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Abstract

This work addresses the exploration of Bayesian MCMC methods applied to

problems in gravitational wave physics. The thesis consists of two parts. In

the first part a Bayesian Markov chain Monte Carlo technique is presented

for estimating the astrophysical parameters of gravitational radiation signals

from a neutron star in laser interferometer data. This computational algo-

rithm can estimate up to six unknown parameters of the target, including

the rotation frequency and frequency derivative, using reparametrization, de-

layed rejection and Metropolis-Coupled Markov Chain Monte Carlo. Results

will be given for different synthesized data sets in order to demonstrate the

algorithm’s behaviour for different observation lengths and signal-to-noise

ratios. The probability of detecting weak signals is assessed by a model com-

parison, based on the BIC, between a model that postulates a signal and one

that postulates solely noise within the data.

The second part of the thesis adresses the tremendous data analysis chal-

lenges for the Laser Interferometer Space Antenna (LISA) with the need to

account for a large number of gravitational wave signals from compact bi-

nary systems expected to be present in the data. The basis of a Bayesian

method is introduced that can address this challenge, and its effectiveness

is demonstrated on a simplified problem involving one hundred synthetic si-

nusoidal signals in noise. The reversible jump Markov chain Monte Carlo

technique is deployed to infer simultaneously the number of signals present,

the parameters of each identified signal, and the noise level. This approach

is specifically focused on the detection of a large number of sinusoids with

separation of sinusoids that are close in frequency. A robust post-processing

technique handles the label switching problem by a frequency interval sepa-
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ration technique with a subsequent classification according to a mixed model

approximation. The algorithm therefore tackles the detection and parame-

ter estimation problems simultaneously, without the need to evaluate formal

model selection criteria, such as the Akaike Information Criterion or explicit

Bayes factors. The method produces results which compare very favorably

with classical spectral techniques.
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Chapter 1

Introduction

In recent years, Bayesian methods have become increasingly popular in many

different scientific fields. First devised by Bayes [1], the idea of inverse prob-

ability was then brought forward in greater generality by Laplace [2] in the

beginning of the 19th century and much more clearly by Sir Harold Jef-

freys [3] in the first half of the 20th century with a justification by Cox [4].

Despite the fact that the three latter protagonists were physicists apply-

ing Bayesian methods to problems in their field, the acceptance of Bayesian

methods within the astrophysical community is still rather hesitant [5]. This

is remarkable as inference in a pure scientific scope has always been an intu-

itive version of Bayes’ theorem where the state of knowledge is represented

by both the prior and the posterior distributions [6]. Scientists are naturally

drawn to Bayesian thinking. However, the step to data processing requires

complex numerical techniques that are based on Monte Carlo methods as

the analytical integration of the posterior distribution is generally not possi-

ble. In the outgoing 20th century, Bayesian MCMC methods have received

increasing attention from applied statisticians and scientists of fields like bio-

metrics and econometrics and have had a profound effect on Bayesian statis-

tics. Recent research has considerably broadened the diversity of methods

and substantiated its theory. Bayesian inference involving MCMC techniques

have demonstrated to be especially suited to parameter estimation problems

involving numerous parameters [7]. The existence of the thesis at hand re-
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2 CHAPTER 1. INTRODUCTION

veals the demand on interdisciplinary knowledge of Bayesian statistics and

physics to approach the data analysis challenges in modern astronomy and

addresses in particular the exploration of Bayesian MCMC methods applied

to problems of gravitational wave physics.

Any sufficiently asymmetric distribution of matter that is accelerated

emits gravitational radiation. A gravitational wave consists of energy trans-

mitted in the form of a wave through the gravitational field of spacetime and

will be emitted by physical objects with a pulsating shape, specifically objects

with a changing quadrupole moment like binary systems or a non-precessing

triaxial neutron star, called a pulsar. The detection of gravitational radia-

tion is accomplished by laser interferometry. Ground-based interferometers

are currently operating in the USA (LIGO), Italy (VIRGO), Germany/UK

(GEO600), and Japan (TAMA300). LIGO as the biggest observatory oper-

ates two main 4 km gravitational wave observatories in Livingston, Louisiana

and on the Hanford Nuclear Reservation near Richland, Washington. A third

half-length interferometer operates in parallel also on the Hanford Nuclear

Reservation. Although LIGO has recently reached its target sensitivity, the

other observatories have not yet reached a level of sensitivity sufficient enough

for the actual detection of gravitational radiation.

The data analysis challenges of ground-based gravitational wave detec-

tors led to a fertile collaboration between statisticians and physicists. This

gave rise to the development of MCMC techniques specifically designed for

ground-based interferometric gravitational radiation problems, such as esti-

mating astrophysical parameters for gravitational wave signals from coalesc-

ing compact binary systems [8, 9] or pulsars [10]. This path is pursued by

this thesis, aiming for the expansion and development of efficient search algo-

rithms in this field based on the Bayesian principle. The following Chapter 2

addresses the estimation of parameters of a model that postulates a gravi-

tational wave signal from a sufficiently asymmetric pulsar as would be seen

from a ground-based interferometer, like LIGO.

However, along with the operation of ground-based interferometers, a

space based version is scheduled to be launched in 2015 as a joint project of

the National Aeronautics and Space Administration (NASA) and the Euro-
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pean Space Agency (ESA). The much higher sensitivity of LISA (Laser Inter-

ferometer Space Antenna) in the low frequency band will entail a tremendous

data analysis challenge. Its sensitivity allows for the detection of 100 000 sig-

nals simultaneously, and Chapter 3 aims to explore the capability of Bayesian

methods to address the problem of simultaneously estimating noise level, in-

dividual signal parameters of an unknown number of signals present within

data expected from LISA. This requires the need of a statistical tool for

model selection on a very large set of models that considers the countless

gravitational wave signals of unknown quantity.

A unique and very important feature of Bayesian theory is model com-

parison. Bayesian model comparison justifies Occam’s Razor which limits

the complexity of a model to that amount that best explains the data with-

out redundant degrees of freedom. For model comparison of the complexity

described above, the Bayesian framework provides a numerical tool, the re-

versible jump MCMC (RJMCMC) technique [11, 12]. RJMCMC simultane-

ously addresses model selection and parameter estimation. This is especially

true in situations where the number of models is vast, and where traditional

methods that involve the evaluation of formal model selection criteria, such

as the Akaike Information Criterion or explicit Bayes factors, are inapplica-

ble.

The RJMCMC technique has demonstrated great potential for applica-

tions in Bayesian spectrum analysis by simultaneously estimating the num-

ber, noise level and parameters of a few sinusoids [13]. Chapter 3 elaborates

an adaptive MCMC algorithm for estimating a large number of sinusoids

[14, 15] in order to demonstrate the applicability on LISA data, including

post processing tools to solve the label switching problem during the sam-

pling procedure. With regard to the resolving power of the signals, the

Bayesian approach is capable of surpassing the Rayleigh limit by an order of

magnitude as already shown by E. T. Jaynes [16] and G. L. Bretthorst [17].

The Bayesian method allows for probabilistic statements of the number of

signals and the noise level in the data and of the parameters that describe

the individual signals.
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Chapter 2

Parameter estimation for

gravitational wave signals from

neutron stars using an adaptive

MCMC method

2.1 Introduction

Rapidly rotating neutron stars could be an important source of gravitational

wave signals. Several mechanisms have been proposed that would cause them

to emit quasi-periodic gravitational waves [18, 19].

Interferometric gravitational wave detectors are now operating in numer-

ous locations around the world [20, 21, 22, 23], and much work has gone

into the development of dedicated search algorithms for these signals. Radio

observations can provide the sky location, rotation frequency and spin-down

rate of known pulsars, and this knowledge simplifies the analysis. This was

the case for the recent search for a signal from PSR J1939+2134 [24]. When

the position and phase evolution of a source are not known, all-sky hierar-

chical strategies are required, and these have huge computational require-

ments [25, 26].

This chapter concentrates on the search for a gravitational wave signal
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6 CHAPTER 2. PARAMETER ESTIMATION FOR GW-SIGNALS

where spin parameters of the rotating neutron star are not well known (but

within a narrow band). SN1987A is a good example of a poorly param-

eterised potential source. If the marginal detection is assumed to be true

and SN1987A indeed produced a putative neutron star, then there are large

uncertainties in the frequency and spin-down parameters [27]. In particular,

this text considers a search with six unknown parameters: the gravitational

wave amplitude h0, the polarization angle ψ (which depends on the position

angle of the spin axis in the plane of the sky), the phase of the signal at a

fiducial time φ0, the inclination of the spin axis with respect to the line-of-

sight ι and the deviations (from reference values) of the signal frequency ∆f ,

and of the frequency derivative ∆ḟ .

This problem is approached by a Bayesian Markov chain Monte Carlo

(MCMC) technique as MCMC methods have been applied successfully to

similar problems involving large numbers of parameters [7]. For a similar

search, but with only five parameters (absence of frequency derivative ∆ḟ)

a Metropolis-Hastings (MH) algorithm [28, 29] had been applied [10]. When

the frequency derivative ∆ḟ is included in the basic random walk Metropolis

method of [10] the large correlation between ∆f and ∆ḟ makes the parame-

ter search difficult, and the basic MH algorithm becomes inefficient. In order

to adequately sample the parameter space, a combination of three different

strategies have been implemented for accelerating convergence of Markov

chains: re-parameterisation, the delayed rejection method of Tierney and

Mira [30] (which is an adaptive version of the MH algorithm), and exchange

Monte Carlo technique (Metropolis-Coupled Chain, Parallel Tempering) [31]

(which is a Monte Carlo approach suited for multimodal posterior sampling).

At a previous stage of this research [32, 33] a simulated annealing [34] tech-

nique was used. This approach is faster but convergence can be critical if

after the lapse of the annealing schedule no convergence could be achieved.

Furthermore, the Metropolis-Coupled chain performs better in case of weak

signals, a situation which this thesis specifically focus on.

The parameter ∆f is highly correlated with ∆ḟ , and a strong correlation

also exists between h0 and cos ι. An initial transformation of these variables

to near orthogonality yields a more tractable parameter space that is more
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effectively sampled. The heterodyne manipulation of the data used in this

study is identical to that presented in an end-to-end robust Bayesian method

of searching for periodic signals in gravitational wave interferometer data [35],

and is also described in [24]. A brief summary of this heterodyne technique

is given in Sec. 2.2. Sec. 2.3 and 2.4 describe the Bayesian model and the

posterior computational algorithms. In Sec. 2.5 the results of this study are

presented, using synthesized signals, for this six parameter problem. The

weak signal detection is elaborated in Sec. 2.6. A brief discussion and the

long term goals for this work are presented in Sec. 2.7 and 2.8.

2.2 The gravitational wave signal

Gravitational waves from spinning neutron stars are expected to be weak at

the Earth, so long integration periods are necessary to extract the signal. It

is therefore important to take proper account of the antenna patterns of the

detectors and the Doppler shift due to the motion of the Earth.

As in previous studies [10, 24, 35] the signal under consideration is one

that is expected from a non-precessing triaxial neutron star. The gravi-

tational wave signal from such an object is at twice its rotation frequency,

fs = 2fr, and we characterise the amplitudes of each polarisation with overall

strain factor, h0. The measured gravitational wave signal will also depend on

the antenna patterns of the detector for the ‘cross’ and ‘plus’ polarisations,

F×,+, giving a signal

s(t) = 1
2

F+(t;ψ, α, δ)h0(1 + cos2 ι) cos Ψ(t;n, fs, ḟs)

+ F×(t;ψ, α, δ)h0 cos ι sin Ψ(t;n, fs, ḟs). (2.1)

The antenna pattern of the detector depends on time, the polarisation angle

ψ of the pulsar and its location determined by right ascension α and declina-

tion angle δ. The location is assumed to be known from, for example, radio

observations. A simple slowdown model provides the phase evolution of the
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signal as

Ψ(t;n, fs, ḟs) = φ0 + 2π

[
fs(T(α,δ) − T0) +

1

2
ḟs(T(α,δ) − T0)

2

]
, (2.2)

where

T(α,δ) = t+ δt = t+
r · n
c

+ ∆T. (2.3)

Here, T(α,δ) is the time of arrival of the signal at the solar system barycenter,

φ0 is the phase of the signal at a fiducial time T0, r is the position of the

detector with respect to the solar system barycenter that varies with time,

n is a unit vector in the direction of the neutron star (depending on α and

δ), c is the speed of light and ∆T contains the relativistic corrections to the

arrival time [36] and also is a function of time.

If fs, ḟs, and n are known from (for example) radio observations, the signal

can be heterodyned by multiplying the data by exp[−iΨ(t;n, fs, ḟs)], low-pass

filtered and resampled, so that the only time varying quantity remaining is

the antenna pattern of the interferometer. The reference sky location is

needed for the heterodyning process prior to the MCMC simulation.

We are left with a simple model with four unknown parameters h0, ψ, φ0

and ι. If there is an uncertainty in the frequency and frequency derivative

two additional parameters come into play, the differences between the signal

and heterodyne frequency and frequency derivatives, ∆f and ∆ḟ . The unit

vector in the direction of the neutron star is supposed to be known by the

sky position that is determined by right ascension α and declination δ of the

sky position of the pulsar.

A detailed description of the heterodyning procedure is presented else-

where [24, 35]. An outline of this standard technique is as follows: The raw

signal, s(t), is centered at twice the rotation frequency of the neutron star,

but is Doppler modulated due to the motion of the Earth and the orbit of

the neutron star if it is in a binary system. The modulation bandwidth is

typically 104 times less than the detector bandwidth, so one can greatly

reduce the effective data rate by extracting this band and shifting it to zero

frequency. In its standard form the result is one binned data point, Bk, every
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minute, containing all the relevant information from the original time series

but at only 2× 10−6 the original data rate. If the phase evolution has been

correctly accounted for at this heterodyning stage then the only time-varying

component left in the signal will be the effect of the antenna pattern of the

interferometer, as its geometry with respect to the neutron star varies with

Earth rotation. Any small error, ∆f , in the heterodyne frequency will cause

the signal to oscillate at ∆f (plus the residual Doppler shift).

The data points, Bk are assumed to be uncorrelated. Note, that even in

case of correlations, the resulting inferences would just yield more conserva-

tive results than inferences that account for correlation. In this paper the

Bk’s are generated using white Gaussian noise with µ = 0 and σ = 10−22.

The variance, σk, associated with each bin is therefore known be be unity

a priori and the noise is uncorrelated between bins [24, 37]. For real data,

this assumption may not hold. However, practice has shown that when us-

ing sufficiently small bandwidths with GEO and LIGO data the noise is not

significantly correlated between bins [24, 37]. It is also assumed that the

noise is stationary over the 60 s of data contributing to each bin. This is also

consistent with current instrumental performances.

2.3 The Bayesian full probability model

After heterodyning, the signal on which the MCMC analysis is intended to

be carried out has the form [35]

y(tk; a) = 1
4

F+(tk;ψ, α, δ)h0(1 + cos2 ι)ei∆Ψ(tk;α,δ,∆f,∆ḟ)

− i

2
F×(tk;ψ, α, δ)h0 cos ιei∆Ψ(tk;α,δ,∆f,∆ḟ), (2.4)

where tk is the time of the kth bin and a = (h0, cos ι, φ0, ψ, ∆f, ∆ḟ) is a vec-

tor of the unknown parameters. ∆Ψ(t;α, δ,∆f,∆ḟ) represents the residual

phase evolution of the signal, equalling φ0 +2π[∆f(T(α,δ)−T0)+∆ḟ(T(α,δ)−
T0)

2/2], where T(α,δ) (Eq. 2.3) depends on the known sky location of the
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pulsar. The objective is to fit this model to the data

Bk = y(tk; a) + εk, (2.5)

where εk is assumed to be normally distributed noise with a mean of zero and

known variance σ2
k. Assuming statistical independence of the binned data

points, Bk, the joint likelihood that these data d = {Bk} arise from a model

with a certain parameter vector a is [35]

p(d|a) ∝
∏

k

exp

[
−1

2

∣∣∣∣
Bk − y(tk; a)

σk

∣∣∣∣
2
]

= exp

[−χ2(a)

2

]
, (2.6)

where

χ2(a) =
∑

k

∣∣∣∣
Bk − y(tk; a)

σk

∣∣∣∣
2

. (2.7)

In order to draw any inference on the unknown parameter vector a the

(posterior) probability is needed of a given d, which can be obtained from the

likelihood via an application of Bayes’ theorem. The unnormalised posterior

density

p(a|d) ∝ p(a)p(d|a) (2.8)

is the product of the prior density of a, p(a), and the joint likelihood. Ac-

cordingly, appropriate priors have to be chosen for the particular parameters.

In this study uniform priors are used with prior ranges [0, 2π], [−π/4, π/4]

and [−1, 1] for the angle parameters φ0, ψ and cos ι respectively.

For h0, a uniform prior is specified with boundary [0, 1 000] in units of the

rms noise [35]. For the frequency and spindown uncertainty, suitable uniform

priors are used with ranges of [− 1
120
, 1

120
] Hz and [−10−9, 10−9] Hz s−1 for ∆f

and ∆ḟ , respectively.

The normalized posterior density p(a|d) = p(a)p(d|a)/p(d) cannot be

evaluated analytically, due to the difficult to compute normalisation con-

stant. Therefore Monte Carlo methods are used here to explore p(a|d). If

samples can be drawn from p(a|d), all interesting quantities can be esti-

mated, including the posterior means of all parameters from the correspond-
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ing sample means, to any desired accuracy by increasing the sample size.

2.4 The adaptive Metropolis-Hastings algo-

rithm

However, drawing independent samples in a six-dimensional parameter space

is not feasible. It has already been shown that MCMC methods can be used

to parameterise gravitational wave signals of low signal-to-noise ratio [10]

with four unknown parameters. These simulate a Markov chain, constructed

so that its stationary distribution coincides with the posterior distribution

and the sample path averages converge to the expectations. A minimal

requirement for this is the irreducibility of the chain and hence the ability of

the chain to reach all parts of the state space [7]. A technique producing a

large class of MCMC algorithms is the MH algorithm [28, 29] which does not

require the normalization constant, only the unnormalised posterior density

of Eq. 2.8. The MH algorithm has been employed for the four and five

parameter pulsar detection problems [10]. The efficiency of the MH algorithm

depends heavily on the choice of the proposal density. Intuition suggests that

the closer the proposal distribution is to the target, the faster convergence

to stationarity is achieved. Default choices such as a Gaussian proposal or

a random walk result in very slow mixing for this 6-parameter problem. To

increase the speed of convergence, an adaptive technique has been employed,

adaptive in the sense that it allows the choice of proposal distribution to

depend upon information gained from the already sampled states as well as

the proposed but rejected states. This method does not break the Markov

property that guarantees correctness of MCMC.

2.4.1 The delayed rejection method

The idea behind the delayed rejection algorithm specified by [30] is that per-

sistent rejection, perhaps in particular parts of the state space, may indicate

that locally the proposal distribution is badly calibrated to the target. There-

fore, the MH algorithm is modified so that on rejection, a second attempt to
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move is made with a proposal distribution that depends on the previously

rejected state. This adaptive Monte-Carlo method [30] was generalized for

the variable dimension case [38] and renamed the ‘delayed rejection method’.

The original version [30], and also the generalized version [38] have been im-

plemented. It turned out that the generalised delayed rejection method was

not that beneficial for this particular problem and thus the original delayed

rejection algorithm [30] is explained here.

For the Metropolis-Hastings algorithm, a new state in a Markov chain is

chosen first by sampling a candidate a′ from a certain proposal distribution

q1(a
′|an) usually depending on the current state an and then accepting or

rejecting it with a probability α1(a
′|an) depending on the distribution of

interest. This rejection is essential for the convergence of the chain to the

intended target distribution. The choice of a good proposal distribution is

important to avoid persistent rejections in order to achieve good convergence

of a chain. However in different parts of the state space, different proposals

are required. When a proposed MH move is rejected, a second candidate a′′

can be sampled with a different proposal distribution q2(a
′′|a′,an) that can

depend on the previously rejected proposal. Since a rejection suggests a bad

fit of the first proposal, a different form of proposal can be advantageous in

the second stage. To preserve reversibility of the Markov chain and thus to

comply with the detailed balance condition, the acceptance probabilities for

both the first and the second stage are given by [39]

α1(a
′|an) = min

(
1,
p(a′)p(d|a′)q1(an|a′)
p(an)p(d|an)q1(a′|an)

)
(2.9)

and

α2(a
′′|an) = min

(
1,
p(a′′)p(d|a′′)q1(a′|a′′)q2(an|a′,a′′)[1−α1(a

′|a′′)]
p(an)p(d|an)q1(a′|an)q2(a′′|an,a′)[1−α1(a′|an)]

)

(2.10)

respectively. Fig. 2.1 illustrates the idea of delayed rejection. When the sec-

ond stage proposal step is applied due to rejection of the first, the chain has,

in order to preserve the reversibility, to imply a return path which comprises

a fictive stationary Markov chain consisting of a fictive stage 1 proposal step
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from a′′ to a′ which is rejected followed by an accepted fictive second stage

move to an [38]. Although the delayed rejection method provides better ac-

Stage 2
(timid)

Stage 1
(bold)

fictive
Stage 2

accepted

fictive
Stage 1
rejected

an a
′

a
′′

Figure 2.1: Diagram of the delayed rejection method. In case of rejection
of the first, bold step a second, more timid move is proposed. In order to
maintain the reversibility of the Markov Chain the acceptance probability
has to consider a fictive return path.

ceptance rates over the two stages, cross-correlations between the parameters

still impede convergence of the Markov chain. Preliminary runs reveal that

especially the parameters ∆f and ∆ḟ are highly correlated. To a certain

extent h0 and cos ι are also correlated after the Markov chain has found a

potential mode. The consequence of which is poor mixing of the chain and

therefore a re-parameterisation is required.

2.4.2 Re-parameterisation

The coherence between ∆f and ∆ḟ is obvious since the data is sampled from

time tstart to tend, where the heterodyned signal traverses a frequency from

fstart = ∆f + 1
2
∆ḟ · tstart to fend = ∆f + 1

2
∆ḟ · tend; time t = 0 is an epoch

time when f = ∆f .

Herein lies the major problem. When proposing new samples of ∆ḟ , the

frequency at time t = 0 is not affected at all whereas the impact on the

frequency values at time points that lie far ahead or after the epoch time

t = 0 is huge, especially when the epoch time is badly chosen outside the
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actual observation period. This is an issue that should be strictly avoided.

But even for an epoch time that lies ideally in the middle of the observation

period, implicating tstart = −tend, we encounter this problem.

A re-parameterisation is required that controls both ∆f and ∆ḟ in a

way that it affects the frequencies at all time points in an equal measure.

Hence it is much more natural to propose values for fstart and fend instead

and transform those parameters back into ∆f and ∆ḟ .

The original parameters are then obtained by the simple linear transfor-

mation

∆ḟ = 2 · fend − fstart

tend − tstart

. (2.11)

and

∆f = fstart − 1

2
∆ḟ · tstart = fstart − fend − fstart

tend − tstart

· tstart (2.12)

Since the Jacobian of this transformation is constant, the prior distributions

for the new parameters fstart and fend are flat as well. It is notable that the

new parameter space changes from a rectangle shape into a parallelogram

that satisfies fstart < fend. In practice, one is working in the (fstart, fend) space

and the boundaries are verified by back transformation into the (∆f,∆ḟ)

space. It is important that a proposed transition outside the boundaries

is counted as an iteration with a regular rejected proposal where the prior

probability and hence the posterior probability is zero.

Another cross-correlation can be observed between the parameters h0

and cos ι that arises from the fact that h0 can be seen as a scaling factor and

cos ι as a non-linear weighting between the plus and cross polarisation part

of the model. As seen in Eq. 2.4, the plus part is multiplied by the factor

a1 = 1
4
h0(1 + cos2 ι) while the cross part encloses the term a2 = 1

2
h0 cos ι.

The original parameters can be derived from

h0 = 2

(
a1 +

√
a2

1 − a2
2

)
, (2.13)

and

cos ι =
2a2

h0

. (2.14)
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As mentioned above, the prior of the parameters h0 and cos ι are chosen

uniform with joint probability density function

f(h0, cos ι) =

{
(2lh0)

−1, if 0 ≤ h0 < lh0 , − 1 ≤ cos ι ≤ 1,

0, otherwise,
(2.15)

where for this study lh0 = 1 000 is in units of the rms noise. This implies a

joint prior distribution for the parameters a1 and a2 of the form

g(a1, a2) =





(2lh0)
−1, if |a2| ≤ a1 <

4a2
2+l2h0

4lh0
≤ lh0

2

0, otherwise



 |det J | (2.16)

with Jacobian

det J =

(
∂h0

∂a1

∂h0

∂a2
∂(cos ι)
∂a1

∂(cos ι)
∂a2

)

=




2

(
1 + a1√

a21−a22

)
−2 a2√

a21−a2
2

−
a2

 
1+

a1√
a2
1−a2

2

!

“
a1+
√
a2
1−a2

2

”2

a2
2√

a2
1−a2

2

“
a1+
√
a21−a22

”2 + 1

a1+
√
a21−a22




=
2

a1 +
√
a2

1 − a2
2

+
2a1√

a2
1 − a2

2(a1 +
√
a2

1 − a2
2)

=
2√

a2
1 − a2

2

. (2.17)

Since the Jacobian is positive for the above restrictions we can write

g(a1, a2) =





1

lh0

√
a2
1−a22

, if |a2| ≤ a1 <
4a2

2+l2h0

4lh0
≤ lh0

2
,

0, otherwise.
(2.18)

This joint prior density has the shape shown in Fig. 2.2. These re-parameterisations

result in a faster mixing Markov chain. In fact, especially the re-parameterisation

of the frequency parameters is the key of obtaining mixing at all, due to the

extreme accuracy they have to be matched with many narrow modes in the

posterior distribution. Hence, the choice of suitable proposal distributions is
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Legend (for lh0
=1000)

5e-05  or above

3.75e-05

2.5e-05

1.25e-05

0

lh0
/2

−lh0
/2

0
0 lh0

/2
a2

a1

Figure 2.2: Joint prior density of a1 and a2 for a given boundary lh0 for the
parameter h0.

essential, in particular for the frequency parameters.

2.4.3 The choice of proposal distributions

Therefore the parameter set is divided into three blocks to account for the

different coherences between the parameters. Only parameters within a block

are proposed at a time. The blocks under consideration are I : {a1, a2},
II : {fstart, fend}, and III : {ψ, φ0}. One positive side effect here is that the

antenna pattern that is only dependent on the parameter ψ is not needed

to be recalculated when parameters of the first or second block are being

proposed. This speeds up the likelihood calculation significantly.

