most auctions), an outcome 

per bid (ratio of a bidder’s total outcome in an auction and number of total bids that 

he places in the auction) is chosen as the dependent variable. Bidding methods and 

bidding speeds are variables specific to a particular bid, which need to be adjusted to fit 

!  of !30 128



the current framework. Six regressions are executed similarly as in bid-level analysis,   

and the results indicate positive effects of experience on outcomes per bid, and 

regression testing bid-history and bidding-method variables show the strategic variables 

capture part of the experience premium.  

All three levels of analysis show that aggressive bidding is the key: bidding frequently, 

bidding quickly after the previous bid, and bidding through the automated BidButler 

service, all significantly increase the likelihood of winning and expected returns. Playing 

aggressively signals commitment to future participation, as players bid less when they 

think their chances of winning with a given bid are particularly low, and signals of 

aggression intimidate rivals into dropping out, thereby increasing one’s own win 

probability.  

The impact of two other bidding strategies that are not tested in the above regressions 

are also considered: first bids and simultaneous bidding. Since all bids are not equally 

prominent, for instance, the first bid placed by each bidder in an auction is a player’s 

first opportunity in reputation establishment, and empirical evidence shows that how 

and when the first bid is placed has a considerable impact on overall returns in an 

auction. Data show that entering an auction early and entering with BidButler are 

associated with higher win probabilities; for instance, initial bidders win 8.4% of all 

auctions, earning positive returns of 9.2 cents per bid, and initial bidders who enter 

auctions with BidButler win 16.2% of all auctions, earning positive returns of 13.7 cents 

per bid. While the initial bid of an auction generates a negative average immediate 

outcome of -9.5 cents per bid, the advantages stem from providing informative signals 

about bidders’ likelihood of bidding in the future, which intimidates rivals into dropping 

out, as on average, a bidder places 25 bids in a penny auction, while initial bidders and 

initial bidders entering with BidButler place 54 and 108 bids respectively. 

Similarly to Augenblick (2009), Goodman (2012) found that aggressive bidding 

strategies are the key to better outcomes. Although Byers et al. (2010) reached 

conflicting results—there are not clear gains to assertiveness and the most aggressive 

bidders are the least successful. Goodman (2012) argues that this discrepancy stems 

from incongruous definitions of aggression, and claims that aggressive players tend to be 

more successful overall. The reason is that aggression builds reputations and signals a 

commitment to future bidding, which intimidates rivals from bidding and raises their 
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own outcomes. Consequently, bidding frequently, which appears to be the most 

aggressive tactic, bidding quickly, and bidding through BidButler are all associated with 

higher average returns. Experienced players are also more likely to enter auctions early 

to avoid competing with other bidders because of simultaneous bidding, thereby 

increasing their own returns. Crucially, data indicates that these tendencies result 

largely from learning, not survivorship bias. 

!  of !32 128



Chapter 2. Data 

The original dataset used in this paper was collected from BidCactus.com, one of the 

longest standing penny auction websites, by Ruby scripts. Over a time frame of four 

years, 572,400 auctions from May 2009 to April 2013 were retrieved for the start of 

BidCactus. There were 253,464 bidders placing 60,795,092 bids in auctions for 1,742 

unique items. All publicly observable history for each auction was recorded, including 

names and Recommended Retail Price (RRP) of auction items, usernames of winners 

and their winning bids, usernames of all participating bidders and the number of bids 

they had placed. 

 
All auctions hosted by BidCactus start at an initial price of $0, then bidders may 

choose to increment the price by $0.01 by placing a bid by either paying a non-

refundable $0.75 by credit card, or using their pre-purchased, non-refundable bidding 

credits, which also extend the duration of the auction by resetting the countdown clock 

to 30 seconds – if the auction has passed its preset ending time (usually 3 days from the 

start time). An auction ends when the countdown clock reaches 0, and the last bidder 

wins and pays the end price, while all participating bidders have paid for every bid 

placed during the auction’s course.


Bidding fees are the primary revenue source of BidCactus, which earned substantial 

profits over the sample period. As the sole seller of all products on its website, it earned 

a total revenue of $50,635,419 with a profit margin of 53.38% (cost estimated by the 

listed RRP in auction), and 90% of the revenue was from bidding costs paid by all 

participating bidders.  A simple example will help to understand the profitability of the 5

mechanism more intuitively. In a BidCactus auction, each bid increments the current 

price by 1 cent, such that for every $1 increase in the winning price the seller collects 

additional revenue of $75 from bidding fees. Thus, as long as the winning price reaches 

1.32% of the seller’s valuation, he would break even, and when the winning price 

reached 3.95% of the valuation, his profit margin would be 200%. On average, the 

winning price of a BidCactus auction reaches 1.95% of the items RRP. On the other 

hand, although some auctions ended with a high profit margin (23% of its auctions 

 We compute the total profit margin of the auctioneer as the ratio of total profit (total revenue of 5

winning prices and fees paid for bids by bidders in all auctions minus total cost estimated by RRP listed) 
and total costs, profit margin of any particular auction as a ratio of seller’s profit (sum of winning price 
and bidding fee collected from all participants in the auction, minus RRP) and RRP, average profit 
margin of a set of auctions (e.g. auctions in a particular category) as the unweighted average of an 
individual auction profit margin.
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resulted in a profit margin of over 100%), not all auctions were profitable and 

BidCactus made a loss in nearly 60% of its auctions.  

Despite its profitability, BidCactus still looks attractive to many bidders, especially the 

newcomers, who observe that the current price of an auction item is usually remarkably 

low and the winning price of a closed auction is also usually low. For instance, the 

median and mean winning price is only 0.96% and 1.95% of the item RRP. 


 

Figure 2. Seller's profit margin distribution in percentages and seller‘s profit distribution in dollars 

!

!  
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Figure 2 shows the majority of the distribution of a seller’s profit margin and profit in 

dollar terms  in each of all BidCactus auctions, with their long tails on both sides 6

cropped, and the red vertical lines indicating the means. The distribution of a seller’s 

profit varies largely from -99.80% to 23,045%, with 90% of the observations  falling 7

within the range of -83.15% and 223.09%, and a mean of 48.16%. The distribution of a 

seller’s profit varies largely from -$1,764.71 to $31,966.81, with 90% of the observations  8

falling within the range of -$83.15 and $223.09, and a mean of $30.60.  

In total, there were 1,743 unique item prizes that BidCactus sold, and the auctioneer 

chose to run auctions to sell some of the items more than once, with this number of 

repeated auctions varying extensively across different types of items. For instance, 6,671 

of $50 Visa Gift Cards were sold in 6,671 auctions in four years. The top ten most 

commonly auctioned prizes including nine bid pack auctions, jointly sold over 200,000 

times, while 83% of item types were sold fewer than 100 times. Twenty six types of 

items have been repeatedly auctioned over 5,000 times with an average profit margin 

shown in Figure 3. Twenty five of the 26 types generated a positive average profit 

margin, which are all auctions for bid credit packs and gift cards. The most repeated, 

listed bid pack auction type is for 100 bid credits, which was listed 30,619 times, 

generating an average profit margin of 113.68% for the seller. The most repeated, listed 

gift card auction type is for a $50 Shell gift card, which was listed 9,100 times, 

generating an average profit margin of 45.52% for the seller. 

The types of items are named and sorted into five categories. For instance, a $50 Shell 

gift card is an item type, which belongs to the gift card category. 

1. Bidpack 

Auctions for prizes of packs of bidding credits: 
e.g. 22,887 auctions for 30 bidding credits generate an average profit margin of 

77.76%. 

 Seller’s profit of an auction is computed as seller’s revenue from winning bid and bidding fees from all 6

bids placed in the auction, minus listed RRP.

 90% of observations are taken from auctions with seller’s profit margin between its 5% and 95% 7

percentiles.

 90% of observations are taken from auctions with seller’s profit (in dollars) between its 5% and 95% 8

percentiles.
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2. Gift cards 

Gift cards with a clearly defined face value from $10 to $500 (78% with a face 

value of $50 and below), issued by famous retailers and service providers: 

e.g. 1260 auctions of Kmart $25 gift card generate an average profit margin of 

26.56%. 

3. Small goods under $100 

Physical items with RRP under $100 
e.g. 197 auctions of a Calphalon Nonstick Stir Fry Pan with RRP $49.95 

generates an average profit margin of -50.23%. 

4. General items 

Physical items with a RRP of $100 and above, excluding consumer electronic 

items with a RRP of $399 and above: 

e.g. 215 auctions of Beats by Dr. Dre Solo Headphones with RRP of $199.95 

gives the seller an average profit margin of -9.69%.  

5. Expensive consumer electronics  

Expensive consumer electronic items from a RRP of $399 go into this category, 

including Apple iPhones, iPads, iMacs, Game Consoles, DSLR cameras, 

Notebook computers, HD Televisions and high-end GPS, as they are popular 

among bidders and often draw aggressive bidding:  

e.g. 119 auctions of an Unlocked 16GB Apple iPhone 5 with a RRP of $649 gives 

the seller an average profit margin of 222.66%. 
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Figure 3. Items repeatedly auctioned over 5,000 times

!  

Figure 4 shows the basic facts of each of the five auction item categories. Categories 

such as general items and small goods under $100 have the most item types of 692 and 

654 respectively, while items types in categories bid pack and gift card are listed most 

frequently with total observations of 287,372 and 243,619 auctions respectively. The 

seller’s average profit margin varies extensively among different item categories. The 

weighted average profit margin of a category is computed by the ratio of total profit 

earned in all auction selling items in this category in dollars, and total costs of all items 

sold based on RRP. The unweighted average profit margin of a category is the average 
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of the profit margin of each individual auction in this category, i.e. average unweighted 

on valuation of auction items. The expensive consumer electronics category generated 

the highest weighted average profit margin of 119.19%, and the small goods under $100 

category generated the largest loss of -38.21% weighted average profit margin. The top 

10 most repeatedly listed item types of each category are included in Appendix 1. 

Figure 4. Basic facts of auction item types in five categories 

Figure 5. All item types VS those repeated listed 100+ times in five categories 

Figure 5 compares a seller’s (weighted) average profit margin in items types of different 

item categories for all item types and those that were listed for 100 or more items. The 

Category Item 
Types 
Counts

Observation 
Counts

Weighted 
Average 
Profit 
Margin

Unweighted 
Average 
Profit 
Margin

Most 
Repeatedly 
Listed Item 

Number 
of Time 
Repeated

Average 
Profit 
Margin 

Bidpack 123 287,372 98.64% 72.99% 50 Bids on 
Any Auctions

30,619 113.68%

Gift Card 172 243,619 36.09% 12.39% $50 Shell Gift 
Card

9,100 45.52%

Small Goods 
Under $100

654 23,660 -38.21% -37.05% Keurig Mini 
Plus Single 
Cup Brewer

472 -20.22%

General 
Items

692 18,799 -0.66% -24.57% iPod touch 
8GB 4th 
Generation

719 86.11%

Expensive 
Consumer 
Electronics

102 2,742 119.19% 111.86% Apple iPad 2 
16GB WiFi + 
AT & T 3G

312 209.45%

Category All Item 
Types Counts

Item Types 
Counts 
(Repeated 
Listed 100+ 
times)

Weighted 
Average 
Profit Margins 
(All Item 
Types)

Weighted 
Average 
Profit Margin 
(Repeated 
100+ times)

Bidpack 123 74 98.64% 98.66%

Gift Card 172 125 36.09% 36.40%

Small Goods Under $100 654 41 -38.21% -32.56%

General Items 692 36 -0.66% 26.59%

Expensive Consumer Electronics 102 7 119.19% 164.82%
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seller did choose to list some item types more often than others, e.g. only 7 out of 102 

types of expensive consumer electronics were listed 100 times or more, generating a 

higher average profit margin of 164.82% compared to 119.19% of all item types in this 

category. Another significant improvement in an average profit margin is in the general 

items category, where 36 out of 692 types of general items were listed 100 times or 

more, thus generating a positive average profit margin of 26.59% compared to the 

overall loss of -0.66% in this category.  

Figure 6 compares distributions of a seller’s profit margin between -150% to 250%, 

where profit margins of most auctions fall in all five item categories . The category of 9

small goods under $100 – the one with the lowest average profit margin – has the 

highest negative peak in profit/loss. Although all five item categories have their peaks 

at profit/loss between -100% and 0, long tails after 0 yield their overall profit margins 

upwards.


Figure 6. Distribution of seller’s profit margin in item categories 

!  

 The rest of the graph is trimmed and the full graph is included in Appendix 1.9
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Figure 7 shows the distribution of the number of auctions participated by bidders. Over 

half of all bidders never participated in more than six auctions, 12% of bidders quit 

after only one auction, and 98% of bidders played less than 100 auctions. 

Figure 7. Numbers of auctions participated by bidders in total bidder population 

 

Bidders also appear to learn through experiences; they either learn to quit, or learn to 

play better. Figure 8 shows on average, the winning probability (ratio of number of 

auctions a bidder has won to the time point, and total number of auctions he/she 

participated in by placing at least one bid), the overall net payoff per bid (ratio of total 

net payoff and total number of bids placed in all auctions participated, where total net 

payoff is computed by the sum of RRP with winning price deducted from auctions won 

by a bidder, minus bidding fees for bids placed in all auctions he/she has participated 

in), and the bid ratio (ratio of number of bids placed by a bidder and total number of 

bids in an auction), which seems to be positively associated with bidder experience 

levels in terms of numbers of prior auctions participated in. 
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Figure 8. Bidders’ return against experiences (number of prior auctions) 

!  

For individual bidders, there are similar findings. An accumulated net payoff per bid is 

the ratio of a bidder’s accumulated net payoff since he/she starts playing penny auctions 

(computed as sum of RRP in all the auctions he/she wins, deducted by winning prices 

in all the auctions he/she wins and bidding fees for bids he/she placed in all auctions 

participated, including those he/she loses) and the total number of bids he/she 

submitted in all auctions. The net payoff per bid in a winning auction is the ratio of the 

winner’s net payoff (computed as RRP deducted by winning price and bidding fees for 

bids placed by the winner in the auction) and number of bids placed by the winner.  

Figure 9 shows how a particular bidder’s lifetime net payoff per bid and lifetime ratio of 

total bids in winning auctions over total bids in losing auctions increases, then declines 

slightly towards the end in his lifetime experience in terms of number of auctions 

participated in, although the net payoff per bid in any particular auction he wins 

appears to be stochastic.  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Figure 9. Net payoff per bids in bidder’s lifetime experience 
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Figure 10 shows distributions of experienced bidder ratios (ratio of number of bidders 

with 20 or more prior auction experiences and numbers of all bidders in an auction ) in 10

all five item categories , suggesting there might be a complex interaction between item 11

category and bidder experience. For instance, the expensive consumer electronic 

category seems to draw different selections of bidders with more inexperienced bidder 

participation, compared to the other four categories. 

Figure 10. Distribution of experienced bidder ratio in item categories 

!  

 I choose 20 prior auctions as an experience benchmark to separate the bidders. Majority of bidders 10

(87%) play less than 20 auctions in their lifetime, while the rest who participated in 20 or more auctions 
place 81% of all bids. More details of bidders with different prior auction experiences are included in 
Appendix 1. 

 The rest of the graph is trimmed and the full graph is included in Appendix 1.11
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Regression 

Since profitability of a penny auction seems to be correlated with experience of 

participating bidders and categories of the auction item, we ran regressions to examine 

their correlation more closely: 

!  

where !  is the seller’s profit margin in an observed auction, !  contains features of the 

bidders in the auction (ratio of bidders with experience of 20 prior auctions in all 

bidders in an auction, and number of bidders in the auction), ! includes Dummy 

variables representing the item categories excluding the Bidpack, the base category, and 

!  is the error term.  

In Regression (1), we regress only on the number of all bidders in an auction, which is 

not a factor affecting seller profitability in our theoretical model, though in regression 

(2), we regress on both the number of bidders and experienced bidder ratio; in 

regression (3), we regress only on the four dummy variables representing four categories 

besides bidpacks; in regression (4), we regress on the number of bidders and the 

experienced bidder ratio together with category dummy variables; in regressions (5) & 

(6), we include further interacting terms attempting to explain the cross effects between 

item category and other factors. 
 
The regression results in Table 3 show that both the number of bidders and ratio of 

experienced bidders are positively correlated with the seller’s profit margin. The result 

of regression (3) coincides with an average profit margin of all categories. Using the bid 

pack as the base category, we have coefficients of gift cards, small goods under $100, 

and general items over $100, being negative and only the coefficient of popular 

consumer electronics being positive, indicating that bid pack auctions generate more 

profit compared to auctions of all other categories except for the expensive consumer 

electronics. However, the results of regressions (4) (5) and (6) suggest that there may be 

more complex interactions between bidder experience and item categories. For instance, 

although the coefficients on the dummy variable of expensive CE and interacting term 

of experienced bidder ratio and expensive CE categories are negative, the coefficient on 

the interacting term of log (number of bidders) and dummy variable of expensive CE is 

positive, indicates the latter cross effect is large enough to overwhelm the previous two 

negative effects. 

y = Bβ1 +Dβ2 + ε

 y  B

 D

ε
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Table 3. Seller‘s profit margin regression results


Significant results may be due to large sample size, so one should be careful here. The 

positive correlation between the number of bidders, experienced bidder ratios, and 

seller’s profit margin stays significant throughout various regressions, and indicates that 

Number of 
Bidders only 

(1)

Experienced 
Bidder Ratio 

(2)

Category only 
 

 (3)

Experience 
and Category 

(4)

Cross Effects 
 

(5)

Cross Effects 
 

(6)

Ln(number of 
bidders)

1.354 (0.004) 0.992 (0.003) 1.077 (0.003) 1.026 (0.003) 1.112 (0.005)

Ratio of 
experienced bidders 
(REB)

0.077 (0.0002) 0.082 (0.0002) 0.110 (0.0003) 0.108 (0.0004)

Gift Card -0.428 (0.006) -0.685 (0.005) -0.421 (0.006) -0.309 (0.014)

Small Goods under 
$100

-1.107 (0.013) -0.599 (0.010) -0.296 (0.011) 0.636 (0.022)

General Goods  -0.804 (0.017) -2.171 (0.013) -1.177 (0.017) -0.451 (0.046)

Expensive CE 0.556 (0.0437) -2.880 (0.034) -1.991 (0.053) -4.597 (0.163)

REB*Gift Card -0.033(0.0004) -0.031(0.0004)

REB*Small Goods 
under $100

-0.047 (0.001) -0.040 (0.001)

REB*General 
Goods

-0.075(0.0007) -0.071(0.0007)

REB*Expensive CE -0.050 (0.002) -0.055 (0.002)

Ln(NOB)*Gift Card -0.070 (0.007)

Ln(NOB)*Small 
Goods under $100

-0.612 (0.012)

Ln(NOB)*General 
Goods

-0.333 (0.019)

Ln(NOB)*Expensive 
CE

0.747 (0.047)

_cons -2.061(0.007) -2.070 (0.007) 0.755 (0.004) -1.858 (0.007) -1.983 (0.007)  -2.124 (0.009)

Observations 568,942 568,942 568,942 568,942 576,036 576,036

Adjusted R-squared 0.1915 0.3692 0.01921 0.4138 0.4274 0.4303

p<.001 for all above results 
Standard errors in parentheses
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more experienced bidders participate in a penny auction, and the more profit the seller 

makes. This is similar to the game of chicken (if only one player in a penny auction is 

aggressive, he will often be successful; while if multiple players are aggressive, they may 

all lose in a costly bidding war).  