Considering the three different blocks b ∈ {I, II, III}, usually, a multivari-

ate Normal distribution is utilized for the proposal distributions q1(a
(b)′|a(b)

n )

and q2(a
(b)′′ |a(b)′ ,a

(b)
n ), with means equal to the current state and different

variances depending on the stage. Following Fig. 2.1, larger variances are

chosen for the ‘bold’ first stage steps, while smaller variances are more ben-
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eficial for the ‘timid’ second stage candidates.

For parameter block I the proposals for the parameters a1 and a2 are

sampled independently since they represent scaling factors for the plus and

cross polarisation part, respectively. A bivariate Normal distribution with

diagonal matrix is applied here with large standard deviations at stage 1 and

a 100 times smaller standard deviation for stage 2.

The covariance matrix in block II that is determined by the proposal

variances of fstart and fend and their correlation ρf , indirectly controls the

parameter ∆ḟ . The logical choice is to use equal variances σ2
f for proposals

for fstart and fend with a correlation ρf . Then the variance by which ∆ḟ

is affected is easily derived and given by σ2
∆ḟ

=
8σ2

f

(tend−tstart)2 · (1 − ρf ). This

signifies that a correlation of ρf = 1 implies proposals for fstart and fend that

do not effect ∆ḟ . On the other hand a correlation of ρf = 0 controls fstart

and fend in such a way that the interaction of ∆f and ∆ḟ have a moderate

effect on the frequency course during the observation time, decoupled from

the arbitrary chosen epoch time.

Therefore, a correlation of ρf = 1 is applied at the first stage of the

delayed rejection that just affects and proposes a change in the value of

∆f . This stage is targeted for finding the frequency of the signal with large

proposal variances σ2
f . At the second stage of the delayed rejection, the choice

of ρf = 0 will take care of the interaction between ∆f and ∆ḟ resulting in a

moderate and sensible frequency course over the observation period, affecting

the frequencies values at all time points in equal measure. The proposal

variance σ2
f at this stage has to be chosen rather small.

The proposal variances σ2
f at both stages have to be treated wisely. As

already mentioned at the end of Sec. 2.4.2, the posterior distribution features

very narrow modes caused by the frequency parameters ∆f and ∆ḟ in a large

parameter space that has to be scanned. Thus a simple Normal distribution

is not suitable for a proposal distribution as pilot runs have revealed. Also the

t-distribution is not sufficiently long-tailed for the present problem. Instead,

a proposal distribution with long tails and strong narrow mode is required.

This can easily be achieved by generating a random sample between two

boundaries bl and bh for the standard deviation of the proposal by generating
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a random weight for the weighted geometric mean of these two boundaries.

Hence the standard deviations are sampled according to σ = bwh b
1−w
l where

w ∼ β(a, b) is Beta-distributed with parameters a and b. The resulting

proposal distribution is symmetric with very long tails and a strong narrow

mode. In order to obtain higher standard deviations for the first stage the

choice of w ∼ β(2, 1) (with mean E(w) = 2/3) is adequate while for the

second stage w ∼ β(1, 2) (with mean E(w) = 1/3) samples smaller standard

deviations. These final choices are the result of many test runs and result

in tails that reach out over the entire prior range of the frequency and still

yield proposal modes that are as narrow as the posterior modes that test

runs have revealed.

Finally the proposals for parameter block III have to be considered that

encompass the two parameters {ψ, φ0}. In the first stage of the delayed

rejection method uncorrelated proposals are chosen for the search through

the parameter space. When sampling from the actual posterior mode, pilot

runs show that ψ and φ0 are negatively correlated by the influence of the

polarisation angle ψ on the antenna pattern and the phase φ0 on the phase

evolution given in Eq. 2.2. This can be accounted for in the second stage of

the delayed rejection method by proposals with adapted correlations.

The implementation of the ideas outlined above leads to reasonably good

acceptance rates and hence to a better convergence of the Markov chain.

While during the burn-in period it is mainly the stage 1 candidates that are

accepted, the Markov chain is driven mainly by stage 2 candidates after the

burn-in. But still, the stationary distribution features many distinct modes

that carry the risk of trapping the Markov chain.

Different approaches to encounter this problem have been introduced in

the 1990s. Many approaches are related to the simulated annealing method

[34] which flattens the posterior by raising it to a fractional power. A more

advanced technique is the related Metropolis-Coupled MCMC technique in-

troduced by Geyer [31].
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2.4.4 The Metropolis-Coupled MCMC

Initially [32], a simulated annealing temperature scheme has been applied by

raising the posterior distribution to a power of β = 1/T in order to flatten out

the posterior modes. The degree of flattening is determined by a temperature

T . During a burn-in that usually starts at a higher temperature, say T0, the

temperature T was slowly lowered until the actual posterior distribution was

reached, hoping that the sampler had enough time to find the posterior mode

of highest evidence and interest.

Although longer temperature schemes procure better success the difficulty

is still to find an optimal balance between length of temperature scheme and

success probability for the sampler to find the global posterior maximum

to sample from. The sampler is prone to get trapped in one of the local

maxima of the posterior distribution. Once the scheme has reached the

inverse destination temperature β = 1 that determines the actual posterior

distribution without having found the global posterior maximum it is unlikely

for the sampler to find it subsequently within a finite time period while

abiding at inverse temperature β = 1.

In a different approach, Simulated Tempering [40], the temperature be-

comes a dynamic variable on which a random walk is conducted during the

entire sampling process. The joint distribution of temperature and remain-

ing parameters, however, requires the normalization constants of the distribu-

tions given the temperature. Other approaches like the Tempered Transition

method [41] or the Metropolis-Coupled chain (a.k.a. parallel tempering al-

gorithm) [31] do not need normalisation constants. The latter approach has

been advocated in the astrophysical literature [42, 43] and was implemented

here, as it yielded the best results.

In a Metropolis-Coupled chain [31], sampling is done from k different dis-

tributions pi(ai|d), i ∈ {1, . . . , k} in parallel. The real posterior distribution

of interest is denoted by p1(a1|d) with parameter vector a1, whereas the

distributions of higher orders i > 1 are chosen in such way that the sampling

process is facilitated. Usually, different temperature coefficients are applied

[44] that flatten out the posterior modes. During the sampling from the
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k distributions, from time to time, attempts are made to swap the states

of a randomly chosen pair of distributions. The acceptance probability for

swapping the parameters of two different posterior distributions pi(ai|d) and

pj(aj|d), i 6= j is given by [31]

αi↔j = min

(
1,
pi(aj|d)pj(ai|d)

pi(ai|d)pj(aj|d)

)
. (2.19)

The posterior in the present context can be regarded as a canonical dis-

tribution

p(a|d) ∝ p(a)p(d|a) = p(a) exp
[−βχ2(a)

]
(2.20)

with inverse temperature β = 0.5. For lower values of β, the posterior modes

are flattened out and the sampling process is eased. A temperature scheme

for a Metropolis-Coupled chain uses k different values βi, i ∈ {1, . . . , k},
while the actual posterior distribution is represented by p(a1|d) with inverse

temperature β1 = 0.5. The prior distribution is deliberately not involved

in the temperature scheme as the prior information at high temperatures

is preserved. The transformed posterior in Eq. 2.20 converges to the prior

distribution for β → 0 whereas a temperature scheme that would be applied

to the entire posterior distribution would merely yield a uniform distribution.

Using Eq. 2.19, the acceptance probability for swapping the parameters

of two distribution pi(ai|d) and pj(aj|d), i 6= j is given by [31]

αi↔j(βi, βj,ai,aj) = min (1, exp [(βj − βi) · · · (2.21)

· · · (χ2(aj)− χ2(ai))
])

where the prior distributions cancel out as they are not influenced by the

temperature.

The inverse temperatures βi, i ∈ 1, . . . , k, including their number k, are

among the unknown parameters that have to be determined prior to each

simulation. It is notable that there are other parameters. The choice of pa-

rameters that determine the proposal distributions for the original posterior

distribution was addressed in Sec. 2.4.3. The adaptation to the annealed
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posteriors is accomplished automatically by the use of the delayed rejection

method that was explained in Sec. 2.4.1. Simulations from posterior distri-

butions at higher annealing temperatures have more stage 1 acceptance rates

than those at cooler temperatures.

The determination of the inverse temperatures requires the assessment of

the (unnormalised) posterior distribution p(a|d) ∝ p(a)p(d|a) and the range

of values it can attain. A coarse assessment for the purpose of deriving an

appropriate temperature range is described below by considering that the

critical part of the posterior distribution that influences the convergence is

the likelihood.

There are basically two boundaries of interest for the log-likelihood and

therefore χ2(a) which allow for assessing its range. The expected lower

boundary that can be reached arises purely from the complex noise εk of the

signal, hence, from a perfectly fitted model and is estimated by two sums

(over real and imaginary part) χ2(a) =
∑

k

∣∣∣ εkσk

∣∣∣
2

=
∑

k

(
εk,re

σk

)2

+
∑

k

(
εk,im

σk

)2

.

It has the expected value

b̂
χ2,fit = E

(
χ2(a)

)
= 2n. (2.22)

An approximation of the 95%-confidence interval of the chi-square level

for a perfectly fitted model can be derived using a χ2-distribution. The

Wilson-Hilferty approximation [45] of a 95%-confidence interval with 2n de-

grees of freedom is given by

CIfit,95%
=


2n

(
1− 1

9n
− 1.96

√
1

9n

)3

, 2n

(
1− 1

9n
+ 1.96

√
1

9n

)3



(2.23)

as an approximate 95%-confidence range of the lower chi-square level.

The second boundary of interest is approached during the burn-in when

the frequency parameters have not yet been found. The only way to max-

imise the likelihood (and minimise χ2(a)) at this stage is by reducing the

value of h0. This is intuitively clear because when we assume the frequency

parameters to be fixed at an incorrect frequency, then the conditional pos-
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terior for the amplitude of a signal is zero as there is no signal at the wrong

frequency. This is the case even for small aberrations from the true frequency

values if the likelihood is based on large data samples. In Sec. 2.5.2 we will

see that the assumption of a zero-amplitude signal or equivalently of absence

of a signal will help in deriving a limit for a signal’s amplitude required for

its detection.

The above mentioned phenomenon forces the algorithm to keep h0 small

while χ2(a) stays on a certain level until the frequency parameters converge

to the true values, facilitating the chance that the remaining parameters

converge. This lower boundary of χ2(a) for a non-fitted model is obtained

by setting the model parameter h0 to zero and has the form

b̂
χ2,not-fit =

∑

k

∣∣∣∣
Bk

σk

∣∣∣∣
2

. (2.24)

The difference of the two levels derived above is roughly the barrier to

cross when stepping from a point in parameter space that maximises the

likelihood to a point in parameter space where no signal is postulated (h0 =

0). This, by experience, seems to be the best natural guesswork of the MCMC

sampler as long as the frequency parameters are not consistent with the true

values. This assessment is essential for obtaining a sensible temperature pool

for the parallel tempering scheme. An appropriate highest temperature level

is therefore assessed by regarding the acceptance probability of a fictive step

from χ2-level b̂
χ2,fit to b̂

χ2,not-fit given by

αfit→not-fit = min
(
1, exp[−β · (b̂

χ2,not-fit − b̂
χ2,fit)]

)
. (2.25)

A suitable acceptance probability has to be chosen at a given temperature

β that guarantees an occasional acceptance to jump the difference of the two

levels. For an acceptance probability that yields an expected acceptance ev-

ery nth step it is αfit→not-fit = 1/n which yields an inverse hot temperature

of
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βk = 0.5 log n/
(
b̂
χ2,not-fit − b̂

χ2,fit

)
. (2.26)

A sensible choice for n is 10 000, as it guarantees an occasional escape

from an alleged mode during a typical run of hundreds of thousands of iter-

ations for the chain that runs at the highest temperature βk. The remaining

unknown left to be determined is k, the number of chains needed to cover

the inverse temperature range from β1 = 0.5 to βk. It depends on the uncer-

tainty in the noise level of the signal which is represented by the confidence

interval range ∆CIfit,95%
of Eq. 2.23 as it reflects the contribution of the

noise to potentially jump a certain difference in the chisquare levels. The

ratio between b̂
χ2,non-fit− b̂χ2,fit and ∆CIfit,95%

therefore affects the number

of chains needed to cover the inverse temperature range and determines

k ≈
b̂
χ2,non-fit − b̂

χ2,fit
∆CIfit,95%

. (2.27)

The inverse temperature scheme to cover the range of [β1, βk] is given

by [46] βi = (1 + λ · (i − 1))/2, i ∈ {1, . . . , k} and λ = (2βk − 1)/(k − 1).

The motivation of using this linearly spaced grid arose from the observations

made in pilot runs that the sampler is prone to get stuck at log-likelihood

levels that are rather linearly spaced. The inverse temperature is in turn a

multiplicative factor to the log-likelihood (Eq. 2.20). The linear spacing can

be seen later in Fig. 2.3 of Sec. 2.5.1.

Nonetheless, care must be taken in the presence of weak signals. In this

case, the problem emerges that b̂
χ2,fit can fall into the confidence interval

CIfit,95%
. This indicates an eventual futile retrieval of the parameters from

the signal and requires special consideration. A discussion of the issue of

weak signals will follow in Sec. 2.5.2.
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2.5 Results with simulated signals

2.5.1 Simulation results for strong signals

Synthesised fictitious data has been used and passed through the six pa-

rameter MCMC routine. The artificial signals were embedded within white

and normally distributed noise. The ability of the MCMC algorithm to

successfully find the signal and estimate the six parameters was demon-

strated, and is presented below. The artificial signals s(t) were synthe-

sised assuming a source at right ascension 5h 35m 28.03s and declination

−69◦ 16′ 11.79′′, as would be seen by the LIGO-Hanford interferometer. The

signals were then added to noise; a signal at 300Hz has been assumed

and a corresponding noise spectral density of at that frequency of h(f) =

1 × 10−22 Hz−1/2. The amplitude of the signal used in the test runs was

h0 = 2.0 × 10−22. The two data sets correspond to observation periods

OP1 : [2003− 04− 03 04 : 19 : 50UTC− 2003− 04− 13 04 : 18 : 50UTC] and

OP2 : [2003 − 04 − 03 04 : 19 : 50UTC − 2003 − 05 − 14 20 : 18 : 50UTC]

over 10 days and 41.7 days respectively. At a sample rate of one sample per

minute (which was the rate used for the LIGO/GEO S1 analysis described

in [24]) this entails 14 400 and 60 000 samples, respectively.

Markov chains have been simulated for example signals with the true

six parameters: h0 = 2.0 × 10−22, ψ = 0.35, φ0 = 0.22 (both in radians),

cos ι = 0.5, ∆f = 2.0 × 10−3 Hz and ∆ḟ = −1.2 × 10−10 Hz s−1. Following

Eq. 2.27, the data set over observation period OP1 required three Metropolis-

Coupled Markov chains whereas for observation period OP2, six chains were

needed. For a better understanding, the log-posterior values of the (un-

normalised) posterior distribution are drawn in Fig. 2.3 for all Metropolis-

Coupled chains. This should demonstrate the ability of the parallel chains

to improve mixing. The chains are coloured by their intrinsic temperature.

The colour scheme goes from red to blue. The colder a chain, the more close

it is to the real posterior. Black indicates the true posterior distribution at

inverse temperature β = 0.5. This underpins the idea of the Metropolis-

Coupled MCMC as by means of the hotter chains the entire ensemble can
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Figure 2.3: Log-posterior values for all Metropolis-Coupled chains. The
upper and lower plot show simulations over observation periods OP1 and OP2

respectively. These are the true log posterior values and not the tempered
values in order to maintain comparability.

hardly get trapped in a local maxima when the temperature scheme is cho-

sen adequately. The different lower boundaries for the fitted model and the

non-fitted model that were point of discussion in Sec. 2.4.4 are reflected in

the hottest and coldest chain.

Eq. 2.27 specifies a vague lower limit for the number of chains that are

required in order to prevent the sampler from getting trapped in local pos-

terior modes. The interactions between the chains are rather small but the
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hotter chains fulfil the purpose of passing over information of other parts of

the parameter space to the colder chains during the burn-in. Please note

that some interactions can not be seen in Fig. 2.3 due to thinning out that

will be discussed below.

An unfortunate feature of the Metropolis Coupled MCMC is that only the

samples of the actual posterior distribution at inverse temperature β = 0.5

can be utilised. A larger number of chains improves the interactions but

produces more wasted samples after the Markov chain of the true posterior

distribution has converged. One way out of this could be to sample more

often from the actual posterior distribution but this in turn discriminates

the hotter chains that are important during the burn-in.

Fig. 2.4 and Fig. 2.5 display the MCMC generated posterior probability

distribution functions (pdfs) for those example signals. The first 33 000 iter-

ations of the chain were discarded as burn-in. Short-term correlations in the

chain were eliminated by ‘thinning’ the remaining terms; every 100th item

was kept in the chain. This choice is rather arbitrary but is based on the fact

that the sampler yields acceptance rates of around 20%. Therefore, there are,

on average, 5 acceptances within 100 iterations. The autocorrelation of lag

100, after the burn-in, was about 1/4 in all runs. The fact that the sampler

only outputs every 100 iteration helps reducing the memory requirement of

simulations over hundreds of thousands of iterations with multiple chains.

The bandwidth of the Gaussian kernel density estimator was chosen ac-

cording to Silverman [47] as 0.9 times the minimum of the standard deviation

and the interquartile range divided by 1.34 times the sample size to the neg-

ative one-fifth power.

The following tables Tab. 2.1 and Tab. 2.2 show the median values,

marginal 95% posterior probability intervals and MCMC standard errors

for the two data sets. The MCMC standard error gives a measure of how

much the sample mean, as a point estimate of the true posterior mean,

changes over repeated MCMC simulations. This precision depends on the

number of iterations and the degree of autocorrelation within the sample.

Here, Geweke’s [48] method has been applied, often referred to as “time-

series standard error” which is based on estimating the spectral density. The
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Figure 2.4: MCMC estimates of the posterior pdf (kernel density) for the
six parameters h0, ψ, φ0, cos ι, ∆f and ∆ḟ for the data set with 14 400
samples. This synthesised signal had true parameters of: h0 = 2.0 × 10−22,
ψ = 0.35, φ0 = 0.22 (both in radians), cos ι = 0.5, ∆f = 2.0 × 10−3 Hz and
∆ḟ = −1.2× 10−10 Hz s−1. The dashed lines show the true parameter values
and the dotted lines in the trace plots indicate the end of the burn-in.
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Figure 2.5: MCMC estimates of the posterior pdf (kernel density) for the
six parameters h0, ψ, φ0, cos ι, ∆f and ∆ḟ for the data set with 60 000
samples. This synthesised signal had true parameters of: h0 = 2.0 × 10−22,
ψ = 0.35, φ0 = 0.22 (both in radians), cos ι = 0.5, ∆f = 2.0 × 10−3 Hz and
∆ḟ = −1.2× 10−10 Hz s−1. The dashed lines show the true parameter values
and the dotted lines in the trace plots indicate the end of the burn-in.
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interested reader should note the paper by Geyer [49] who develops improved

window-estimates for the MCMC standard error by calculating the ‘optimal’

bandwidth using specific properties of the autocovariances of a Markov chain.

Table 2.1: Median values obtained by MCMC, 95% posterior probability
intervals (p.c.i.) and MCMC standard errors for the data set of length 14 400
bins.

Para- True Posterior 95% posterior proba- MCMC standard
meter value median bility intervals error

h0 2× 10−22 1.990× 10−22 [1.784× 10−22, 2.3355× 10−25

2.171× 10−22]

cos ι 0.5 0.499 [0.440, 0.582] 8.53× 10−4

φ0 0.22 0.329 [0.130, 0.535] 2.7× 10−3

ψ 0.35 0.288 [0.190, 0.383] 1.04× 10−3

∆f 0.002 1.9999814× 10−3 [1.9999556× 10−3, 2.57× 10−10

2.0000074× 10−3]

∆ḟ −1.2× 10−10 −1.2003623× 10−10 [−1.2028017× 10−10, 5.4394× 10−15

−1.1979087× 10−10]

Table 2.2: Median values obtained by MCMC, 95% posterior probability
intervals and MCMC standard errors for the data set of length 60 000 bins.

Para- True Posterior 95% posterior proba- MCMC standard
meter value median bility intervals error

h0 2× 10−22 1.993× 10−22 [1.897× 10−22, 1.1504× 10−25

2.080× 10−22]

cos ι 0.5 0.495 [0.465, 0.530] 4.51× 10−4

φ0 0.22 0.240 [0.138, 0.344] 1.44× 10−3

ψ 0.35 0.327 [0.278, 0.374] 0.554× 10−3

∆f 0.002 2.0000008× 10−3 [1.9999909× 10−3, 2.6774× 10−10

2.0000104× 10−3]

∆ḟ −1.2× 10−10 −1.199981× 10−10 [−1.200046× 10−10, 1.8096× 10−16

−1.1999129× 10−10]

As mentioned in Sec. 2.4.3 correlations occur between the parameters of

block III : {ψ, φ0}. Two dimensional plots have been compiled to gain insight

into the correlation of the parameter pairs {h0, cos ι} and {ψ, φ0}. This is

shown in Fig. 2.6. The negative correlation ρψ,φ0 = −0.69 is revealed between

the polarisation angle ψ and the phase φ0 as well as the expectedly negative
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Figure 2.6: Joint 2-D posterior plots for two different parameter pairs
{h0, cos ι} and {φ0, ψ} of the simulation over observation period OP1. The
crosses indicate the true parameter values.

correlation ρh0,cos ι = −0.92 between h0 and cos ι. The conjunct influence

of the two frequency parameters ∆f and ∆ḟ on the phase evolution does

not lead to a correlation of the samples of the target posterior mode. The

many weaker posterior modes in its vicinity that attract to the target pos-

terior mode are however better accounted for when considering the physical

coherence that lead to the re-parametrisation in Sec. 2.4.2.

The two runs in tables Tab. 2.1 and Tab. 2.2 and also in Fig. 2.4 and

Fig. 2.5 only differ in the length of the data set that was given. They both

reveal that the frequency ∆f and especially its first derivative ∆ḟ have

to be found very accurately before convergence is achieved. However, the

most striking feature between those two results is the accuracy improvement

between runs with 14 400 and 60 000 bins (4.167× the data) based on the

same parameters. The following table Tab. 2.3 reveals the ratios between the

individual ranges of the 95% posterior probability intervals of the two runs.

While the accuracy of the estimates of the first four parameters improve

by roughly 2.0 when involving 4.167 times the data, the accuracy of the

estimate for parameters ∆f and ∆ḟ yielded around 2.7 and 37 times better

results, respectively. The reason for this is found in the fact that ∆ḟ is linked
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Table 2.3: Ratios for all six parameters of the 95% posterior probability
interval ranges between Tab. 2.1 and Tab. 2.2. Both runs are based on the
same signals but the second (Tab. 2.2) involves 4.167× the data.

Parameter Ratio of 95% poste-
rior probability inter-
val ranges

h0 2.12
cos ι 2.17
φ0 1.96
ψ 2.02
∆f 2.66

∆ḟ 36.77

to the phase evolution Eq. 2.2 by the squared time and any minor aberration

in the frequency derivative is highly penalised by the likelihood.

The simulations made above have shown that for the constant noise level

used here (σ = 1.0 × 10−22) the successful detection of signals with an am-

plitude h0 ≥ 2.0× 10−22 and 10 days of data are straightforward. The next

subsection therefore deals with the issue of weak signal detection with respect

to the noise level and the amount of data collected. Especially the behaviour

of the MCMC sampler in cases of a small signal-to-noise ratio will be exam-

ined and the question discussed for what signal-to-noise ratios a detection is

still possible.

2.5.2 Simulation results for weak signals

MCMC sampling in presence of a low signal-to-noise ratio

In the work by Christensen et al. [10] with just four parameters (h0, ψ,

φ0, and cos ι), the confident detection of signals with h0/σ ' 0.1 could be

achieved with 14 400 bins of data. A look at the posterior distribution of h0

reveals whether a signal is likely to be present in the data or not. In particular

the comprehension of the new frequency parameters complicates the search

due to the corresponding increase in the size of the parameter space. In

the previous work [32] of this research a simple simulated annealing schedule
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was used and the detection of signals h0/σ / 0.5 with 14 400 data points was

not possible. Detecting a signal by the use of an MCMC sampler implies

discovering the posterior mode of the frequency parameters. No inference on

any parameter can be drawn unless the chain is consistent enough with the

true frequency parameters, and only then allowing the convergence of the

remaining parameters.

Herein lies the problem as the simulations above reveal that just a slight

inconsistency from the true frequency parameters yields a posterior proba-

bility that suggests no signal at all. In Bayesian terms, the range of values

for ∆f and especially ∆ḟ that are consistent with the posterior probability

is extremely narrow and in order to draw conclusions from the output of the

MCMC sampler it needs to identify that narrow range until we can speak of

convergence. If the signal is strong, the MCMC sampler is forced to stay in

a particular posterior mode due to its overwhelming evidence.

Things change when the evidence for a signal in the data fades. With

diminishing signal-to-noise ratio in the data, the influence of the likelihood

in the posterior fades and the prior gains more importance. However, the

range of values for the frequency parameters that are consistent with the

posterior probability ascribed to the likelihood are still narrow but with

its vanishing probability mass the prior probability gains dominance. This

increasing dominance of the prior binds the MCMC sampler to sample from

a more spread out posterior distribution and not just from a narrow mode

influenced by the likelihood that contains the actual information about a

potential signal in the data. Rather, the MCMC sampler is bound to sample

from posterior modes that are influenced by a faint likelihood as well as other

parts of the posterior influenced by the prior.

This is a problem as it usually requires thousands of iterations to target

the narrow range of frequency values ∆f and ∆ḟ that are consistent with the

evidence of a signal. It is clear that a straightforward detection by a single

burn-in manner is impeded when the acceptance probability of leaving the

posterior mode ascribed to the evidence of a signal does not allow the sampler

to dedicate a viable sampling period. In addition, the MCMC sampler can

not exploit the situation to find the strongest posterior mode influenced



2.5. RESULTS WITH SIMULATED SIGNALS 33

by the likelihood by approaching it in a stepwise manner over the weaker

posterior modes in its vicinity. Those provide a rough but yet somewhat

helpful attraction area towards the strongest posterior mode and are even

more faint in the presence of a weak signal.

The idea of multiple Metropolis-Coupled chains provides a remedy here.

As already stated in Sec. 2.4.4, an inverse temperature scheme is chosen to

cover the range of [β1, βk] determined by Eq. 2.26 and Eq. 2.27. In the pres-

ence of weak signals, however, b̂
χ2,not-fit given by Eq. 2.24 can fall into the

confidence interval CIfit,95%
. If this happens it serves as a reliable indicator

for a weak signal requiring an exceptional tempering scheme to account for

the issues mentioned above.

Eq. 2.27 would normally suggest to just run a single chain due to the

strong noise level, intrinsically preventing the Markov chain from being

trapped. But in this case, a larger number of chains would indeed make

more sense as multiple parallel chains sustain a memory about the posterior

with its numerous modes. This helps to improve the mixing by helping to

repeatedly retrieve those posterior modes which provide insufficient evidence

to be sampled from continuously. Since this situation provides no helpful in-

formation that would allow to assess the number of chains required, a fixed

number of chains must be chosen. A number k = 10 has proven to be quite

efficient but can be increased if enough computing power is available. Fol-

lowing Eq. 2.26, the inverse temperature βk is determined by ∆CIfit,95%
and

has the form

βk = 0.5 log n/∆CIfit,95%
. (2.28)

Simulation results of signals with weak signal-to-noise ratio

A run was conducted on a data set containing the synthesised signal of a

pulsar as would be observed during observation period OP1 at the LIGO

interferometer, with all true parameters (except h0) having the same values

as in 2.1. The data set was created assuming a pulsar with amplitude h0 =

0.3 × 10−22 embedded within noise σ = 10−22 which yields a signal-to-noise

ratio of h0/σ = 0.3 which, from experience, exhibits a real challenge for the
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MCMC sampler.

Trace plots Posterior density plots

0 100 200 300 4000e
+

00
3e

−
23

iteration (x1000)

h 0

0e+00 1e−23 2e−23 3e−23 4e−23 5e−23 6e−230e
+

00
2e

+
22

h0

de
ns

ity

| ||| | || ||| | || |||| || | | || || ||| || | || ||| | | || | |||| ||||| | ||| || | |||| ||| | ||| | || |||| |||| | | ||| | | ||| | || ||| | || || || |||| || ||| | || || || || ||| | || || | ||| || || || || ||| | || || || ||| || || || || ||| ||| ||| |||| || || | || || || || || || || || ||| || | ||| || || || | ||| ||| | |||| || || || || || || | || |||| | || | ||| ||| ||||| | | | |||| || |||| | ||| || || || | || ||| || ||| | | | | || | ||| ||| | || | |||| ||| | ||| | ||| || | || | || || |||| |||| | || ||| | | || | || || |||| || || | |||| | | || || ||| || || ||| | | || || | ||| | || | ||| || || |||| ||| | || | ||| || || |||| || |||| |||||| ||| ||| ||| | ||| | || ||| | || | | || | |||| | || || | || |||| | || || | || ||||| || || || || | | |||| || || | || | || || || || | |||| |||| || | ||| ||| | | || | ||| | ||| | || || || | | | | || | || || | || ||| | || || | ||| ||| | | | | | ||||| || || || | || || | || || ||| | || | || | |||| |||| || ||| || ||||| | || ||| || | ||| || || || | | || |||| || ||| | ||| ||| || | ||| | || || || | |||||| | ||| | ||| || | | || ||| | || || | ||| | || | | | ||| || || | ||| ||| || | || || ||| ||| || |||| || | || | | || ||| | || | | || || | |||| || || || | ||| | |||| | | || || | || ||| | ||| || ||| ||| || || ||| || | | || | | ||| || | | || || || || || ||| || || || | || ||| ||| || | |

0 100 200 300 400

−
0.

5
0.

5
1.

0

iteration (x1000)

co
s 

ι

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

cos ι
de

ns
ity

|| | ||| || | ||| || |||| | || || | || ||| ||| || || || | ||| || || ||| | || | ||||| || || | |||| ||| || | | || || ||| | | |||| || || || | ||| || || || | | || || | ||| |||| || || | ||| || ||| | || || || ||| | | ||| ||| | || | ||||| | || | || || | || | ||| | || || || | || || || ||| | ||| || | | || || | | || || || || | | ||| | ||| | || || || || || || || || | || ||| ||| ||| || | | | |||||| | || | || | || || | ||| || | || | || || | || |||| ||| ||| | || | ||| || | || || || || |||| | ||| || | || || || || || | | || | || | |||| ||| || || || || ||| ||| | | ||||| || | |||| || | || || | | ||| | ||| ||| || | || ||| || | || ||| || ||||| ||| | ||||| | || | | | ||| | || | || | || | |||| || | || | ||||| || | ||| | ||| || || | || | | ||||| || || || | || || || | ||| | ||| || || | ||| || | || || || | ||| | | || ||| | || | |||| |||| |||| ||| || ||| |||| | || | || ||| || | ||| || ||| | || | | ||| || | || | || || || ||| ||||| || || | ||| | || || | | | || | || | || | || || | | || || || | || ||| | || || || |||| ||| | || || |||| | || | || ||| | ||| || || ||||| | | ||| || || | || |||| || | || | || || | | ||| || || || ||| | ||| | ||| | | ||| || ||| ||| || || | | || |||| |||| || | ||| | || || || || | |||| || || | | ||| | | | ||| || ||| || | ||| || | || | || ||| || || | || || ||| || | | || ||||| | | | || || || | ||| | || ||||| | || | ||| ||

iteration (x1000)

φ 0
−

π
−

π/
2

0
π/

2

0 100 200 300 400

φ0

de
ns

ity

||| | || ||| || || ||| ||| | ||| || | ||| | || ||| | ||| || || ||| | || || | | || | | || ||| |||| || ||| ||| | ||| | || | | || | || |||| | || || | || | | |||| | || | |||| || |||| | | ||| |||| |||| | || |||| | | || || || || | ||| | || || | || | | | || || | || | ||||| | ||| ||| || ||||| ||| || || | | | || || | ||| | || || || | | | || || || || | || | ||| | || | || | || ||| | | || || | | || || ||| | || |||| | | || || || | || | | || | ||| || |||| |||| | || || | | || | |||| ||| | ||| || | || | | | || | | ||| || ||| | |||||| |||| ||| |||| || || | ||||| ||| || ||||| | ||| | || ||| || | ||| |||| | ||| | | | | || || || ||| || ||| | |||| | | || || | | | ||| | |||| || ||| || || ||| | | | || | | ||| | |||| || || | ||| | || ||| ||| | ||| | ||| || | | | || || | || |||| | || | || ||| | |||| || || |||| || ||| | || ||| | ||| ||||| | ||| | || || | ||||| ||| || || || | | ||| | |||| || ||| |||| | || | ||| | || || || |||||| | || ||| | | | || || ||||| |||| | || |||| || | || || || | ||| | | |||||| | ||| ||||| | || ||| | || | || | || | ||| || | | | ||| | || || || | || || | || || | || | | | ||| || ||| | || | || |||| || | ||||| || || |||| || || ||| ||| || ||| || | ||| | ||| ||| | |||| || || | ||||| | ||| | || | || || || || ||| | | | | || || || | | |||| | | | ||| || || || ||| | | || | || || | || | | |||| || || | | | | || ||| ||| || || || || || | | ||| ||| | || | || | || || | ||| ||| | | ||| ||| | ||| | | | ||| || | ||| | || ||| | | | || ||| ||||| ||||| || || | | | || | | ||| || | | ||| | || || || | ||| | || | | || ||| || ||| || || || || || | | || | | | |||| |||| | || || | | || || || || || | | || | | || || || ||| || ||| |||| | ||| |||| ||| || |||| | ||| | || || | |||| ||| | | || || | || ||| | |||| | | || || | ||| ||| || ||| || ||| | || ||| ||| | |||| || ||| |||| ||| | || | || || ||||| || || || | || | || || ||| | || |||| | | ||| | | |||| || || ||| ||| | | | || || | | ||| | ||| ||| | || || ||| | |||| | ||| ||| || || | ||| | ||||| | || || | | || ||| |||| | |||| | | || ||| | ||||| | ||| ||| ||| | | | ||| | | || | || || || | ||| || || || | || ||| ||| || || |||| || | || ||| || | || | ||| | |||| | ||||| || |||| || || || |||| | || | | | | || || ||||| | ||| || | ||| ||

0 π/2 π 3π/2 2π

0.
0

0.
2

0.
4

0.
6

iteration (x1000)

ψ

0 100 200 300 400−
π/

4
−

π/
8

0
π/

8
π/

4

ψ

de
ns

ity

−π/4 −π/8 0 π/8 π/4

0.
2

0.
6

1.
0

1.
4

0 100 200 300 400

−
0.

00
5

0.
00

5

iteration (x1000)

∆f

−0.005 0.000 0.0050e
+

00
6e

+
06

∆f

de
ns

ity

||||||||||||||||||||||| |||||||||||| |||||||| ||||| || |||||||||||||||||||||||||||||||||| ||||| ||||||||||||||||||||||||||||||||||||||||||| |||||||| |||||||||||||||| |||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| ||||||| ||||| ||| |||||||| |||||||||||||||||||||||||||| |||||||||| ||||||| |||||||||||||||||||||||||||||||||||||| |||||||||||||||||||| ||||||||||||| |||||||| ||| ||| |||||||||||||||||||||||||||||||||||||||||||| ||||| ||||||||||| ||||||||||||||||||| |||||||||||||||||||| ||||||| || || ||||||| |||||| |||||||||||| ||||||| ||||| ||| || || |||||| || |||||||||||| ||||||| |||||||| ||||| ||||| ||||||||| || || ||||| || ||||||||||||| |||||||||||| ||||| ||||||||||||| ||||||||||| ||||||||||||||||||||| ||||| |||||| ||||||| ||||||||||| ||| |||||||| |||||||||| ||| || |||||||||| |||| ||| | ||| |||||||| |||||||||||||||||| |||| || ||| |||||| ||||||||| | |||||||||||| ||||||||||| |||| ||||||||| |||||||||||||| |||

0 100 200 300 400−
1e

−
09

0e
+

00
1e

−
09

iteration (x1000)

∆f⋅

−1e−09 −5e−10 0e+00 5e−10 1e−090e
+

00
6e

+
11

∆f
⋅

de
ns

ity

||||||||||||||||||||||| ||||| |||||||| || ||||| |||||| ||||||||||||||||||||||||||||||||||| |||| ||||||||||||||||||||||| ||||||||||||||||||||| ||| |||| ||||||||||| |||||| |||||||||||||||||||||||||||||||||||| ||||||| ||||| ||||| ||||||| |||| ||||| |||| |||||||| |||||||||||| || || |||||||||| ||||| ||||||| || || ||||| ||||||||||| ||||| |||||||||||||| ||||||| ||| ||||| || |||||||||||||| ||| |||||| |||||| ||||||| |||||||| |||||||||| || ||| ||||||||||| |||| |||| ||| ||| | ||||||||||||| |||||| ||||||| |||||||||| || ||| | ||||||| ||||||||| ||| |||||||||||||||||| |||| |||||||||| ||| || || ||||| || || ||||||| |||||| |||||||||||| ||||||| ||||| ||| || || ||| ||| || || || |||||||| ||||||| ||| ||||| ||||| || ||| |||| ||||| || || ||||| ||| || ||||||| || |||||||||||| |||| || || || ||||||||||| |||||| ||| ||||||||||||||| |||||| |||| |||||| |||||||| ||||| |||||| ||| |||||||| |||||| |||| ||| || ||||| ||||| || || |||| ||| |||||||| ||||||||||||||||| ||||| || ||| |||||| |||| |||| || ||||||||||| ||||||||||| ||||| ||||||| | |||||| ||||||| || |||

Figure 2.7: MCMC estimates of the posterior pdf (kernel density) for the
six parameters h0, ψ, φ0, cos ι, ∆f and ∆ḟ of a weak signal for a data
set with 14 400 samples. This synthesised signal had true parameters of:
h0 = 0.30 × 10−22, ψ = 0.35, φ0 = 0.22 (both in radians), cos ι = 0.5,
∆f = 2.0 × 10−3 Hz and ∆ḟ = −1.2 × 10−10 Hz s−1. The dashed lines show
the true parameter values and the dotted lines in the trace plots indicate the
end of the burn-in.
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Table 2.4: MCMC yielded median values, 95% posterior probability intervals
and MCMC standard errors for the data set of length 14 400 bins.

Para- True Posterior 95% posterior proba- MCMC standard
meter value median bility intervals error

h0 0.3× 10−22 0.289× 10−22 [0.081× 10−22, 2.3305× 10−25

0.476× 10−22]

cos ι 0.5 0.431 [−0.404, 0.961] 77.9× 10−4

φ0 0.22 0.687 [−2.356, 2.229] 41.8× 10−3

ψ 0.35 0.006 [−0.731, 0.667] 14.4× 10−3

∆f 0.002 1.9998411× 10−3 [−7.0408822× 10−3, 1.122100× 10−4

3.8576193× 10−3]

∆ḟ −1.2× 10−10 −1.2026692× 10−10 [−9.3092961× 10−10, 1.24780× 10−11

7.4088244× 10−10]

The six parameters h0, cos ι, ψ, φ0, ∆f , and ∆ḟ are displayed in Fig. 2.7

and Tab. 2.4. It is demonstrated that the new MCMC sampler obtains sen-

sible estimates and that it succeeded in retrieving the frequency parameters.

However, it becomes apparent that it is forced to sample occasionally from

other areas of the prior range due to the weak attraction of the posterior

mode influenced by the likelihood, i.e. data.

For this simulation 10 Metropolis-Coupled Markov chains were main-

tained which are shown in Fig. 2.8. On the lines of Fig. 2.3, colour grada-

tions between red and blue indicate the different temperatures of the Markov

chains whereas black is the choice for the Markov chain that simulates from

the actual posterior distribution. In Fig. 2.8 the brisk interactions between

the 10 chains become clear due to the fact that the target posterior mode

is indistinct. The two distinct boundaries for fitted and non-fitted model as

discussed in Sec.2.4.4 are still apparent throughout this simulation but are

very close due to the low evidence of a signal in the data.

For an injected signal of h0/σ = 0.25, with the otherwise same true pa-

rameter values as used in the examples above, the parameter values could

not be retrieved within 750 000 iterations. Fig. 2.9 shows the very low evi-

dence over the course of the log-posterior values for all 10 Metropolis-Coupled

chains. The difference between the two levels for a fitted and non-fitted model



36 CHAPTER 2. PARAMETER ESTIMATION FOR GW-SIGNALS

0e+00 1e+05 2e+05 3e+05 4e+05

−
14

80
0

−
14

70
0

−
14

60
0

−
14

50
0

−
14

40
0

log−posterior values of 10 Metropolis−Coupled chains

iteration

lo
g 

po
st

er
io

r 
va

lu
e

β=0.5 β=0.44553 β=0.39106 β=0.3366 β=0.28213 β=0.22766 β=0.17319 β=0.11873 β=0.06426 β=0.00979

Figure 2.8: Log-posterior values for all Metropolis-Coupled chain for the
simulation results displayed in Fig. 2.7. These are the true log posterior
values and not the tempered values in order to maintain comparability.
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is too small to be maintained throughout the course of the Markov chain.

The obvious question is how can the correctness of estimates be assessed

when a signal in that data has such a faint evidence and how can we assess

from the posterior MCMC output whether a signal is faint.

In Fig. 2.10 trace plots are compiled for the interesting four of the six

parameters h0, cos ι, ∆f , and ∆ḟ . It becomes evident that no convergence

could be achieved within 750 000 iterations. This demonstrates the difficulty

Trace plots
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Figure 2.10: Trace plots for the four parameters of a pulsar which are of
main interest (h0, cos ι, ∆f and ∆ḟ). This simulation is based on the data
set with 14 400 samples (OP1). This synthesised signal had true parameters
of: h0 = 0.25 × 10−22, ψ = 0.35, φ0 = 0.22 (both in radians), cos ι = 0.5,
∆f = 2.0 × 10−3 Hz and ∆ḟ = −1.2 × 10−10 Hz s−1. The dashed lines show
the true parameter values.

of estimating parameters of signals with very low signal-to-noise ratios. The

Markov chain jumps between modes and, in the last part, even comes very

close to the true frequency parameter but narrowly misses its first derivative.

The dilemma is that if the chain had stopped at the 400 000th iteration and
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if a burn-in of 220 000 had been assumed, the chain could have passed as to

have converged to an alleged signal. The problem that arises in the presence

of weak signals is that the Markov chain has to be run for a much longer

time in order to be sure whether an alleged signal is an actual signal.

2.6 The detection of weak signals

2.6.1 The problem with assessing the signal detection

from MCMC outputs

The approach for a signal detection involves the idea of model comparison.

All the calculations made above are based on a model that postulates a pulsar

signal within the data with its six parameters, expressed in Eq. 2.5. In the

following it is referred to as M1. However, we also consider model M0, in

which we postulate y(tk; a) = 0 in Eq. 2.5. This is equivalent to postulating

mere noise within the data and the model comprises no parameters at all,

leading to a uniform posterior distribution consisting of a constant likelihood

p(d|a) ∝ exp

[−χ2(a)

2

]
with χ2(a) =

∑

k

∣∣∣∣
Bk

σk

∣∣∣∣
2

. (2.29)

only depending on the observed data, as a is just an empty set within the

scope of M0.

Conditioned on a data set d, the Bayesian approach allows for comparing

the two modelsM0 andM1 by estimating p(M1|d), the posterior probability

of modelM1, under consideration ofM0 andM1. Following Bayes theorem,

this probability is given by [50]

p(M1|d) =
p(d|M1)p(M1)

p(d|M0)p(M0) + p(d|M1)p(M1)
(2.30)

with p(M0) and p(M1) being the prior probabilities for each model. The

prior probabilities for the different models will be discussed later and for now

M0 and M1 are assumed to be equally likely p(M0) = p(M1) = 0.5. This
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leads to

p(M1|d) =
1

1 + p(d|M0)/p(d|M1)
=

1

1 + B0,1

(2.31)

where B0,1 = p(d|M0)/p(d|M1) is the so called Bayes factor [50].

The computation of Bayes factors from the output of an MCMC sampler

requires the estimation of the marginal likelihood. Unfortunately, it is ob-

tained by integrating the likelihood with respect to the prior distribution of

the parameters. Therefore the MCMC output of the posterior distribution

can not serve directly to estimate the marginal likelihood. Several sugges-

tions have been made to estimate the marginal likelihood from the posterior

MCMC output one of which is the harmonic mean estimator of the likelihood

values obtained from the MCMC output [50] and that is based on the impor-

tance sampling approximation [51]. This, however, is known to be unstable.

Another possibility for estimating marginal likelihoods from Gibbs sampling

output has been developed by Chib et. al. [52] and extended to output from

the MH algorithm [53] where a candidate point in a region of high posterior

density, which is usually the posterior mean or median, is substituted into

the so called basic marginal likelihood identity.

However, we will consider the newly developed deviance information cri-

terion (DIC) [54] that can also be derived directly from the MCMC out-

put. By deploying the deviance D(aM) = −2 log(p(d|aM)) + 2 log(p(d)),

the expected goodness of fit of the model M to the data d is given by

D̄M = E[D(aM)]. The penalty term pM = D̄M − D(E[aM]) encompasses

the complexity of the model M that accounts for the principle of Occam’s

Razor and indicates the effective number of parameters by the difference

between the average of the likelihood values and the likelihood value of the

averaged parameter values. The DIC criterion is given by [54]

DICM = D̄M + pM. (2.32)

However, the long tails of the posterior distribution within this scope of low

signal evidence suggest the median as an estimate for the average rather than

the posterior mean.
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Nonetheless, all methods that involve the posterior MCMC output for

the assessment of a signal present within the data require the Markov chain

to have converged. Herein lies a truculent problem as we are facing two

scenarios when considering the posterior MCMC output for M1.

1. The posterior estimate of the MCMC output reveals a distinct peak

for the frequency parameters over a longer course of the Markov chain,

indicating a tangible signal within the data. Under these circumstances

a sensible DIC value can be obtained for model M1. The results will

always favor M1 as the evidence is high because otherwise no dis-

tinct posterior peak would be present. This can be true even if the

sampler found a local maximum of the posterior mode that is not con-

sistent with the true values. If we had stopped the Markov chain at the

400 000th iteration, discarding the first 220 000 iterations as a burn-in,

then the DIC values had revealed the existence of a signal although the

estimations are in fact inconsistent. In this example, for model M1 we

obtain DICM1 = 28870.28 (comprising the penalty value pM1 = 3.63),

model M0 yields DICM0 = 28898.14 which reveals a higher evidence

for model M1. This is deceiving as we can see in the further progress

of the Markov chain that convergence obviously has not been attained.

This is merely a question of convergence and the DIC does not help to

tackle that problem because of the second scenario given below.

2. The posterior estimate of the MCMC output reveals that the frequency

parameters ∆f and ∆ḟ are spread over the whole prior with many

distinct modes. The calculation of a candidate for the basic marginal

likelihood identity is futile and alternatively the penalty term of the

DIC value of model M1 attains negative (!) values indicating that the

chain has not converged and its derivation is not legitimate. The model

comparison based on the posterior MCMC output fails and the only

conclusions we can draw is that either the burn-in is still too short or

that there is really no signal present in the data.

It is clear that this is a matter of convergence assessment. The diag-

nostic tools for convergence from Geweke [48] based on a single chain or
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from Gelman et. al. involving multiple runs [55] also provide no satisfactory

remedy. With fading evidence for a signal, during the burn-in, the sampler

merely samples from the prior pretending that the chain has converged at

first glance. This, however, does not answer the question whether we would

detect a signal if the chain would run for longer.

In Fig. 2.7 after several hundreds of thousands of iterations it becomes

clear that there might be a hint of a signal because the Markov chain remains

mostly within the same mode over a longer course. Convergence assessment

can then provide information about the authenticity of the estimated param-

eters when an alleged posterior mode has been found but it can not negate

the question whether there is a faint signal if we would simulate a longer

Markov chain. In the example shown in Fig. 2.7, no convergence is achieved

before 750 000 iterations and therefore no sensible parameter estimation can

be made based on this output. However, if the chain would run for longer,

we might be able to detect the signal. All we know is, the longer we run the

chain the more we know. For a signal with h0/σ = 0.25 the burn-in increases

to an amount that leads to the conclusion that the true parameter values are

actually not retrievable. Nonetheless, the question whether there is a faint

signal within the data is not answered satisfactorily.

The purpose of above comments is to point out that Bayes factors or

information criteria like the DIC that require MCMC outputs can only be

applied when the sampler efficiently samples from the posterior distribution

and converges properly. The dilemma is that MCMC sampling only works

efficiently when the data set contains a sufficiently strong signal, in which case

a model comparison is senseless. On the other hand, when the computation

of a Bayes factor or DIC does make sense, precisely because we are in doubt

about the existence of a signal within the data, then this is when their

application is jeopardised, because the sampler is inefficiently sampling from

the posterior distribution. In this matter it is unprofitable to argue about

the advantages and disadvantages of Bayes factors or the use of the DIC

which is, for example, controversial in mixture models [56].

A theoretical assessment of the required burn-in length is impossible. It

depends on the sampler’s performance as well as the data set. This problem
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needs to be approached by a theoretical assessment of the evidence for model

M1, given an arbitrary data set. The following derivations therefore do not

depend on any MCMC output, which renders the use of Bayes factors and

DIC impossible.

2.6.2 Derivation of a theoretical detection probability

One possibility to compare models involves the calculation of the AICs

(Akaike Information Criterion) [57]. The AIC is defined [57] as

AIC = −2 log(maximum likelihood) + 2d (2.33)

where the penalty term 2d brings in the number d = 6 of parameters in the

model. The penalty term penalises the number of parameters in a model in

order to concede preference towards simpler models and to meet the principle

of Occam’s Razor. The AIC as an estimator of the relative expected value of

Kullback-Leibler information loss, however, does not consider the uncertainty

about parameter values [50, 58] and overestimates the required number of

parameters [50, 59, 60] in which case it would overestimate the probability for

a model that considers a signal present within the data. We also encounter

large data sets and in the case where the prior information is small compared

to the information provided by the data, the Schwarz criterion, also called

Bayesian Information Criterion (BIC), yields a better approximation [50] and

has the form

BIC = −2 log(maximum likelihood) + d log n, (2.34)

where the penalty term d log n comprises the number of d = 6 independent

parameters that describe a model but also the number n of data samples. All

derivations and results below are therefore based on the BIC, although it has

the reputation of privileging smaller models, i.e. the model that postulates

no signal. All the following calculations can also be applied to the AIC,

the only difference being the penalty term. Therefore, results based on the

AIC will also be given, providing a better comparison and insight into the
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problem.

The convenience of the AIC and BIC to merely require maximum like-

lihood estimates (MLEs) and easy to derive penalty terms make them el-

igible for the technique described within this section. The concern is to

derive a theoretical limit for the detection of a signal within a data set ob-

served during a determined observation period at a certain noise level. The

observation period is a vector OP = (t1, . . . , tn)
′ of n time points tk with

k ∈ {1, . . . , n} during which the data has been collected starting from tstart

and ending at tend. The noise vector is a vector σ = (σ1, . . . , σn)
′ for the

n data bins. Given the true parameter vector of the pulsar from which the

signal arises, the full information needed for a detection is determined by the

vector a∗ = (h∗0, cos ι∗, ψ∗, α∗, δ∗,∆f ∗,∆ḟ ∗,σ,OP)′. Although some param-

eters like sky location are expected to be known, they are essential factors

for the detection probability in connection with the observation period and

the noise. These are essential parts of the parameter vector as the detection

depends significantly on them.

A signal detection depends on the actual evidence of the model that

postulates a signal from a pulsar within an arbitrary data set, under consid-

eration of two models, postulating either mere noise or a signal with noise.

By marginalising over all parameters except the amplitude h∗0, which deter-

mines the signal within the data on which the model comparison is based,

we aim for deriving a probability statement for a signal detection given a

certain signal amplitude h∗0. This is made possible by the fact that each

potential data set under consideration is based on the true parameters of a

potential pulsar. Therefore each model comparison is conditioned on a data

set d∗ that is conditioned on the parameter vector a∗. Under regularity con-

ditions this fact can be used to obtain an approximation for the maximum

likelihood value since the MLE is sufficient and asymptotically consistent

for large sample. Thus the estimates converge to the true values for large

samples sizes. The samples sizes that we expect are in fact in the range of

tens of thousands.