Since data suggests complex interaction between bidder experience and item categories, 

we performed separate regressions of a seller’s profit margin in auctions of each 

category. The regression results in Table 4 show that, regardless of category, the number 

of observed bidders  is positively and significantly correlated with a seller’s profit 12

margin, while the effects of experienced bidder ratios vary across categories. 

Table 4. Seller's profit margin regressions on observations in each category


Bid Pack Gift Cards Small Goods 
Under $100

General Goods Expensive CE

Regress only on 
Ln(NOB) 
Ln(NOB) 1.622 (0.006)  1.345 (0.005)  0.605 (0.007) 0.991 (0.015)  2.295 (0.074)
_cons -2.242 (0.012) -2.224 (0.011) -1.293 (0.013) -2.503 (0.038)  -6.806 (0.268) 

Number of 
Observations

275,055 243,610 35,832 18,799 2,742

Adjusted R-squared 0.2131 0.2104 0.1592 0.1963 0.2588

Regress on 
Ln(NOB) and REB
Ln(NOB) 1.612 (0.006)  1.375 (0.005) 0.606 (0.007)  0.966 (0.016) 2.457 (0.086)
REB -0.073 (0.016) 0.310 (0.013) 0.101 (0.021)  -0.191 (0.053) 1.620 (0.432)
_cons  -2.182 (0.017) -2.451 (0.014) -1.367 (0.020) -2.346 (0.058)  -7.823(0.381)

Number of 
Observations

275,055 243,610 35,832 18,799 2,742

Adjusted R-squared 0.2132 0.2123 0.1597 0.1968 0.2624

Regress on 
Ln(NOB), REB and 
Cross effect
Ln(NOB)  2.023 (0.011)  1.392 (0.009)  0.610 (0.021)  1.676 (0.032) 3.617 (0.138) 
REB  1.234 (0.033)  0.367 (0.030) 0.107 (0.040) 3.186 (0.140) 15.961 (1.414)
Ln(NOB) * REB -0.849 (0.019) -0.036 (0.017) -0.004 (0.026) -1.413 (0.054)  -4.302 (0.405)
_cons -2.852 (0.023) -2.478 (0.019) -1.371 (0.033) -4.138 (0.089) -11.918 (0.536)

Number of 
Observations

275,055 243,610 35,832 18,799 2,742

Adjusted R-squared 0.2188 0.2123 0.1597 0.2248 0.2913

p<.001 for all above results 
Standard errors in parentheses

 Only bidders who submitted at least one bid successfully were observed, which means this number of 12

observed bidders may be equal or less than the real number of all bidders in an auction.
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Chapter 3. Basic Model 

We start our theoretical analysis of penny auctions from a basic symmetric complete 

information model, which is a mixture and extension of theoretical models presented in 

Platt et al. (2013) and Augenblick (2012). Assume the auctioneer is selling a single item 

to ! identical bidders, indexed by! , and all players have common value 

!  for the item. The auction starts at initial price of zero ( ! ), and price rises by a 

bidding increment ! in each period, indexed by ! . Thus ! , the 

current price at any period !  equals ! , and the value of winning an auction at period 

!  is ! .  

At each period ! , there is only one current leader ! and !  

non-leaders; while at the initial period ! , all ! bidders are non-leaders (! ). 

Note that the same as in practice, the current leader in any period is not allowed to 

place a bid in this model. Within each period ! , all non-leaders simultaneously choose 

whether to submit a bid or not, and any multiple simultaneous bids would be handled 

immediately before the game reached the next period ! . If only one bidder submits a 

bid, then his bid is accepted and he pays a non-refundable bidding fee ! ; if !  

bidders places their bid in the same period, then only one bid is randomly accepted 

with probability ! and the corresponding bidder pays the bidding fee ! , while all 

other bidders whose bids are not accepted do not need to pay the bidding fee. If all non-

leaders choose not to submit a bid, then the auction ends and the item is sold to the 

current leader ! at current price level ! , while the auctioneer collects a total 

revenue of ! . If the auction ends at ! , then the seller keeps the item.  

As a Complete Information model, we assume that all parameters of the auction are 

commonly known, and all previous bids and the identity of the current leader in each 

period are observed by all players who do not discount future consumption. Assume 

each bidder has the same initial wealth of ! and identical strictly increasing Von 

Neumann–Morgenstern utility function of ! , a participants placing no bid maintains 

his utility ! , a non-winning bidder who places !  bids gets ! , and a 

winning bidder who wins at period ! and places !  bids in total gets ! . 

 N   i ∈{   1,     2,     ...,     Ν}

 v  P0 = 0

  s ∈!+
  t ∈{   0,   1,   2,   3,   ...}  Pt

 t  s ⋅t

 t  v − st

  t > 0   lt ∈{     1,   2,   3,   ...,   N}   N − 1

  t = 0  N  l0 = 0

 t

t + 1

 c K ≥ 2

  1/K  c

 lt  Pt = s ⋅t

  (ct + st)   t = 0

 W

   u(i)

  u(W )  k   u(W − kc)

  !t   !k    u(W + v − s !t − !kc)

!  of !47 128



We also assume ! , otherwise no one could bid in period 0; and 

 for simplicity.  13

Since bidding is a binary activity, let bidder ! ’s strategy set consist of ! , 

where !  is the probability that non-leader !  attempts to place a bid at period !  with 

history of !  and ! . Let !  

be the probability of ! bid being placed by any non-leader at period !  as leader at 

any period is not allowed to place a bid, given the ! bid has occurred, i.e. the 

probability that the auction survives at period ! , given period !  is reached. Thus we 

have ! , and ! .  

We define the (discrete) hazard function ! as the probability that all non-leaders 

choose not to bid at a period, given it is reached, and mapping each period to the 

probability that the game ends at that state, given the state is reached. Thus, we have 

! , 

and the hazard rate of the initial period represents the probability of the auction ending 

with no bidder, ! .  

That is, we have ! , and  

!  

Assume each player’s next move is predicted by the last move of the other players, NOT 

by the  earlier history of moves, we have !  

 c < v − s

  mod(v − c,s) = 0

 i β
H
t

i ∈[ 0,1 ]

 

β
H

t

i  i  t

H
t
= (0,l 0),(1,l 1),...,(t − 1,l t−1){ } H1 = (0,l0 = auctioneer){ }

 

µ
H

t+1

  (t + 1)
th  t

 tth

 t + 1  t

   
µ

H
t+1

≡ 1− (1− β
H

t

)N −1 ∀t > 0
  
µ

H1
≡ 1− (1− β0)

N

h(t,H
t
)

h(t,H
t
) = Pr β

H
t

i = 0 ∀i ≠ l
t
|auction  reaches period  t⎡

⎣⎢
⎤
⎦⎥ =

1− β
H
t

i( )i=1

N

∏
1− β

H
t

l
t

= 1− β
H
t

( )
N−1

∀t > 0

  
h(0) = 1− β0

i( )i=1
N∏ = 1− β0( )N

h(t,H
t
) = 1− µ

H
t+1

 ∀t > 0

h(t,H
t
) = Pr β

H
t

i = 0 ∀i ≠ l
t
|auction  reaches period  t⎡

⎣
⎤
⎦ 

                                 =
1− β

H
t

i( )i=1
N∏
1− β

H
t

l
t

= 1− β
H
t

( )N −1
 ∀t > 0

h(t) = 1− βt( )N −1
 ∀t > 0

 That is, the reminder of devision of v-c by s is zero, which means v-c is an integer multiple of s. 13

!  of !48 128



Define the hazard rate of an auction ending without a bidder ! , and 

is an integer by previous assumption of , we claim that: 14

Theorem 1 

In any Subgame Perfect Equilibrium where the auction survives beyond period 1 with 

some positive probability, we have 

!             !  

 
Since we each bidder has identical strictly increasing vNM utility function of !  and 

! , we have ! . No bidder is willing to place any bid at period 

!  and beyond, as if she places a bid in period !  and becomes the new leader at 

period ! , the best possible outcome for her is that the auction ends at !  and 

she wins the item, which still gives her a payoff less than her current wealth, as 

! . Any non-leader at period ! is different between 

placing a bid and not - both giving her a payoff of zero. If she places a bid and her bid 

is accepted, she becomes leader at period ! and wins the auction, as no one else is 

willing to overbid her, thus her payoff is ! . She also gets !  

if another non-leader enters period ! and wins the auction. 

Now start our backward induction from period ! . Consider any non-leader at period 

! , she must be indifferent between placing a bid and not placing a bid in any 

Subgame Perfect Equilibrium. If she places a bid and her bid is accepted, she becomes 

the current leader at period ! , a period in which all non-leaders getting zero payoffs, 

h(0) = µ
H1

Τ ≡ v − c
s

− 1     mod(v − c,s) = 0

h(t) = 

 0                                                        t = 0

u(Wt−1)−u(Wt−1 − c)
u(Wt−1 + v − st − c)−u(Wt−1 − c)

                      for    0 < t ≤T

 
1                                                 for    t >T

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

   u(i)

T ≡ v − c
s

− 1    h(t) = 1 ∀t >T

T + 1  T + 1

 T + 2  T + 2

WT − c + v − s(T + 2)⎡⎣ ⎤⎦ =WT − s <WT T

 T + 1

WT − c + v − s(T + 1)⎡⎣ ⎤⎦ =WT WT

 T + 1

 T

 T − 1

 T

 Augenblick 2012 shows that the case with T not being an integer can be remedied in an ε-perfect 14

equilibrium, which approximates the equilibrium we propose below. 
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regardless whether they bid or not. Then she gets ! if the auction ends 

at period ! , or  !  if she enters period !  as a non-leader by induction. She 

gets a !  payoff if she enters period ! as a non-leader, if her bid is not accepted or 

she chooses not to place a bid. Thus, we have the indifference condition  

!  

for any non-leader at period !  in any Subgame Perfect Equilibrium, which derives  

!  when !  

By backward induction, we can find the equilibrium indifference conditions  for any 

non-leader at periods ! , 

!   

deriving a hazard rate of periods ! , 

!  

Thus when ! , 

!  

Since we are looking at Subgame Perfect Equilibrium where the auction survives the 

first two periods with positive probability, we choose ! arbitrarily, i.e. some 

bidding always occurs at period 0 in equilibrium, so that the auction reaches period 1 

with certainty. For instance, in case that ! , where there is some positive 

probability that the auction ends with no bidder and does not reach period 1, the 

auctioneer can repeatedly run the auction, until some players bid, leading the hazard 

rate of the initial period to effectively be zero. 

Other symmetric equilibria also exist, such as all players always bidding in even periods 

and always passing in odd periods, or vice versa, which all produce the same result: the 

auction either ends in period 0 with no bidder, or ends in period 1 with one winning 

bidder, which are concluded as: in any other symmetric subgame perfect equilibrium, 

WT−1 + v − sT − c

 T WT−1 − c  T + 1

WT−1  T

h(T)u WT−1 + v − sT − c⎡⎣ ⎤⎦ + 1− h(T)( )u WT−1 − c⎡⎣ ⎤⎦ = u WT−1⎡⎣ ⎤⎦

 T − 1

h(t) =
u(WT−1)−u(WT−1 − c)

u(WT−1 + v − st − c)−u(WT−1 − c)
    t =T

   t =T − 2,  T − 3,  ... ,  0

h(t + 1)u Wt + v − s(t + 1)− c⎡⎣ ⎤⎦ + 1− h(t + 1)( )u Wt − c⎡⎣ ⎤⎦ = u Wt⎡⎣ ⎤⎦

 1 ≤ t <T

h(t) =
u(Wt−1)−u(Wt−1 − c)

u(Wt−1 + v − st − c)−u(Wt−1 − c)
   

 0 < t ≤T

h(t) =
u(Wt−1)−u(Wt−1 − c)

u(Wt−1 + v − st − c)−u(Wt−1 − c)
   

  h(0) = 0

  0 < h(0) < 1
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the auction will conclude either in period 0 with no bidders, or in period 1 with one 

bidder. 

Suppose that there exists a period !  where bidders randomise with  

!   

and follow the strategy profile !  for all periods beyond ! , which is 

permissible as bidders are indifferent between bidding at !  and not bidding. In this 

case, non-leaders in period !  strictly prefer not bidding, as an expected payoff from 

bidding is negative, strictly less than a zero payoff from not bidding:  

!   

Thus only !  can occur, which in turn requires ! , i.e. everyone strictly 

prefers an attempt to bid in period !  as no one will bid in ! . We continue the 

backward induction to show the alternative choices of bidders over earlier periods, such 

that if !  is even, the equilibrium outcome concludes with a single bid (since ! ), 

and if !  is odd, the outcome concludes with no bid occurring (since ! ). 

Alternatively, if randomising  

!  

a reverse outcome results for even or odd ! . Therefore, if indifference is broken at any 

period, given that bidders follow the strategy profile !  for all periods 

beyond it, all earlier periods would follow the alternating strategy resulting in the 

auction concluding with zero or one bidder.  

Theorem 1 is proved by backward induction that, at any t, non-leading bidders are 

indifferent from submitting a bid or not, and expect zero gain in expected utility from 

the continuation of the game, which means that they expected a zero gain in expected 

utility from the beginning of the auction. Under risk neutrality, this means the seller 

must expect zero profit, since the total surplus to be shared is zero as the seller and 

t

βt > 1−
u(Wt−1)−u(Wt−1 − c)

u(Wt−1 + v − st − c)−u(Wt−1 − c)
   

⎡

⎣
⎢

⎤

⎦
⎥

1
N −1

βt = 1− h(t)⎡⎣ ⎤⎦
1
N −1 t

t

t − 1

(v − sq)(1− µq+1)−b = (v − sq)(1− βq )
n−1 −b < 0

βt−1 = 0 βt−2 = 1

t − 2 t − 1

t β1 = 0

t β0 = 0

βt < 1−
u(Wt−1)−u(Wt−1 − c)
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⎡

⎣
⎢

⎤

⎦
⎥

1
N −1

t

βt = 1− h(t)⎡⎣ ⎤⎦
1
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buyers place the same value on the object. Whereas, if bidders are risk-averse or risk-

seeking with concave or convex utility functions, the hazard rate will be higher or lower 

than the hazard rate with risk-neutral bidders, and the expected profit of a seller will be 

negative or positive respectively. Theorem 1 also shows that history does not affect 

hazard rates in equilibrium (though individual bidder strategies may still be history-

dependent) 

We can also prove the zero profitability property under risk neutrality, by constructing 

the probability density function that the auction ends at period t (i.e. in total, t bids 

are accepted) ! . Recall that !  is the probability of ! bid being placed by 

any non-leader at period ! , given the ! bid has occurred, i.e. the probability that the 

auction survives at period ! , given period !  is reached, which equals to ! . 

Thus, we have 

!  

i.e. probability of the auction ending at period !  equals to the product of probability of 

! bid not occurring and probability of all past !  bids being placed, i.e. the 

product of the hazard rate of period !  and probability that the auction survives 

through all periods prior to period ! . We can compute the expected revenue of the 

auctioneer as ! , which sums to ! , and is independent of auction 

parameters such as a bidding fee and bidding increment. The sum is complicated to 

prove, while we can obtain the same result via the following indirect method. Assuming 

  f(t)  µt+1   (t + 1)
th

 t  tth

 t + 1  t   1− h(t)

f (t) ≡ (1− µt+1) µm =
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t

∏    h(t) 1− h(m − 1)⎡⎣ ⎤⎦
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t

∏
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   f (t)  =
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   c
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1− h(0)⎡⎣ ⎤⎦ 1− c
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⎪
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that the seller places no intrinsic value on the item, the total expected surplus of the 

auction is equal to v times the probability that the auction item is sold, i.e. probability 

of auction does not end before period one, i.e. one minus hazard rate of period one. This 

expected surplus is split between the seller and bidders, given the expected surplus of 

the bidders is zero, the seller’s expected revenue is ! . We can reasonably set 

! , as the item has  not been sold. The seller is able to immediately initiate a new 

auction at practically no cost, repeating it until the item is sold. Thus the seller’s 

expected revenue is ! , and gets zero expected profit in the complete-information 

subgame perfect equilibrium under risk neutrality.  

However, the variance of revenue does depend on these parameters. Adopting the 

approach of Platt et al 2012, when !  is small relative to ! , by treating !  as a 

continuous variable, !  can be approximated by a Generalized Beta Distribution of the 

First Kind (setting GB1 parameters as ! ), and 

!  

derives a unique solution ! when !  is very small relative to 

! , where the constant of integration is determined such that ! . Using 

properties of GB1, we can compute variance of the expected revenue 

! , which increases in !  and ! , and decreases in ! .  

Figures 11 and 12 show the probability distribution of the final bid and the seller’s 

expected revenue within a period, !  in a numeric example of v=$10, c=$1, 

s=$0.2. Note that the area under the per-period expected revenue curve equals to the 

total expected revenue that the seller can gain throughout the auction. 

v 1− h1( )
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 c  v  t
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c
s
,      ρ =
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Figure 11. Probability distribution of final bid 

!  

Figure 12. Seller’s expected revenue per period 

!  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Theorem 2 

In any Markov Perfect Equilibrium where the auction survives beyond period 1 with some 

positive probability, and ! , ! ! , we have symmetric bidding strategy that 

! , where 

      

In Theorem 1, we discuss the property of a hazard rate of our interested set of Subgame 

Perfect Equilibrium, and we discuss property of bidders’ strategy profiles in a more 

interested subset of the this Subgame Perfect Equilibrium set in Theorem 2, the 

symmetric Markov Perfect Equilibria, in which all bidders play symmetric Markov 

strategies. Markov Perfect Equilibrium is refinement of Subgame Perfect Equilibrium, 

and consists of a set of mixed strategies for each of the players where each player’s 

mixed strategy can be conditioned on the state of the game, which only encode payoff 

relevant information and exclude strategies that depend on the identity of the players. 