A potential data set d∗ from a pulsar, based on a true parameter vector

a∗ is modelled according to Eq. 2.5 by M∗ : d(k)
∗ = y(tk; a∗) + εk with noise
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vector εk. Due to the fact that d∗ is conditioned on a∗, an approximate

maximum log-likelihood under model M1 is given by

log MLd∗,a∗,M1 ≈ −χ2
d∗,a∗,M1

(a∗)/2 = −
∑

k

∣∣∣∣
εk
σk

∣∣∣∣
2

/2, (2.35)

using Eq. 2.5 and Eq. 2.7. This term comprises the sum of the residuals

as the model is fitted by the true parameter vector. It is clear that this

asymptotical approximation underestimates the MLE. However, this entire

approach is based on the approximation by involving the AIC and BIC and

is a coarse assessment for a signal detection.

Under model M0 that encompasses no parameters, the log-likelihood has

a constant value and therefore its maximum is given by

log MLd∗,a∗,M0 = −χ2
d∗,a∗,M0

/2 = −
∑

k

∣∣∣∣
yk(tk; a∗) + εk

σk

∣∣∣∣
2

/2, (2.36)

where the summation term comprises the true and given parameter vector of

the signal. It is clear that log MLd∗,a∗,M1 ≤ log MLd∗,a∗,M0∀a∗. As a result

of this, naturally model M1 has to be preferred at all times. This, however,

does not take into account the penalty term that comes into play due to

the principle of Occam’s razor. Equality of expressions 2.36 and 2.35 can

only be achieved for a zero amplitude h∗0 in parameter vector a∗. But how

large do we have to choose this amplitude, also considering other influential

parameters, in order to justify model M1 with its many more parameters?

This is the essential idea behind this model comparison approach and the

penalty terms play a key role in it.

We aim to compare model M0 and M1 conditioned on the data set d∗,

conditioned on a potential pulsar characterised by the true parameter vector

a∗. By substituting Eq. 2.35 and Eq. 2.36 into Eq. 2.34, we obtain

BICd∗,a∗,M0 = −2 log MLd∗,a∗,M0 (2.37)

and

BICd∗,a∗,M1 = −2 log MLd∗,a∗,M1 + 6 log n, (2.38)
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with d = 6 parameters under model M1 and d = 0 parameters under model

M0. With respect to the two models M0 and M1, a probability for model

M1 can be derived by

p(M1|d∗,a∗) =
p(M1)e

−BICd∗,a∗,M1
/2

p(M0)e
−BICd∗,a∗,M0

/2 + p(M1)e
−BICd∗,a∗,M1

/2

=
e−BICd∗,a∗,M1

/2+log p(M1)

e−BICd∗,a∗,M0
/2+log p(M0) + e−BICd∗,a∗,M1

/2+log p(M1)

=
1

1 + e(BICd∗,a∗,M1
−BICd∗,a∗,M0

)/2−log p(M1)+log p(M0)

=
1

1 + e∆BICd∗,a∗/2−log p(M1)+log p(M0)

(2.39)

Here, p(M0) and p(M1) are prior probabilities for M0 and M1 respectively.

In practice, the prior probability whether a signal detection can be expected

within the narrow frequency band of 1/60Hz under consideration depends

on the location on which a particular search is focused on. Derivations with

different prior scenarios could be made but here, equal probabilities for the

models will be assumed as a natural choice when the interest is drawn to

a model detection when there is no prior information about the possible

existence of a signal. Substituting the prior probabilities p(M0) = p(M1) =

0.5 yields

p(M1|d∗,a∗) =
1

1 + e∆BICd∗,a∗/2
(2.40)

where

∆BICd∗,a∗ := BICd∗,a∗,M1 − BICd∗,a∗,M0 . (2.41)

Eq. 2.40 presents the probability that the data d∗ from a potential pulsar

with given parameter vector a∗ is better modelled by M1 (a signal) rather

than M0 (no signal). In other words it is the probability for the existence

of a signal in the data that is emitted by a pulsar with parameter vector

a∗. It is merely the difference of the two BIC values under consideration

that is responsible for a signal detection. A difference of zero for example

would yield a 50% probability for both models. Since the model comparison
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is conditioned on the data d∗ from the parameter vector a∗, the next step is

to derive

p(M1|a∗) = E [p(M1|d∗,a∗)|a∗]
= E

(
1

1 + e∆BICd∗,a∗/2
|a∗

)
. (2.42)

Although it is possible to analytically derive E(∆BICd∗,a∗|a∗) it is more com-

plex to derive Eq. 2.42, as it comprehends the sigmoid function of ∆BICd∗,a∗ .

Thus, in the sequel, the characteristics of ∆BICd∗,a∗ will be derived. By using

equations Eq. 2.35, Eq. 2.36, Eq. 2.37, Eq. 2.38, and Eq. 2.41 we obtain

∆BICd∗,a∗ = (BICd∗,a∗,M1 − BICd∗,a∗,M0)

= −2 log MLd∗,a∗,M1 + 6 log n+ 2 log MLd∗,a∗,M0

≈
∑

k

∣∣∣∣
εk
σk

∣∣∣∣
2

+ 6 log n−
∑

k

∣∣∣∣
yk(a∗) + εk

σk

∣∣∣∣
2

(2.43)

We assume white Gaussian noise here and therefore the distribution of

the noise component εk of bin k is εk ∝ N(0, σ2
k) with known variances σ2

k.

By substituting

y(tk; a∗) =
1

4
h∗0(1 + cos2 ι∗)F+(tk;ψ

∗, α∗, δ∗)ei∆Ψ(tk;α∗,δ∗,∆f∗,∆ḟ∗)

− i

2
h∗0 cos ι∗F×(tk;ψ

∗, α∗, δ∗)ei∆Ψ(tk;α∗,δ∗,∆f∗,∆ḟ∗). (2.44)

and defining some abbreviations for an ease of use, F+(tk;ψ
∗, α∗, δ∗) :=

F+
k , F×(tk;ψ

∗, α∗, δ∗) = F×k , ei∆Ψ(tk;α∗,δ∗,∆f∗,∆ḟ∗) := ei∆Ψk = cos(∆Ψk) +

i sin(∆Ψk),
1
4
h∗0(1 + cos2 ι∗) =: A+, and 1

2
h∗0 cos ι∗ =: A× we can reformulate

Eq 2.43. For clarity, the following calculations will concentrate on the differ-

ence of the two sums in Eq 2.43 and leave out the penalty term 6 log n. For

the two summation terms in Eq. 2.43, we obtain

∑

k

|εk|2
σ2
k

−
∑

k

|yk(a∗) + εk|2
σ2
k
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=
∑

k

|εk|2
σ2
k

−
∑

k

∣∣A+F+
k e

i∆Φk + εk,re − iA×F×k e
i∆Φk + iεk,im

∣∣2
σ2
k

=
∑

k

[
ε2k,re
σ2
k

+
ε2k,im
σ2
k

]
−

∑

k

[(
A+F+

k cos(∆Ψk) + A×F×k sin(∆Ψk) + εk,re
σk

)2

+

(−A×F×k cos(∆Ψk) + A+F+
k sin(∆Ψk) + εk,im

σk

)2
]

=
∑

k

[
ε2k,re
σ2
k

+
ε2k,im
σ2
k

]
−

∑

k

[(
A+F+

k cos(∆Ψk)

σk

)2

+

(
A×F×k sin(∆Ψk)

σk

)2

+

(
A×F×k cos(∆Ψk)

σk

)2

+

(
A+F+

k sin(∆Ψk)

σk

)2

+ 2
A+F+

k cos(∆Ψk)A
×F×k sin(∆Ψk)

σ2
k

−2
A×F×k cos(∆Ψk)A

+F+
k sin(∆Ψk)

σ2
k︸ ︷︷ ︸

=0

+2
A+F+

k cos(∆Ψk)εk,re
σ2
k

+ 2
A×F×k sin(∆Ψk)εk,re

σ2
k

−2
A×F×k cos(∆Ψk)εk,im

σ2
k

+ 2
A+F+

k sin(∆Ψk)εk,im
σ2
k

+
ε2k,re
σ2
k

+
ε2k,im
σ2
k

]

= −
∑

k

[(
A+F+

k cos(∆Ψk)

σk

)2

+

(
A×F×k sin(∆Ψk)

σk

)2

+

(
A×F×k cos(∆Ψk)

σk

)2

+

(
A+F+

k sin(∆Ψk)

σk

)2

+2
A+F+

k cos(∆Ψk)

σk

εk,re
σk

+ 2
A×F×k sin(∆Ψk)

σk

εk,re
σk

−2
A×F×k cos(∆Ψk)

σk

εk,im
σk

+ 2
A+F+

k sin(∆Ψk)

σk

εk,im
σk

]

(2.45)

Since the quadratic noise terms all cancel out, we are left with sums of

constants plus sums of normally distributed terms. Therefore, for arbitrary

data sets d∗, given their true parameter vector a∗, the term Eq. 2.45 is
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normally distributed with mean

µa∗ = −
(

(A+)2
∑

k

(
F+
k cos(∆Ψk)

σk

)2

+ (A×)2
∑

k

(
F×k sin(∆Ψk)

σk

)2

+(A×)2
∑

k

(
F×k cos(∆Ψk)

σk

)2

+ (A+)2
∑

k

(
F+
k sin(∆Ψk)

σk

)2

+
∑

k


2A+F+

k cos(∆Ψk)

σ2
k

E(εk,re)︸ ︷︷ ︸
=0


+

∑

k


2A×F×k sin(∆Ψk)

σ2
k

E(εk,re)︸ ︷︷ ︸
=0




−
∑

k


2A×F×k cos(∆Ψk)

σ2
k

E(εk,im)︸ ︷︷ ︸
=0


+

∑

k


2A+F+

k sin(∆Ψk)

σ2
k

E(εk,im)︸ ︷︷ ︸
=0






= −
(

(A+)2
∑

k

(
F+
k cos(∆Ψk)

σk

)2

+ (A×)2
∑

k

(
F×k sin(∆Ψk)

σk

)2

+(A×)2
∑

k

(
F×k cos(∆Ψk)

σk

)2

+ (A+)2
∑

k

(
F+
k sin(∆Ψk)

σk

)2
)

= −

(A+)2

∑

k

(
F+
k

σk

)2 (
cos2(∆Ψk) + sin2(∆Ψk)

)
︸ ︷︷ ︸

=1

+(A×)2
∑

k

(
F×k
σk

)2 (
sin2(∆Ψk) + cos2(∆Ψk)

)
︸ ︷︷ ︸

=1




= −(
1

4
h∗0(1 + cos2 ι∗))2

∑

k

(
F+(tk;ψ

∗, α∗, δ∗)
σk

)2

−(
1

2
h∗0 cos ι∗)2

∑

k

(
F×(tk;ψ

∗, α∗, δ∗)
σk

)2

.

(2.46)

and variance

σ2
a∗ = Var




∑

k




2

(
A+F+

k cos(∆Ψk)

σk
+
A×F×k sin(∆Ψk)

σk

)

︸ ︷︷ ︸
:=C+

k

εk,re
σk
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+ 2

(
−A

×F×k cos(∆Ψk)

σk
+
A+F+

k sin(∆Ψk)

σk

)

︸ ︷︷ ︸
:=C×k

εk,im
σk







εk,re,εk,imi.i.d.
=

∑

k

(
Var

(
C+
k

εk,re
σk

)
+ Var

(
C×k

εk,im
σk

))

=
∑

k




(
C+
k

)2
Var

(
εk,re
σk

)

︸ ︷︷ ︸
=1

+
(
C×k

)2
Var

(
εk,im
σk

)

︸ ︷︷ ︸
=1




= 4
∑

k

((
A+F+

k cos(∆Ψk)

σk
+
A×F×k sin(∆Ψk)

σk

)2

+

(
A+F+

k sin(∆Ψk)

σk
− A×F×k cos(∆Ψk)

σk

)2
)

= 4
∑

k

((
A+F+

k

σk

)2

+

(
A×F×k
σk

)2
)

=

(
1

2
h∗0(1 + cos2 ι∗)

)2 ∑

k

(
F+(tk;ψ

∗, α∗, δ∗)
σk

)2

+ (h∗0 cos ι∗)2
∑

k

(
F×(tk;ψ

∗, α∗, δ∗)
σk

)2

(2.47)

Note that both expressions Eq. 2.46 and Eq. 2.47 are independent of the

frequency parameters ∆f ∗, ∆ḟ ∗ and phase φ∗0 and they only depend on the

remaining five parameters h∗0, cos ι∗, ψ∗, α∗, and δ∗. From a physical point

of view this is what we had to expect, as only the strength of the signal

is decisive for a detection with those parameters modulating the amplitude

of the signal. The parameters ψ∗, α∗, and δ∗ only enter in the plus and

cross polarisation terms F+
k and F×k of the antenna pattern. The antenna

pattern depends on the varying orientation of the interferometer towards the

pulsar and the polarisation angle of the gravitational wave that it emits.

The gravitational wave itself depends on the position angle of the spin axis.

Hence, the summation terms in Eq. 2.46 containing the antenna pattern
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depend on that orientation sweep during the observation time and the noise.

Now that we know that the difference of the summation terms is normally

distributed with mean µa∗ and variance σ2
a∗ , for arbitrary data vectors d∗,

given the parameter vector a∗, it follows that

∆BIC|a∗ ∼ N(µa∗ + 6 log n, σ2
a∗). (2.48)

In order to be able to speak in terms of a simple signal-to-noise ratio we will

expect a signal with constant noise σ = σk. In fact, the noise is fairly stable in

reality. The constant noise assumption is not a necessary restriction, however

it is much easier to handle a single signal-to-noise ratio h∗0/σ. Eq. 2.48 de-

pends on five parameters of the pulsar but also on the noise σ and the obser-

vation period OP due to the sums of the antenna pattern over that time. As

already mentioned, it is sensible to combine the signal’s amplitude h∗0 and the

noise σ to a signal-to-noise ratio h∗0/σ represented as one parameter. We can

therefore define a new vector a• given by a• = (h∗0/σ, cos ι∗, ψ∗, α∗, δ∗,OP)′

with observation period OP = (t1, . . . , tn)
′. Explicitly, the difference in the

BIC values with respect to models M0 and M1, for arbitrary data sets,

conditioned on a• follow the distribution

∆BIC|a• ∼ N(µBIC,a• , σ
2
BIC,a•) (2.49)

with

µBIC,a• = 6 log n−
(
h∗0
σ

)2
([

1

4
(1 + cos2 ι∗)

]2 ∑

k

(F+(tk;ψ
∗, α∗, δ∗))2

+

[
1

2
cos ι∗

]2 ∑

k

(F×(tk;ψ
∗, α∗, δ∗))2

)

(2.50)

and

σ2
BIC,a• =

(
h∗0
σ

)2
([

1

2
(1 + cos2 ι∗)

]2 ∑

k

(F+(tk;ψ
∗, α∗, δ∗))2
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+ [cos ι∗]2
∑

k

(F×(tk;ψ
∗, α∗, δ∗))2

)

= −4 (µBIC,a• − 6 log n) .

(2.51)

The use of Monte Carlo methods allow for simulating from Eq. 2.42 di-

rectly by creating l samples si ∼ N(µBIC,a• , σ
2
BIC,a•), i = 1, . . . , l to obtain

the estimate

p̂(M1|a•) =
1

l

l∑
i=1

1

(1 + esi/2)
. (2.52)

The following section deals with the signal detection for different scenar-

ios.

2.6.3 Signal detection results for different scenarios

Following the examples from above, Fig. 2.11 below therefore displays the

expected probabilities for a signal detection from a potential pulsar as would

be seen by the LIGO-Hanford interferometer with respect to the two obser-

vation periods OP1 and OP2 and its sky position with full parameter vectors

a(1)
• =




h∗0/σ
cos ι∗

ψ∗ = 0.35
α∗ = 5h 35m 28.03s

δ∗ = −69◦ 16′ 11.79′′

OP1



,a(2)

• =




h∗0/σ
cos ι∗

ψ∗ = 0.35
α∗ = 5h 35m 28.03s

δ∗ = −69◦ 16′ 11.79′′

OP2




in which the values of h∗0/σ and cos ι∗ are shown in the 2-D-plane.

From Fig. 2.11 we can now read off the theoretical probabilities for

model M1 for an arbitrary data set obtained by a pulsar with the true

values as used in the examples displayed in Fig. 2.7 and Fig. 2.9. For the

observation period OP1, we obtain p̂(M1|a(1)
• , h∗0/σ = 0.3) = 0.405 and

p̂(M1|a(1)
• , h∗0/σ = 0.25) = 0.057. Note, that in cases of low signal evidence

the distribution of the probability for model M1 is bimodal due to the sig-

moid function. For a given data set obtained over OP1 it is therefore either
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Figure 2.11: Expected probabilities p(M1|a(1)
• ) and p(M1|a(2)

• ) of a model
that suggests a signal within the data that originate from a potential pulsar
with parameter vector a•. The probability is displayed as a function of the
signal-to-noise ratio h∗0/σ and the inclination cos ι. Both plots are condi-
tioned on the same fixed observation periods (OP1 with 14 400 bins and OP2

with 60 000 bins), polarisation angle, and sky location as in the examples
used above.

very likely to detect a signal or very unlikely and the mean expresses the

general probability for an arbitrary data set. From the results shown in

Fig. 2.7 we can anticipate that the detection probability would be rather low

as it already reveals tendencies of sampling occasionally from other parts of

the posterior distribution dominated by the prior. We also know that no

convergence could be achieved in Fig. 2.9. A signal evidence of around 0.405

when h∗0/σ = 0.3 seems to be a bit low but it underpins theoretically that a

signal this weak is located very close the detection limit. The computation of

an AIC based evidence for model M1 reveals the values 0.997 and 0.976 for

h∗0/σ = 0.3 and h∗0/σ = 0.25 respectively and confirms that the AIC tends

to overestimate the evidence of M1.

Eager to pursue the goal of estimating the probability of detecting an ar-

bitrary pulsar, given only a signal-to-noise ratio h∗0/σ, we start by marginal-

ising over the remaining parameters by considering their individual priors. A
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Monte Carlo method is used here, that samples from the prior distribution

and calculates an estimation of p̂(M1|a•). Since it is easy to sample from

the prior distributions, a sufficient number of samples can be generated in

order to obtain good estimates.

The prior of cos ι and ψ are uniform pcos ι(cos ι∗) = 1[−1,1](cos ι∗)/2 and

pψ(ψ∗) = 1[−π/4,π/4](ψ
∗)/(π/2), respectively. The sky location parameters

α∗ and δ∗ are not actual parameters but the detection probability is condi-

tioned on them. Therefore, a prior distribution is required in order to be

able to properly marginalise over them. A sensible distribution is uniform

over the entire firmament. In order to account for the fact that lines of

constant latitude are more dense in the polar region than near the equator,

the proper distribution is given by pα(α
∗) = 1[−π,π](α

∗)/(2π) and pδ(δ
∗) =

1[−π/2,π/2](δ
∗) cos(δ∗)/2.

The marginalisation over cos ι∗, ψ∗, α∗, and δ∗ allows find the signal-to-

noise ratio that is required in order to detect an arbitrary pulsar. However,

when it comes to the actual process of observing data, the observation period

is intrinsically given as well as the sky location on which the search is focused,

due to the approach of this problem, by estimating the variation at a known

sky location. Therefore, in the case of an observed data set we do not need

to marginalise over those parameters if we intend to find out about the

probability of detecting a signal within that very data set. In an intermediate

step before marginalising over all parameters, we are first of all interested in

p(M1|h∗0/σ, α∗, δ∗,OP) =

∫
p(M1|a•)pcos ι(cos ι∗)pψ(ψ∗)d(cos ι∗)dψ∗

(2.53)

with cos ι∗ and ψ∗ being the only parameters that need to be integrated out.

By using the parameters in the examples used above, Fig. 2.12 shows that

probability of their detection subject to the signal-to-noise ratio.

If conclusions are to be drawn for arbitrary data obtained with respect

to the specific sky location that was used in the example above, Fig. 2.12

provides the necessary information at what signal-to-noise ratio we are able

to detect any signal. The shape of the 99% credibility region, indicated by

the gray area, arises from the fact that the distribution of the probability
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Figure 2.12: Marginal probability over the inclination cos ι∗ and polarisation
angle ψ∗ as a function of the signal-to-noise ratio h∗0/σ. This is the proba-
bility of a model that suggests a signal within the data. The data from a
potential pulsar are conditioned on the same fixed observation periods (OP1

with 14 400 bins and OP2 with 60 000 bins) and a sky location as in the ex-
amples used above. The gray area signifies the 99% credibility region. Note
that the distribution of the probability for a given h∗0/σ is bi-modal within
the transition region with evidence of both models.

of a signal detection at a given signal-to-noise ratio is strongly bi-modal in

the transition area where both models have evidence. This is due to the fact

that the probability BIC is a function of the sigmoid function of the BIC

difference.

In Fig. 2.11 and Fig. 2.12 the impact of the observation length becomes

quite apparent. Naturally, with increasing observation time the detection be-

comes more likely. If the observation starts at the point in time at which both

OP1 and OP2 started, then the detection probability as presented in Fig. 2.12

can be derived with respect to increasing observation lengths. Therefore

Fig. 2.13 displays the probability of detection in a two dimensional plot with

signal-to-noise ratio h0/σ and different observation lengths.

We proceed with marginalising over the remaining parameters in order
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Figure 2.13: Marginal probability over the inclination cos ι∗ and polarisation
angle ψ∗ as a function of the signal-to-noise ratio h∗0/σ. This is the probability
of a model that suggests a signal within the data of different observation
length, starting at the same time as OP1 and OP2. The sky location has the
same value as in the examples used above.

to derive probabilities for arbitrary pulsars and obtain the probability

p(M1|h∗0/σ,OP)

=

∫
p(M1|a•)pcos ι(cos ι∗)pψ(ψ∗)pα(α∗)pδ(δ∗)d(cos ι∗)dψ∗dα∗dδ∗

(2.54)

as a function merely of the signal-to-noise ratio and the observation period.

Still, p(M1|h∗0/σ,OP) depends on a fixed observation period OP, affecting

the sum over the antenna pattern. Nevertheless, the marginalisation over all

possible observation periods is hardly feasible but the fact that we integrate

over all possible sky locations renders this step irrelevant as the trail of LIGO

is of no importance against the background of all possible sky locations. The
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observation length with its n data samples, however, is a decisive factor as can

be seen between OP1 or OP2 with OP2 being 4.167× longer than OP1. Hence,

n = |OP| remains the important parameter to condition p(M1|h∗0/σ, n) on.

Thus, a detection probability merely depending on h∗0/σ and the size n of

the data set is displayed in the following Fig. 2.14.
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Figure 2.14: Marginal probability over the sky location, inclination cos ι∗ and
polarisation angle ψ∗ as a function of the signal-to-noise ratio h∗0/σ. This is
the probability of a model that suggests a signal within the data of different
observation length.

The derivations made above help us to evaluate the limit for the MCMC

sampler to provide us with sensible estimations of pulsar parameters. It

provides a remedy for answering the question about the existence of a sig-

nal in those cases where no distinct posterior mode could be found during

a sufficiently long run. From the numerous runs that have been conducted,

confident statements can be made if the sampler reveals no sensible estimates

for the frequency parameters after 1 000 000 iterations. Then, it can be as-

sumed that the signal must lie below the detection limit that can be derived
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by using Eq. 2.53 with the known sky location parameters and observation

time OP. The estimations based on the BIC will slightly overestimate values

for h0 whereas calculations based on the AIC would give smaller estimates.

The model comparison made above was based on the assumption that the

model that postulates a signal in the data is parameterised by d = 6 param-

eters. But this context also allows for compiling plots that consider a model

with exact known frequency parameters ∆f and ∆ḟ (d = 4 parameters) [10].

The detection probability for different dimensions of the parameter space is

characterised by the penalty term 6 log n in Eq. 2.34. This term has a major

impact as can be seen in Fig. 2.15 below.
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⋅
)

Figure 2.15: Marginal probability over the sky location, inclination cos ι∗ and
polarisation angle ψ∗ as a function of the signal-to-noise ratio h∗0/σ. This
is the comparison of the probabilities of two models of different complexity
that suggest a signal within the data of different observation length.
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2.7 Discussion

The code has also been successfully tested on real interferometer data, where

the noise spectral density is coloured, containing artificially injected signals.

The heterodyning process and the noise estimation procedure [35] were still

successful. The MCMC routine was also successful and robust with this data

although the results with coloured noise are likely to yield more conservative

results. In summary, these MCMC methods potentially offer great bene-

fits for gravitational radiation searches where the signals depend on a large

number of parameters.

In the simplest application, the method demonstrated here could com-

plement searches for signals from known pulsars [24, 35]; it could be used to

verify the frequency and frequency derivative values. The real advantage of

the technique would come about in a search for a signal at a known location,

but where the frequency information pertaining to the neutron star is not

well known; a search for a signal from SN1987A [27] would be a possible

application.

The heterodyning process requires the sky location to be known from

radio observations. Although the antenna pattern changes only on a small

scale within the vicinity of a reference sky location, for a long observation

period the motion of the earth induces a Doppler modulation into the signal

which depends on the orientation between interferometer and sky location.

If the heterodyning process was conducted to a vaguely known reference

sky location the aberration between reference and actual sky location of the

pulsar would induce a Doppler modulation into the heterodyne frequency.

This would allow for a very exact determination of the sky location as the

modulation pattern is characterised by the daily rotation of the earth and

the yearly modulation around the sun and needs to match accurately over

the entire observation time. In order to demonstrate the significant im-

pact of small location offsets, following the examples in Sec. 2.5.1, Fig. 2.16

displays a Doppler modulation scenario for the observation period OP2 if

the signal had been heterodyned with respect to α = 5h 35m, δ = −70◦.

The frequency modulation for two different sky locations (α = 5h 32m 18.93s,
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δ = −68◦ 28′ 6.44′′) and (α = 5h 36m, δ = −70◦ 10′) are shown if the pulsar

is assumed to have 300 Hz.
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Figure 2.16: Doppler modulation of the heterodyne frequency in case of an
offset between reference sky location for heterodyning and actual sky location
of the pulsar. Two possible sky locations are shown in order to exhibit the
strong influence of the sky location offset on the Doppler modulation.

This most welcome fact of being able to accurately determine the actual

sky location of the pulsar by the Doppler shift modulation, however, exhibits

a challenge to the MCMC sampler. This research has demonstrated the

difficulty in finding the frequency discrepancy and its derivative. The two

additional parameters of a sky location aberration from the reference location

would introduce a phase evolution change in a highly nonlinear manner and

complicates the construction of an efficient MCMC sampler that can tackle

an eight parameter problem with vaguely known sky location.
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2.8 Outlook

A future goal is to expand the model to eight parameters in order to estimate

the exact sky location of a pulsar in cases where it is known only vaguely. It

also has to take into account that the frequency shift might suppress a signal

if the frequency modulation exceeds the 1/60 Hz band under consideration.

In the demonstration here the heterodyning process provides a band of

1/60Hz. It would be straightforward to expand this search to a bandwidth

of 5 Hz by running the code on 300 processors, a task easily accomplished on

a cluster of computers. For 10 days of data it takes a single 2.8GHz personal

computer approximately an hour to conduct about 3 − 5 × 104 iterations

per chain of the MCMC depending on the stage of the Markov chain. Due

to the delayed rejection method, at the beginning of a run more iterations

are performed per time interval because at that time more stage-1 steps are

accepted.



Chapter 3

Bayesian estimation of

confusion noise expected from

LISA capture sources

3.1 Introduction

The Laser Interferometer Space Antenna (LISA) is designed to detect grav-

itational radiation from astrophysical sources in the 10−2 mHz to 100mHz

band [61]. It will be the first space-based gravitational wave observatory and

is scheduled to be launched in 2015 as a NASA and ESA joint project. Since

LISA is an all-sky monitor the information of all sources of gravitational

waves has to be extracted simultaneously from the observed data stream.

Unlike the ground-based interferometers, LISA will be sensitive in a much

lower frequency band covering the detection of signals from close by White

Dwarf Binaries, captures of stellar-mass objects by massive black holes (cap-

ture sources), and black hole binaries. Therefore especially in the frequency

band below 10−3 Hz, LISA encounters confusion noise [62, 63] from an ex-

pected number of 100, 000 signals. In particular the frequency band between

10−3 Hz to 5× 10−3 Hz presents a great data analysis challenge.

LISA will be placed in a solar orbit trailing the earth by about 20 degrees.

Its three identical spacecraft form an almost equilateral triangle with an arm

61
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length of 5 × 106 km. The time dependent directional properties of the

LISA response due to its motion around the sun and the nonisotropic and

inhomogeneous distribution of the white-dwarf-white-dwarf binary systems

within the galactic disk as seen by LISA, imply that the magnitude of the

background noise observed by LISA will not be stationary [64]. Hence, for

a time period of about two months within the yearly orbit the background

noise level is expected to be only a factor less than two larger than the level

of instrumental noise [64].

The complete removal of background noise in the LISA data is expected

to be feasible only above a cutoff frequency. One of the most abundant

classes of source will be close-by white dwarf binaries, producing signals

from 0.1mHz to 3 mHz. There will be source confusion below 1mHz and

resolvable sources above 5mHz; the 1 mHz to 5mHz band for LISA therefore

presents a tremendous data analysis challenge, potentially containing up to

105 sources [63, 65, 66]. LISA’s ability to detect and characterise other

astrophysical sources will be greatly helped if the thousands of background

signals from binary systems can be identified. For a detailed look at the

population of binary systems that produce signals in LISA’s operating band,

and how they affect LISA’s performance, the reader might be interested in

Barack and Cutler [63] and in Nelemans et al. [67].

This problem is approached from a new direction. Markov chain Monte

Carlo (MCMC) techniques have been demonstrated to be especially suited

to parameter estimation problems involving numerous parameters [7]. In

Chapter 2 the idea of the Metropolis-Hastings (MH) algorithm [28, 29] has

been applied to a gravitational radiation problem, such as estimating astro-

physical parameters for gravitational wave signals from pulsars but also in

the literature for coalescing compact binary systems [8]. MCMC methods

promise an effective means for identifying and characterizing the thousands

of background binary signals to be found within the LISA data.

The method that is presented in this chapter is not a source subtraction

approach [68] or a grid based template search using optimal filtering [69],

but one that identifies and characterises binary produced periodic signals

in the data. Signals that are sufficiently large in amplitude will have their
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parameters estimated. Sources that are weak will contribute to the noise; the

method described here also produces an estimate of the overall level of the

noise. It will be shown that the noise level estimate from this method depends

on the inherent detector noise level, and also the presence of unidentified

signals.

MCMC methods are robust and dynamic, and ultimately offer the possi-

bility to be utilised with LISA data to estimate simultaneously the parame-

ters associated with a wide range of source types occurring in the presence

of many thousands of white dwarf binaries. Monte Carlo methods and more

recently genetic algorithms have been applied to LISA data [70, 71] using a

generalised F -statistic to extract the likelihood of a fixed dimension model of

galactic binary signals within a small frequency band. Bayes factors serve for

comparison of competing models in order to estimate the number of signals.

The Bayesian approach presented in this chapter does not need to fit each

model with m signals, for m = 1, . . .M , and then select the best fitting model

via the evaluation of Bayes factors. The evaluation of Bayes factors [50, 72]

requires computation of the marginal likelihoods and thus marginalisations

over the parameter vectors of each model. This is a formidable computational

problem when the dimension of the parameter space is large. A shortcut to

the calculation of Bayes factors, the harmonic mean of the likelihood values

[51], is known to be unstable because the inverse likelihood does not possess

a finite variance. Other large sample approximations to the Bayes factors

such as the Bayesian Information Criterion (BIC), also referred to as Schwarz

Criterion, and the related penalised likelihood ratio model choice criterion,

Akaike Information Criterion (AIC), have been shown to be inconsistent

when the dimension of the parameter space goes to infinity [73]. The newly

developed deviance information criterion (DIC) [54] is known to be contro-

versial in mixture models [56]. While MCMC algorithms like the Gibbs

sampler and MH algorithm yield posterior distributions of the parameters,

they do not provide marginal likelihoods. An indirect method of estimating

marginal likelihoods from Gibbs sampling output has been developed [52]

and extended to output from the MH algorithm [53]. These, however, are

impractical when the number of candidate models is very large, as is the
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case for LISA data. Therefore, another strategy is used, the reversible jump

algorithm [11], that samples over the model and parameter space in order to

estimate posterior model probabilities/marginal likelihoods. The number of

sinusoids is considered as an additional parameter with its marginal posterior

distribution. Its modal value will give us the model with the most probable

number of sinusoids.

A Bayesian analysis naturally justifies Occam’s Razor [74, 75] due to the

penalisation of unreasonably complex models by the integration over the pa-

rameter space resulting in the preference for a simpler (smaller m) model.

In this chapter, the simultaneous detection and estimation of sinusoids is

addressed and solved. In addition, the MCMC method developed in this

context is better than a classical periodogram at resolving signals that are

very close in frequency, and a detailed discussion is provided of how to iden-

tify these signals. Finally, the method infers the noise level in the data

together with the parameters of each of the m sinusoids.

This chapter presents the results of a simulation study, comprising a

data stream of m sinusoidal signals embedded in Gaussian noise, where m

and noise variance are among the parameters to be estimated. Although this

simulation study is simple, it does highlight a number of issues relevant to

the real LISA data analysis problem.

The problem of identifying an unknown number of sinusoids is neither

new nor simple [13, 76]. Whereas previous studies have looked for a handful

of unknown signals, here results are shown for 100 signals. Another benefit

of using MCMC methods is that the number of required iterations scale

roughly linearly as the number of parameters increases, and does not show

an exponential increase in time [7]. In view of the present problem, in order

to maintain mixing of the Markov chain, only the parameters of one randomly

chosen sinusoid are proposed in each iteration. It is therefore plausible that

with increasing number of sinusoids the short-term correlations in the chain

increase in the same way and the resulting Markov chain needs to be thinned

out proportional to the number of sinusoids.

In the future the signals have to be more realistic, taking into account the

orbit of the LISA satellites and the nature of the inspiral of binaries. The
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intention of this work is to inform LISA data analysis researchers of another

possible avenue for characterizing a large number of background signals.

The rest of the chapter is organised as follows: Section 3.2 describes the

Bayesian model. The posterior computational algorithms are explained in

Sections 3.3 and 3.4. In Section 3.5 the results of this study, using synthesised

data, are presented. This method promises great hope for signal extraction

in real LISA data, and this point is discussed in Section 3.6.

3.2 The Bayesian full probability model

We consider a signal consisting of m superimposed sinusoidal signals where

m is an unknown parameter. Therefore the attention is confined to a set

of models {Mm : m ∈ {0, · · · ,M}} with M being the maximum number of

sinusoidal signals allowed. Let d = [d1, · · · , dN ] be a vector of N samples

recorded at times t = [t1, · · · , tN ]. Model Mm takes the observed data to

comprise a signal, s(m) plus noise, ε(m) = [ε
(m)
1 , · · · , ε(m)

N ]:

dj = s(m)(tj,am) + ε
(m)
j , for j = 1, . . . , N (3.1)

where the noise terms εj are assumed to be i.i.d. N(0, σ2
m) random variables.

The signal of model Mm has the form

s(m)(tj,am) =
m∑
i=1

[
A

(m)
i cos(2πf

(m)
i tj) +B

(m)
i sin(2πf

(m)
i tj)

]
, (3.2)

so that each sinusoid component is characterised by one frequency and two

amplitudes. Model Mm is therefore characterised by a vector of 3m+ 1 un-

known parameters which we denote am=[A
(m)
1 , B

(m)
1 , f

(m)
1 , · · · ,A(m)

m , B
(m)
m , f

(m)
m , σ2

m].

The objective is to find the model Mm that best fits the data and to esti-

mate its parameters. We use a Bayesian approach as in [17], but instead

of calculating Bayes factors for every model, a trans-dimensional MCMC

algorithm makes transitions between high-probability models. The number

m of unknown sinusoids becomes an additional unknown parameter and the

algorithm permits the determination of the mode of its marginal posterior
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distribution (together with the posterior distribution of all the other param-

eters). The joint probability that these data d arise from the parameter

vector am and model Mm is given by

p(d|m,am) ∝ 1

σNm
exp

{
− 1

2σ2
m

N∑
j=1

[
dj − s(m)(tj,am)

]2

}
. (3.3)

For simplicity we take the prior distribution of the model dimension param-

eter m as uniform over {0, . . . ,M}. The variances σ2
m are given noninfor-

mative inverse gamma priors, discussed in Section 3.3.3. For simplicity the

calculations use dimensionless frequencies with a Nyquist frequency of 0.5,

and uniform priors are used for the component frequencies f
(m)
i over [0, 0.5].

Given m, σ2
m and the frequency vector f (m), our model (3.1) is a linear

regression model which can be written in matrix form as

d = D(m)b(m) + ε(m), (3.4)

where b(m) = [A
(m)
1 , B

(m)
1 , A

(m)
2 , B

(m)
2 , . . . , A

(m)
m , B

(m)
m ] is the vector of 2m am-

plitudes and the N×2m matrix D(m) contains the entry cos(2πf
(m)
j ti) in row

i and column 2j−1, and sin(2πf
(m)
j ti) in row i and column 2j for i = 1, . . . , N

and j = 1, . . . ,m. Thus, an obvious choice for the prior distribution of the

amplitudes would be a g-prior [77], a multivariate Normal distribution with

mean zero and covariance matrix σ2
mΣ. In this context, the covariance ma-

trix is scaled by a hyperparameter g2 in Σ = g2 × (D(m)TD(m))−1. The

g-prior was used in [13] for situations with m ≤ 4. However, this choice

becomes impractical for a large number m of signals since each iteration

of the MCMC algorithm would require the calculation and inversion of the

2m×2m covariance matrix of basis functions. Another choice could be to use

uniform priors for the amplitudes. However, these priors are not uninforma-

tive, and the parameter space is expressed in Cartesian coordinates simply

because this is convenient for the implementation of the MCMC algorithms.

A model expressed in polar coordinates with uniform priors on amplitude

and phase would correspond to a different prior distribution for the trans-

formed amplitudes in Cartesian coordinates. In fact, it has been shown in
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[17] that independent normal distributions on the Cartesian amplitude coef-

ficients correspond to a uniform prior on the phase when the sinusoids are

expressed in polar coordinates. From this point of view, the g-prior on the

Cartesian amplitude coefficient is the natural choice.

The effect of the different priors on the frequency estimates is generally

negligible when the data is informative, and is discussed in [17]. The pos-

terior pdf of the frequency reaches its maximum at the same value for both

prior choices but with different curvatures at this maximum. However, uni-

form priors impose abrupt restrictions onto the values of the amplitudes by

the predefined prior ranges. This problem is caused by the correlation of

sinusoids that are close in frequency in which case the different linear com-

bination of the sinusoids allow large amplitude values without significantly

affecting the likelihood. This phenomenon was encountered in a previous

stage of this research [14].

It is therefore advisable to choose a prior, similar to the g-prior that favors

smaller amplitudes using a normal distribution. One possibility is to choose

a simplified g-prior based on an identity matrix as covariance matrix σ2
mΣ =

σ2
mg

2 · I2m [78] and hyperparameter g2. Interestingly, this hyperparameter

is related to the expected signal-to-noise ratio (of the signal containing all

sinusoids) and σ2
mg

2 can be exploited later for finding an appropriate proposal

distribution for the amplitudes.

By applying Bayes’ theorem, we obtain the posterior pdf for our model

parameters of

p(m,am|d) =
p(m,am)p(d|m,am)

p(d)
, (3.5)

where p(d) =
∑M

i=0

∫
p(m,am)p(d|m,am) dam. The direct evaluation of the

normalization constant p(d) is difficult due to the (3m + 1)-dimensional in-

tegration involved. Moreover, the computation of marginal posterior pdfs

would require subsequent 3m-dimensional integration. To overcome this

problem, sampling-based MCMC techniques are used to carry out posterior

inference (see [7] for an introduction and overview.) These only require the

unnormalised posterior p(m,am|d) ∝ p(m,am)p(d|m,am) to sample from

Eq. 3.5 and to estimate the quantities of interest. However, in the present
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context the overall model does not have fixed dimension and classical MH

techniques [28, 29] cannot be used to propose trans-dimensional moves. We

therefore use the Reversible Jump Markov Chain Monte Carlo (RJMCMC)

algorithm for the model determination [11, 12]. Additionally we use the de-

layed rejection (DR) method [39, 30] for transitions within the same model.

This allows better adaptation of the proposals in different parts of the state

space by allowing the choice of the proposal distribution to depend on the

proposed but rejected state as well as the current state.

3.3 Sampling from the posterior distribution

3.3.1 The RJMCMC for model determination

To sample from the joint posterior p(m,am|d) we construct a Markov chain

simulation with state space ∪Mm=1

(
m× IR3m+1

)
where m is the current num-

ber of signals. When a new model is proposed we attempt a step between

state spaces of different dimensionality. Suppose that at the nth iteration

of the Markov chain we are in state (k,ak). If model Mk′ with parame-

ter vector a′k′ is proposed, a reversible move has to be considered in order

to preserve the detailed balance equations of the Markov chain. Therefore

the dimensions of the models have to be matched by involving a random

vector r sampled from a proposal distribution with pdf q(r), say, for propos-

ing the new parameters a′k′ = t(ak, r) where t is a suitable deterministic

transformation function of the current state and r. The transitions consid-

ered here imply either decreasing or increasing a model by one signal, i.e.

k′ ∈ {k−1, k+1}. Equal probabilities pk 7→k′ = pk′ 7→k are used to either move

up or down in dimensionality, and without loss of generality we consider the

upward move k′ = k + 1.

If the transformation tk 7→k′ from (ak, r) to a′k′ and its inverse t−1
k 7→k′ =

tk′ 7→k are both differentiable, then reversibility is guaranteed if we define the

acceptance probability for increasing a model by one signal as

αk 7→k′(a
′
k′ |ak) = min

{
1,

p(a′k′ , k
′)p(d|a′k′ , k′)pk 7→k′

p(ak, k)p(d|ak, k)q(r)pk′ 7→k

}
|Jk 7→k′ | (3.6)
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where |Jk 7→k′| =
∣∣∣∂t(ak′ ,r)

∂(ak,r)

∣∣∣ is the Jacobian determinant of this transformation

[11]. In this context, we suggest two types of transformations, ‘split-and-

merge’ and ‘birth-and-death’.

Split-and-merge transitions

For a ‘split’ transition we randomly choose one of the available signals with

parameter subvector a(i) = (A
(k)
i , B

(k)
i , f

(k)
i ) from ak. This signal is cho-

sen by sampling i uniformly from {1, . . . , k}. The proposed parameter vec-

tor a′k′ comprises all the other (k − 1) subvectors of ak and two addi-

tional 3-dimensional subvectors, say a′(i1) = (A
(k′)
i1
, B

(k′)
i1
, f

(k′)
i1

) and a′(i2) =

(A
(k′)
i2
, B

(k′)
i2
, f

(k′)
i2

) each with half the amplitude of a(i), but same frequency,

to replace a(i). A three-dimensional Gaussian random vector (with mean

zero), r = (rA, rB, rf ), changes the current state a(i) to the two resulting

states a′(1i),a
′
(2i) through a linear transformation

tk 7→k′(a(i), r) =




1
2
A

(k)
i + rA

1
2
B

(k)
i + rB

f
(k)
i + rf

1
2
A

(k)
i − rA

1
2
B

(k)
i − rB

f
(k)
i − rf




=




A
(k′)
i1

B
(k′)
i1

f
(k′)
i1

A
(k′)
i2

B
(k′)
i2

f
(k′)
i2




.

The inverse transformation t−1
k 7→k′ := tk′ 7→k accounts for the merger of two

signals and can be written as

tk′ 7→k(a
′
(i1),a

′
(i2)) =




A
(k′)
i1

+ A
(k′)
i2

B
(k′)
i1

+B
(k′)
i2

1
2
f

(k′)
i1

+ 1
2
f

(k′)
i2

1
2
(A

(k′)
i1

− A
(k′)
i2

)
1
2
(B

(k′)
i1

−B
(k′)
i2

)
1
2
(f

(k′)
i1

− f
(k′)
i2

)




=




Ai
(k)

Bi
(k)

fi
(k)

rA
(k)

rB
(k)

rf
(k)



.
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Note that the determinant of the Jacobian of the transformation tk 7→k′ ,

(i.e. the determinant of the above 6-by-6 matrix) is |Jk 7→k′| = 2, and that of

its inverse is 1/2. Thus, the acceptance probability for increasing a model

by one signal is given by

αk 7→k′(a
′
k′ |ak) = min

{
1,
p(k′,a′(i1),a

′
(i2))p(d|a′(i1),a

′
(i2), k

′)

p(k,a(i))p(d|a(i), k)q(r)

}
|Jk 7→k′ | . (3.7)

By analogy, the acceptance probability for the reversible move of a fusion of

two signals is given by

αk′ 7→k(ak|a′k′) = min

{
1,

p(k,a(i))p(d|a(i), k)q(r)

p(k′,a′(i1),a
′
(i2))p(d|a′(i1),a

′
(i2), k

′)

}
|Jk′ 7→k| , (3.8)

where |Jk′ 7→k| =
∣∣∣ ∂(a(i),r)

∂(a′
(1i)

,a′
(2i)

)

∣∣∣.
A multivariate normal proposal distribution N [0, diag(σ2

A, σ
2
B, σ

2
f )] is used

for q(r). Suitable values for the variances of this multivariate normal distri-

bution can be chosen by considering their effect on the acceptance probabil-

ities. First, we consider the effect of a small proposal variance for a splitting

transition. In this case the proposal has an insignificant effect on the like-

lihood since the two new signals in the model function are almost linearly

dependent. On the other hand, the resulting large value for q(r) considerably

decreases the acceptance probability when proposing a split, and increases

it when a fusion of two signals is proposed. Now we consider the effect of

a large proposal variance: the value of q(r), and therefore its influence on

the acceptance probability, is moderate. However it causes the likelihood to

change considerably, resulting in a small acceptance probability. The choice

of σ2
A, σ

2
B and σ2

f is therefore an important consideration for improving mix-

ing. In each iteration we set σ2
A, σ

2
B equal to the noise level σ2

m of the current

model m.

The posterior precision of the frequency in a single-frequency model de-

pends on the signal-to-noise ratio γ =
√

(A2 +B2)/σ2 and the number

of samples N of the data set [16]. Using a Gaussian approximation to

the posterior pdf of the frequency [16], its standard deviation is given by
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σ′′f = (2πγ)−1
√

48/N3 . This yields a distance in frequency for which two si-

nusoids can still be identified as distinct, neglecting the interference of other

sinusoids. We therefore use σ′′f as a frequency perturbation when splitting

two sinusoids and use a normal distribution with this particular standard

deviation when merging.

Birth-and-death transitions

A ‘birth’ transformational step simply creates a new signal with parameter

triple a′(i) independent of other existing signals in the current modelMk. The

one-to-one transformation in this case is very simply given by tk 7→k′(r) =

r = a′(i). The inverse (‘death’) transformation that annihilates signal i′,

t−1
k 7→k′ := tk′ 7→k, has form tk′ 7→k

(
a′(i)

)
= a′(i) = r. The Jacobian for both of

these is 1. The acceptance probability for the creation process is therefore

αk 7→k′(a
′
k′|ak) = min

{
1,
p(k′)p(a′(i))p(d|a′k′ , k′)
p(k)p(d|ak, k)q(r)

}
, (3.9)

and that for the annihilation process is

αk′ 7→k(ak|a′k′) = min

{
1,

p(k)p(d|ak, k)q(a′(i))
p(k′)p(a′(i))p(d|a′k′ , k′)

}
. (3.10)

As for split and merge transitions, a bold proposal distribution q results

in a small acceptance probability due to the strong effect on the likelihood,

whereas timid proposals have minor effects on the likelihood but are often

rejected due to the higher values of the proposal distribution. An effective

way to make a proposal for the frequencies is to base it on the Schuster

periodogram of the data [79], given by

C(f) =
1

N

[
R(f)2 + I(f)2

]
, (3.11)

where R(f) =
∑N

j=1 dj cos (2πftj) and I(f) =
∑N

j=1 dj sin (2πftj) are the

real and imaginary parts from the sums of the discrete Fourier transformation
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of the data. In practice, samples are drawn from a density proportional to

C(f). This technique has already been applied successfully by [13].

With regard to the amplitudes we can exploit the fact that the hyper-

parameter g2 is related to the expected signal-to-noise ratio, as mentioned

previously. Therefore g2σ2
m is a good scale for the expected variance to choose

for the amplitudes. A suitable proposal is therefore a normal distribution

with mean zero and the variance derived from the current state of the pa-

rameter g2σ2
m in the Markov chain.

Classical MCMC methods could be used for transitions within a partic-

ular model Mm, however we use an adaptive MCMC technique here. The

delayed rejection (DR) method has been introduced by [30, 38, 39] and has

been successfully applied in Chapter 2 to estimate the frequency and fre-

quency derivative of potential gravitational radiation signals produced by a

triaxial neutron star.

3.3.2 The delayed rejection method for parameter es-

timation

As sampling progresses, suppose that at the nth iteration the state of the

Markov chain is a = am from model Mm. We can choose a new state within

the same model by first sampling a candidate state a′ from a proposal dis-

tribution q1(a
′|a) and then accepting or rejecting it with an MH-probability

α1(a
′|a) depending on the distribution of interest. When a proposed MH

move is rejected, a second candidate a′′ can be sampled with a different pro-

posal distribution q2(a
′′|a′,a) that may depend on the previously rejected

proposal. To preserve reversibility of the Markov chain and thus to comply

with the detailed balance condition, the acceptance probabilities for both the

first and the second stage are given by [39]

α1(a
′|a) = min

[
1,
p(a′)p(d|a′)q1(a|a′)
p(a)p(d|a)q1(a′|a)

]
(3.12)
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and

α2(a
′′|a′,a) = min

{
1,
p(a′′)p(d|a′′)q1(a′|a′′)q2(a|a′,a′′)[1− α1(a

′|a′′)]
p(a)p(d|a)q1(a′|a)q2(a′′|a,a′)[1− α1(a′|a)]

}
.

(3.13)

We therefore apply distinct types of DR transition for the amplitudes and

the frequency of a sinusoid, and these are considered below. The transitions

are performed randomly and with equal probability for a randomly chosen

sinusoid i.

Proposing new amplitudes

In [13] the amplitudes were regarded as nuisance parameters and integrated

out by treating them as parameters of a multiple regression model with a con-

ditional posterior that is normally distributed with known mean and covari-

ance matrix according to the g-prior. As already mentioned, the computation

of the covariance matrix involves determining the inverse of D(m)TD(m) given

the frequency vector f (m) for each iteration, which is impractical against the

background of the large number of signals expected for LISA, and in the

LISA context, the amplitudes are parameters of interest. Therefore, a sim-

plified g-prior distribution was chosen that uses an identity matrix for the

covariance matrix scaled by the hyperparameter g2. However, for the choice

of an appropriate proposal distribution the covariance matrix is important

in order to account for the covariance of the amplitudes between sinusoids

that are close in frequency.

It is possible to consider the covariance matrix of single pairs of sinusoids

that are close in frequency, limiting the size of the covariance matrix to 4×4.

The delayed rejection method provides the possibility to either consider a

single sinusoid in a first stage or a pair of sinusoids in a second stage in case

of rejection in the first stage.

In a first stage, the change of the two amplitudes of a single, randomly

chosen sinusoid i, is proposed. The variance of the proposal is derived from

the hyperparameter g2 that is the expected signal-to-noise ratio and the

noise σ2
m, scaled down by an additional parameter r for which the value
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10 offers good results in this context. This yields the proposal distribution

q2(a
′
(i,ic)

|a(i,ic)) = N
[
a(i), r · g2σ2

mI2
]

where a(i) =
(
A

(m)
i , B

(m)
i

)T
is the sub-

vector of a containing the amplitudes of sinusoid i.

If the first proposal is rejected, another attempt is made that considers

the interference between the chosen sinusoid and its closest neighbor on the

frequency scale. The covariance matrix that depends on the basis functions

of those sinusoids is used for the multivariate normal proposal distribution.

The closer two sinusoids are in frequency the more correlation there is in their

recovered amplitudes. In the following, the notation D(m)(f) is used for the

N × 2m matrix D(m) given the frequency vector f (m). For the randomly

chosen sinusoid i and sinusoid ic that is closest in frequency to sinusoid i,

the covariance matrix derived from the subset of basis vectors has the form

D
(m)
(i,ic)

(f)=




cos(2πf
(m)
i t1) sin(2πf

(m)
i t1) cos(2πf

(m)
ic

t1) sin(2πf
(m)
ic

t1)

cos(2πf
(m)
i t2) sin(2πf

(m)
i t2) cos(2πf

(m)
ic

t2) sin(2πf
(m)
ic

t2)
...

...
...

...

cos(2πf
(m)
i tN) sin(2πf

(m)
i tN) cos(2πf

(m)
ic

tN) sin(2πf
(m)
ic

tN)




(3.14)

which results in a covariance matrix that is merely of type 4 × 4 for com-

puting proposals for a sinusoid pair (i, ic). Now suppose that a(i,ic) =(
A

(m)
i , B

(m)
i , A

(m)
ic
, B

(m)
ic

)T
is a vector containing the amplitudes of the si-

nusoid pair (but not their frequencies). The covariance matrix is scaled by

the current value of the variance parameter σ2
m of model m and normalised

by the number of samples N yielding

Σ(i,ic) = σ2
m ·N/2

(
D

(m)
(i,ic)

(f)TD
(m)
(i,ic)

(f)
)−1

(3.15)

as a covariance matrix for the proposal distribution q2(a
′′
(i)|a)=N(a(i,ic),Σ(i,ic))

of the second stage.