For instance, bidders only condition their strategies on time points (period) of the 

auction, not the entire history, and change in identity of any current leader at any 

period will not change the payoff of the strategies, so we can simplify our description of 

the strategy profiles by excluding the identity of the current leader of any particular 

period, e.g. write as ! instead of ! . We also focus only on symmetric Markov Perfect 

Equilibria here, in which the players have strategy and action sets which are mirror 

images of one another, and payoffs for playing a particular strategy depend only on the 

other strategies employed, not on who is playing them, i.e. ! .  

 β0
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We argue that in any Markov Perfect Equilibrium where the auction survives beyond 

period 1 with positive probability and all bidders bid with positive probability in the 

initial periods (period 0 and 1), bidders play the symmetric strategies stated in 

Theorem 2. The additional constraint that every player bids with some positive 

probability at !  and ! helps us to exclude the unwanted asymmetric equilibria, 

e.g. the equilibria in which one player effectively leaves the auction after period 1, and 

the equilibria in which some player is always the leader in a specific period. First 

consider the idea of symmetric strategies in equilibrium. Suppose there exists !  

at some period of ! , then ! , i.e. the two players face different 

hazard rates if each of the two is the leader at period t, which leads to at least one of 

the hazard rate unequal to ! , violating Theorem 1; and 

it would cause players to bid in a way that keeps the history off the equilibrium path, 

e.g. players would behave differently in !  or ! from what they would do in the 

equilibrium. 

Recall that !  by Theorem 1, i.e. the auction ends with certainty and no 

player is willing to place a bid at any period beyond ! , thus we have 

! . Similarly as ! , i.e. the probability that the auction ends 

at period 0 is zero, by symmetry, thus we have !  when ! .  

When ! , !  and !  for all i by induction from period 1, we can prove  

!  

Recall !  when ! by Theorem 1. Since 

!  and !  ! , every player enters period 1 and period 2 as leader with some 

positive probability in equilibrium, thus we have  

!   

 t = 0  t = 1

 βt
i ≠ βt

j

 t > 1   h(t,lt = i) ≠ h(t,lt = j )

u(Wt−1)−u(Wt−1 − c)
u(Wt−1 + v − st − c)−u(Wt−1 − c)

   

 t − 1  t − 2

   h(t) = 1 ∀t >T

 T

  βt
i = 0      ∀   i  and  ∀t >T   h(0) = 0

 βt
i = 1      ∀   i  t = 0

 0 < t ≤T  β0
i > 0  β1

i > 0

βti = 1− u(Wt−1)−u(Wt−1 − c)
u(Wt−1 + v − st − c)−u(Wt−1 − c)

   
N −1

    ∀i

h(t) = u(Wt−1)−u(Wt−1 − c)
u(Wt−1 + v − st − c)−u(Wt−1 − c)

    0 < t ≤T

 β0
i > 0  β1

i > 0  ∀i

h(t = 1,l1 = i) = h(t = 1,l1 = j) = u(W0)−u(W0 − c)
u(W0 + v − s − c)−u(W0 − c)
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and  

!  

Suppose there exists some players !  that ! , by definition of the hazard rate, we 

have ! as ! , contradicting to 

our previous finding that ! . Thus, there does not exist any 

two player !  that !  in equilibrium, and we must have ! , such 

that ! , which generate a unique solution of  

!  

Similarly, we can show that 

!  

Since ! and ! , every bidder enters period 3 as the current leader with 

some positive probability in equilibrium, and similarly we can prove that  

!  

By extending to the following periods, we can show that  

!  when !  

We can also prove that there is no strictly profitable deviation from this strategy profile 

if the auction survives beyond period 1. Consider non-leader i ’s expected continuation 

payoff at !  from bidding and not bidding in the subgame starting at ! . By 

induction and Theorem 1, we can see that she gets zero benefit from not bidding, and 

also zero benefit from placing a bid, as  

h(t = 2,l2 = i) = h(t = 2,l2 = j) = u(W1)−u(W1 − c)
u(W1 + v − 2s − c)−u(W1 − c)

   

  i, j  β1
i ≠ β1

j

    h(t = 1,l1 = i) ≠ h(t = 1,l1 = j)
 
 

1− β1m( )m=1
N∏
1− β1i

≠ 
1− β1m( )m=1

N∏
1− β1

j
 

  h(t = 1,l1 = i) = h(t = 1,l1 = j)

  i, j  β1
i ≠ β1

j
  β1

i = β1
j  ∀i ≠ j

  

h(t = 1)   = 1− βt=1
i( )N −1

β1i = 1− u(W0)−u(W0 − c)
u(W0 + v − s − c)−u(W0 − c)

   
N −1

    ∀i

β2i = 1− u(W1)−u(W1 − c)
u(W1 + v − 2s − c)−u(W1 − c)

   
N −1

     > 0  ∀i

  β1
i > 0  ∀i   β2

i > 0  ∀i

β3i = β3j = 1− u(W2)−u(W2 − c)
u(W2 + v − 3s − c)−u(W2 − c)

   
N −1

    ∀i ≠ j

βti = βtj = 1− u(Wt−1)−u(Wt−1 − c)
u(Wt−1 + v − st − c)−u(Wt−1 − c)

   
N −1

    ∀i ≠ j   t = 4,     t = 5,   ...   ,   t = F

 t  1 ≤ t ≤T

!  of !57 128



!  

Since the continuation payoffs from bidding and not bidding are both zero, there is no 

strictly profitable deviation from the stated mixed strategies. Therefore, we have proved 

Theorem 2. 

Theorem 3. 

In any symmetric Markov Perfect Equilibrium, we have either all bidders playing the 

symmetric strategy profile described in Theorem 2, or alternating strategies such that the 

auction ends in period 0 with no bid, or ends in period 1 with one bidder. 

We are aware that there are other Markov equilibria, in which an auction always ends 

at period 0 or period 1. In these equilibria, players believe that some players will bid 

with very high probability in period 1 or 2, which leads them to strictly prefer not to 

bid. 

Suppose that there exists a period !  where bidders randomise with some  

!  and !  

which is permissible as bidders are indifferent between bidding at !  and not bidding. In 

this case, non-leaders in period !  strictly prefer not bidding, as the expected payoff 

from bidding is strictly less than the payoff from not bidding, as  

!  

Thus only !  can occur, which in turn requires ! , i.e. everyone strictly 

prefers an attempt to bid in period ! as no one will bid in ! . We can continue 

the backward induction to show the alternative choices of the bidders over earlier 

periods, such that if !  is even, the equilibrium outcome concludes with a single bid 

(since ! ), and if !  is odd, the outcome concludes with no bid occurring (since 

! ). Alternatively, if we randomise 

u Wt − c( ) +    h(t + 1,i)u Wt + v − s(t + 1)( ) + 1− h(t + 1,i)⎡⎣ ⎤⎦ iu Wt( ) = u Wt( )

  t * ≤T

β
t*

> 1−   
u(Wt−1)−u(Wt−1 − c)

u(Wt−1 + v − st* − c)−u(Wt−1 − c)
N −1

βt = 0   ∀t >T

  t *

  t * − 1

u(W
t*−1

+ v − st* − c)h(t*)+ 1− h(t*)⎡
⎣

⎤
⎦u(Wt*−1 − c) < u(Wt*−1)

β
t*−1

= 0 β
t*−2

= 1

t* − 2 t* − 1

t*

β1 = 0 t*

β0 = 0
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!  

we get a reverse outcome for even or odd ! . Therefore, if the indifference condition is 

broken in as any period, given that bidders follow strategy profile in Theorem 2 for all 

periods beyond it, all bidders would follow the alternating strategy in all earlier periods 

resulting in outcomes that the auction either ends in period 0 with no bid, or ends in 

period 1 with one bidder, and there is no profitable deviation intuitively.  

β
t*

< 1−
u(Wt−1)−u(Wt−1 − c)

u(Wt−1 + v − st* − c)−u(Wt−1 − c)
N −1

  

t*

!  of !59 128



Chapter 4. Risk Model - Single Bidder Type 

We have shown that the auctioneer gets zero expected profit in the complete-

information subgame perfect equilibrium under risk neutrality, and we can show that 

the auctioneer gets positive/negative expected profit when bidders have convex/concave 

utility functions.  

For simplicity, we assume that all bidders have an identical Constant Absolute Risk 

(CARA) utility function of ! , where !  is the Absolute Risk Aversion, 

and every bidder has the same initial wealth W, such that initial wealth terms are 

cancelled out in the calculation.  

By Theorem 1, we find the hazard rate !  at period 

! in any Subgame Perfect Equilibrium under an additional constraint that every 

bidder bids with positive probability at initial periods, so that we can exclude those 

uninteresting asymmetric equilibria.  

Similarly we can also calculate the probability density as: 

!  

We can see that the support of !  is the same as before, !  for all !  when 

! , and the increase in !  has essentially the same effect as in the risk-neutral 

case (increasing the support and flattening the distribution). When !  (i.e. risk 

aversion), !  has a similar convex shape to the risk-neutral density function, only 

with greater curvature as ! rises. However, the distribution behaves quite differently for 

!  (i.e. risk-loving). When !  is very close to zero, an inflection point !  is 

introduced near zero such that !  is below ! ; thus !  is no longer strictly 

convex. As !  decreases, this inflection point takes on higher values, and eventually 

creates a hump-shaped distribution, where !  is maximised at  

u(W ) = 1−e
−αW

α
α

h(t) = eαc − 1
eαc −eα(c+st−v)

    0 < t ≤T

 0 < t ≤T

   
f (t) =   h(t) 1− h(m − 1)⎡⎣ ⎤⎦

m=1

t

∏ = eαc − 1
eαc −eα(c+st−v)

1−eα(c+s(m−1)−v)

eαb −eα(c+s(m−1)−v)

⎛

⎝
⎜

⎞

⎠
⎟

m=1

t

∏

  f (t )   f (t ) > 0  t

 0 < t ≤T v

α > 0

  f (t )

α

α < 0 α   ̂t

  f ''(t ) < 0   ̂t   f (t )

α

  f (t )
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!  

, which increases as ! becomes more negative or ! becomes larger.  

While we cannot analytically solve for expected revenue in this case, we can derive the 

effect of the parameters on the expected revenue by evaluating the comparative statics 

of each parameter on the hazard rate ! . By direct calculation, there are: ! , 

! , ! , i.e. the hazard rate increases in ! .  

Since ! , we can see that the average final number of bid decreases in 

! , which implies that expected revenue decreases in ! . The finding is quite 

intuitive, a decrease in ! means bidders are more risk-loving and gaining more utility 

from participating in the risky game, i.e. the auctioneer is able to extract more revenue 

from bidders’ risk preference. 

The empirical findings confirmed the negative risk parameter !  primarily in the range 

of -0.001 to -0.04 (with a few estimates as low as -0.09), indicating that bidders are 

mildly risk loving.  15

The seller’s expected revenue in a penny auction is the sum of his expected revenue 

within each period, which depends on the probability of the auction ending at that 

period. Figures 13 and 14 show how the probability of the final bid and seller’s expected 

revenue within each period, ! , varies when bidders have different risk 

attitudes in numeric examples. Note that since the seller’s expected revenue within each 

period sums up to the seller’s expected revenue of the auction, the area under the per-

period expected revenue curve equals to the total expected revenue the seller can gain 

throughout the auction. The dashed line of Mean (item valuation v divided by T) is 

included as a guideline, as seller breaks even when the area under the per-period 

expected revenue curve equals to be area under the dashed line of mean. 

  
t = max 0, v − c

s
+
1
αs

ln 1− eαb

1− eαs

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

α  v

  h(t)
  

∂h(t)
∂α

> 0

  

∂h(t)
∂s

> 0
  

∂h(t)
∂c

> 0   α,s,c

   h(t) = 1− µt+1 ∀t > 0

  α,s,c α

α

α

  (c + s)t ⋅ f(t)

 Horserace participant’s risk attitude as benchmark15
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In Example 1, we set v=$10, c=$1, s=$0.2, and bidders are risk-neutral ( ! ). In 

Example 1A and 1B, we will use the same auction parameters, while setting bidders to 

be risk-loving ( ! ) and risk-averse ( ! ).  

Figure 13. Probability distribution of final bids in numerical examples 

 

Figure 14. Seller’s expected revenue within each period in numerical examples 

α = 0

 α = −0.05  α = 0.05
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From the graphs we can see that the positive alpha indicating risk-aversion in Example 

1B, drags down the probability density distribution of the final bid and expected 

revenue within each period, which shrinks the area under the curve and reduces the 

seller’s expected revenue to below the item valuation. While the negative alpha 

indicating risk-loving in Example 1A increases the seller’s expected revenue, which now 

exceeds the item’s valuation. 

We conclude that the average final number of bids decrease and the expected revenue of 

the auctioneer decreases in ! , so that the seller earns more from more risk-loving 

bidders, who gain more utility from participating in the risky game, and earns less from 

more risk-averse bidders. It is intuitive to understand that as higher risk tolerance of 

bidders increases their bidding aggression, it extends the length of the auction and 

improves the profit of the seller. 

We use our equilibrium bidding model to estimate risk attitudes of bidders using our 

original dataset of auctions collected on BidCactus. The empirical strategy of Platt et 

al. (2013) will be followed (with one change to be noted below), and in addition, we will 

estimate separate coefficients of absolute risk aversion for experienced and inexperienced 

bidders, to test whether there is a statistically significant difference. 

Our key theoretical prediction is that the final number of bids in a given auction is a 

random variable with distribution . If a given item is repeatedly auctioned 16

many times, we will have enough observations to estimate risk parameters, and to see 

whether our risk model does a better job at explaining the observed outcomes compared 

to the basic model; whether there is a significant difference between risk attitudes 

depending on experience. By performing statistical tests (Pearsons � test and K-S test 

to compare distributions, t-test to compare means), we can quantify how closely the 

estimated theoretical distribution matches the observed sample distribution. Maximum 

likelihood estimates of ! for each regularly-auctioned item are generated. 


α

  f (t,α)

χ 2

α

 Although the theory predicts that this distribution should be independent of N (the number of 16

bidders), our earlier regressions suggest otherwise, and this is a matter for future investigation.
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Choose the parameter !  to maximise ! , where !  represents each observed 

auction of that item, !  is the ending number of bids in that auction, and !  is the 

discrete theoretical distribution in the CARA model 

!  

The following examples illustrate the actual and fitted distributions for items in two 

different categories. We first compute a ML estimate of alpha for each item, then we 

compare the theoretical distributions of final bids under risk neutrality (alpha set to be 

zero) and those with risk parameters adopting the ML estimate of alpha, against the 

observed sample distributions. Table 5 shows that implementation of the MLE in the 

model explains the observation better when compared to setting alpha to zero 

(assuming risk neutrality). The tests show the improvement in fit is statistically 

significant, and the graphs give an intuitive impression of the difference in fit.  17

α ln f (
j
∑ tj ;α) j

tj  f

f (t,α) = eαc − 1
eαc −eα(c+s*t−v)

1−eα(c+s(m−1)−v)

eαc −eα(c+s(m−1)−v)

⎛

⎝
⎜

⎞

⎠
⎟

m=1

t

∏

Calphalon Nonstick Stir Fry Pan (RRP$49.95, Item#697, Category: Small Good under $100)

Number of 
Observations

197

Estimated 
Alpha by MLE

0.03178

Average Profit 
Margin

- 50.23%

t-test 
(p>=0.05)

Basic: 8.1

MLE: 91.1

Chi-Sq test 
(p>=0.05)

Basic: 9.3

MLE: 73.4

K-S test 
(p>=0.05)

Basic: 7.0

MLE: 82.2

Theoretical Distributions of Final Bid  
(basic model in red dashed line; 

extended model with MLE alpha in solid green line) 
 versus Observed Distribution (blue bars) 

! 50 100 150 200 250 300

0.02

0.04

0.06

0.08

 In the Kmart $25 Gift Card graph, datas beyond period 300 are trimmed to show a clearer idea of the 17

earlier stage of the game, while our CARA risk model does a much fit for the long tail.
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Table 5. Comparison of theoretical and observed distributions of final bids


Our test results match our prior theoretical conclusion that bidders’ risk-loving/risk-

aversion either increase/decrease the seller’s expected revenue, and the signs of the 

alpha Maximum Likelihood estimators coincide with the signs of the observed average 

seller’s profit margin, which is also intuitive to understand in practice. For instance, a 

$25 Kmart gift card has a well-defined market value close to the RRP, which is useful to 

most bidders; while a stir frypan is likely to value less than its RRP and not many 

bidders would be interested in purchasing this good, i.e., auctions of those two items are 

likely to attract different groups of participants. We assumed all bidders had identical 

risk attitudes in the model setting for simpler analysis, while it is unlikely to be true in 

reality, and we may consider our alpha estimators as an average risk-attitude indicator 

of the participating bidders. Let us say, a gift card auction may attract more 

experienced bidders with more preferences toward risk, which leads to more aggressive 

bidding behaviours, a longer auction course and higher seller revenue. Our empirical 

findings also suggest that an experienced level of participating bidders in a penny 

Kmart $25 Gift Card (RRP$25.00, Item#1122, Category: Gift Card)

Number of 
Observations

1,260

Estimated 
Alpha by MLE

-0.0212377

Average Profit 
Margin

26.56%

t-test 
(p>=0.05)

Basic: 9.3

MLE: 92.9

Chi-Sq test 
(p>=0.05)

Basic: 13.3

MLE: 76.9

K-S test 
(p>=0.05)

Basic: 10.5

MLE: 87.0

Theoretical Distributions of Final Bid  
(basic model in red dashed line; 

extended model with MLE alpha in solid green line)  
versus Observed Distribution (blue bars) 

!
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auction is likely to be associated with the seller’s revenue, and we will attempt to 

extend the model further to capture the effect of bidder experience in the next section. 

Statistical tests for each item that have been repeatedly auctioned over 100 times are 

performed to compare theoretical distribution with observed data for basic model of 

! and the extended model with MLE ! , and a sample of the result is attached in 

the Appendix 2. We conclude that the basic model is inadequate when compared to the 

extended model with a risk attitude, which contributes towards explaining observed 

auction outcomes. 