Proposing a new frequency

A new frequency is proposed as follows: In the first stage a new frequency

for sinusoid i is sampled from a proposal density that is proportional to the
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periodogram q1(a
′
(i)) ∝ (0, 0, C(f))T and independent of the actual stage.

This is similar to the sinusoid proposal scheme for RJMCMC. The main

objective of this stage is to coarsely scan the whole parameter space for

frequencies.

The incident of a rejection suggests to sample from the local frequency

mode and a proposal is made conditional on the actual state of the frequency

by slightly perturbing the state. In the same manner as in the split-and-

merge transition the perturbation is oriented on the potentially achievable

accuracy σ
f
(m)
i

= (2π)−1

√
48σ2

m

[
(A

(m)
i )2 + (B

(m)
i )2

]−1

N−3 of a frequency by

[17]. This yields the proposal q2(a
′′
(i)|a(i)) = N

(
a(i), diag

(
0, 0, σ

f
(m)
i

))
and

aims to draw representative samples from the local mode in the second stage.

3.3.3 Updating the noise parameter

The sum of the squared residuals between the model and the data, taken

from the likelihood in Eq. 3.3, is

S2 =
N∑
j=1

[dj − sm(tj,am)]2. (3.16)

Using this, we choose a vague prior for the noise parameter σ2
m, defined by

IG(α, β) = IG(Np/2, Np · S2
p/2) with a shape parameter α = Np/2 = 0.001

and a scale parameter β = NpS
2
p/2 = 0.001. This yields Np = 0.002 and

S2
p = 1 for the parameters of the vague prior. The full conditional distribution

p(σ2
m|m,am,d) ∝ IG

(
Np +N

2
,
NpS

2
p + S2

2

)
(3.17)

is used for drawing samples for σ2
m in a Gibbs update.

3.3.4 Updating the hyperparameter g2

Similar to Ref. [13], we consider g2 as a scale parameter of an extended

hierarchical model and ascribe a vague prior g2 ∝ IG(α = 2, β = 1) to it.
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The samples for g2 are then drawn in a Gibbs update from the full conditional

distribution

p(g2|k,ak) ∝ IG (
k + α,ATA/(2σ2

k) + β
)

(3.18)

where A = (A
(k)
1 , . . . , A

(k)
k , B

(k)
1 , . . . , B

(k)
k )T is the vector containing all am-

plitudes of ak.

3.3.5 Initial values

The initial values of a Markov chain are crucial for the length of the burn-

in period needed to converge to the real posterior distribution. We could

start with an empty model, M0, but it is obvious that it would then take

the sampler many steps to find all the signals. Instead, we perform a Fast

Fourier Transformation (FFT) of the data and use this to generate our initial

values. Those frequencies are used that correspond to the local maxima in the

periodogram, f0,i, as starting values for fm0
0,i and A0,i = 2R(fmaxi

)/N , B0,i =

2I(fmaxi
)/N as starting values for Am0

i and Bm0
i , respectively. Theoretically

we could use all the local maxima as initial values, but as most of them are

due to noise we select only those that exceed a certain threshold. We set

this threshold low, as it is easier to delete non-relevant sinusoids than create

good ones.

If we assume fixed and equidistant time intervals, then the frequency

resolution depends sample size N , suggesting that the convergence of the

Markov chain is also dependent on N . As we will see, spectral estimates

based on the FFT are significantly worse than those obtained by the MCMC

method developed here, but they are sufficient to serve as initial values.

3.4 Identifying the sinusoids

Although the RJMCMC method facilitates the selection of the most proba-

ble model, we still encounter the label-switching problem. This is a general

problem caused by the invariance of the likelihood under relabeling of the

sinusoidal components, and has been extensively discussed in the context of

mixture models [76, 80, 81, 82, 83]. During the MCMC simulation, param-
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eter triples are constantly changing their affiliation to individual sinusoids,

either due to the creation and annihilation of sinusoids or following transi-

tions within the same model. We therefore need an additional step in the

analysis if we are to break this symmetry and talk meaningfully about in-

dividual sinusoid components. This step involves associating the samples in

the final Markov chain with particular sinusoids, which we know neither by

number nor by location. There are general approaches to the label switching

problem discussed in the literature:

• identifiability constraints

• relabelling algorithms

• label invariant loss functions

3.4.1 Identifiability constraints

The label switching problem is often addressed by imposing artificial identi-

fiability constraints on the parameter space. This is equivalent to imposing

constraints on the prior in order to break down its symmetry and thus the

symmetry of the posterior distribution. Concerns have been expressed re-

garding the impact on the performance of the sampler when it is bound to

obey such constraints [81]. It has been shown that the identifiability con-

straints can be applied in a post processing procedure [83, 84] by defining

a prior with zero probability when the parameter vector violates the con-

straint. However, especially against the background of high model orders

that we face here, such a constraint would be a burden to the entire sam-

pling and inference process.

Another issue when applying artificial identifiability constraints is their

appropriate choice. Particularly for multivariate parameter spaces this con-

stitutes a problem [83] and for the situation at hand the only physically

meaningful choice at first sight would be an ordering constraint on the fre-

quency parameters. Although a sinusoid can be primarily identified by its

frequency, there are two reasons why such a constraint should be avoided.

First of all, the problem of confusion noise is addressed here. That is, we
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expect an overlap in the marginal posterior densities of the frequency among

the sinusoids. Therefore, there is no physical justification to impose a prior

that expects the frequencies to be in perfect order. The amplitudes play

a role in the identification of overlapping frequencies but there is no sensi-

ble way to incorporate all parameters into a straightforward identifiability

constraint.

Although ordering the frequencies [13] might be appropriate for a few

well separated sinusoids, artificial identifiability constraints do not prevent

multimodality in the components [83]. In view of the confusion noise prob-

lem with many sinusoidal components of unknown number, a prior with a

simple ordering constraint on the frequency does not provide meaningful in-

ference. The labels of the sinusoidal components of each MCMC sample that

pertain to model M̂ are a permutation of the m̂ coexistent sinusoids that

determine the model. Unfortunately, this coexistence does not imply that,

over the course of the Markov chain, there are exactly m̂ sinusoids involved

within model M̂. The occurrence of higher model orders within the multidi-

mensional Markov chain suggests the existence of sinusoids that might turn

up in lower model orders as well, albeit with smaller probability. Therefore,

in general, the truncation of the parameter space is not necessarily conform

with the unrestricted posterior [81].

3.4.2 Relabelling algorithms

Another approach to the label switching problem is based on k-means type

clustering algorithms [80, 82, 83]. They are based on loss functions that

depend on a classification action and the possible permutations. These loss

functions are not label invariant and depend on a permutation, other then

label invariant loss functions that will be described in Sec. 3.4.3. By turns,

the loss function is minimised with respect to the classification action given

a permutation and to the permutation given the classification action until

convergence is achieved. Finding the minimum loss with respect to a permu-

tation given the classification action for each output MCMC sample vector

bears the most computational burden in the present problem.
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An additional issue is that the k-means clustering type algorithm is based

on the assumption that there are k existing components within the model

under consideration. As mentioned in Sec. 3.4.1, this assumption is delicate

as model M̂ comprises m̂ coexistent sinusoids from a possibly larger set due

to the existence of higher order models. An algorithm like the k-means type

algorithm could therefore jeopardise a meaningful inference. This issue and

the huge computational burden lead to a different cluster analysis approach

and was used at a prior state of this research [14].

The predominant parameter that contributes significantly to identifying a

sinusoid is its frequency. We can therefore divide the problem by considering

smaller frequency intervals. The dominant sinusoids that characterise model

M̂ are identified by the kernel density estimate of the marginal posterior of

the frequency. The frequency intervals are obtained by finding a threshold

that separates m̂ strongest peaks together with their covering frequency in-

tervals. This technique will be tersely outlined below. It will help later to

better understand the motivation and need for elaborating the method that

was finally applied and will be described in Sec. 3.4.3.

Since we have to deal with a vast number of output samples grouped

within many very small regions it is neither possible to apply classical kernel

density estimates nor histograms. The required fixed bin size for a histogram

would be too small for a feasible implementation. Instead, a variable bin size

is used and the densities calculated for fixed samples per bin. Initially, all

individual sinusoidal components from all MCMC samples of the considered

model M̂ are sorted by their frequency. After having generated n MCMC

samples of model M̂ during a run, there are m̂·n parameter triples and hence

f1 < . . . < fn·m̂ ordered frequency samples. The density can be assessed by

calculating the frequency range spanned by a fixed number of sorted fre-

quencies. The m̂ · n sinusoidal components determined by their parameter

triples are from m̂ sinusoids and therefore we can expect n frequency samples

per peak since we assume the number of peaks to be similar to the number

of sinusoids. Hence, the fixed number of sorted frequencies that spans the

frequency ranges must be some fraction r of the number of MCMC samples

n, and is the counterpart to the required bin width in a histogram or the
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bandwidth h of a kernel density estimate f(f) = (2hnm̂)−1 · ∑n·m̂
i=1 I|f−fi|<h

with uniform kernel. The advantage of this approach is the automatic adap-

tation of the bandwidth to the situation by involving the information of the

expected parameter triples per peak. The choice r = 0.05 (5%) was found

to be a good value, and hence r · n serves as an estimate of the number of

members needed for assessing the spans of the frequency ranges. In analogy

to the kernel density estimate with uniform kernel where the number of sam-

ples are counted that fall into a range of length 2 · h, the density value ρj

corresponds to each frequency sample j and its r · n− 1 subsequent samples

that fall into a frequency range of length (fj+r·n−1 − fj). Hence, the den-

sity is given by ρj = rn/ (nm̂ (fj+r·n−1 − fj)) = r/ (m̂(fj+r·n−1 − fj)) where

j = 1, · · · , n(m̂− r). Since each ρj comprises the samples j, · · · , j + r · n− 1

this has to be considered later when deriving spans for the peaks. We find

the smallest density threshold l that separates m̂ distinct peaks with respect

to the values of ρj. The frequency range for each peak k ∈ {1, · · · , m̂} is

[fjk,start
, fjk,end+r·n−1] where jk,start and jk,end are the indices of the first and

the last member of the set of ρj’s in peak k, respectively. Due to the fact

that we always focus on frequency ranges that contain a fixed number of

frequency samples we efficiently deal with large frequency ranges of low den-

sity. This technique is fast and requires a minimum of memory. The greatest

computational cost is in sorting the frequencies, although this can be carried

out fairly quickly using a heap sort.

There are two issues to consider that arise when applying a peak analysis:

Firstly, due to the possible frequency overlaps between sinusoids, not all

peaks can be clearly separated and a single peak can contain more than one

sinusoid. Secondly, we can expect the existence of more then m̂ sinusoids

over the course of the Markov chain even when restricting to model M̂.

Dividing the entire frequency band into intervals of high posterior density

does not necessarily yield a fixed number of sinusoids per MCMC sample

within each interval. However, for a multidimensional subspace the posterior

probabilities for the number of sinusoids within a frequency interval can be

estimated, based on the MCMC samples. A histogram can be compiled of

the number of samples that fall into the restricted frequency range under
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consideration.

A cluster analysis serves to separate multiple sinusoids. Therefore, we

include the two amplitudes and apply an agglomerative hierarchical cluster

analysis that involves all three parameters. For this purpose a modified

Ward technique [85] is used that minimises the within-cluster variance using

a normalised Euclidean distance between the parameters by adjusting the

frequency range to the much larger range of the amplitudes. The software

package R [86] is deployed for this task. The Ward technique starts with each

parameter triple belonging to a singleton cluster. Iteratively cluster pairs are

joined that produce the smallest possible increase in within-cluster sum of

squares. In this particular case we have no difficulty in detecting when to stop

the agglomeration, which is an important issue in cluster analysis, as we know

the posterior expected number of sinusoids in a peak and hence the number

of clusters. However, due to the vast number of parameter triples involved

here it is not possible to carry out a cluster analysis simultaneously on all of

the data. Instead we have to divide the set of samples into randomly chosen

subsets of equal size and perform separate cluster analyses (with R) for each

of these subsets. Finally, we perform a cluster analysis on the median points

of the subset clusters to allocate each of those clusters to a super-cluster.

Each single parameter triple is then allocated to a super-cluster and hence

to a presumed sinusoid.

This method has proven to work well [14] but problems occur with large

numbers of sinusoids. The fact that m̂ coexistent sinusoids in model M̂ do

not necessarily mean that there are exactly m̂ sinusoids involved within this

model leads to minor peaks and spread out single sinusoidal component sam-

ples in model M̂. Individually, they have a small contribution to the entire

probability mass but, in sum, gain significance and require proper identifi-

cation. Moreover, the correct identification within major peaks is difficult

as their intervals do not necessarily cover a fixed number of sinusoids per

MCMC sample. The described method can not adhere to the permutational

restriction that all sinusoidal components within an MCMC sample must

belong to different sinusoids. Even though, naturally, samples of individual

sinusoidal components belong to different peaks and clusters, this method is
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not bound to it.

The considerations made above lead to the conclusion that the posterior

distribution of sinusoids can be multimodal. A peak and cluster analysis

based approach is therefore to be handled with care. The key problem we

face is the possible existence of sinusoids that embody multiple sinusoids,

interchanged in higher model orders, appearing as a single sinusoid within

the model under consideration. Those entities are therefore a blend of sev-

eral sinusoids and in the following context those sinusoids are referred to as

blendoids. They are hard to identify and estimates are difficult due to their

multimodal features. However, the m̂ sinusoidal components of each MCMC

sample determine the likelihood under model M̂. It is therefore imperative

to regard the m̂ sinusoids as entities. Note, that the posterior distribution

of one and the same sinusoid can alter among different models due to the

changing interaction between sinusoids.

Although most sinusoids have a unimodal appearance, the appearance

of blendoids disorder the ranking of the sinusoidal components within each

MCMC sample. Those entities are the reason for the existence of other

countless minor peaks and spread out samples that can not be allocated to

unimodal posterior distributions. It is essential to trace back the origin and

to identify possible blendoids as entities.

3.4.3 Interval separation of sinusoids by their frequency

using a label invariant loss function

Label invariant loss functions have been applied to mixture distributions

[81] and mixture regressions [87]. The idea is to define a label invariant loss

function of a classification action and to compute the posterior expected loss

based on the MCMC output. The minimum of the posterior expected loss

with respect to the classification actions is usually derived by Monte Carlo

methods [83].

For this process, an expedient loss function needs to be specified that

is not too computationally expensive for the minimisation procedure based

on all MCMC samples. Again, we can exploit the fact that the frequency
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is the predominant parameter for identifying a sinusoid. Therefore, within

model M̂, the entire frequency band can be divided into m̂ disjoint and

adjacent intervals Ik :]bk, bk+1], k ∈ {1, . . . , m̂} with their m̂ + 1 boundaries

bk. The outer two b1 and bm̂+1 are predetermined by the minimum and

maximum over all frequency samples that appear in the Markov chain and

it is b1 < b2 < . . . < bk+1. Let us consider n MCMC samples of model

M̂ with vectors ai, i ∈ {1, . . . , n}. The ith MCMC sample encompasses

the sinusoidal components a
(k)
i , k ∈ {1, . . . , m̂} each with two amplitudes

A
(k)
i , B

(k)
i , and frequency f

(k)
i . With this setup it is possible to count, for

each MCMC sample i, the number of frequency samples f
(k)
i that fall into

the individual frequency intervals I1 : [b1, b2], I2 :]b2, b3], . . . , Im̂ :]bm̂, bm̂+1].

When this is done for all n MCMC samples, a histogram can be compiled for

each interval Ik revealing how many occurrences there are in the n MCMC

samples in which l ∈ {0, 1, . . . , m̂} frequency samples fall into the frequency

interval Ik.

Deploying the indicator function

1A(x) =

{
1 if x ∈ A
0 otherwise

allows for defining

H
(l)
k =

n∑
i=1

1{l}

(
m̂∑

h=1

1Ik(f
(h)
i )

)
(3.19)

as the number of occurrences in which l ∈ {1, . . . , m̂} components of the

individual MCMC samples fall into interval Ik. The upper bound for all H
(l)
k

is n and we therefore define the normalisation Ĥ
(l)
k := H

(l)
k /n. The following

graph in Fig. 3.1 exemplifies the label switching issue and the difficulty in

finding optimal intervals, in case of presence of a blendoid. This example

contains one blendoid that complicates the correct allocation. The described

interval method, however, helps identifying those as entities. The histogram

of interval I4 in Fig. 3.1 features the lack of single occupancies. Yet, it

covers the major proportion of the blendoid that can be ascribed to an actual
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sinusoid. The other corresponding samples are spread over all other intervals.

Label switching example and the choice of frequency intervals with 5 sinusoids
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Figure 3.1: Example for the label switching problem with optimal chosen
intervals to separate the sinusoidal components. This example displays the
difficulty that arises in the presence of a blendoid that can be identified in
interval I4. The samples from a blendoid encompasses samples from several
sinusoids of higher model order but appear as an entity in the likelihood
of the model under consideration. The intervals are arranged such that all
histograms yield in sum the most single occupancies. This yields the highest
number of possible allocations and helps identify the core probability mass
of blendoids.

The goal is to find intervals for which exactly one sinusoidal component of

each single MCMC sample falls into one of the intervals, yielding Ĥ
(1)
k = 1 for
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all k ∈ {1, . . . , m̂}. In this unlikely case, any further separation is needless.

As mentioned above, we encounter frequency samples intermingling be-

tween sinusoids that are close in frequency and furthermore the existence of

blendoids. We therefore aim for maximising the term

HΣ(b1, . . . , bm̂+1) =
m̂∑

k=1

Ĥ
(1)
k (3.20)

with regard to the intervals Ik and therefore their boundaries {b1, . . . , bk+1}.
This yields the intervals that carry the most single occupancies or in other

words the most unambiguous set of intervals with respect to the separation

of the sinusoidal components of all MCMC samples. Eq. 3.20 has an upper

bound of m̂. Note, that b1 and bm̂+1 can be determined by the lower and

upper bound of the entire occupied frequency band whereas the inner m̂− 1

boundaries b2 < b3 < . . . < bm̂ remain as parameters.

In view of the label invariant loss function, the inner boundaries represent

the classification actions. The actual loss function is represented by

L(b1, . . . , bm̂+1) := m̂−HΣ(b1, . . . , bm̂+1) (3.21)

and we therefore seek to minimise Eq. 3.21 or maximise Eq. 3.20 with respect

to those boundaries in order to obtain the posterior expected loss based on

the MCMC output.

Finding frequency intervals that maximise the number of single

occupancies

The maximisation of HΣ(b1, . . . , bm̂+1) with respect to the boundaries of the

intervals presents a global optimisation problem. A Monte Carlo technique

has been deployed that tackles this challenge. It requires the sorting of

all frequencies f
(1)
i ≤ f

(2)
i ≤ . . . ≤ f

(m̂)
i within the ith MCMC sample,

∀i ∈ {1, . . . , n}. The algorithm can be outlined as follows:

1. Determine the fixed outer bounds b1 = mink,i f
(k)
i and bm̂+1 = maxk,i f

(k)
i .
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2. Determine initial values for {b2, . . . , bm̂} by choosing randomly an

MCMC sample i then calculating the in-between points

bk+1 = rk · (f (k)
i + f

(k+1)
i ), k ∈ {1, . . . , m̂ − 1} of its frequency com-

ponents with samples rk ∼ β(5, 5) drawn from a beta distribution that

yields values close to the center of both boundaries.

3. Compute HΣ(b1, . . . , bm̂+1)

4. Choose one of the following proposal techniques randomly:

• New: Find a new set of boundaries as described in (2). This step

prevents the maximisation procedure from getting trapped in a

local maximum.

• Variation: Choose randomly a boundary bk, k ∈ {2, . . . , m̂} with

equal probability. Choose to either shift its position up or down

by either setting b′k = r · (bk+1−bk) or b′k = r · (bk1−bk), where r is

drawn from a beta distribution r ∼ β(0.1, 1) which yields mostly

timid but sufficiently often bold changes of bk, always incorporat-

ing the distance to the neighbour boundaries.

• Exchange: A particular interval can lack components (Ĥ
(0)
k1
À 0)

while another reveals a surplus (
∑m̂

l=2 Ĥ
(l)
k2
À 0). The bound-

ary within the sparsely occupied interval is placed into the inter-

val of abundant occupation. Pairs of intervals that show those

conditions are preferably selected randomly. One of the framing

boundaries of the sparse interval, say bk1 , is chosen to be placed

within the interval Ik2 with boundaries bk2 and bk2+1 that has

abundant occupation. The new position is obtained by b′k1 =

(1 − r) · bk2 + r · bk2+1 where r is drawn from r ∼ β(5, 5). This

makes sure for b′k to be placed somewhere close the center of the

interval Ik2 . Subsequently the boundaries have to be sorted in

order to maintain b′1 < . . . < b′m̂.

5. Compute HΣ(b′1, . . . , b
′
m̂+1). If the new value is better or equal, accept

{b′1, . . . , b′m̂+1}. Otherwise reject it.
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6. Proceed with step (4) until no improvement could be made for 10 000

iterations.

The described algorithm repeatingly finds the same maximum value for

HΣ(b1, . . . , bm̂+1). One reason that prevents the algorithm from getting

trapped in a local maximum is the fact that permanently an entire new

set of boundaries is proposed by bk+1 = r · (f (k)
i + f

(k+1)
i ), k ∈ {1, . . . , m̂− 1}

from r ∼ β(5, 5) for all neighboring frequency pairs fki and f
(k+1)
i . Here, i

is chosen randomly among all possible MCMC samples. This procedure has

the following significance. One could argue that a good set of boundaries

could be obtained by computing the mean or median of the individual fre-

quencies over all MCMC samples that share the same rank of the sorted n

sets f
(1)
i ≤ f

(2)
i ≤ . . . ≤ f

(m̂)
i ,∀i ∈ {1, . . . , n}. The boundaries could then

be derived in the same way as above. However, the presence of blendoids

disorders the ranking and yields bad estimates. In contrast, among the many

individual MCMC samples, it is very likely to find representatives that serve

ideally for maximising HΣ(b1, . . . , bm̂+1).

In order to speed up the computation one should start the algorithm

with a subset of MCMC samples then subsequently accumulate more until

all MCMC samples are incorporated. After having obtained the intervals

{I1 = [b1, b2], I2 =]b2, b3], . . . , Im̂ =]bm̂, bm̂+1]} : maxHΣ(b1, . . . , bm̂+1),

that maximise Eq. 3.20, the number of samples possible to be allocated to

sinusoids by means of the frequency intervals is at a maximum.

The allocation based on minimising the posterior expected loss with re-

spect to Eq. 3.21 is merely based on the frequency parameters but in return is

not computational expensive which makes its use feasible. This, however, is

just the first step in the allocation procedure and further allocation steps are

required that include the information of the amplitudes. We aim for deter-

mining allocations for all sinusoidal components based on the preallocations

possible by the interval separation technique.
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Preallocation scheme by means of the intervals I1, . . . , Im̂

If the allocation of the kth sinusoidal component a
(k)
i in the ith MCMC

sample is non-ambiguous, it is allocated to the corresponding interval. In

the ambiguous cases it is necessary to decide which of the candidates that

could possibly occupy a particular interval is more likely to do so. From

a physical point of view it is clear that a sinusoidal component a
(k)
i which

carries the highest energy contribution [(A
(k)
i )2 + (B

(k)
i )2]/2 among those

candidates is to be preferred. The higher the energy, the smaller is the

expected discrepancy between frequency and corresponding interval. It is in

the nature of blendoids to have a low energy contribution because otherwise

they would maintain enough evidence to be fully present in model M̂. In

contrast a sinusoid with high energy contribution and thus higher evidence

is expected to reveal accurate estimates.

All remaining components within the ith MCMC sample get temporarily

labeled zero to identify no sensible preallocation by the interval separation.

The labeling of the individual sinusoidal components is structured in such

a way that a sinusoid that is labeled k belongs to interval Ik that mainly

covers it. Let us define L(i, j) as the label for the jth sinusoidal component

of the ith MCMC samples, j ∈ {1, . . . , m̂}, i ∈ {1, . . . , n} by

L(i, j) =





1 iff
(j)
i ∈ I1 and E

(j)
i > E

(l)
i ∀l ∈ {1, . . . , m̂} \ {j} : f

(l)
i ∈ I1,

2 iff
(j)
i ∈ I2 and E

(j)
i > E

(l)
i ∀l ∈ {1, . . . , m̂} \ {j} : f

(l)
i ∈ I2

...
...

k iff
(j)
i ∈ Ik and E

(j)
i > E

(l)
i ∀l ∈ {1, . . . , m̂} \ {j} : f

(l)
i ∈ Ik

0 otherwise, (identifies no preallocation)

(3.22)

where E
(j)
i = [(A

(j)
i )2 + (B

(j)
i )2]/2 is the energy contribution of the jth sinu-

soidal component of the ith MCMC sample. The following Fig. 3.2 exempli-

fies the preallocation of Fig. 3.1.

By the procedure described above the allocation of the major part of the

components can be achieved but there are cases in which more information

from the amplitudes needs to be exploited. The interval separation is abrupt
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First step: Preallocation of definite samples

frequency intervals
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Second step: Preallocation of ambiguous samples by energy contribution

frequency intervals
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Figure 3.2: The two steps of preallocating the sinusoidal components. In
the first step, the non-ambiguous samples are allocated to the corresponding
intervals that maximise Eq. 3.20. In a second step, those candidates of the
ambiguous samples that have the highest energy contribution are allocated
to the corresponding intervals (gray discs). The others are not preallocated
and receive an extra label (black discs).
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and does not allow density overlaps. Neighboring intervals usually tend to

share samples as there can be no clear frequency threshold drawn between

the two distributions. For example in Fig. 3.2 in the 27th MCMC sample the

sinusoids labelled {2, 3, 4} fall into interval I2. Blendoids operate within the

entire frequency band with huge overlaps in frequency with other sinusoids.

With the preallocation information at hand and the fact that all sinu-

soidal components within an MCMC sample must belong to different sinu-

soids as they determine the likelihood of the model under consideration, a

further classification step is possible. This problem can be approached by

imputing that the posterior distribution is a mixture model, as described in

the following section.