α = 0 α
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Chapter 5. Empirical Motivation 

Our empirical findings show that the majority (86.91%) of bidders never play more than 

20 auctions, while the minority (13.09%), who participated in 20 or more auctions, 

played more aggressively in the auctions, placing 81.36% of total bids . The bidders 18

who eventually gain 20 or more, prior to auction experience, place 13.30 bids per 

auction on average in their lifetime, while those who never participated in 20 or more 

auctions only placed 8.15 bids per auction on average in their lifetime. Intuitively, a 

variety of risk attitudes exist in bidders, which affects their bidding behaviour. For 

instance, more risk-averse bidders are more likely to bid less and are less likely to enrich 

their bidding experience, while more risk-seeking bidders, who get extra utility gain 

from bidding due to their love of risk-taking, become more experienced. The observed 

correlation between bidders’ behaviour and their prior bidding experiences motivated us 

to analyse bidders in separate groups by their experiences. 

Table 6. More experienced and inexperienced bidder comparisons


On the other hand, a seller’s profit margin also appears to correlate with bidders’ 

experiences. The average profit margin of auctions with bidders that have less than 20 

prior auction experiences is - 58.21% (loss), while the average profit margin of auctions 

with at least one bidder with 20 or more prior auction experiences is 51.51%. In Figure 

15, we plotted the average seller’s profit margin (ASPM) against bidders’ experiences in 

terms of a rounded average prior auction (APA) participated in two auction item 

categories (Bid Packs and Gift Cards), two item types (50 Bid Packs and $50 Home 

Depot Gift Cards), and spotted some overall polynomial trends, where an ASPM grows 

in an APA at the start, then gradually drops as the APA becomes very large.  A 19

Total Auctions 
Participated

Proportion in Bidder 
Population

Proportion of Bids in 
Total Bids Placed

Average Number of 
Bids Placed per Auction

Less than 20 86.91% 18.64% 8.15

20 and more 13.09% 81.36% 13.30

 All bids placed by these bidders are counted, including the bids placed in their first 20 auctions.18

 Average prior auctions (APA) are defined as take an average of all bidders’ prior auction counts in an 19

auction, e.g. if there are 2 bidders who have played 2 and 4 auctions before, the APA is 3. We rounded 
APA raw results to whole numbers. The concerning small number of observations may result from 
randomness, as we focused on auctions of item types that were repeatedly auctioned 30 or more times. 
There are 41 auction items in 3 categories (19 in Bid Packs category, 21 in Gift Cards category) with 
enough observations. 
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similar trend was observed in last three diagrams of Figure 16 when we plotted an 

ASPM against rounded APAs of all auctions. 

Figure 15. Average seller’s profit margin against average bidder experience 
- 2 item categories and 2 item types
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 Figure 16. Average seller’s profit margin against average bidder experience 
- All auctions and zoomed in 
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We defined our bidder experience groups by prior auction experience, and our 

experienced bidders as those who have played 20 or more auctions before participating 

in a particular auction, and treated the rest as inexperienced bidders. We chose 20 prior 

auctions to distinguish bidder types, as the majority of 86.91% of bidders never play 

more than 20 auctions, and as shown in Table 7, other prior auction experience ranges 

have much less bidders, e.g. only 3.48% of all bidders played between 20 and 25 auctions 

in their lifetime. 

Table 7. Bidders with different prior auction experiences  

For items that are very frequently auctioned, we were able to find a large number of 

auctions with participation by newcomers only and those with participation by bidders 

with rich experience only. Thus, a straightforward hypothesis to test is whether the 

newcomers and experienced ones have the same risk attitudes, as we assumed in our 

previous model settings. We selected items that had been repeatedly auctioned over 100 

times and had at least 30 auctions with experienced-only bidders, and 30 auctions with 

inexperienced-only bidders. Recall that we compute the maximum likelihood estimators  

(MLE) of alphas by choosing the parameter !  to maximise ! , where !  

Total Auctions 
Participated

Numbers of 
Bidders

Ratio in 
Bidder 

Population

Average 
Number of 

Auctions Won

Average Number 
of Bids Placed per 

Auction

Winning 
Percentage

<5 97,514 38.20% 0.03 11.72 1.39%

[5,7) 36,589 14.33% 0.10 8.19 1.76%

[7,10) 38,174 14.95% 0.17 7.26 2.17%

[10,20) 49,600 19.43% 0.46 7.30 3.48%

[20,25) 8,884 3.48% 1.07 7.91 4.92%

[25,30) 5,326 2.09% 1.42 7.93 5.29%

[30,50) 9,428 3.69% 2.31 8.57 6.18%

[50,100) 5,083 1.99% 5.37 10.43 7.94%

[100,200) 2,098 0.82% 15.30 13.38 11.15%

[200,500) 1,443 0.57% 43.26 15.61 14.04%

[500,750) 378 0.15% 98.23 16.29 16.28%

[750,1000) 587 0.23% 119.70 16.29 17.19%

[1000,2000) 331 0.13% 283.67 18.72 20.90%

[2000,4000) 147 0.06% 527.69 15.57 18.92%

[4000,5000) 31 0.01% 905.03 13.05 20.50%

[5000,10000) 53 0.02% 1,369.66 13.16 20.37%

10000+ 15 0.01% 2,445.93 7.66 19.23%

Total 255,304 100.00% 2.26 11.90 11.28%

α ln f (
j
∑ tj ;α) j
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represents each observed auction of that item, !  is the ending number of bids in that 

auction, and !  is the discrete theoretical distribution in the CARA model. We did not 

only compute the maximum likelihood estimators of alphas for each experience group, 

but we also tested whether the alphas of the two groups were significantly different from 

each other by using the Likelihood Ratio test. Our null hypothesis is that bidders in 

different experience groups have the same risk attitude.  

For all items that we had sufficient numbers of observed auctions to test, we rejected 

the null hypothesis, i.e. the empirical findings indicated that bidders in different 

experience groups had significantly different risk attitudes, thus experiences of bidders 

affected the seller’s expected revenue, which coincided with our previous regression 

results. Table 8 shows an example of a single auction item we have tested – $25 Kmart 

Gift Card. Not only do the alpha estimates of each experience group look significantly 

different, but it is also supported by the result of the Likelihood Ratio test. 
20

Table 8. Example of risk estimates for both risk experience groups 

tj

 f

$25 Kmart Gift Card Result

Alpha MLE of Auctions with Inexperienced bidders only  
(subset of 118 auctions with only Inexperienced bidders)

0.0795

Alpha MLE of Auctions with Experienced bidders only   
(subset of 324 auctions with only Experienced bidders)

0.0277

Alpha MLE of Auctions with single-type bidders                            
(442 auctions combining the above two subsets)

0.0382

Likelihood Ratio Test Result 
- to compare goodness of fit of either treating two type 
bidders with two alphas (alternative model), or treating 
everyone has one alpha (null model)

Test statistic 19.82 exceeds critical 
value 3.841 

Hypothesis rejected

 A likelihood ratio test (LR test) is a statistical test used for comparing the goodness of fit of two 20

statistical models, where the null model here (every bidder has same risk parameter), is a special case of 
the alternative model (experienced bidders and inexperienced bidders have different risk parameter). The 
test is based on the likelihood ratio, which expresses how many times more likely the data are under one 
model than the other. This likelihood ratio, or equivalently its logarithm, is compared to a critical value 
to decide whether or not to reject the null model. For instance, in $25 Kmart Gift Card case, since our 
test statistic 19.82 exceeds the critical value, it is concluded that the alternative model explains the data 
better. 
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In conclusion, the empirical findings suggest a correlation between experience and 

bidding aggressiveness, which are being picked up as differences in risk attitudes in the 

estimation. Bidders in different experience groups in our dataset are shown to have 

significantly different risk attitudes, with the more experienced group being more risk-

seeking and bidding more aggressively, which increases the seller’s expected revenue. 

Our result raises a puzzle by suggesting an apparent correlation between risk attitude 

and experience. One intuitive explanation would be that bidders with risk-seeking 

preferences are more likely to become addicted to this risky mechanism and gain 

experience through time (bidders who have participated in 1,000 and more auctions 

place an average of 16.63 bids per auction, while those who have never participated in 

20 or more auctions place an average of 10 bids per auction), while risk-averse players 

are likely to be scared away from penny auction websites after a few attempts. If there 

are only inexperienced bidders with risk-aversion in a penny auction, sellers would earn 

negative payoffs, which coincides with the observation of an average profit margin in 

inexperienced-bidder-only auctions, being -74.79%, while auctions with experienced 

participants bring a seller an average profit margin of 49.76%. 

Figure 17. Average seller’s profit margin vs number of bidders in the auction
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We recall that when every bidder has an identical (Constant Relative Risk Aversion) 

utility function (regardless of their risk preferences), a seller’s expected revenue is 

independent of the number of bidders N in our current model as N is cancelled out in 

the calculation of final bid probability density function, which does not reflect the 

significant correlation between a seller’s profit margin and the number of bidders 

observed in our dataset . Figure 17 shows the average seller’s profit margin against the 21

number of bidders in all auctions, and a separate diagram focusing on auctions with up 

to 20 bidders, as there are on average 8.87 bidders competing in an auction, and 94.78% 

of total auctions have 20 or less bidders participating.  

We have analysed subsets of auctions with single types of bidders separately, while the 

rest of the auctions, those with two types of bidders coexisting, were not included. In 

total, we have three types of auctions by bidder experience: auctions with only 

experienced bidders; auctions with only inexperienced bidders; and those with mixed 

types of bidders (at least one experienced bidder and one inexperienced bidder). 

Proportions of the three types of auctions with different numbers of participants are not 

fixed, but vary significantly. Figure 18 demonstrates the relative proportion distribution 

of the three types of auctions across subsets of auctions with numbers of bidders from 2 

to 10, where proportion of auctions with single type of bidders decrease in N.  In 65% 22

of auctions with two observed bidders, both participants are experienced bidders; while 

in all auctions with four or more observed bidders, over half of the observations include 

mixed types of bidders; and 94% of auctions with ten observed bidders include mixed 

types of bidders. 

On the other hand, the distribution of the number of bidders per auction is not uniform, 

but vary significantly. As shown in Figure 19, out of all the auctions, 97% have less than 

25 participants and the peak is when there are 61,813 auctions with five bidders 

participating. Most auctions with only one type of bidder have less than 20 bidders 

participating. 

 While our observed number of bidders in an auction is the only indicator we have for N, it could be 21

equal or less than the real N, as we only acknowledge existence of a bidder in an auction when observing 
him/her place a bid successfully, and those who never place a successful bid are not observed. A more 
aggressive and risk-seeking bidder will, therefore, appear to “participate” more often in our dataset. 

 We only look at subsets of auctions with numbers of bidders up to 10, as 77% of all auctions have 10 or 22

less bidders participating and we do not have a large number of observations for some subsets for N>10. 
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Figure 18. Distribution of three types of auctions with varying numbers of bidders


Figure 19. Distribution of number of bidders in three types of auctions 
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Table 9. Average of seller’s profit margin (SPM) for different types of auctions with different numbers of 

bidders 

Ni as Number of Inexperienced Bidders, Ne as Number of Experienced Bidders 

Table 8 continues to next page 

N
SPM in Auctions with 
Experienced Bidders 

Only

SPM in Auctions with 
Mixed Types of Bidders

Ni Ne
SPM in Auctions with 
Inexperienced Bidders 

Only

2 -68.38% -75.96% 1 1 -79.91%

3 -48.78% -56.89% 1.28 1.72 -64.88%

-54.55% 1 2

-62.91% 2 1

4 -31.57% -40.48% 1.55 2.45 -45.72%

-35.94% 1 3

-44.61% 2 2

-51.53% 3 1

5 -11.58% -24.24% 1.87 3.13 -34.85%

-16.30% 1 4

-25.07% 2 3

-37.14% 3 2

-39.08% 4 1

6 6.87% -9.39% 2.22 3.78 -13.39%

1.33% 1 5

-6.53% 2 4

-17.05% 3 3

-29.46% 4 2

-26.77% 5 1

7 27.22% 7.55% 2.61 4.39 -6.21%

20.11% 1 6

14.19% 2 5

2.31% 3 4

-4.61% 4 3

-13.76% 5 2

-8.39% 6 1
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N
SPM in Auctions with 
Experienced Bidders 

Only

SPM in Auctions with 
Mixed Types of Bidders

Ni Ne
SPM in Auctions with 
Inexperienced Bidders 

Only

8 36.49% 26.93% 3.04 4.96 12.05%

44.82% 1 7

37.44% 2 6

28.63% 3 5

15.53% 4 4

8.66% 5 3

-3.22% 6 2

1.05% 7 1

9 47.49% 43.12% 3.54 5.46 31.44%

64.47% 1 8

59.24% 2 7

51.72% 3 6

39.39% 4 5

24.35% 5 4

15.79% 6 3

5.43% 7 2

18.77% 8 1

10 57.66% 56.25% 4.03 5.97 46.23%

84.41% 1 9

77.71% 2 8

67.90% 3 7

56.56% 4 6

45.10% 5 5

34.67% 6 4

24.36% 7 3

15.86% 8 2

27.96% 9 1

11 85.43% 76.72% 4.54 6.46 49.67%

105.40% 1 10

125.18% 2 9

90.33% 3 8

81.42% 4 7

67.21% 5 6

55.38% 6 5

50.01% 7 4

35.22% 8 3

40.57% 9 2

44.23% 10 1
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Table 9 shows the changes in a seller’s average profit margin in all gift card auctions, 

across the three types of auctions (auctions including only inexperienced bidders, 

auctions including only experienced bidders, auctions including both inexperienced and 

experienced bidders), with the same number of observed bidders for all N between 2 

and 10. For instance, in auctions with two bidders, the seller makes an average loss of 

-68.38% if both bidders are experienced, an average loss of -79.91% if both bidders are 

inexperienced, and an average loss of -75.96% if one experienced bidder and one 

inexperienced bidder coexist; in auctions with 11 bidders, the seller achieves an average 

profit margin of 49.67% if all bidders are experienced, an average profit margin of 

85.43% if both bidders are inexperienced, and an average profit margin of 76.72% if 

both inexperienced and experienced bidders coexist, and the average number of 

observed inexperienced bidders and experienced bidders are 4.54 and 6.46. 

As shown in Table 8, we observe that a seller’s average profit margin increased as the 

number of bidders increased for each of the three types of auctions, e.g. a seller makes 

an average profit margin of -48.78%, -31.57%, -11.58%, 6.87%, 27.22% and 36.49% when 

there are only experienced participants and the number of bidders are 3, 4, 5, 6, 7 and 8 

respectively. For auctions with the same number of bidders, a seller’s average profit 

margin is highest in auctions with experienced bidders only, followed by auctions with 

mixed types of bidders, and is lowest in auctions with inexperienced bidders only. For 

auctions with mixed types of bidders, we observed a trend where the seller’s average 

profit margin increases in the number of experienced bidders, for a fixed number of 

bidders, e.g. in auctions with five mixed types of bidders, a seller’s average profit margin 

increases from -39.80% to -16.30% as the numbers of experienced bidders increase from 

1 to 4. While for auctions with a larger number of bidders, the trend in profit margin 

looks potentially non-monotonic, as average profit margins fall in the number of 

inexperienced bidders, except for the last row when there is only one experienced 

bidder, where it rises. One initial explanation could be that when there are two or more 

experienced bidders, they compete more aggressively with rivals of the same type.  

The above empirical findings motivated us to extend our model to capture the 

differences of various numbers of bidders with different prior auction experiences, 

allowing for the existence of only one type of participant and co-existence of both types 

of participants in one auction. 

!  of !77 128



Chapter 6. Bidders of Two Types 

Now we extend our model to fit auctions with both experienced and inexperienced 

bidders participating. Let Ne be the number of experienced bidders in an auction, and 

Ni be the number of inexperienced Bidders, then we have N = Ni + Ne. We assume 

all bidders have a Constant Absolute Risk Aversion (CARA) utility function of

! , where !  is the Absolute Risk Aversion. Let !  present a 

participant’s own bidder type, bidders of the same type have identical alphas ! , and 

! .  

Hazard rates given the current leader !  are of either two types: 

!  

By backward induction, if any Subgame Perfect Equilibrium exists where the auction 

survives beyond period 1 with some positive probability, it should satisfy the condition 

of indifference where any non-leader at period t ! must be indifferent 

between placing a bid and not placing a bid: 

!   

Solving for hazard rates, we get  

!   

where !  and  !  at period !  

u(W ) = 1−e
−αW

α
α k ∈ i,e{ }

αk

β
t
H
t( ) = βt

k ,lt

lt ∈ i,e{ }

h t,lt = e( ) = 1− βt
e,e⎡

⎣
⎤
⎦
Ne−1 1− βt

i,e⎡
⎣

⎤
⎦
Ni

h t,lt = i( ) = 1− βt
e,i⎡

⎣
⎤
⎦
Ne 1− βt

i,i⎡
⎣

⎤
⎦
Ni −1

⎧

⎨
⎪

⎩
⎪

for    0 < t ≤T

h(t,lt = e)u Wt−1 + v − st − c⎡⎣ ⎤⎦ + 1− h(t,lt = e)( )u Wt−1 − c⎡⎣ ⎤⎦ = u Wt−1⎡⎣ ⎤⎦

h(t,lt = i)u Wt−1 + v − st − c⎡⎣ ⎤⎦ + 1− h(t,lt = i)( )u Wt−1 − c⎡⎣ ⎤⎦ = u Wt−1⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

h t,lt = e( ) = 1− βt
e,e⎡

⎣
⎤
⎦
Ne−1 1− βt

i,e⎡
⎣

⎤
⎦
Ni =Kt

e

h t,lt = i( ) = 1− βt
e,i⎡

⎣
⎤
⎦
Ne 1− βt

i,i⎡
⎣

⎤
⎦
Ni −1 =Kt

i

⎧

⎨
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⎩
⎪
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Kt
e = eα

ec − 1

eα
ec −eα

e (c+st−v)
Kt
i = eα

ic − 1

eα
ic −eα

i (c+st−v)
 0 < t ≤T
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!  depends on the risk attitude parameter !  of bidder type !  for any given 

t, and !  as ! . The equilibrium condition is a set of two equations 

with four !  that need to be solved, such that multiple equilibria exist.  

Likewise, since we are looking at Subgame Perfect Equilibrium where the auction 

survives beyond period 1 with positive probability, we choose ! arbitrarily, i.e. 

some bidding always occurs at period 0 in equilibrium, so that the auction reaches 

period 1 with positive probability, as the auctioneer can run the auction repeatedly until 

some players bid in period 0, leading the hazard rate of the initial period to effectively 

be zero. Other symmetric equilibria also exist that we are not interested in, such as the 

auction either ending in period 0 with no bidder, or ending in period 1 with one winning 

bidder.  

To calculate the seller’s expected revenue 

 !  

we build the probability density function that the auction ends at period t  

!  

where the hazard rate at period t 

!   

and probability that the current leader at period t is a particular bidder type  

!  and !  depend on ! .  

Since we have multiple solutions of ! in equilibrium condition, it is mathematically 

too difficult to compute f(t) directly. In order to proceed to the application of the new 

model, we go through two approaches: a special case when N=2 where there are 

existing unique solutions of !  in the equilibrium we are interested in, and a general 

Kt
k αk k ∈ i,e{ }

Kt
k ∈ 0,1⎡⎣ ⎤⎦ v ≥ c + st

βt
k ,lt

  h(0) = 0

E[R ev ] = (c + s)t ⋅ f(t)
t=1

T+1

∑

f (t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

h! t( ) = Pr lt = e⎡⎣ ⎤⎦h t,lt = e( ) + Pr lt = i⎡⎣ ⎤⎦h t,lt = i( ) = Pr lt = e⎡⎣ ⎤⎦Kt
e + Pr lt = i⎡⎣ ⎤⎦Kt

i

Pr lt = e⎡⎣ ⎤⎦ Pr lt = i⎡⎣ ⎤⎦ β0
k ,β1

k ,l1, ...,βt
k ,lt{ }

βt
k ,lt

βt
k ,lt
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case when N>2, with added restriction on !  to pin down some interesting 

equilibria.  

βt
k ,lt
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N=2 Two-bidder Model 

In 6% of the total auctions we observe, there are only 2 bidders participating. When 

N=2 and the two bidders are of different types , we have a unique subgame perfect 23

equilibrium where the auction survives beyond period 1 with some positive probability 

that satisfies 

!  

Similarly, to compute expected revenue, we construct probability density function that 

the auction ends at period t, ! , where the hazard rate

! . Let ! , the probability 

that the current leader at period t is a particular bidder type 

!  

!  

h(t,lt=e ) = 1− βt
i =Kt

e

h(t,lt=i ) = 1− βt
e =Kt

i

⎧

⎨
⎪⎪

⎩
⎪
⎪

f (t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

h! t( ) = Pr lt = e⎡⎣ ⎤⎦h t,lt = e( ) + Pr lt = i⎡⎣ ⎤⎦h t,lt = i( ) θ = Pr l1 = i⎡⎣ ⎤⎦

Pr lt = e⎡⎣ ⎤⎦ =

θ  β2n−1
e β2n

i         when  t  is even
n=1

t
2
−1

∏  
n=1

t
2

∏

1− θ( )  β2n−1
i β2n

e   when  t  is odd
n=1

t−1
2
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t−1
2

∏

⎧
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⎪
⎪
⎪
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i β2n
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2
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t
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⎨

⎪
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⎪
⎪
⎪
⎪

 When both bidders are of the same type, the case is simplified to a single-type bidder problem23
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Thus, we have 

!  

And seller’s expected revenue !  decreases in bidders’ risk attitudes ! , i.e. the 

more risk seeking the bidders are, the higher expected revenue will be. Seller makes 

profit when both bidders are risk-seeking with negative !  and ! , makes loss when 

both  bidders are risk-averse with positive  !  and ! , and may make profit or loss 

when one bidder is risk-seeking and the other bidder is risk-averse.  

Recall that our key theoretical prediction is that the final number of bids in a given 

auction is a random variable with distribution ! . If a given item type is repeatedly 

auctioned many times, we will have enough numbers of observation to estimate risk 

parameters. Maximum likelihood estimates of !  are estimated by choosing 

the parameter !  to maximise ! , where !  represents each observed auction 

of that item, !  is the ending number of bids in that auction. 

Note that when N=2,  the two bidders may be of the same or different types. In the 

first case, the problem is simplified to a single-type bidder case, where the probability 

density function of final bids ending at t for auctions with only one type of bidder

! , is rewritten as below for N=2 model for simplicity:  

!  

f (t) =  

θ  β2n−1
e β2n

i

n=1

t
2
−1

∏  1− βt
i( )
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α i αe
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α = α i ,αe( )
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∑ tj ;α) j
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k ∈ i,e{ }

f k(t;αk ) = βm
k 1− βt

k( )
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t−1

∏   ∀t ≥ 2
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And when the bidders are of different types, the probability density function of final 

bids ending at t and is rewritten as below, instead of the one above: 

!  

Thus when choosing !  to maximise ! , where !  

represents each observed auction of that item that !  represent each observation having 

two inexperienced bidders, !  represent each observation having two experienced 

bidders,!  represent each observation having one inexperienced bidder and one 

experienced bidder, !  is the ending number of bids in that auction, and 

 !  

, we maximise !  

f mixed(t;α i ,αe ) =  

 β2n−1
e β2n
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We look at 134 auction item types where each has 30 or more auctions with only 2 

bidders participating, and compute alpha MLE using two models - N=2 Single-Bidder-

Type model and N=2 Two-Bidder-Type model. Table 10 shows an example of one 

auction item type we have tested - $25 CVS Gift Card, where there are 257 repeatedly 

run auctions with only 2 bidders. We can see the two alpha estimates of each type of 

bidders in the Two-Bidder-Type model ! , which are 

significantly different from the alpha estimate ! . in the Single-Bidder-Type 

model as in previous chapter. When treating the single-type model as the null model 

and the two-type model as the alternative model, our likelihood test statistic is greater 

than the critical value thus we reject the null model being a better fit of the data, 

suggesting that the Two-Bidder-Type model explains the data better than the Single-

Bidder-Type model, and the two types of bidders have different risk attitudes.  24

Table 10. Example of alpha MLE in N=2 two-type model vs single-type model  

In our study of all 134 item types, we have likelihood test statistics exceeding the 

critical value, indicating that our two-type model matches our data better, and we 

always have the risk parameter of the experienced bidder group smaller than the risk 

α = α i ,αe( ) = 0.2095, 0.1160( )
α = 0.1390

MLE in different models Result

Using N=2 Two-Bidder-Type Model 
- Alpha MLE of Experienced Bidders

0.1160

Using N=2 Two-Bidder-Type Model 
- Alpha MLE of Inexperienced Bidders

0.2095

Using N=2 Single-Bidder-Type Model 
- Alpha MLE of Inexperienced Bidders

0.1390

Likelihood Ratio Test Result 
- to compare goodness of fit of either treating two type 
bidders with two alphas (alternative model), or treating 
everyone has one alpha (null model)

Test statistic 22.64 exceeds critical 
value 3.841 

Hypothesis rejected

  A likelihood ratio test (LR test) is a statistical test used for comparing the goodness of fit of two 24

statistical models, where the null model, the single-type model in our problem, is a special case of the 
alternative model the two-type model. The test is based on the likelihood ratio, which expresses how 
many times more likely the data are under one model than the other. This likelihood ratio, or 
equivalently its logarithm, is compared to a critical value to decide whether or not to reject the null 
model.
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parameter of the inexperienced bidder group, suggesting that bidders in different 

experience groups in our dataset are shown to have significantly different risk attitudes, 

with the more experienced group being more risk-seeking and bidding more aggressively. 

Our application also suggests that an auction with two experienced bidders 

participating generates the highest expected revenue; an auction with two inexperienced 

bidders participating generates the lowest expected revenue; and the expected revenue 

of an auction with one experienced bidder and one inexperienced bidder falls in 

between, which matches our observations. 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N > 2 Two-bidder-type Model with Restriction 

Since we do not have a unique solution of bidders’ bidding strategy profile !  in our 

two-bidder-type general model for N>2, we attempt to add a restriction to pin down a 

subset of solutions that we are more interested in. We recall the basic backward 

induction logic of our two-type equilibrium: we have that the hazard rate of a given 

period must depend on the leader’s type and !  increases in ! , 

and we have that the more risk-averse the current leader is, the higher the probability 

that the auctions ends, since the hazard rate must be such that the current leader is 

indifferent between bidding in the previous period (to become the next leader) and not 

bidding. 

Let us consider an equilibrium in which !  for all ! , that bidders’ 

bidding strategies depend only on the type of the current leader, but not his/her own 

type.  Thus, our equilibrium conditions are simplified to: 25

!   

which provide a unique solution 

 !    

The probability density function that the auction ends at period t  

!  

, where the hazard rate at period t 

βt
k ,lt

Kt
k = eα

kc − 1

eα
kc −eα

k (c+st−v)
αk

βt
e,lt = βt

i,lt = βt
lt lt ∈ e,i{ }

1− βt
e⎡

⎣
⎤
⎦
Ne−1 1− βt

e⎡
⎣

⎤
⎦
Ni =Kt

e

1− βt
i⎡

⎣
⎤
⎦
Ne 1− βt

i⎡
⎣

⎤
⎦
Ni −1 =Kt

i

⎧

⎨
⎪

⎩
⎪

βt
e = 1− Kt

e( )1/ N −1( )

βt
i = 1− Kt

i( )1/ N −1( )

⎧

⎨
⎪

⎩
⎪

f (t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

 I have also tried another restriction that bidders choose their bidding strategies depending on their own 25

types, not on the type of the current leader, restricting four betas to two. The approach was abandoned 
as the equilibrium solutions of hazard rates are not always between zero and one.
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 !  

where !  and !  depend on ! . Since it is too complicated 

to write and compute the unconditional probabilities of the current leader being a 

certain type at period t in bidding strategies, we used recurring relationships between 

conditional probabilities of the current leader being a certain type at period t given such 

a period is reached.  

Let the conditional probability of the current leader being experienced at period t given 

t is reached, is denoted by  

!   

and conditional probability of the current leader being inexperienced at period t given t   

!   

that when! , 

 !  

!  

Similarly, maximum likelihood estimates of !  are estimated by choosing the 

parameter !  to maximise ! . When N>2,  an auction may have all bidders 

of one type or mixture of two types, then we maximise the following:  26

  !  

where 

h! t( ) = Pr lt = e⎡⎣ ⎤⎦Kt
e + Pr lt = i⎡⎣ ⎤⎦Kt

i

Pr lt = e⎡⎣ ⎤⎦ Pr lt = i⎡⎣ ⎤⎦ β0 ,β1
l1, ...,βt

lt{ }

Πt
e = Pr lt = e | t  reached⎡⎣ ⎤⎦

Πt
i = Pr lt = i | t  reached⎡⎣ ⎤⎦ = 1− Πt

e

 0 < t ≤T

Πt
e =

Πt−1
e 1−Kt−1

e( ) Ne − 1N − 1
⎛

⎝⎜
⎞

⎠⎟
+Πt−1

i 1−Kt−1
i( ) Ne

N − 1
⎛

⎝⎜
⎞
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e( ) +Πt−1
i 1−Kt−1
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h! t( ) = Πt

e ⋅Kt
e + 1− Πt

e( ) ⋅Kti

α = α i ,αe( )
α ln f (

j
∑ tj ;α)

ln f (
j
∑ tj ;α) = ln f i(

ji
∑ t

ji
;α i )+ ln f e(

je
∑ t

je
;αe )+ ln f mixed(

jm
∑ t

jm
;α i ,αe )

 Although an auction with one type of bidders is a special case of an auction with two types of bidders, 26

here we used the probability density function of one-type risk model as in earlier chapters, due to 
computation problem when applying the two-type-bidder model onto one-type-bidder obsecrations. 
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!  

!  

!  

!  

Seller’s expected revenue !  decreases in bidders’ risk attitudes ! , i.e. the more 

risk seeking the bidders are, the higher expected revenue will be. Seller makes profit 

when bidders are risk-seeking with negative !  and ! , makes loss when bidders are 

risk-averse with positive !  and ! , and may make profit or loss when some bidders 

are risk-seeking and the others are risk-averse.  

We looked at 69 auction item types where each had 30 or more auctions with only 

inexperienced participants; 30 or more auctions with only experienced participants; and 

30 or more auctions with both inexperienced and experienced participants. We 

computed alpha MLE using two models – Single-Bidder-Type model as in Chapter 4 

and N>2 restricted the Two-Bidder-Type model as above. Table 11 shows examples of 

five auction item types we have tested. We can see !  and ! , the two alpha estimates 

of each type of bidder in the restricted Two-Bidder-Type model, which are significantly 

different from the alpha estimate in the Single-Bidder-Type model. For instance, in the 

Subway $10 Gift Card auctions, we can see the two alpha estimates of each type of 

bidder in the Two-Bidder-Type model ! , which are 

significantly different from the alpha estimate in the Single-Bidder-Type model 

! .  

Treating the single-type model as the null model and restricted two-type model as the 

alternative model, our likelihood test statistics are all greater than the critical value 

f i(t;α i ) =Kt
i 1−eα

i (c+s(m−1)−v)

eα
ic −eα

i (c+s(m−1)−v)

⎛

⎝
⎜
⎜
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⎠
⎟
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∏

f e(t;αe ) =Kt
e 1−eα
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⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟m=1

t

∏

f mixed(t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

h! t( ) = Πt
e ⋅Kt

e + 1− Πt
e( ) ⋅Kti

E[R ev ] αk

α i αe

α i αe

α i αe

α = α i ,αe( ) = 0.0869, -0.1631( )

α = −0.1306
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where we reject the null model being a better fit of the data, suggesting that the 

restricted Two-Bidder-Type model explains the data better than the Single-Bidder-Type 

model, and the two types of bidders have different risk attitudes. 

In our study of all 69 item types, we have likelihood test statistics exceeding the critical 

value, indicating that our restricted two-type model matches our data better, and we 

always have risk parameters of the experienced bidder group smaller than the risk 

parameter of the inexperienced bidder group, suggesting that bidders in different 

experience groups in our dataset are shown to have significantly different risk attitudes, 

with the more experienced group being more risk-seeking and bidding more aggressively.


Expected revenue ! , and ! , where the 

! . When there are only experienced participants in 

an auction, !  that ! ; when there are only inexperienced 

participants in an auction, !  that ! ; when there are both 

experienced participants and inexperienced participants in an auction, !  

and ! , that ! , as 

experienced bidders are found to be more risk seeking. Thus ! , 

indicating !  when ! .  

Thus our model suggests that an auction with experienced participants only generates 

the highest expected revenue; an auction with inexperienced participants only, 

generating the lowest expected revenue; and the expected revenue of an auction with 

both experienced and inexperienced participants falling in between. This does not 

match our observations if we do not remove the effects of the number of bidders (as in 

examples shown in Table 11, e.g. average profit margin in straightly mixed auctions of 

Mobil $50 Gift Card auctions is 78.62% greater than -30.62%, average profit margin in 

auctions with experienced bidders only), and match our observations well if we study 

subsets of observations with the same number of bidders (Table 12 shows an example of 

E[R ev ] = (c + s)t ⋅ f(t)
t=1

T+1

∑ f (t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

h! t( ) = Pr lt = e⎡⎣ ⎤⎦Kt
e + Pr lt = i⎡⎣ ⎤⎦Kt

i

Pr lt = e⎡⎣ ⎤⎦ = 1 he t( ) =Kte

Pr lt = i⎡⎣ ⎤⎦ = 1 hi t( ) =Kti

Pr lt = e⎡⎣ ⎤⎦ ∈ 0,1( )
Pr lt = i⎡⎣ ⎤⎦ ∈ 0,1( ) hmixed t( ) = Pr lt = e⎡⎣ ⎤⎦Kt

e + Pr lt = i⎡⎣ ⎤⎦Kt
i ∈ Kt

e,Kt
i( )

he t( ) < hmixed t( ) < hi t( )
Ee R ev⎡⎣ ⎤⎦ < Emixed R ev⎡⎣ ⎤⎦ < Ei R ev⎡⎣ ⎤⎦ αe < α i
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separating observations of Best Buy $50 Gift Card into subsets by number of bidders. 

For any subsets with the same number of bidders, we observed that the average profit 

margin of auctions with both experienced and inexperienced participants falls between 

an average profit margin of auctions with inexperienced participants only and an 

average profit margin of auctions with experienced participants only. For instance, an 

average profit margin of auctions with five straightly mixed experienced and 

inexperienced bidders is -41.87%, which is between -46.24% and -20.32%, and average 

profit margin of auctions with five inexperienced bidders and an average profit margin 

of auctions with five experienced bidders). We recall that the number of bidders in an 

auction does not affect the seller’s expected revenue in our one-type-bidder model, 

which does not match our empirical findings of an average profit margin of one-type-

bidder observations increasing in the number of bidders. This matter will be discussed 

further in a later chapter. 

Since ! with ! , and !  

increases in !  when N is fixed, !  increases in !  with fixed N. That is, 

for a fixed number of bidders N, the expected revenue of an auction with both 

experienced participants and inexperienced participants increases in ! , number of 

experienced participants and decreases in ! , number of inexperienced participants, 

which match the majority of our observations, e.g. finding about Shell $50 Gift Card as 

shown in earlier chapter, except for some auctions with only one experienced participant 

and two or more inexperienced participants. 