3.4.4 Further classification using a mixture model ap-

proximation

A preallocation by the interval technique delivers abundant information

about the means and covariance matrix of the parameters of the individ-

ual sinusoids. The posterior distribution of the parameters of the isolated

sinusoids present typical multivariate normal distributions of all parameters.

Only the correlation between the amplitudes of sinusoids that are close in

frequency results in a skewed posterior distributions in the marginal densi-

ties of the amplitudes. The marginal posterior densities of the frequencies,

however, are approximately Gaussian [16]. The idea is to model the posterior

distribution by a Gaussian mixture model which is assumed to be a sum of

multivariate normal distributions. The parameters of the multivariate nor-

mal components can be estimated by the samples that could be successfully

preallocated. The estimation of this Gaussian mixture model then allows for

classifying the sinusoidal components by means of the multivariate distribu-

tion that incorporates all parameters.

The difficulty is to ascribe an appropriate distribution to a blendoid.

A blendoid that appears within the model under consideration represents

multiple sinusoids with low evidence. However, its existence must result

from one sinusoid that has the highest evidence among those that justify its
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existence. The interest is drawn to that particular sinusoid that shares the

major proportion of the probability mass which resides within its allocated

frequency interval. The remaining probability mass must be ascribed to the

weaker sinusoids that are expected to be found across the entire frequency

band. A separation of a blendoid into all its components is hardly feasible

due to the very low evidence of the remaining components and the best

approximation to such a distribution is a uniform distribution on the entire

frequency band and a normal distribution on the amplitudes. Estimates

for mean and variance of the normal distribution can be obtained from the

samples that could not be preallocated clearly by the interval technique. In

the example that is displayed in Fig. 3.2 those samples are identified as solid

black circles. They are almost solely from the blendoid and the amplitudes

can be expected to be very small.

The weight between the distribution that embodies the major part of the

sinusoid and the remaining blend can easily be estimated by the proportion

between samples that could be preallocated and those that could not. The-

oretically, every sinusoid can have a positive proportion of a blend of other

sinusoids within a model but in most cases this proportion is almost zero

when the evidence for the sinusoid is strong. All weights can be determined

from the preallocation.

The parameter estimation of the mixture model components is done as

follows. Let

nk =
∑

(i,j):L(i,j)=k

1 (3.23)

be the number of possible preallocations to interval Ik and a
(j)
i =(A

(j)
i , B

(j)
i , f

(j)
i )T

the parameter vector of the jth sinusoidal component if the ith MCMC sam-

ple. In the following, the cth element of vector a
(j)
i will be referred to as

a
(j),c
i , c ∈ {1, 2, 3} and indicates the amplitudes A, B, and the frequency f ,

respectively. This yields the mean vector

µ̂k =
1

nk

∑

(i,j):L(i,j)=k

a
(j)
i (3.24)
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and the empirical covariance matrix with elements

Σ̂
(c1,c2)
k =

1

nk − 1

∑

(i,j):L(i,j)=k

(a
(j),c1
i − µ̂

(c1)
k )(a

(j),c2
i − µ̂

(c2)
k ) (3.25)

where c1 and c2 are indicating the different elements of the vectors. The si-

nusoidal component of sinusoid labeled k is expected to follow a multivariate

normal distribution in the mixture model with

Sk(a) =
1

(2π)3/2

√
Det(Σ̂k)

exp

(
−1

2
(a− µ̂k)

T Σ̂−1
k (a− µ̂k)

)
(3.26)

The remaining sinusoidal components without preallocation do therefore

most likely belong to a blendoid. Estimates are needed for the distribu-

tion that can be expected from the remaining blend proportion. It is spread

equally likely over the entire frequency band and therefore needs to be uni-

formly distributed in frequency. A covariance matrix could easily be derived

but assuming uncorrelated amplitude samples is a more sensible choice. All

required information can be derived from Eq. 3.24 and Eq. 3.25 for k = 0

indicating the label that indicates no successful preallocation. For the pa-

rameter vector a = (A,B, f)T we obtain

Pk(a) =
1√

2πσ̂
(A)
0

e
− 1

2

 
A−µ

(A)
0

σ̂
(A)
0

!2

1√
2πσ̂

(B)
0

e
− 1

2

 
B−µ

(B)
0

σ̂
(B)
0

!2

· 2 (3.27)

as a suitable distribution we expect from the blend proportion of a sinusoid.

Finally the terms Sk(a) (main sinusoid proportion) and Pk(a) (blend

proportion) need to be combined. The weights wk = nk/n are easy to obtain

from the nk in Eq. 3.23. The m̂ distribution components for the mixture

model are hence

Mk(a) = wkPk(a) + (1− wk)Sk(a) (3.28)

with k ∈ {1, . . . , m̂}.
The final step remains to allocate the sinusoidal components based on
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the information of the approximated mixture model distribution conditioned

on the permutational restrictions. The fact that the sinusoidal components

within each MCMC sample are bound to be allocated to different compo-

nents of the approximated mixture model distribution highly reduces the

possible allocations to the different components within the mixture model.

That makes the method very robust despite using a multivariate normal dis-

tribution for modelling the sinusoidal components and a coarse model for

the blended components by Eq. 3.27. It is therefore important to adhere

in the final classification to the permutational restrictions. From there, the

classification procedure follows the scheme described below in order to cir-

cumvent double classifications of sinusoids within an MCMC sample to the

same distribution component of the mixture model:

1. For the ith MCMC sample vector ai with its l ∈ {1, . . . , m̂} compo-

nents a(l), a m̂ × m̂-matrix is computed with elements Mk(a
(l)
i ), k ∈

{1, . . . , m̂} (Eq. 3.28) in the kth row and lth column.

2. Find the largest element (k, l) : max(Mk(a
(l)
i )) in the matrix denoting

the highest probability for the lth sinusoidal component of the ith

MCMC sample to belong to the kth mixture model component.

3. Label the lth sinusoidal component with k.

4. Nullify all elements of the matrix that belong to row k or column l in

order to invalidate them for further use.

5. Proceed with step (2) until all elements are nullified.

6. Proceed with step (1) until all MCMC samples are processed.

This algorithm allocates m̂ unique labels to each of the sinusoidal com-

ponent within each MCMC sample and we are left with n samples for each

of the m̂ sinusoids within model Mm̂. This allows for deriving estimates for

the parameters of each sinusoid on the basis of the n samples. In presence of

a blendoid, care has to be taken due to the multimodal structure. Since it

represents multiple sinusoids from higher model orders which all have a share
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in the evidence of appearing in the model under consideration, it is necessary

to identify the highest proportion that can be attributed to a single sinusoid.

This proportion is obviously covered by its separation interval. A more so-

phisticated approach to identify that proportion by comparing the empirical

quantiles of the marginal posterior distribution of the frequency to those of

a normal distribution will be described in the next section Sec. 3.5 by means

of a simulated example data set. We will see that any further separation of

blendoids into its components is futile.

3.5 Simulation results

An artificial data set of 1, 000 samples at time points t ∈ {0, . . . , 999} con-

taining 100 random sinusoids in Gaussian noise was created. The Cartesian

amplitude coefficients were chosen randomly from a N(0, 1) distribution and

the frequency values from a uniform distribution with range [0, 0.5]. The re-

sults are presented with dimensionless units. The signal is embedded within

white noise with standard deviation σ = 0.6. The following Fig. 3.3 displays

the signal-to-noise ratios (SNRs) of all 100 sinusoids. The SNR with units

in dB, as it is used here, is defined by SNR = 10 log10[(A
2
i +B2

i )/(2σ
2)] with

Ai and Bi being the amplitude coefficients for sinusoid i.

The uniform prior range for m was set to {0, 1, 2, . . . ,M = 60 000}. From

the 2.05× 108 iterations that the Markov chain has run for the first 5× 106

were considered as burn-in and discarded. The chain was then thinned by

storing every 1 000th iteration. The MCMC simulation was implemented in

C on a 2.8GHz Intel P4 PC and took about 50 hours to run. Fig. 3.4(a) gives

the histogram of the marginal posterior model probabilities obtained by the

reversible jump algorithm. As each model Mm is characterised by a different

noise level σm, also the marginal posterior distributions of the noise standard

deviations have been plotted in Fig. 3.4. Note that σm decreases with higher

model order m since a model comprising more sinusoids accounts for more

of the available power. The highest posterior model probability is observed

for model M99 with 99 sinusoids and σ̂99 = 0.604 (p0.573<σ̂99<0.637 = 95%)

since the weakest sinusoid (at f = 0.4178 with SNR = −22.5 dB) could not
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Signal−to−noise ratios (SNRs) of the 100 sinusoids in data set

Number of sinusoid i ordered by SNR
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Figure 3.3: Signal-to-noise ratios (SNRs) for each individual sinusoid used
in the artificial data set, ordered by SNR.

be retrieved and contributes to the overall noise level. All subsequent results

presented here are based solely on MCMC samples corresponding to model

M99. The superscripts will be omitted and denote the parameter vector of

model M99 by (A1, B1, f1, . . . , A99, B99, f99, σ
2
99).

The initial step for post processing the MCMC samples is the separa-

tion into frequency intervals, as described in Sec. 3.4.3. The following table

Tab. 3.1 shows the 99 intervals that maximise the number of single occupan-

cies.
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Figure 3.4: The upper plot shows the posterior model probabilities obtained
from the analysis. The model corresponding to 99 sinusoids (dark shaded)
has highest posterior probability. Each model has a different noise level. The
bottom plot shows the corresponding estimated noise standard deviations
and their posterior probability intervals. The vertical line indicates the real
noise level.

Table 3.1: Frequency intervals that maximise the number
of single occupancies in model M99 and percentages of
individual occupancy numbers.

ID frequency no. of sinusoids

k range Ĥ
(0)
k Ĥ

(1)
k Ĥ

(2)
k Ĥ

(3)
k

1 [ 0.0000, 0.0027] 99.51% 0.49%
2 ] 0.0027, 0.0101] 97.91% 2.09%
3 ] 0.0101, 0.0111] 99.23% 0.77%

continued...
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Table 3.1 (continued)

k frequency range Ĥ
(0)
k Ĥ

(1)
k Ĥ

(2)
k Ĥ

(3)
k

4 ] 0.0111, 0.0122] 99.28% 0.72%
5 ] 0.0122, 0.0238] 99.07% 0.93%
6 ] 0.0238, 0.0251] 99.90% 0.10%
7 ] 0.0251, 0.0338] 99.39% 0.60% 0.01%
8 ] 0.0338, 0.0374] 99.31% 0.69%
9 ] 0.0374, 0.0384] 99.92% 0.08%
10 ] 0.0384, 0.0525] 95.65% 4.34% 0.01%
11 ] 0.0525, 0.0572] 99.51% 0.49%
12 ] 0.0572, 0.0589] 99.82% 0.18%
13 ] 0.0589, 0.0599] 99.91% 0.09%
14 ] 0.0599, 0.0690] 98.23% 1.77%
15 ] 0.0690, 0.0780] 99.33% 0.67%
16 ] 0.0780, 0.0875] 99.07% 0.93%
17 ] 0.0875, 0.0885] 99.72% 0.28%
18 ] 0.0885, 0.0901] 99.53% 0.47%
19 ] 0.0901, 0.0927] 99.83% 0.17%
20 ] 0.0927, 0.0999] 98.51% 1.49%
21 ] 0.0999, 0.1086] 99.39% 0.61%
22 ] 0.1086, 0.1103] 99.45% 0.55%
23 ] 0.1103, 0.1128] 99.83% 0.17%
24 ] 0.1128, 0.1155] 99.86% 0.14%
25 ] 0.1155, 0.1167] 99.92% 0.08%
26 ] 0.1167, 0.1318] 98.37% 1.62% 0.01%
27 ] 0.1318, 0.1335] 99.67% 0.33%
28 ] 0.1335, 0.1381] 99.48% 0.52%
29 ] 0.1381, 0.1437] 99.50% 0.50%
30 ] 0.1437, 0.1581] 98.37% 1.63%
31 ] 0.1581, 0.1600] 99.77% 0.23%
32 ] 0.1600, 0.1610] 99.57% 0.43%
33 ] 0.1610, 0.1635] 99.59% 0.41%
34 ] 0.1635, 0.1643] 99.92% 0.08%
35 ] 0.1643, 0.1701] 99.12% 0.88%
36 ] 0.1701, 0.1736] 99.60% 0.40%
37 ] 0.1736, 0.1808] 99.68% 0.32%
38 ] 0.1808, 0.1845] 99.70% 0.30%
39 ] 0.1845, 0.1938] 99.30% 0.70%
40 ] 0.1938, 0.1980] 99.58% 0.42%

continued...
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Table 3.1 (continued)

k frequency range Ĥ
(0)
k Ĥ

(1)
k Ĥ

(2)
k Ĥ

(3)
k

41 ] 0.1980, 0.1993] 99.65% 0.35%
42 ] 0.1993, 0.2144] 94.25% 5.75%
43 ] 0.2144, 0.2267] 95.58% 4.42%
44 ] 0.2267, 0.2288] 99.89% 0.11%
45 ] 0.2288, 0.2345] 99.67% 0.33%
46 ] 0.2345, 0.2364] 99.72% 0.28%
47 ] 0.2364, 0.2425] 97.80% 2.20%
48 ] 0.2425, 0.2460] 99.12% 0.88%
49 ] 0.2460, 0.2488] 99.76% 0.24%
50 ] 0.2488, 0.2523] 99.30% 0.70%
51 ] 0.2523, 0.2537] 99.90% 0.10%
52 ] 0.2537, 0.2567] 99.78% 0.22%
53 ] 0.2567, 0.2639] 0.03% 97.72% 2.25%
54 ] 0.2639, 0.2648] 0.03% 99.31% 0.66%
55 ] 0.2648, 0.2669] 99.73% 0.27%
56 ] 0.2669, 0.2779] 99.36% 0.64%
57 ] 0.2779, 0.2816] 99.75% 0.25%
58 ] 0.2816, 0.2833] 99.82% 0.18%
59 ] 0.2833, 0.2887] 96.58% 3.42%
60 ] 0.2887, 0.2896] 0.04% 99.71% 0.24%
61 ] 0.2896, 0.2913] 98.26% 1.74% 0.00%
62 ] 0.2913, 0.2951] 99.16% 0.84%
63 ] 0.2951, 0.3027] 99.64% 0.36%
64 ] 0.3027, 0.3214] 97.38% 2.58% 0.04%
65 ] 0.3214, 0.3228] 99.61% 0.39%
66 ] 0.3228, 0.3247] 97.02% 2.90% 0.09%
67 ] 0.3247, 0.3317] 4.62% 94.80% 0.58%
68 ] 0.3317, 0.3332] 99.80% 0.20%
69 ] 0.3332, 0.3362] 0.09% 99.63% 0.28%
70 ] 0.3362, 0.3408] 86.19% 13.72% 0.09%
71 ] 0.3408, 0.3510] 99.66% 0.34%
72 ] 0.3510, 0.3573] 99.10% 0.90%
73 ] 0.3573, 0.3615] 98.26% 1.74%
74 ] 0.3615, 0.3632] 98.91% 1.09%
75 ] 0.3632, 0.3661] 99.42% 0.58%
76 ] 0.3661, 0.3698] 99.64% 0.36%
77 ] 0.3698, 0.3717] 99.02% 0.98%

continued...
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Table 3.1 (continued)

k frequency range Ĥ
(0)
k Ĥ

(1)
k Ĥ

(2)
k Ĥ

(3)
k

78 ] 0.3717, 0.3762] 98.75% 1.25%
79 ] 0.3762, 0.3765] 99.98% 0.02%
80 ] 0.3765, 0.3811] 99.25% 0.75%
81 ] 0.3811, 0.3871] 99.29% 0.71%
82 ] 0.3871, 0.3898] 97.31% 2.69%
83 ] 0.3898, 0.3904] 99.87% 0.13%
84 ] 0.3904, 0.3979] 99.01% 0.99%
85 ] 0.3979, 0.4060] 99.53% 0.47%
86 ] 0.4060, 0.4216] 97.28% 2.72% 0.01%
87 ] 0.4216, 0.4301] 96.94% 3.06%
88 ] 0.4301, 0.4326] 99.17% 0.82% 0.01%
89 ] 0.4326, 0.4509] 97.65% 2.35%
90 ] 0.4509, 0.4580] 99.49% 0.51%
91 ] 0.4580, 0.4629] 99.77% 0.23%
92 ] 0.4629, 0.4812] 97.67% 2.33%
93 ] 0.4812, 0.4817] 99.93% 0.07%
94 ] 0.4817, 0.4902] 0.54% 96.68% 2.75% 0.03%
95 ] 0.4902, 0.4912] 0.71% 98.45% 0.84%
96 ] 0.4912, 0.4922] 99.92% 0.08%
97 ] 0.4922, 0.4968] 98.63% 1.37%
98 ] 0.4968, 0.4971] 0.00% 99.95% 0.05%
99 ] 0.4971, 0.5000] 99.44% 0.56%

The total number of single occupancies (Eq. 3.20) that could be achieved

was HΣ(b1, . . . , bm̂+1) = 97.156 with upper bound 99. This implies that

dispersed sinusoid fractions totalling in 1.844 sinusoids can not be specified

by the sole separation in frequency intervals. Almost all values of Ĥ
(1)
k are

close to 100%. Sparse single occupancies Ĥ
(1)
k can either mean deficiency of

occupancies (Ĥ
(0)
k > 0) or multiple occupancies of the interval (Ĥ

(l)
k > 0, l ≥

2). Overlaps in frequency of neighboring intervals usually cause marginal

absence of single occupancies. However, interval I70 reveals explicit values

for Ĥ
(0)
70 and Ĥ

(1)
70 . Only 13.79% of the sinusoids probability mass is occupied

by interval I70 with no compensation that could possibly be found in the

neighboring intervals. It becomes clear that this candidate is highly likely to

be a blendoid.
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The further relabeling is accomplished by the method described in Sec.

3.4.4 and allows for taking a closer look at the marginal posterior distribution

of the sinusoid that is expected to be a blendoid. Fig. 3.5 shows two views

of this sinusoid. One that displays the entire frequency range and a second

that focuses on that part of the frequency band that contains the core of the

actual sinusoid that encompasses ≈ 13% of its probability mass. The features
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Figure 3.5: Marginal MCMC posterior distribution for different parameter
pairs of the blendoid. The left plot covers the entire frequency band whereas
the right plot focuses on the frequency band that covers the most probability
mass that can be assigned to an actual sinusoid. The crosses indicate the
corresponding true parameter values.

are quite striking. The samples occupy the entire frequency band with some

accumulations, one of which lies within interval I70 which encompasses the

most probability mass. This is displayed in the close-up. The distribution

of the amplitudes show a very low energy contribution far below the noise

level. This sinusoid is definitely very close to the limit of being eligible to

exist within model M99.

Estimations of such entities are difficult as they consist of mixtures. The

main interest is to identify the sinusoidal component that appears most of-

ten in MCMC samples of the model. The technique that has been applied

here in order to recover this main proportion continues to assume that the
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marginal posterior density of the frequency follows approximatively a nor-

mal distribution [16]. In order to identify the significant probability mass

of a blendoid that can be attributed to a single sinusoid it is obvious to

compare its empirical quantiles to those of a normal distribution, similar to

a q-q-plot. Naturally, this technique requires the p-quantiles that span the

narrowest frequency interval [fa, fb] and therefore cover the frequency range

with the highest density. This means, if p(f |d) is the marginal posterior

density of a sinusoid, then we are looking for the narrowest interval [fa, fb]

such that p(fa < f < fb|d) = p. We aim for finding the largest p-quantile

that follows a normal distribution. The normalisation is achieved by the

p = 0.05 quantile that is chosen to intersect the bisection in a graph that

displays empirical quantiles and quantiles of the normal distribution. The

reason why such a small quantile has to be chosen for a normalisation is

the possible small evidence. On the other hand it would not make sense to

speak of evidence below such a limit of 5%. The following Fig. 3.6 demon-

strates the technique by applying it to two different sinusoids, one of which

is the blendoid that is covered by interval I70 in figure Fig. 3.5. The other

sinusoid is the one covered by interval I98 and constitutes a typical sinusoid

with strong evidence. Alternatively, a series of Kolmogorov-Smirnov tests

or Shapiro-Wilk tests could be applied but the quantile comparison works

superbly and enables a graphically verification.

Any further separation of a blendoid is inane. If candidates of weaker

sinusoids are to be examined, it is more appropriate to look at higher model

orders but we are more and more likely to identify what would be consid-

ered as noise in models of lower order. In model M100, for example, the

same sinusoid that corresponds to the one that is labeled k = 70 in M99

maintains more evidence by occupying 27.8% probability mass within its

assigned interval but it still has to be considered as a blendoid. Instead

another blendoid appears in M100 making the allocation even harder. This

additional sinusoid in model M100 is not the weakest of the 100 in the data

set (see Fig. 3.3) as we would expect. Care has to be taken when looking

at models of higher order as we do not necessarily see more signals but also

noise that is mistakenly identified as belonging to a signal. It is imperative
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Figure 3.6: Revelation of a blendoid (a) by comparing the smallest empirical
quantiles to the corresponding quantiles of a normal distribution. Exploiting
the condition that the marginal posterior density of the frequency follows
very well a normal distribution it is possible to obtain the frequency range
that encompasses the largest proportion of probability mass that can be al-
located to an actual sinusoid. As a comparison, the q-q-plot for a typical
sinusoid is opposed in (b). Its marginal posterior of the frequency naturally
reveals almost 100% of its probability mass to accord to a normal distribu-
tion. The threshold is chosen one standard deviation from the actual normal
quantile.

to mind the posterior model probabilities that favor model M99. These data

only reveal the existence of one distinct blendoid and it is important to focus

on the remaining other 98 sinusoids and the estimation of their parameters.

Therefore, in Fig. 3.7, two plots have been compiled that show examples

of ordinary sinusoids. This figure aims for comparing the posterior distri-

bution of well separated sinusoids and those that have close neigbours in

frequency. The marginal MCMC posterior distribution of a well separated

sinusoid reveals a multivariate normal shape with little correlation in its re-

covered amplitudes whereas sinusoids that are close in frequency to others

reveal stronger correlations yielding larger credibility areas. The red coloured

sinusoid in Fig. 3.7(b) corresponds to the q-q-plot of Fig. 3.6(a). Note that

despite the interactions between the sinusoids that are reflected in the am-
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Figure 3.7: Marginal MCMC posterior distribution of a single, isolated si-
nusoid (a) and of a pair of correctly separated sinusoids that are close in
frequency (b). The closer the difference in frequency between two sinusoids
the more correlation there is in their recovered amplitudes yielding larger
credibility areas. The crosses indicate the corresponding true parameter val-
ues.

plitudes, the marginal posterior density of the frequency still conforms to a

normal distribution.

The comparison of Bayesian methods to classical approaches like the

Schuster periodogram turns out to be difficult. In a Bayesian analysis we

obtain samples of the posterior distributions for each sinusoid whereas the

Schuster periodogram merely yields an energy density over the entire fre-

quency band including noise without any proper separation. As large num-

ber of sinusoids can not be all displayed in full detail, the following plots will

focus on special sections of frequency bands.

The comparison of the classical Schuster periodogram is accomplished by

contrasting it to the joint MCMC posterior distribution of the Cartesian am-

plitude Â
(99)
i = [(A

(99)
i )2 + (B

(99)
i )2]1/2 and the frequency. The Cartesian way

of expressing the sinusoids preserves the full information about the strength

of a signal but neglects its phase that is of less interest here. The energy

contribution of a sinusoid is proportional to the squared Cartesian ampli-
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tude and therefore allows for a better comparison with the periodogram that

displays the energy density on the same axis in a log scale. The follow-

ing plots display the 90%- and 50%- MCMC posterior contour areas of the

joint MCMC posterior distribution of the Cartesian amplitude Â
(99)
i and the

frequency f
(99)
i .

In order to illustrate the versatile features of the entire posterior distribu-

tion, a gradual magnification in two steps has been compiled. The Schuster

periodogram is contrasted on the same frequency scales. In Fig. 3.8, the

attention is drawn to a pair of sinusoids that are separated by a frequency

difference of 0.00047, less then one half of a Nyquist step of 1/N = 0.001. It

is the same sinusoid pair on which Fig. 3.7(b) was focused on. Further, the

blendoid from Fig. 3.5 that is close-by is also included in this plot. Note,

that due to the fact that the sensible probability mass that can be assigned

to that sinusoid is ≈ 13%, only low credibility intervals can be given. A 90%

credibility area would result in a huge interval that would stretch over the

entire frequency band and would not make any sense.

Another approach to display the Bayesian results in a way that is more

in the nature of a periodogram is to derive a Bayesian power spectral density

according to Jaynes [16]. Fig. 3.8 indicates the uncertainty about both the

true frequency f and the true power A2 + B2 of a signal. Jaynes derives

a Bayesian power spectral density by combining the estimation of a power

in the spectrum line and the estimation of the frequencies present [16]. For

clarity we omit the index i indicating the ith sinusoid. For each sinusoid

with parameters {A,B, f}, the power spectral density of the signal can be

estimated from the product of the conditional expected power

(N/2)E(A2 +B2|f,d,m) = (N/2)

∫
(A2 +B2)p(A,B|f,d,m)dAdB (3.29)

of a line at frequency f and the posterior probability p(f |d,m) of the fre-

quency [16]. In practice the Bayesian power spectral density

Ŝ(f) = p(f |d,m)(N/2)E(A2 +B2|f,d,m) (3.30)
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needs to be computed by binning the MCMC samples into frequency bins of

width δf . We obtain Ŝ(f)δf as an estimate of the expected power within the

frequency bin [f, f+δf ], multiplied by the probability that its frequency is in

the interval [f, f+δf ]. The Bayesian power spectral density is the power per

unit frequency. Since the samples of the sinusoids are available in separated

form, δf can be individually derived for each sinusoid. A number of 20 bins

leads to the best results for covering the frequency range of a sinusoid.

In Fig. 3.9, this affords the compilation of Ŝ(f), the Schuster periodogram,

and the theoretical spectral lines from the true values. Two different axes

for the periodogram and the Bayesian power spectral density Ŝ(f) need to

be chosen. The ordinate of the periodogram displays the energy and the or-

dinate of Ŝ(f) shows the energy per unit frequency. The theoretical spectral

density would consist of delta functions of formally zero width and hence in-

finite density. Therefore the adjusted heights of the theoretical spectral lines

in this context indicate the energy contribution N(A2 + B2)/2 (left axis) of

a sinusoid with amplitudes A and B over the observation period N . The

following Fig. 3.9 displays the same frequency section that was objective in

Fig. 3.8.

The next two figures Fig. 3.10 and Fig. 3.11 focus on an area that contains

three close sinusoids. The periodogram can hardly separate any of the three

sinusoids due to their close proximity in frequency.