Note that !  also increases in N when ratio !  is fixed, and that !  

increases in !  with fixed ! . That is, for a fixed ratio of experienced bidders in 

all bidders ! in an auction with both experienced participants and inexperienced 

participants, expected revenue increases in ! , which match our observations. As shown 

in Table 12, average ratios of !  are all between 55% and 60% in subsets of Best 

Buy $50 Gift Card auctions with N=3, 4, …, 8, and the average profit margins of the 

subsets increase as N increases from 3 to 8.  

f mixed(t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏ h! t( ) = Πt
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e
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Table 11. Example of alpha MLE in N ≥ 2 mixed-type model vs single-type model


Auction Item Golfsmith 
$25

Omaha 
Steak $25

Toys R Us 
$20

Mobil  
$50

Subway $10

Total Auction Count 622 684 1,818 855 1,658

Average Seller Profit Margin -41.59% -20.08% 6.01% 55.50% 81.43%

Average Number of Bidders 4.51 4.30 4.75 7.82 5.33

Treat All Bidder Identical

Alpha Estimate 0.0453 0.0165 -0.0099 -0.0179 -0.1306

Auctions with Inexperienced 
Participants Only

Average Seller Profit Margin -89.70% -85.05% -72.27% -44.65% -56.34%

Average Number of Bidders 1.73 2.00 2.52 5.83 2.64

Alpha_i Estimate 0.3448 0.2463 0.1644 0.0261 0.1731

Auctions with Experienced 
Participants Only

Average Seller Profit Margin -51.27% -33.08% -19.48% -30.62% 29.07%

Average Number of Bidders 3.49 3.92 4.12 4.92 4.61

Alpha_e Estimate 0.0638 0.0324 0.0189 0.0153 -0.0666

Auctions with Straightly Mixed 
Types of Participants

Average Seller PM -9.88% 6.82% 43.56% 78.62% 153.97%

Average Number of Bidders 7.27 5.18 5.76 8.57 6.43

Alpha_i Estimate 0.1773 0.1207 0.0575 -0.0176 0.0688

Alpha_e Estimate -0.0797 -0.0968 -0.1026 -0.0259 -0.3702

All Auctions - General Two-
Type Model

Alpha_i Estimate 0.2244 0.1597 0.0967 0.0074 0.0869

Alpha_e Estimate 0.0104 0.0205 -0.0246 -0.0069 -0.1631

Likelihood Ratio Test Result Reject H_0 Reject H_0 Reject H_0 Reject H_0 Reject H_0
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Table 12. Example of alpha MLE in subsets with different number of bidders 

 

Best Buy $50 N=3 N=4 N=5 N=6 N=7 N=8

Total Auction Count 681 847 1,013 958 933 835

Average Seller PM -64.89% -50.48% -39.18% -23.96% -7.28% 15.99%

72.69% 66.79% 64.26% 61.60% 58.69% 55.55%

Treat All Bidder Identical

Alpha Estimate 0.0524 0.0320 0.0215 0.0111 0.0027 -0.0066

Auctions with Inexperienced 
Participants Only

Average Seller PM -70.28% -57.87% -46.24% -42.72% -40.13% 0.32%

Alpha_i Estimate 0.0637 0.0411 0.0277 0.0244 0.0223 -0.0007

Auctions with Experienced 
Participants Only

Average Seller PM -61.79% -40.12% -20.32% -16.31% 7.67% 92.97%

Alpha_e Estimate 0.0470 0.0223 0.0091 0.0069 -0.0036 -0.0256

Auctions with Straightly 
Mixed Two Types of 
Participants

Average Seller PM -66.84% -53.98% -41.87% -24.33% -7.43% 13.96%

57.45% 58.04% 60.02% 59.14% 57.62% 54.90%

Alpha_i Estimate 0.0134 0.0963 0.0700 0.0391 0.0286 0.0088

Alpha_e Estimate 0.1203 -0.0125 -0.0102 -0.0092 -0.0189 -0.0186

All Auctions - General Two-
Type Model

Alpha_i Estimate 0.0678 0.0462 0.0327 0.0251 0.0215

Alpha_e Estimate 0.0489 0.0231 0.0097 0.0050 -0.0055 -0.0238

Likelihood Ratio Test Result Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Average !Ne /N

Average !Ne /N
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Chapter 7. Bidders with Three types 

Another interesting fact found in the data is that a tiny proportion of bidders (576 

counted) placed 11,920,373 bids at the time they had 1,000 or more prior auction 

experiences, and that 0.2% of total bidders placed 20% of the total bids. Their risk 

attitudes (or strategy profiles) are more difficult to be analysed in a straightforward 

fashion, as it seems they play differently in different types of auctions. In super-

experienced bidders only auctions, they often tend to play conservatively – acting more 

risk-averse compared to Ordinary-Experienced Bidders (20-1,000 p.a.) when they play 

against rivals of the same type, especially when the number of bidders playing in an 

auction is small. Auctions with mixed types of bidders play more aggressively. 

Now we extend our model to fit auctions with three types of participants: 

- inexperienced bidders who have participated less than 20 prior auctions,  

- ordinary-experienced bidders who have participated more than 20 and less than 1000 

prior auctions; and 

- super-experienced bidders who have participated 1000 or more prior auctions.  

Let Ni be the number of inexperienced bidders, Ne be the number of ordinary-

experienced bidders in an auction, Ns be the number of super-experienced bidders in an 

auction, so that we have N = Ni + Ne + Ns. We assume all bidders have a Constant 

Absolute Risk Aversion (CARA) utility function of ! , where !  is the 

Absolute Risk Aversion, and bidders of the same type have identical alphas. Let 

!  present a participant’s own bidder type, that we have ! . 

Similarly, let us add a restriction and consider an equilibrium in which 

!  for all ! , that bidders’ bidding strategies depend on 

the type of the current leader, but not his/her own type. Thus, our equilibrium 

conditions are now: 

u(W ) = 1−e
−αW

α
α

k ∈ i,e,s{ } β H
t( ) = β

t

k ,l
t

βt
i,lt = βt

e,lt = βt
s,lt = βt

lt lt ∈ i,e,s{ }
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!   

which provide a unique solution 

 !   

where !  for all ! . 

We compute expected revenue  

!  

by building the probability density function that an auction ends at period t  

!  

where the hazard rate at period t  

!   

where  ! , !  and !  depend on ! . 

Similarly, it is too complicated to write and compute the unconditional probabilities of 

the current leader being a certain type at period t in bidding strategies, so we use 

recurring relationships between conditional probabilities of the current leader being a 

certain type at period t given such period is reached instead. 

h t,lt = i( ) = 1− βt
i⎡

⎣
⎤
⎦
Ne 1− βt

i⎡
⎣

⎤
⎦
Ni −1 1− βt

i⎡
⎣

⎤
⎦
Ns =Kt

i

h t,lt = e( ) = 1− βt
e⎡

⎣
⎤
⎦
Ne−1 1− βt

e⎡
⎣

⎤
⎦
Ni 1− βt

e⎡
⎣

⎤
⎦
Ns =Kt

e

h t,lt = s( ) = 1− βt
s⎡

⎣
⎤
⎦
Ne 1− βt

s⎡
⎣

⎤
⎦
Ni 1− βt

s⎡
⎣

⎤
⎦
Ns−1 =Kt

s

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

βt
i = 1− Kt

i( )1/ N −1( )

βt
e = 1− Kt

e( )1/ N −1( )

βt
s = 1− Kt

s( )1/ N −1( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Kt
lt = eα

ltc − 1

eα
ltc −eα

lt (c+st−v)
lt ∈ i,e,s{ }

E[R ev ] = (c + s)t ⋅ f(t)
t=1

T+1

∑

f (t) =   h!(t) 1− h!(m − 1)⎡
⎣

⎤
⎦

m=1

t

∏

h! t( ) = Pr lt = i⎡⎣ ⎤⎦Kt
i + Pr lt = e⎡⎣ ⎤⎦Kt

e + Pr lt = s⎡⎣ ⎤⎦Kt
s

Pr lt = i⎡⎣ ⎤⎦ Pr lt = e⎡⎣ ⎤⎦ Pr lt = s⎡⎣ ⎤⎦ β0 ,β1
l1, ...,βt

lt{ }

!  of !94 128



Let the conditional probabilities of the current leader being each type at period t given 

t is reached 

!   

!  

!   

so that we have  

!  

!   

!   

We can show that expected revenue increases in all three alphas. A seller’s expected 

revenue !  decreases in bidders’ risk attitudes ! , i.e. the more risk-seeking the 

bidders are, the higher the expected revenue will be. A seller makes a profit when 

bidders are risk-seeking with negative ! , !  and ! , and makes a loss when bidders 

are risk-averse with positive ! , !  and ! , and may make a profit or a loss when 

some bidders are risk-seeking and the others are risk-averse. Assuming 

! , the expected revenue also increases in !  for fixed N. 

Similarly, maximum likelihood estimates of !  for an auction with any 

combination of three types of bidders, are estimated by choosing the parameter !  to 

maximise ! . When N>2, an auction may have all bidders of one type, or a 
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mixture of two or three types, i.e. seven possible scenarios that we maximise  27

!  

I am unable to solve the above maximisation due to computational difficulty, as we are 

unable to apply a general three-type-bidder model onto all observations, while we can 

compute MLE of the three alphas within each of the seven subsets, each representing 

one of the seven scenarios, e.g. auctions with three types of straight-mixed participants.  

Figure 20. Distribution of observations of seven scenarios 

ln f (
j
∑ tj ;α) = ln f i(
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∑ t

ji
;α i )+ ln f e(

je
∑ t

je
;αe )+ ln f s(

js
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;αs )

                  + ln f mixed  i&e(
jm
∑ t

jm
;α i ,αe )+ ln f mixed  i&s(

jm
∑ t

jm
;α i ,αs )+ ln f mixed  e&s(

jm
∑ t

jm
;αe,αs )

                  + ln f mixed 3types(
jm
∑ t

jm
;α i ,αe,αs )

 Although an auction with one or two types of bidders are special cases in an auction with three types 27

of bidders, we have computation difficulty when applying the three-type-bidder model onto obsecrations 
with one-type bidders only, or a mixture of two types. 
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Super-experienced bidders only (1,000+ p.a.)
Straightly Mixed of Inexperienced & Ordinary-experienced bidders (M2T-I&OE)
Straightly Mixed of Inexperienced & Super-experienced bidders (M2T-I&SE)
Straightly Mixed of Ordinary-experienced & Super-experienced bidders (M2T-OE&SE)
Straightly Mixed 3 out 3 Types (M3T)



Figure 20 shows the observation distribution of the seven scenarios so the majority of 

the observations are of two scenarios: 39% of the total observed auctions have three 

types of straight-mixed participants (M3T), and 30% of the total observed auctions 

have straight-mixed, inexperienced and ordinary-experienced participants only (M2T-

I&OE). 

Table 13 shows a finding of three item types, each with seven subsets. For instance, by 

analysing subsets of Omaha Steak $25 Gift Card auctions, we observe: 

–  Auctions with only inexperienced bidders (1T-I) generate the largest average loss 

-85.05% for the seller, followed by -64.41% of auctions with only ordinary-

experienced bidders (1T-OE), and -57.69% of auctions with only super-

experienced bidders (1T-SE), with alpha estimators !  as 0.0783 < 

0.1000 < 0.2463;  

–  Observations with only two types of participant (M2T) auctions with super-

experienced and inexperienced bidders (M2T-I&SE) generate the highest average 

loss of -51.91%, followed by -39.47% in auctions with ordinary-experienced and 

inexperienced bidders (M2T-I&OE), and -13.54% in auctions with super-

experienced and ordinary-experienced bidders (M2T-OE&SE), with an alpha 

estimator  higher than and , and ;  28

–  Auctions with all three types of participants (M3T) generate the highest average 

profit margin, and we have alpha estimators !  as -0.1673 < -0.1027 < 

0.0882, showing that ordinary-experienced bidders are the most risk-seeking, or 

least risk-averse when all three types of bidders are playing against each other.  

–  All types of bidders are bidding more aggressively when there are rivals of other 

types present. 

αs < αe < α i

α i αe αs αe < αs

αe < αs < α i

 One intuitive explanation is that super-experienced bidders are likely to be able to tell bidder types of 28

their rivals from observing their usernames and play accordingly, such that they play more aggressively, 
as in the Game of Chicken when facing rivals of their own types, and slightly less aggressively playing 
against ordinary-experienced bidders only, and much less aggressively playing against inexperienced 
bidders. 
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–  Our Likelihood Ratio tests suggest that all three types of bidders have different 

risk parameters. 

Table 13. Example of alpha MLE in N>2 model with three types of bidders


Item Name Golfsmith $25 Omaha Steak 
$25

Subway 
$10

Total Auction Count 622 684 1,658

Average Number of Bidders 7.27 5.18 6.43

Average Seller Profit Margin -41.59% -20.08% 81.43%

Auctions with Inexperienced Participants Only

Average Seller Profit Margin -89.70% -85.05% -56.34%

Average Number of Bidders 1.73 2.00 2.64

Alpha_i Estimate 0.3448 0.2463 0.1731

Auctions with Ordinary Experienced Participants 
Only

Average Seller Profit Margin -71.09% -64.41% -41.99%

Average Number of Bidders 2.08 2.21 2.10

Alpha_oe Estimate 0.1275 0.1000 0.1024

Auctions with Super Experienced Participants Only

Average Seller Profit Margin -59.02% -57.69% -19.71%

Average Number of Bidders 3.23 4.10 4.02

Alpha_se Estimate 0.0830 0.0793 0.0297

Auctions with Inexperienced and Ordinary 
Experienced bidders only 

Average Seller Profit Margin -48.28% -39.47% 74.22%

Average Number of Bidders 3.50 3.77 4.14

Mean (Ni) 1.50 1.95 2.31

Mean (Ne) 2.00 1.81 1.83

Alpha_i Estimate 0.1648 0.0958 -0.0846

Alpha_oe Estimate -0.0036 -0.0054 -0.1496

Likelihood Ratio Test Result Reject H_0 Reject H_0 Reject H_0

Item Name
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Note that the highest average number of bidders may contribute to the highest average 

profit margin of M3T auctions also. Assuming ordinary-experienced bidders are more 

Auctions with Inexperienced and Super Experienced 
bidders only 

Average Seller Profit Margin -54.04% -51.91% 52.73%

Average Number of Bidders 4.00 3.73 5.05

Mean (Ni) 1.18 1.27 1.42

Mean (Ns) 2.82 2.45 3.63

Alpha_i Estimate 0.2807 0.2246 0.1022

Alpha_se Estimate 0.0077 -0.0043 -0.1792

Likelihood Ratio Test Result Reject H_0 Reject H_0 Reject H_0

Auctions with Ordinary Experienced and Super 
Experienced bidders only

Average Seller Profit Margin -39.27% -13.54% 62.42%

Average Number of Bidders 4.26 4.50 5.12

Mean (Ne) 1.90 1.85 1.66

Mean (Ns) 2.36 2.65 3.45

Alpha_oe Estimate 0.0426 -0.0137 -0.1307

Alpha_se Estimate 0.0501 0.0343 -0.0572

Likelihood Ratio Test Result Reject H_0 Reject H_0 Reject H_0

Auctions with Three Type of bidders

Average Seller Profit Margin 29.14% 57.85% 190.72%

Average Number of Bidders 10.91 6.68 7.10

Mean (Ni) 1.54 1.42 1.67

Mean (Ne) 6.43 2.51 1.98

Mean (Ns) 2.94 2.75 3.45

Alpha_i Estimate 0.0778 0.0882 -0.1875

Alpha_oe Estimate -0.0841 -0.1673 -0.2318

Alpha_se Estimate -0.0507 -0.1027 -0.2157

Likelihood Ratio Test Result Reject H_0 Reject H_0 Reject H_0

Golfsmith $25 Omaha Steak 
$25

Subway 
$10

Item Name
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aggressive than super-experienced bidders when playing in auctions existing rivals of 

different types of bidders, as suggested by our findings in alpha MLE, then for auctions 

with same number of bidders, the expected revenue of M3T auctions should be  

 
- lower than expected revenue of M2T-I&OE auctions when  

!  

- and higher than expected revenue of M2T-I&SE auctions when  

!  

Table 14 shows an example of comparing three subsets of $50 Visa Gift Cards in three 

scenarios (M2T-I&OE, M2T-I&SE, M3T), with a fixed number of bidders of six in each 

of the subsets. In each auction of the M2T-I&OE subset, the number of ordinary-

experienced bidders is 3; in each auction of the M2T-I&SE subset, the number of super-

experienced bidders is 3; and in each auction of the M3T subset, the sum number of 

ordinary-experienced and super-experienced bidders is also 3.  

The average seller’s profit margin of the M2T-I&OE auctions is highest at 72.02%, 

followed by 65.49% of the average seller’s profit margin of the M3T auctions, and 

59.09% of the average seller’s profit margin of the M2T-I&SE auctions. In the findings 

of the M3T auctions, we have alpha estimators !  as -0.0823 < -0.0507 < 

-0.0149, which also match our previous findings. 

Ne,m2t−i&oe /Nm2t−i&oe = Ne,m3t +Ns,m3t( )/Nm3t

Ns,m2t−i&se /Nm2t−i&se = Ne,m3t +Ns,m3t( )/Nm3t

αe < αs < α i
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Table 14. Example of auctions with two of three types of bidders VS all three types of bidders 

Table 15 shows an example of the Walmart $100 Gift Card M3T auctions by studying 

auctions with a fixed number of bidders N, and a fixed sum of the number of ordinary-

experienced and super-experienced bidders Ne+Ns. As we can see, the average seller’s 

profit margin increases in N; and for fixed Ne+Ns, the average seller’s profit margin 

increases in Ne, which matches our model predication in assuming ordinary-experienced 

bidders are more aggressive in auctions with rivals of other types as found previously. 

Visa $50 Gift Card, N=6 M2T- I &OE 
Ne=3

M2T- I &SE 
Ns=3

M3T 
Ne + Ns = 3

Auctions with Inexperienced and Ordinary 
Experienced bidders only 

Average Seller Profit Margin 72.02%

Not Applicable Not ApplicableAlpha_i Estimate -0.0207

Alpha_oe Estimate -0.0941

Auctions with Inexperienced and Super 
Experienced bidders only 

Average Seller Profit Margin

Not Applicable

59.09%

Not ApplicableAlpha_i Estimate -0.0237

Alpha_se Estimate -0.0651

Auctions with Three Type of bidders

Average Seller Profit Margin

Not Applicable Not Applicable

65.49%

Mean (Ne) 1.7396

Mean (Ns) 1.2604

Alpha_i Estimate -0.0149

Alpha_oe Estimate -0.0823

Alpha_se Estimate -0.0507
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Table 15. Example of M3T auctions with different bidder distribution 

N Ne+Ns Ne Ns
Average Seller’s Profit Margin in Auctions with 

Mixed Types of Bidders

4 3 1.72 1.28 -43.51%

1 2 -44.72%

2 1 -43.04%

5 3 1.68 1.32 -36.84%

1 2 -45.00%

2 1 -33.05%

4 2.44 1.56 -34.94%

1 3 -54.63%

2 2 -42.44%

3 1 -20.24%

6 3 1.77 1.23 -21.06%

1 2 -22.03%

2 1 -20.77%

4 2.57 1.43 -20.23%

1 3 -23.29%

2 2 -21.17%

3 1 -16.38%

5 3.27 1.73 -20.01%

1 4 -28.72%

2 3 -20.37%

3 2 -18.49%

4 1 -12.33%

7 3 1.86 1.14 -19.47%

1 2 -21.80%

2 1 -17.28%

4 2.61 1.39 -0.48%

1 3 -8.73%

2 2 -2.68%

3 1 3.89%

5 3.22 1.78 2.37%

1 4 -3.15%

2 3 -0.63%

3 2 3.56%

4 1 5.80%

6 3.88 2.13 14.39%

1 5 2.63%

2 4 5.13%

3 3 9.80%

4 2 5.25%

5 1 18.22%

!  of !102 128



I studied all 15 item types that have 100 or more observations in each of the subsets, 

and the findings are similar to the above examples. As expected, revenue increases in 

the alpha one-type-bidder model; expected revenue increases in both alphas in the 

straightly mixed, two-type-bidder model; and expected revenue increases in all three 

alphas in the straightly mixed, two-type-bidder model. The empirical findings match our 

model that: 

1. Alpha MLE:  
- When there are only one type of bidders in an auction (1T): 
Alpha MLE of inexperienced bidders is highest, indicating they are the most risk-

averse, followed by ordinary-experienced bidders, and super-experienced bidders, i.e. 

! . 
 
- When there are two of the three types of bidders in an auction (M2T): 

In M2T-I&OE auctions, alpha MLE ! . 

In M2T-I&SE auctions, alpha MLE ! .  

In M2T-OE&SE auctions, alpha MLE ! .  

And alpha MLE ! . 
 
- When there are three types of bidders in an auction (M3T):  

In M3T Auctions, alpha MLE ! , indicating that ordinary-

experienced bidders are the most risk-seeking or least risk-averse when all three 

types of bidders are playing against each other, followed by super-experienced 

bidders. 

2. Expected Seller’s Profit Margin: 
- When there is only one type of bidders in an auction (1T): 

!  

- When there are two of the three types of bidders in an auction (M2T):  

For ! ,  

when ! , ! ; 

αs,1t−s < αe,1t−e < α i,1t−i

αe,m2t−i&oe < α i,m2t−i&oe

αs,m2t−i&se < α i,m2t−i&se

αe,m2t−oe&se < αs,m2t−oe&se

αs,m2t−i&se < αe,m2t−i&oe

αe,m3t < αs,m3t < α i,m3t

E[R]1t−i < E[R]1t−e < E[R]1t−s

N
m2t−i&oe

=N
m2t−i&se

=N
m2t−oe&se

Ne,m2t−i&oe

Nm2t−i&oe
= N

s,m2t−i&se

Nm2t−i&se
E[R]

m2t−i&se
< E[R]

m2t−i&oe
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when ! , ! ; 

when ! , ! . 

 
- When there are three types of bidders in an auction (M3T): 

If ! and !

then !  

Ns,m2t−i&se

Nm2t−i&se
= N

s,m2t−oe&se

Nm2t−oe&se
E[R]

m2t−i&se
< E[R]

m2t−oe&se

Ne,m2t−i&oe

Nm2t−i&oe
= N

s,m2t−oe&se

Nm2t−oe&se
E[R]

m2t−i&oe
< E[R]

m2t−oe&se

N
m2t−i&oe

=N
m2t−i&se

=N
m3t Ns,m2t−i&se

Nm2t−i&se
= N

e,m2t−i&oe

Nm2t−i&oe
= N

e,m3t +Ns,m3t

Nm3t

E[R]
m2t−i&se

< E[R]
m3t

< E[R]
m2t−i&oe
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The Observed Number of Bidders May Not Equal to N  

Another problem we consider is that the number of bidders in our observations are 

proxy for N, which may not always equal to the real N. Let us say auctions with at least 

two bids are informative, and if an auction ends with one bidder, we will not be able to 

know whether real N=1 or N>1. We use conditional probability to solve this problem.  

For simplicity, we look at auctions with N=2 that we are able to solve for f(t) without 

adding restriction on betas. Since all conditional probabilities sum up to 1, probability 

of an auction ends with two or more bids equal to the probability that the auction does 

not end earlier, i.e. ! , so that for auctions with only one type of bidder, 

we have the conditional probability of an auction ending with two or more bidders 

!  

Similarly, for auctions with two types of bidders, the conditional probability of an 

auction ending with two or more bidders 

!  

Thus, taking into consideration of conditional probability, we now compute Maximum 

likelihood estimates of !  by choosing the parameter !  to maximise ! . 

Table 16 shows examples of Alpha MLE results using unconditional and conditional 

probability density functions. In the analysis of auctions with only one type of bidder, 

alpha estimators using conditional probability are slightly higher; in analysis of auctions 

with two types of bidders, alpha estimators of all bidders groups using conditional 

probability are all slightly higher; both findings indicate that the conditional probability 

model recognises bidders in a less risk-seeking or more risk-averse way. 

1− 1− β1( ) = β1

f c(t) =  1
β1
f (t) = 1

β1
βj 1− βt( )

j=1

t−1

∏   ∀ t ≥ 2

f c(t,lt ) =  1
1
2

β1
km + β1

k j⎛
⎝⎜

⎞
⎠⎟
f (t,lt )  ∀ t ≥ 2,  m ≠ j,k = i,oe,se{ }  

α α ln f c(
j
∑ tj ;α)

!  of !105 128



Table 16. Examples of alpha MLE in N=2 model with conditional probability 

Auction Item Shell $50 CVS $25 Wal-Mart & Sams Club 
$25

Total Auction Count 282 257 221

Average Seller Profit 
Margin

-75.25% -69.42% -71.86%

Treat All Bidder 
Identical

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Alpha Estimate 0.0840 0.0901 0.1390 0.1577 0.1527 0.1748

Auctions with 
Inexperienced 
Participants Only

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Alpha_i Estimate 0.2638 0.3292 0.2826 0.3594 0.3537 0.4830

Average Seller Profit 
Margin

-91.10% -82.86% -85.63%

Auctions with Ordinary 
Experienced 
Participants Only

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Alpha_oe Estimate 0.0497 0.0524 0.0771 0.0855 0.0856 0.0951

Average Seller Profit 
Margin

-61.70% -53.37% -56.50%

Auctions with Super 
Experienced 
Participants Only

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Alpha_se Estimate 0.1468 0.1651 0.1356 0.1536 0.1176 0.1321

Average Seller Profit 
Margin

-85.31% -68.59% -65.46%

Auctions with 
Inexperienced & all 
Experienced 
Participants

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Average Seller PM -75.25% -69.42% -71.86%

Auction Item
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Another source of measurement error for the real number of bidders is that auctions 

have real N>2 but only two bidders actively bid and auctions are considered as having 

real N=2. I attempted to estimate N together with α by MLE, but the results do not 

fall in reasonable ranges, indicating some possible computation limitation in this 

approach. 

Alpha_i Estimate 0.1217 0.1426 0.2095 0.2529 0.2362 0.2930

Alpha_e Estimate 0.0808 0.0859 0.1160 0.1295 0.1325 0.1491

Likelihood Ratio Test 
Statistics

16.3040 20.01 22.6378 29.2844 27.6076 35.4214

Likelihood Ratio Test 
Result

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Auctions with 
Inexperienced & 
Ordinary Experienced 
Participants Only 
(Excluding Super 
Experienced 
Participants)

Unconditiona
l Conditional Unconditional Conditional Unconditional Conditional

Average Seller PM -72.94% -69.55% -74.11%

Alpha_i Estimate 0.1380 0.1625 0.2120 0.2552 0.2973 0.3829

Alpha_oe Estimate 0.0690 0.0728 0.0995 0.1104 0.1072 0.1199

Likelihood Ratio Test 
Statistics

23.0022 28.21 22.3774 29.0552 42.3008 54.8306

Likelihood Ratio Test 
Result

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Reject 
H_0

Shell $50 CVS $25 Wal-Mart & Sams Club 
$25

Auction Item
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Discussion 

Through applying our two-type-bidder models and three-type-bidder model on 

observation, we conclude that bidders in different experience groups have different risk 

attitudes, which affect their bidding strategies and seller’s profitability. When separating 

bidders into two types by prior auction experience of 20, we are able to explain the 

increasing trend in a seller’s average profit margin when the number of experienced 

bidders increases at a given fixed number of bidders in an auction. When separating 

bidders into three types by prior auction experience of 20 and 1,000, we notice that the 

super-experienced bidders compete less aggressively compared to ordinary-experienced 

bidders when competing in auctions with existence of rivals of different types. This 

matches the trend that the average seller’s profit margin grows in bidders’ average prior 

auctions from the start and gradually drops as the average prior auction becomes very 

large, indicating there are more super-experienced bidders in an auction when allowing 

multiple bidder types in models, even if some bidders, e.g. the inexperienced group, are 

risk-averse, the seller may obtain a profit if the other bidders are risk-seeking. 

One limitation of our models based on the real number of bidders is an explanation of 

the influence of the observed number of bidders on a seller’s profitability. The 

differences between the real and observed number of bidders have not been fully 

captured in our models. For instance, bidders who do not actively bid are not observed 

or counted in the number of bidders, and how to estimate the number of these 

unobserved bidders is to be investigated in future research. 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Appendix 1. Data Collection & Empirical Facts 

Data were collected by Ruby script and stored in the database with the following fields 

Table 1. Database structure 

Table 2. Key facts of data 

Field Description Example

Auction ID A number ID assigned by the auctioneer 
in ascending order

395881

Auction Item The item being auctioned Papa John's $10 Gift Card

Auction Ending Time Date and time that the auction ended at 9/06/2011 4:58 PM

RRP Recommended Retail Price, provided by 
the auctioneer

$10.00

Winning Price The price that the auction ended at $0.13

Winner Username of the winning bidder loviebug

Other Bidders Username of the all bidders that placed 
one or more bids in the auction

Bidding4winning, 
MaylwinPlease, house9er

Number of Bids Placed by 
Each Bidder

Total number of bids placed by each 
bidder is observed, with no information 
on who placed which bid, except the 
winning bid

6 bids placed by loviebug, 5 
bids placed by 

Bidding4winning, 1 bid placed 
by MaylwinPlease, 1 bid placed 

by house9er

Total Number of Auctions 572,400

Total Number of Bidders 253,464

Total Bids Placed 60,795,092

Total Unique Items 1,743

Total Seller Revenue 50,635,419

Seller Profit Margin by RRP 53.38%
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Table 3. Top 10 Most Repeatedly Listed Item Types of Each Category 

Item Type RRP Total 
Auctions 
Count

Average 
Profit Margin

Total Profit in 
Dollars

Category - Bidpack (123 types) 287,372 98.64% $13,277,806.65

50 Bids Bid on any Auction $37.50 30,619 113.68% $1,305,287.97

10 Bids Bid on any Auction $7.50 24,297 56.15% $102,320.74

25 Bids Bid on any Auction $18.75 23,495 95.53% $420,839.50

75 Bids Bid on any Auction $56.25 23,402 103.86% $1,367,174.09

15 Bids Bid on any Auction $11.25 23,286 40.87% $107,066.12

30 Bids Bid on any Auction $22.50 22,887 77.76% $400,430.95

20 Bids Bid on any Auction $15.00 19,317 47.65% $138,068.26

100 Bids Bid on any Auction $75.00 18,719 118.71% $1,666,599.37

20 Bids Quickfire Auction $15.00 9,313 104.70% $146,260.67

15 Bids Quickfire Auction $11.25 8,137 81.22% $74,349.80

Item Type RRP Total 
Auctions 
Count

Average 
Profit Margin

Total Profit in 
Dollars

Category - Gift Card (172 types) 243,619 36.0908% $13,277,806.65

Shell $50 Gift Card $50.00 9,100 45.52% $207,116.00

Best Buy $50 Gift Card $50.00 9,084 22.50% $102,195.00

Wal-Mart & Sams Club $100 Gift 
Card

$100.00 8,481 66.79% $566,445.99

Target $50 Gift Card $50.00 7,719 50.57% $195,174.92

The Home Depot $50 Gift Card $50.00 7,229 27.29% $98,639.71

$50 Gift Card Red Lobster/Olive 
Garden

$50.00 7,145 36.27% $129,574.58

Kohl's $50 Gift Card $50.00 6,918 15.92% $55,067.28

Visa $50 Gift Card $50.00 6,671 104.74% $349,360.27

Macy's $50 Gift Card $50.00 6,420 5.26% $16,884.60

Bed Bath & Beyond $50  Gift Card $50.00 6,160 7.20% $22,176.00
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Table 3. Top 10 Most Repeatedly Listed Item Types of Each Category - continued 

Item Type RRP Total 
Auctions 
Count

Average 
Profit Margin

Total Profit in 
Dollars

Category - Small Goods Under $100 
(654 types)

23,660 -38.2136% -$564,097.90

Keurig Mini Plus Single Cup Brewer $99.95 472 -20.22% -$9,539.07

Polaroid POGO Instant Mobile Printer $49.99 323 -46.55% -$7,516.32

SanDisk Ultra Backup 16GB Flash 
Drive

$59.99 314 -49.79% -$9,378.87

Apple TV 1080p (3rd Generation) $99.00 311 30.12% $9,273.65

Sony Clock Radio for iPod/iPhone/
MP3

$69.99 300 -55.31% -$11,613.44

Apple TV $99.00 293 -28.52% -$8,272.80

Apple iPod shuffle 2GB Silver $49.00 286 -22.80% -$3,195.19

Cuisinart Centro Griddle / Grill $99.99 264 -15.98% -$4,218.30

Apple 2GB iPod Shuffle (Choice of  
Blue or Slate)

$49.99 255 -15.18% -$1,935.06

Leap Frog Leapster2 System $69.99 228 -40.99% -$6,541.07

Item Type RRP Total 
Auctions 
Count

Average 
Profit Margin

Total Profit in 
Dollars

Category - General Items (692 types) 18,799 -0.6618% -$31,202.62

iPod touch 8GB 4th Generation $199.00 719 86.11% $123,207.05

Kindle Fire w/ Wi-Fi $199.00 445 146.02% $129,308.01

Nintendo 3DS 3-D Game Console $169.99 309 42.64% $22,397.47

Nintendo DSi Black $169.99 297 12.75% $6,437.10

Nintendo DSi XL Midnight Blue $169.99 275 0.50% $233.74

Kindle Fire HD 16 GB Tablet $199.00 239 129.59% $61,634.30

CHI Ceramic 1\ Hairstyling Iron" $189.99 222 -51.16% -$21,578.15

KitchenAid 5-Qt. Stand Mixer $375.00 219 -20.31% -$16,679.59

Beats by Dr. Dre Solo Headphones $199.95 215 -9.69% -$4,165.66

Weber Wood Burning Outdoor 
Fireplace

$159.99 204 -36.02% -$11,756.19
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Table 3. Top 10 Most Repeatedly Listed Item Types of Each Category - continued 

Table 4. Distribution of Bidders with Different Prior Auctions Experiences 

Item Type RRP Total 
Auctions 
Count

Average 
Profit Margin

Total Profit in 
Dollars

Category - Expensive Consumer 
Electronics (102 types)

2,742 119.192% $1,910,711.33

Apple iPad 2 16GB WiFi + AT&T 3G $529.99 312 209.45% $346,339.99

Apple iPhone 4S 16GB (Unlocked) $549.00 256 176.52% $248,088.27

Apple iPad 2 16GB (WiFi) $399.00 250 261.28% $260,626.80

Apple iPad 32GB (WiFi + 3G) $649.99 177 89.38% $102,830.11

Xbox 360 250GB Kinect Bundle $399.99 126 30.01% $15,124.66

Apple iPhone 5 16GB Unlocked $649.00 119 222.66% $171,962.54

Nintendo Wii Mega Bundle $449.99 105 3.11% $1,469.44

Canon EOS Rebel XS Digital SLR 
Camera

$599.99 88 108.73% $57,408.48

Apple 11-inch MacBook Air $999.00 80 65.16% $52,075.87

Nikon D3100 Digital SLR Camera $649.95 75 1.25% $609.33

Total Auctions 
Participated

Ratio in Bidder Population Ratio in Total Bids Placed

< 20 86.91% 18.64%

20+ 13.09% 81.36%
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Table 5. Distribution of Bidders with Different Prior Auctions Experience 

Table 6. Distribution of Bidders in Different Prior Auctions Experience Ranges 

Total 
Auctions 

Participate
d

Numbers of 
Bidders

Ratio in 
Bidder 

Population

Average 
Total 

Auctions 
Participate
d by Each 

Bidder

Average 
Number of 
Auctions 

Won

Average 
Total Bids 
Placed by 

Each 
Bidder

Average 
Number of 
Bids Placed 
per Auction

Winning 
Percentage

1 30,016 11.76% 1.0 0.01 17.1 17.14 1.06%

2 23,309 9.13% 2.0 0.02 27.2 13.61 1.23%

<7 134,103 52.53% 3.2 0.05 32.4 10.08 1.56%

<25 230,761 90.39% 6.9 0.20 55.7 8.12 2.89%

<200 252,696 98.98% 10.7 0.53 96.8 9.02 4.96%

200+ 2,607 1.02% 919.4 169.35 13,937.1 15.16 18.42%

Total 255,304 100.00% 20.0 2.26 238.1 11.90 11.28%

Total Auctions 
Participated

Numbers 
of 

Bidders

Ratio in 
Bidder 

Populatio
n

Average 
Total 

Auctions 
Participate
d by Each 

Bidder

Average 
Number of 
Auctions 

Won

Average 
Total Bids 
Placed by 

Each 
Bidder

Average 
Number of 
Bids Placed 
per Auction

Winning 
Percentage

<5 97,514 38.20% 2.4 0.03 27.7 11.72 1.39%

[5,7) 36,589 14.33% 5.5 0.10 44.8 8.19 1.76%

[7,10) 38,174 14.95% 7.9 0.17 57.2 7.26 2.17%

[10,20) 49,600 19.43% 13.3 0.46 96.9 7.30 3.48%

[20,25) 8,884 3.48% 21.8 1.07 172.4 7.91 4.92%

[25,30) 5,326 2.09% 26.8 1.42 212.7 7.93 5.29%

[30,50) 9,428 3.69% 37.5 2.31 320.8 8.57 6.18%

[50,100) 5,083 1.99% 67.7 5.37 706.0 10.43 7.94%

[100,200) 2,098 0.82% 137.2 15.30 1,836.0 13.38 11.15%

[200,500) 1,443 0.57% 308.2 43.26 4,811.3 15.61 14.04%

[500,750) 378 0.15% 603.4 98.23 9,828.9 16.29 16.28%

[750,1000) 587 0.23% 696.4 119.70 11,342.1 16.29 17.19%

[1000,2000) 331 0.13% 1,357.1 283.67 25,407.8 18.72 20.90%

[2000,4000) 147 0.06% 2,789.3 527.69 43,438.8 15.57 18.92%

[4000,5000) 31 0.01% 4,414.2 905.03 57,622.1 13.05 20.50%

[5000,10000) 53 0.02% 6,724.6 1,369.66 88,487.6 13.16 20.37%

10000+ 15 0.01% 12,722.2 2,445.93 97,466.8 7.66 19.23%

Total 255,304 100.00% 20.0 2.26 238.1 11.90 11.28%

!  of !114 128



Table 7. Top 100 Most Experienced Bidders by Number of Auctions Participated 

Username Total 
Auctions 
Participated

Total Bids 
Placed

Total 
Auctions 
Won

Winning 
Probability

Average Bid 
Cost 
Estimated

Tuffenough 16,864 128,946 2,844 16.86% $0.43

BETTERQUIT 16,751 142,696 3,876 23.14% $0.37

DONT_WASTE_YOUR_MONEY 16,278 73,891 2,236 13.74% $0.32

URBIDSDONE 14,857 79,043 2,805 18.88% $0.20

ToughButFair 13,771 61,065 2,860 20.77% $0.04

YouWillWasteUrBids 12,327 69,986 1,811 14.69% $0.13

recovery9000 11,734 80,932 2,862 24.39% $0.40

bruizer 11,630 196,005 2,275 19.56% $0.45

SaveYours_Not_Stopping 11,523 50,302 2,282 19.80% $0.22

JustGoAway 11,302 74,508 3,526 31.20% $0.13

burnboy 11,144 164,131 1,973 17.70% $0.49

ronishida 10,867 78,602 1,946 17.91% $0.47

BACKOUTNOW 10,848 117,379 1,643 15.15% $0.48

bunky123 10,630 72,769 1,597 15.02% $0.27

InfiniteBidding 10,307 71,747 2,153 20.89% $0.42

ferangi 9,640 214,223 1,930 20.02% $0.57

I_WONT_EVER_QUIT 9,215 99,649 1,817 19.72% $0.38

tonyl587 9,086 80,349 988 10.87% $0.63

GoAhead_ThrowUr_BidAway 8,892 122,769 2,012 22.63% $0.45

Pounder 8,731 53,882 1,735 19.87% $0.39

mirbel 8,579 148,807 934 10.89% $0.58

LETS-DANCE 8,534 115,754 2,168 25.40% $0.50

You_Are_Gonna_Regret_It 8,411 67,999 1,211 14.40% $0.54

NotStopping 8,223 88,843 2,842 34.56% $0.40

wackpack14 8,150 220,928 2,588 31.75% $0.51

A-NONY-MOUSE 7,872 78,335 489 6.21% $0.64

jetranger 7,736 137,113 2,245 29.02% $0.46

tinabrit 7,691 100,081 1,785 23.21% $0.59

camort 7,630 191,692 1,506 19.74% $0.57

bjwhite3114 7,416 42,985 2,242 30.23% $0.27
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NO_WIN_FOR_YOU_HERE 7,357 62,976 1,172 15.93% $0.47

vita4ever 7,323 57,952 1,505 20.55% $0.49

BID_4EVER 7,293 37,586 1,063 14.58% $0.30

xavierMommy 7,241 67,155 1,386 19.14% $0.56

iSTINKatLOSING 7,101 127,051 1,303 18.35% $0.44

bidforever11 6,946 110,980 1,573 22.65% $0.45

Stone_Cold 6,937 70,874 1,420 20.47% $0.36

puzzledrex 6,836 68,978 1,586 23.20% $0.49

collegeboy 6,772 236,845 2,113 31.20% $0.55

SketcheeWon 6,614 93,782 1,183 17.89% $0.58

donnav7777 6,588 46,540 992 15.06% $0.38

BID_BLACK_HOLE 6,433 105,961 890 13.83% $0.60

ItchyFingers 6,416 76,099 1,045 16.29% $0.47

Craigdcole 6,325 64,392 1,220 19.29% $0.58

shaveubear 6,224 29,325 322 5.17% $0.62

Kkatgironde 6,223 97,472 684 10.99% $0.63

insane8 6,128 49,636 1,489 24.30% $0.26

wonteverstop1 6,108 85,703 1,028 16.83% $0.49

BiddingManiac 6,056 70,516 1,282 21.17% $0.41

DontWasteYerBids 5,981 69,406 1,385 23.16% $0.45

a8u2g0u6s0t 5,922 34,090 1,057 17.85% $0.36

NeuroSurgeon 5,917 31,070 1,274 21.53% $0.25

62loghome 5,776 135,715 1,107 19.17% $0.63

danado 5,572 58,869 1,083 19.44% $0.51

gottaget1 5,556 46,134 1,362 24.51% $0.44

bre7857 5,552 194,931 379 6.83% $0.69

molder 5,533 36,399 1,410 25.48% $0.28

jbeans 5,517 44,928 503 9.12% $0.51

glassmanz 5,462 43,289 1,078 19.74% $0.44

nyledger 5,424 60,510 1,743 32.14% $0.46

GoldTrigger 5,338 148,801 1,426 26.71% $0.53

rollthedice 5,335 156,138 1,364 25.57% $0.47

BIDiot 5,295 68,658 1,376 25.99% $0.43

UBETTERQUIT 5,206 38,251 2,008 38.57% $0.19

BIDCRAZY1964 5,163 37,087 1,226 23.75% $0.33
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nanaalcorn 5,083 58,304 1,011 19.89% $0.51

UnknownMember 5,042 72,212 1,130 22.41% $0.51

ONCEIBIDIWILLNOTSTOP 5,002 31,820 922 18.43% $0.45

zacksdad 4,929 24,413 689 13.98% $0.33

ItsGoingToBeExpensive 4,887 21,543 1,108 22.67% $0.20

wontstopiforever 4,874 77,251 713 14.63% $0.56

BidRidder 4,790 16,462 1,001 20.90% $0.03

BETTERQUITNOW 4,778 41,479 1,010 21.14% $0.29

PummelWeed 4,713 60,264 1,441 30.58% $0.42

BIDSTOTHEMAX 4,674 37,164 1,321 28.26% $0.28

HereComesTrouble 4,644 21,058 375 8.07% $0.59

chazown 4,639 154,057 1,412 30.44% $0.63

vegasgirl926 4,630 75,894 1,482 32.01% $0.52

BidSomeWhereElse 4,604 30,103 605 13.14% $0.52

KUSHKUSH 4,588 118,262 1,065 23.21% $0.57

peacockrancher 4,588 38,108 402 8.76% $0.51

torilee 4,397 115,444 854 19.42% $0.59

janets 4,369 44,757 371 8.49% $0.64

Flinko 4,358 43,444 1,197 27.47% $0.56

JDONTCARE 4,310 64,407 1,240 28.77% $0.44

bluemoons 4,303 93,334 588 13.66% $0.65

suze46 4,297 94,661 219 5.10% $0.70

bigcuz 4,290 41,518 1,128 26.29% $0.67

WILLBANKRUPTU 4,235 29,535 626 14.78% $0.24

theendisnear 4,192 24,612 971 23.16% $0.11

HALJR16 4,180 13,580 670 16.03% $0.46

DudeGetOffMyItem 4,166 48,479 847 20.33% $0.48

Buffy1 4,149 85,132 1,267 30.54% $0.51

CS110 4,107 29,898 1,393 33.92% $0.11

huntelkhard 4,075 66,463 992 24.34% $0.60

ciderguy1970 4,029 21,856 921 22.86% $0.24

i wanna win 4,020 203,877 533 13.26% $0.71

FURY_OF_BIDS 4,013 23,466 692 17.24% $0.04

LIMIT_LESS 4,013 25,764 923 23.00% $0.30

pinky860 3,907 52,739 114 2.92% $0.72
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Figure 1. Full image of Figure 6 in Chapter 2 

Figure 2. Full image of Figure 10 in Chapter 2 
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Appendix 2. Results of Alpha MLE 

These 42 items are chosen out of all 653 items that have been repeatedly auctioned over 

30 times, for their extreme average seller profit margins (highest tail, lowest tail, and 

those close to zero). 

Table 8. Alpha MLE in Single-Bidder-Type model 

Item Name RRP Average 
Winning 

Bid

Average 
Seller 
Profit 
Margin

Alpha 
MLE

Standard 
Error

Observatio
n Count

Boston Market $10 Gift Card $10 $0.07 -46.98% 0.1243 0.0141 341

Barnes & Noble $10 Gift Card $10 $0.09 -29.15% 0.0570 0.0105 487

Papa John's $10 Gift Card $10 $0.09 -32.58% 0.0835 0.0162 224

Panera Bread $10 Gift Card $10 $0.09 -29.02% 0.0567 0.0114 409

Cold Stone Creamery $10 Gift Card $10 $0.10 -24.97% 0.0446 0.0173 172

iTunes $15 Gift Card $15 $0.12 -38.1% 0.0628 0.0065 620

Starbucks $15 Gift Card $15 $0.12 -36.91% 0.0597 0.0097 277

Payless $20 Gift Card $20 $0.21 -19.14% 0.0185 0.0035 976

Blockbuster Video $25 Gift Card $25 $0.10 -68.82% 0.1171 0.0227 39

Marshalls $25 Gift Card $25 $0.34 2.46% -0.0045 0.0027 907

Cheesecake Factory $25 Gift Card $25 $0.35 5.79% -0.0071 0.0026 947

L.L.Bean $25 Gift Card $25 $0.24 -28.36% 0.0262 0.0029 992

Miracle Blade 11-pc. Cutlery Set $30 $0.38 -3.36% 0.0006 0.0113 37

Walmart / Sams Club $30 Gift Card $30 $0.40 0.83% -0.0023 0.0029 563
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Altec Lansing Portable Speaker $40 $0.16 -69.73% 0.0775 0.0154 35

Iron Man 2 (Blu-ray + DVD) $40 $0.17 -68.63% 0.0743 0.0144 38

Diamond Mini Rockers Mobile Speakers $40 $0.14 -74.18% 0.0922 0.0151 46

True Grit (Blu-ray + DVD) $40 $0.52 -1.42% -0.0002 0.0070 54

\Up\" (Blu-ray + DVD)" $46 $0.16 -73.51% 0.0785 0.0083 110

Foot Locker $50 Gift Card $50 $0.64 -2.84% 0.0006 0.0026 246

Avatar (Blu-ray) Collector's Edition $55 $0.23 -68.39% 0.0541 0.0081 63

Logitech Z305 Laptop Speaker $60 $0.21 -73.19% 0.0598 0.0056 144

Altec Lansing Expressionist Speakers $80 $0.18 -82.74% 0.0712 0.0105 48

Diamond Accent Heart Earrings $80 $0.22 -79.44% 0.0597 0.0104 36

WORX 3-in-1 Blower/Vac/Mulcher $90 $1.20 1.12% -0.0004 0.0024 85

Deluxe 12-inch diameter Calpha $160 $0.66 -68.76% 0.0301 0.0053 35

Nintendo DS Lite w/bonus 50 Bi $168 $6.72 204.95% -0.0020 0.0019 36

Nintendo DSi XL Midnight Blue $170 $2.25 0.5% -0.0001 0.0007 275

Nintendo Wii Console Plus Sports Package$250 $12.61 283.34% -0.0017 0.0012 39

Royal Caribbean $250 Gift Certificate $250 $3.25 -1.07% 0.0001 0.0008 103

Kindle DX Wireless Reader $379 $5.08 1.82% -0.0001 0.0008 45

Apple iPad 2 16GB (WiFi) $399 $18.97 261.28% -0.0059 0.0002 250

*Acer Aspire One Netbook $400 $26.67 406.79% 0.0014 0.0010 34

Apple iPad 2 16GB WiFi + AT&T 3G $530 $21.58 209.45% -0.0039 0.0002 312

Item Name RRP Average 
Winning 

Bid

Average 
Seller 
Profit 
Margin

Alpha 
MLE

Standard 
Error

Observatio
n Count
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Nikon D3100 Digital SLR Camera $650 $8.66 1.25% -0.0000 0.0004 75

10 Bidpack + $10 Boston Market Card $18 $0.12 -46.52% 0.0754 0.0061 587

75 Bidpack+ Breast Cancer Fund $56 $2.41 225.51% -0.0391 0.0021 174

75 Bidpack + Food Bank Donation $56 $2.32 213.78% -0.0378 0.0026 116

Nintendo DS Lite & 25 Bidpack! $149 $6.93 254.28% -0.0011 0.0024 30

50 Bidpack + Nintendo DSi $207 $2.64 -3.29% 0.0003 0.0017 34

375 Bids Bid on any Auction $281 $19.67 431.64% -0.0024 0.0002 806

500 Bids Bid on any Auction $375 $14.97 203.35% -0.0036 0.0002 548

Item Name RRP Average 
Winning 

Bid

Average 
Seller 
Profit 
Margin

Alpha 
MLE

Standard 
Error

Observatio
n Count
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12 of the above items have over 30 auctions participated by inexperienced bidders or 

experienced bidder only and MLE of alpha of each subsets of auctions are estimated. 

 

Table 9. Alpha MLE in subsets of auctions of different types of participants 

Item RRP Average 
Seller 
Profit 
Margin

Alpha 
MLE (All 
Auctions)

Alpha MLE 
(Inexperience

d Bidder 
Only 

Auctions)

Alpha MLE 
(Experience
d Bidder 

Only 
Auctions)

Total 
Auction 
Count

IE 
Bidder 
Only 

Auction 
Count

EX 
Bidder 
Only 

Auction 
Count

Boston Market 
$10 Gift Card

$10 -46.98% 0.1243 0.6329 0.1441 341 92 168

10 Bidpack + $10 
Boston Market 
Card

$18 -46.52% 0.0754 0.3520 0.0673 587 156 233

iTunes $15 Gift 
Card

$15 -38.10% 0.0628 0.3199 0.0616 620 114 281

Starbucks $15 Gift 
Card

$15 -36.91% 0.0597 0.2108 0.1046 277 58 97

Papa John's $10 
Gift Card

$10 -32.58% 0.0835 0.5313 0.0217 224 73 97

Barnes & Noble 
$10 Gift Card

$10 -29.15% 0.0570 0.4246 0.0128 487 143 223

Panera Bread $10 
Gift Card

$10 -29.02% 0.0567 0.4851 0.0012 409 138 174

L.L.Bean $25 Gift 
Card

$25 -28.36% 0.0262 0.3306 0.0348 992 47 613

Cold Stone 
Creamery $10 Gift 
Card

$10 -24.97% 0.0446 0.5279 0.1139 172 47 74

Payless $20 Gift 
Card

$20 -19.14% 0.0185 0.2404 0.0397 976 76 527

Marshalls $25 Gift 
Card

$25 2.46% -0.0045 0.2138 0.0239 907 32 401

Cheesecake 
Factory $25 Gift 
Card

$25 5.79% -0.0071 0.1878 0.0062 947 35 469
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Appendix 3. Empirical Motivation 

Table 9. Distribution of number of bidders in an auction in all observations 

Number of 
Bidders in 
an Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

1 14,250 31 970 61 123

2 37,018 32 863 62 95

3 53,712 33 737 63 84

4 61,687 34 648 64 91

5 61,813 35 615 65 72

6 57,474 36 565 66 86

7 49,973 37 481 67 74

8 41,612 38 457 68 79

9 33,612 39 430 69 68

10 27,334 40 433 70 66

11 22,152 41 381 71 60

12 17,541 42 371 72 56

13 14,362 43 331 73 67

14 11,734 44 309 74 67

15 9,586 45 246 75 47

16 7,923 46 295 76 40

17 6,568 47 224 77 50

18 5,588 48 212 78 52

19 4,725 49 197 79 43

20 3,880 50 189 80 46

21 3,416 51 179 81 46

22 2,961 52 172 82 54

23 2,566 53 151 83 36

24 2,246 54 154 84 38

25 1,952 55 146 85 47

26 1,743 56 122 86 38

27 1,574 57 115 87 29

28 1,266 58 127 88 35

29 1,249 59 103 89 25

30 1,021 60 106 90 35

!  of !123 128



Number of 
Bidders in 
an Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

91 32 121 19 151 6

92 32 122 17 152 5

93 16 123 17 153 7

94 28 124 15 154 6

95 25 125 14 155 9

96 25 126 27 156 4

97 25 127 8 157 10

98 18 128 6 158 3

99 18 129 10 159 4

100 20 130 5 160 8

101 16 131 9 161 2

102 24 132 11 162 4

103 27 133 8 163 7

104 18 134 10 164 8

105 15 135 13 165 5

106 17 136 9 166 5

107 21 137 11 167 6

108 14 138 4 168 4

109 25 139 10 169 3

110 16 140 8 170 9

111 26 141 9 171 7

112 16 142 7 172 4

113 16 143 11 173 2

114 15 144 7 174 6

115 15 145 6 175 3

116 10 146 8 176 7

117 11 147 9 177 6

118 23 148 3 178 6

119 11 149 10 179 3

120 13 150 9 180 2
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Number of 
Bidders in 
an Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

181 6 211 2 241 2

182 3 212 4 242 5

183 4 213 5 243 1

184 7 214 5 244 6

186 8 215 4 245 5

187 5 216 6 246 2

188 2 217 4 247 2

189 3 218 2 248 3

190 5 219 6 249 4

191 5 220 2 250 2

192 4 221 1 251 2

193 4 222 4 252 1

194 3 223 5 253 3

195 5 224 5 254 2

196 3 225 5 255 1

197 6 226 3 256 2

198 7 227 2 257 4

199 4 228 4 258 2

200 1 229 2 259 3

201 4 230 1 260 1

202 1 231 4 261 5

203 3 232 3 263 2

204 7 233 1 265 1

205 4 234 4 266 4

206 5 235 5 267 2

207 3 236 2 268 2

208 2 237 4 269 1

209 2 238 2 271 3

210 4 240 1 272 2
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Number of 
Bidders in 
an Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

Number of 
Bidders in an 
Auction

Number of 
Observations

274 1 291 3 326 1

275 1 293 3 327 1

276 1 295 3 328 1

277 4 296 2 338 1

278 1 297 1 342 1

279 2 298 1 346 2

280 3 307 1 349 1

281 1 308 2 352 1

282 1 309 2 356 1

283 1 310 1 360 1

284 4 315 1 364 1

286 4 317 1 372 1

287 1 318 1 375 1

288 1 323 2 377 1

289 1 324 1

290 1 325 2
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Figure 3. Distribution of number of bidders in an auction (Full Database) 

Figure 3. Distribution of number of bidders in an auction (N<50) 
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Table 10. Distribution of number of bidders of different experience groups with N up to 24 

Number of 
Bidders in 
an Auction

All Auctions Auctions with 
Inexperienced 
Bidders Only

Auctions with 
Experienced 
Bidders Only

Auctions with 
Mixed Types of 
Bidders

1 14,250 4,822 9,428 0

2 37,018 4,317 24,118 8,583

3 53,712 3,115 27,819 22,778

4 61,687 2,017 24,148 35,522

5 61,813 1,304 17,900 42,609

6 57,474 844 12,261 44,369

7 49,973 531 7,792 41,650

8 41,612 366 4,779 36,467

9 33,612 265 2,667 30,680

10 27,334 186 1,457 25,691

11 22,152 99 785 21,268

12 17,541 63 417 17,061

13 14,362 43 225 14,094

14 11,734 32 130 11,572

15 9,586 23 53 9,510

16 7,923 11 35 7,877

17 6,568 11 19 6,538

18 5,588 8 7 5,573

19 4,725 7 1 4,717

20 3,880 2 3 3,875

21 3,416 2 3 3,411

22 2,961 4 1 2,956

23 2,566 1 1 2,564

24 2,246 2 1 2,243
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