Finally, the spotlight is set to a region of three sinusoids displayed in

Fig. 3.12. Here, the difference in frequency is 0.00044 between the left two

sinusoids and is the closest within the set of 100 sinusoids. Again the peri-

odogram fails to separate them. The interaction between those sinusoids is

obvious in the MCMC posterior distribution.

Figures Fig. 3.8, 3.10, and 3.12 as well as Fig. 3.9, 3.11, and 3.13 demon-

strate the superiority of the Bayesian approach to resolve signals and give

credibility about the estimates. Pairs of sinusoids that are separated by a

frequency difference less than one half of a Nyquist step 1/N can clearly be

separated, while there is no evidence for distinct peaks in the periodogram

that would allow for any separation. Naturally, the marginal posterior den-

sities of different parameter pairs reveal the influence of small frequency
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Figure 3.9: Comparison of true spectral lines (vertical lines), Bayesian spec-
tral density estimate Ŝ(f) (coloured for each sinusoid), and classical Schuster
periodogram (black, dotted). The periodogram uses the left ordinate (en-
ergy) whereas the Bayesian power spectrum density uses the right ordinate
(energy per unit frequency). The different colours used for the Bayesian
spectrum estimate underline the separability. Since the infinite small widths
of the theoretical spectral lines would yield an infinite height, the height
here corresponds to the left axis with energy contribution N(A2 +B2)/2 of a
particular sinusoid with its amplitudes A and B over the observation period
N . The particular frequency band under consideration corresponds to the
highest magnification in Fig. 3.8.

proximity on the accuracy of their parameter estimations. The posterior

confidence areas are much larger for close sinusoids.

The concordance in Fig. 3.8 of the frequency estimates for the well-

separated sinusoids, however, from both the Bayesian posterior estimates

and the periodogram maxima, are quite striking. As stated in [17], “if the

signal one is analyzing is a simple harmonic frequency plus noise, then the

maximum of the periodogram will be the best estimate of the frequency

that we can make in the absence of additional prior information about it”.

However, the periodogram peaks are significantly wider than the Bayesian

estimates, and are clearly sub-optimal for closely spaced sinusoids. In fact,

the posterior probability density for the frequency is the exponent of the
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Figure 3.11: Comparison of true spectral lines (vertical lines), Bayesian spec-
tral density estimate Ŝ(f) (coloured for each sinusoid), and classical Schuster
periodogram (black, dotted). The periodogram uses the left ordinate (en-
ergy) whereas the Bayesian power spectrum density uses the right ordinate
(energy per unit frequency). The different colours used for the Bayesian
spectrum estimate underline the separability. Since the infinite small widths
of the theoretical spectral lines would yield an infinite height, the height
here corresponds to the left axis with energy contribution N(A2 +B2)/2 of a
particular sinusoid with its amplitudes A and B over the observation period
N . The particular frequency band under consideration corresponds to the
highest magnification in Fig. 3.10.

ratio of the periodogram C(f) and the noise variance σ2 [17]. The Bayesian

approach therefore takes account of the noise variance in the estimation pro-

cess, which explains why the confidence regions are significantly narrower

than the periodogram peaks.

As to the energy contribution, the results of the periodogram are sensi-

tive to the discreteness of the data and to the finite observation time. This,

however, does not reflect the possible energy contribution of the real signals.

By contrast, the Bayesian estimates of the amplitudes are honest by yielding

large confidence intervals for sinusoids close in frequency, due to the diminish-

ing impact on the possible linear combinations of the sinusoidal amplitudes

on the likelihood when the frequencies of a sinusoid pair are getting close.
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Figure 3.13: Comparison of true spectral lines (vertical lines), Bayesian spec-
tral density estimate Ŝ(f) (coloured for each sinusoid), and classical Schuster
periodogram (black, dotted). The periodogram uses the left ordinate (en-
ergy) whereas the Bayesian power spectrum density uses the right ordinate
(energy per unit frequency). The different colours used for the Bayesian
spectrum estimate underline the separability. Since the infinite small widths
of the theoretical spectral lines would yield an infinite height, the height
here corresponds to the left axis with energy contribution N(A2 +B2)/2 of a
particular sinusoid with its amplitudes A and B over the observation period
N . The particular frequency band under consideration corresponds to the
highest magnification in Fig. 3.12.

An energy could, in any case, also be derived by calculating amplitudes from

the orthonormal model functions with respect to the discrete sampling times.

The amplitudes of the orthonormal model are, however, linear combinations

of the amplitudes of the original model. It would therefore not be possible

to differentiate the energy contribution between the individual sinusoids but

only for the entire pool of sinusoids.

After presenting the results in graphical form we will address the deriva-

tion of 95% credibility intervals and means of the marginal posterior dis-

tribution of the individual paramters of all sinusoids. As described above,

in case of the blendoid, only those samples are involved in the estimation

that contribute to the highest density area and follow a normal distribution
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according to the corresponding normal quantiles.

Table 3.2: Posterior means and 95% posterior credibil-
ity intervals (p.c.i.) of the frequency and the Cartesian
amplitude Â =

√
A2 +B2

frequency f amplitude Â
post. 95% true post. 95% true

ID mean p.c.i. value mean p.c.i. value
1 0.002401 [ 0.002385 , 0.002417 ] 0.00241 1.792 [ 1.737 , 1.848 ] 1.785

2 0.009174 [ 0.009148 , 0.009203 ] 0.009174 1.758 [ 1.702 , 1.819 ] 1.778

3 0.010364 [ 0.010319 , 0.010415 ] 0.010351 1.181 [ 1.108 , 1.258 ] 1.218

4 0.011232 [ 0.011178 , 0.011287 ] 0.01125 1.172 [ 1.095 , 1.248 ] 1.138

5 0.015561 [ 0.015546 , 0.015577 ] 0.015566 1.978 [ 1.925 , 2.032 ] 1.965

6 0.024497 [ 0.024476 , 0.024519 ] 0.024493 1.398 [ 1.346 , 1.452 ] 1.384

7 0.032043 [ 0.032023 , 0.032062 ] 0.032037 1.609 [ 1.555 , 1.66 ] 1.599

8 0.034083 [ 0.034024 , 0.034143 ] 0.0341 0.532 [ 0.481 , 0.586 ] 0.588

9 0.037421 [ 0.037405 , 0.037437 ] 0.037428 1.869 [ 1.815 , 1.921 ] 1.869

10 0.046294 [ 0.046277 , 0.04631 ] 0.046301 1.794 [ 1.74 , 1.848 ] 1.776

11 0.056684 [ 0.056602 , 0.056766 ] 0.056637 0.796 [ 0.688 , 0.916 ] 0.771

12 0.057371 [ 0.057291 , 0.057446 ] 0.057375 0.858 [ 0.754 , 0.981 ] 0.822

13 0.059567 [ 0.059453 , 0.059668 ] 0.059614 0.302 [ 0.246 , 0.357 ] 0.289

14 0.065115 [ 0.065107 , 0.065151 ] 0.065137 1.431 [ 1.378 , 1.485 ] 1.395

15 0.073066 [ 0.073045 , 0.073087 ] 0.073068 1.391 [ 1.337 , 1.442 ] 1.405

16 0.078537 [ 0.078517 , 0.078557 ] 0.078534 1.51 [ 1.456 , 1.563 ] 1.54

17 0.088227 [ 0.088132 , 0.088323 ] 0.088196 0.899 [ 0.778 , 1.027 ] 0.854

18 0.089169 [ 0.089108 , 0.089228 ] 0.089206 1.484 [ 1.368 , 1.614 ] 1.412

19 0.091638 [ 0.091538 , 0.091741 ] 0.091624 0.386 [ 0.33 , 0.444 ] 0.368

20 0.093188 [ 0.093157 , 0.093219 ] 0.093182 1.143 [ 1.087 , 1.196 ] 1.153

21 0.10662 [ 0.106564 , 0.106676 ] 0.106575 0.567 [ 0.513 , 0.62 ] 0.578

22 0.109615 [ 0.109548 , 0.109682 ] 0.109597 1.152 [ 1.032 , 1.277 ] 1.122

23 0.110463 [ 0.11041 , 0.110517 ] 0.110435 1.437 [ 1.314 , 1.562 ] 1.48

24 0.113416 [ 0.113347 , 0.113486 ] 0.113425 0.458 [ 0.406 , 0.513 ] 0.473

25 0.116146 [ 0.11609 , 0.116204 ] 0.116151 0.536 [ 0.482 , 0.589 ] 0.528

26 0.128804 [ 0.128706 , 0.128893 ] 0.1288 0.315 [ 0.262 , 0.367 ] 0.3

27 0.132189 [ 0.132158 , 0.13222 ] 0.132173 0.978 [ 0.923 , 1.029 ] 0.985

28 0.13841 [ 0.137734 , 0.138057 ] 0.138077 0.827 [ 0.393 , 1.224 ] 1.26

29 0.139265 [ 0.138198 , 0.138655 ] 0.138702 0.63 [ 0.224 , 1.048 ] 0.127

30 0.149901 [ 0.149882 , 0.149919 ] 0.149908 1.685 [ 1.633 , 1.742 ] 1.71

31 0.159811 [ 0.159726 , 0.159903 ] 0.159834 0.729 [ 0.634 , 0.837 ] 0.71

continued...
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Table 3.2 (continued)

ID post. 95% true post. 95% true
mean p.c.i. value mean p.c.i. value

32 0.160639 [ 0.160539 , 0.160749 ] 0.160609 2.024 [ 1.769 , 2.408 ] 1.96

33 0.161454 [ 0.161129 , 0.161662 ] 0.161399 0.57 [ 0.244 , 0.982 ] 0.417

34 0.163758 [ 0.163735 , 0.16378 ] 0.163745 1.533 [ 1.476 , 1.589 ] 1.567

35 0.169631 [ 0.16961 , 0.169652 ] 0.169631 2.629 [ 2.557 , 2.709 ] 2.624

36 0.170299 [ 0.170221 , 0.170374 ] 0.170333 0.745 [ 0.667 , 0.82 ] 0.748

37 0.174449 [ 0.174426 , 0.174472 ] 0.174433 1.295 [ 1.243 , 1.349 ] 1.283

38 0.181103 [ 0.181064 , 0.181141 ] 0.181092 0.762 [ 0.706 , 0.813 ] 0.761

39 0.188245 [ 0.18817 , 0.188314 ] 0.188235 0.418 [ 0.365 , 0.471 ] 0.476

40 0.194852 [ 0.194808 , 0.194897 ] 0.194801 0.663 [ 0.611 , 0.717 ] 0.659

41 0.198545 [ 0.198523 , 0.198567 ] 0.198553 1.562 [ 1.509 , 1.619 ] 1.604

42 0.200118 [ 0.200055 , 0.200182 ] 0.200122 0.543 [ 0.485 , 0.598 ] 0.534

43 0.225233 [ 0.225212 , 0.225254 ] 0.225225 1.535 [ 1.48 , 1.589 ] 1.581

44 0.227021 [ 0.226992 , 0.227051 ] 0.227036 1.053 [ 1 , 1.107 ] 1.066

45 0.233209 [ 0.233169 , 0.233248 ] 0.233183 0.799 [ 0.744 , 0.855 ] 0.789

46 0.235017 [ 0.234997 , 0.235038 ] 0.235017 1.549 [ 1.494 , 1.605 ] 1.575

47 0.240659 [ 0.24064 , 0.240678 ] 0.240658 1.708 [ 1.654 , 1.764 ] 1.647

48 0.242772 [ 0.242754 , 0.242791 ] 0.242768 1.759 [ 1.706 , 1.816 ] 1.768

49 0.247676 [ 0.247535 , 0.247804 ] 0.247675 0.261 [ 0.206 , 0.315 ] 0.306

50 0.249276 [ 0.249257 , 0.249294 ] 0.249282 1.804 [ 1.748 , 1.858 ] 1.781

51 0.253415 [ 0.253334 , 0.253497 ] 0.253464 0.499 [ 0.444 , 0.553 ] 0.526

52 0.254885 [ 0.254838 , 0.254934 ] 0.25492 0.845 [ 0.789 , 0.897 ] 0.849

53 0.263388 [ 0.263168 , 0.263747 ] 0.263286 0.317 [ 0.176 , 0.518 ] 0.289

54 0.264067 [ 0.263976 , 0.264161 ] 0.264064 1.573 [ 1.346 , 1.755 ] 1.614

55 0.265334 [ 0.26524 , 0.265433 ] 0.265354 0.731 [ 0.652 , 0.811 ] 0.733

56 0.270753 [ 0.270699 , 0.270809 ] 0.270747 0.563 [ 0.509 , 0.616 ] 0.591

57 0.278465 [ 0.278442 , 0.278488 ] 0.278442 1.325 [ 1.272 , 1.379 ] 1.323

58 0.282634 [ 0.282587 , 0.282681 ] 0.282635 0.68 [ 0.626 , 0.732 ] 0.668

59 0.286422 [ 0.286393 , 0.286451 ] 0.286442 1.169 [ 1.115 , 1.224 ] 1.176

60 0.289235 [ 0.288972 , 0.289491 ] 0.289156 0.467 [ 0.207 , 0.913 ] 0.299

61 0.289874 [ 0.289759 , 0.290012 ] 0.289982 1.052 [ 0.807 , 1.503 ] 0.895

62 0.291595 [ 0.291579 , 0.291614 ] 0.29159 2.426 [ 2.373 , 2.492 ] 2.441

63 0.300583 [ 0.300563 , 0.300602 ] 0.300587 1.587 [ 1.534 , 1.639 ] 1.535

64 0.306152 [ 0.306136 , 0.306167 ] 0.306152 1.855 [ 1.804 , 1.91 ] 1.851

65 0.321766 [ 0.321749 , 0.321784 ] 0.321757 1.807 [ 1.752 , 1.862 ] 1.796

66 0.324486 [ 0.324487 , 0.324679 ] 0.324594 1.354 [ 1.119 , 1.885 ] 1.458

67 0.325252 [ 0.324839 , 0.325712 ] 0.325065 0.311 [ 0.078 , 0.783 ] 0.357

continued...
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Table 3.2 (continued)

ID post. 95% true post. 95% true
mean p.c.i. value mean p.c.i. value

68 0.333066 [ 0.333046 , 0.333086 ] 0.333066 1.515 [ 1.461 , 1.567 ] 1.545

69 0.335994 [ 0.335969 , 0.33602 ] 0.335993 1.224 [ 1.171 , 1.279 ] 1.224

70 0.336835 [ 0.336137 , 0.337699 ] 0.337441 0.179 [ 0.013 , 0.612 ] 0.124

71 0.342607 [ 0.342581 , 0.342633 ] 0.342583 1.155 [ 1.102 , 1.209 ] 1.137

72 0.355929 [ 0.35591 , 0.355936 ] 0.355927 2.442 [ 2.39 , 2.5 ] 2.503

73 0.359537 [ 0.359465 , 0.359614 ] 0.359536 0.43 [ 0.369 , 0.482 ] 0.435

74 0.362626 [ 0.362543 , 0.362705 ] 0.362654 0.627 [ 0.559 , 0.689 ] 0.623

75 0.36371 [ 0.363611 , 0.363805 ] 0.363729 0.495 [ 0.427 , 0.557 ] 0.431

76 0.367163 [ 0.367126 , 0.367201 ] 0.367197 0.859 [ 0.804 , 0.911 ] 0.839

77 0.370567 [ 0.370548 , 0.370584 ] 0.370551 1.801 [ 1.747 , 1.858 ] 1.779

78 0.372636 [ 0.372608 , 0.372661 ] 0.372636 1.238 [ 1.181 , 1.293 ] 1.213

79 0.376349 [ 0.376326 , 0.376373 ] 0.376368 1.416 [ 1.362 , 1.469 ] 1.437

80 0.37881 [ 0.378791 , 0.37883 ] 0.3788 1.683 [ 1.629 , 1.737 ] 1.713

81 0.386544 [ 0.386528 , 0.38656 ] 0.386543 2.1 [ 2.047 , 2.158 ] 2.099

82 0.388661 [ 0.388596 , 0.38872 ] 0.388649 0.81 [ 0.747 , 0.877 ] 0.824

83 0.390008 [ 0.389929 , 0.390094 ] 0.389981 1.082 [ 0.962 , 1.235 ] 0.999

84 0.390833 [ 0.39066 , 0.390986 ] 0.39092 0.484 [ 0.359 , 0.628 ] 0.435

85 0.402412 [ 0.402327 , 0.402492 ] 0.402414 0.377 [ 0.325 , 0.431 ] 0.368

86 0.414801 [ 0.414781 , 0.414821 ] 0.414792 1.543 [ 1.491 , 1.6 ] 1.544

- not identified 0.417803 not identified 0.064

87 0.427305 [ 0.427282 , 0.427327 ] 0.427314 1.405 [ 1.351 , 1.463 ] 1.374

88 0.431817 [ 0.431795 , 0.431829 ] 0.431809 1.74 [ 1.683 , 1.792 ] 1.72

89 0.447796 [ 0.447773 , 0.447819 ] 0.447792 1.26 [ 1.207 , 1.312 ] 1.339

90 0.45205 [ 0.452022 , 0.452077 ] 0.452068 1.087 [ 1.033 , 1.139 ] 1.093

91 0.462216 [ 0.462196 , 0.462236 ] 0.462238 1.495 [ 1.443 , 1.548 ] 1.469

92 0.469839 [ 0.469822 , 0.469857 ] 0.46984 1.667 [ 1.613 , 1.719 ] 1.688

93 0.481361 [ 0.481339 , 0.481382 ] 0.48136 1.382 [ 1.329 , 1.436 ] 1.377

94 0.490106 [ 0.490024 , 0.490177 ] 0.490097 2.056 [ 1.05 , 2.939 ] 2.35

95 0.49023 [ 0.490195 , 0.490428 ] 0.490539 1.506 [ 0.615 , 2.489 ] 0.779

96 0.491939 [ 0.491827 , 0.492056 ] 0.492133 0.366 [ 0.31 , 0.424 ] 0.349

97 0.493483 [ 0.493455 , 0.493512 ] 0.493489 1.236 [ 1.181 , 1.293 ] 1.208

98 0.496985 [ 0.496966 , 0.497004 ] 0.496988 1.673 [ 1.62 , 1.727 ] 1.627

99 0.499312 [ 0.499243 , 0.499376 ] 0.499299 0.43 [ 0.372 , 0.487 ] 0.417

This Bayesian method shows great power when tackling strong signals

closely spaced in parameter space (in this case, frequency). In addition it
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delivers credibility intervals for the parameters (frequency and amplitudes)

and can take account of relevant prior information when applied to LISA

data.

We have seen that Fig. 3.8, 3.10, and also 3.12, reveal strong interference

between very closely spaced signal pairs resulting in poor estimation of their

parameters. Nevertheless, the Bayesian approach succeeds in revealing even

these as separate sinusoids, at a level far beyond the ability of a classical

periodogram. To investigate this in further detail, a series of simulations

have been conducted with two sinusoids gradually approaching each other

in frequency. The results of these simulations are presented in Fig. 3.14 and

Fig. 3.15. The ability of the method to separate the signals depends on the

signal-to-noise ratio, their relative phase and on observing time. The prior

that is chosen for the amplitudes does not impact the detectability but the

the model probabilities show slight variations in the model probabilities.

In the examples at hand, an observation time of t ∈ {0, . . . , N − 1}
with N = 1000 is used and the two sinusoids have a signal-to-noise ratio

of either Â/σ = 2 or Â/σ = 4. The noise vector was drawn once from

a standard normal distribution. All data sets with the sinusoid pairs at

different frequency gaps use the same noise vector in order to maintain the

comparability. Due to the huge computational effort this series of runs can

not be repeated easily for several noise vectors in order to obtain credibility

intervals for each frequency gap. The single points within each plot were

obtained from a lengthy RJMCMC run over 5.5×106 iterations with a burn-

in of 5 × 105 iterations. These plots merely serve as an example for giving

an insight into the separation ability of the Bayesian approach under certain

conditions.

The g-prior that is also used in all examples in this context is opposed

to the application of a uniform prior on the amplitudes with prior range

[−10, 10]. In total, twelve series of simulations were conducted with two

different priors on the amplitudes, three different phase shifts (0, π/2, π),

and two different signal-to-noise ratios. During each set of simulations the

frequency gap between the two sinusoids was increased by 1% of a (1/N)-

step. (Recall that N = 1 000 so that 1/N = 0.001). In Fig. 3.14 the results
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displayed are based on the uniform prior whereas Fig. 3.15 reveals results

based on the g-prior used in recent examples. All signal pairs have coequal

strength. The left columns exhibit a scenario with a signal-to-noise ratio

of Â/σ = 2, while the right columns deal with a signal-to-noise ratio of

Â/σ = 4. The most striking and also anticipated feature that is revealed by

with signal−to−noise ratio SNR=2 with signal−to−noise ratio SNR=4

Model probabilities of two approaching sinusoids using a uniform prior on the amplitudes
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Legend:
model 0 model 1 model 2 model ≥ 3

Figure 3.14: Model probabilities of a pair of sinusoids in Gaussian noise with
varying difference in frequency and uniform prior on the amplitudes. The
sinusoids on in the left and right column have a signal-noise-ratio of Â/σ = 2
and Â/σ = 4 respectively each. The three different rows show the different
phase shifts (0, π/2, π) between the sinusoid pairs. The uniform prior range
for the amplitudes is [−10, 10].

Fig. 3.14 and Fig. 3.15 is the fading separation ability with increasing phase

shift. Best separation is achieved at a phase shift of π. For small frequency

gaps this yields a cancellation of the sinusoids whereas for a phase shift of

zero, a sinusoid can always be seen. Interestingly, the g-prior tends to prefer

higher model orders. This is caused by the fact that the g-prior prefers
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with signal−to−noise ratio SNR=2 with signal−to−noise ratio SNR=4

Model probabilities for two approaching sinusoids using a g−prior on the amplitudes

phase shift 0

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty

0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

phase shift π 2

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty

0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

phase shift π

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty

0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

phase shift 0

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty

0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

phase shift π 2

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty
0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

phase shift π

frequency difference in percentage of one Nyquist step

pr
ob

ab
ili

ty

0% 5% 10% 15% 20%

0.
0

0.
4

0.
8

Legend:
model 0 model 1 model 2 model ≥ 3

Figure 3.15: Model probabilities of a pair of sinusoids in Gaussian noise with
varying difference in frequency and g-prior on the amplitudes. The sinusoids
on in the left and right column have a signal-noise-ratio of Â/σ = 2 and
Â/σ = 4 respectively each. The three different rows show the different phase
shifts (0, π/2, π) between the sinusoid pairs.

small amplitudes controlled by the variance determined by all sinusoidal

amplitudes within the model. In this example the variance is only sustained

by two sinusoids. When the two sinusoids are close in frequency and maintain

a phase shift of π, then, for the limited observation time, those sinusoids

annihilate each other and the variance of the g-prior obtains small values.

In contrast a model with many sinusoids would yield more representative

variances for the g-prior and this effect would diminish. Therefore, applying

a g-prior results in a preference for a model that contains sinusoids with

extreme small amplitudes. In model classes with many sinusoids, which this

thesis is mainly focused on, this effect is not an issue.
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What makes the g-prior so suitable is the fact that it prevents the ampli-

tude values from obtaining huge values. When a pair of sinusoids come close

in frequency, then, with respect to the limited observation time at discrete

time points, more and more linear combinations of the amplitudes become

likely that allow the amplitudes to obtain large values that are in fact inap-

propriate. This is a problem when applying a uniform prior to the amplitudes

in which case the amplitudes have an abrupt cut-off at the end of their prior

ranges. Intuitively it is clear that huge amplitudes are less likely and the in-

formation about the distribution of the amplitudes is provided by the other

amplitudes. This information is exploited by using the g-prior. Actually,

the more sinusoids there are present, the better the g-prior responds to the

model class by its hyper parameter g.

3.6 Discussion

In this thesis a Bayesian approach has been presented to identifying a large

number of unknown periodic signals in a set of noisy data. The reversible

jump Markov chain Monte Carlo method developed here can be used to

estimate the number of signals present in the data, their parameters, and

the noise level. This method compares favourably with classical spectral

techniques. This approach allows for simultaneous detection and parameter

estimation, and does not require a stopping criterion for determining the

number of signals.

Although the parameters of even strong components are not well deter-

mined when they are sufficiently close together in frequency, we still obtain

useful confidence intervals. Importantly, the noise level is itself a parame-

ter in the overall fit so that the energy present in the data is automatically

allocated to either signal or noise.

The motivation for this research is to address the difficulty that LISA will

ultimately encounter in what is loosely called the confusion problem. LISA

may see as many as 100 000 signals from binary systems in the 1 mHz to

5mHz band. This work can therefore be seen as a powerful new technique

for identifying and characterising these signals in the LISA data stream.
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It has been demonstrated that the simultaneous detection and estimation

of sinusoids is possible also for a large unknown number of sinusoids. The

label switching problem could be solved, by choosing frequency intervals that

minimise the posterior expected loss, using a label-invariant loss function

based on interval separation. It provides an excellent means to find the

allocation of MCMC samples to individual sinusoids and allows us to draw

meaningful inference of the MCMC output.

The work presented here is of course a highly simplified toy problem:

The signal modulation is neglected due to LISA’s orbit and beam pattern

and there is no consideration of an appropriate data model for LISA. In ad-

dition, the signals from compact binary systems differ from simple sinusoids.

Furthermore, with LISA we have to deal with six data streams from the laser

beams between each of the three spacecraft that will deliver data which are

expected to be dominated by frequency noise from its lasers. The six LISA

data streams can be linearly combined to Time-Delay Interferometry (TDI)

variables [88] in order to cancel out noise from the three lasers by appropriate

time delays.

However, the purpose of this work is to demonstrates the applicability of

the approach to LISA data analysis, and the next step is to deal with these

more complicated signals and to develop a realistic strategy for applying these

MCMC methods. This will not be a trivial extension; in fact, the complexity

of the situation has to be acknowledged. However, MCMC methods, like

those presented here, have shown to give a realistic strategy for identifying

and characterizing the large number of signals, of all types, that will exist in

LISA data.

Besides LISA, the methods discussed here are likely to be useful in other

fields of study where the data contain an unknown number of periodic signals.

They are a general tool to perform a Bayesian spectrum analysis that has

been optimised on working with a large number of signals.
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Chapter 4

Conclusions

The Bayesian approach to gravitational radiation data analysis is a scien-

tific basis for combining knowledge from different other sources like radio

astronomy that can serve as prior information in the Bayesian analysis of

gravitational radiation data. The possibility to make probability statements

about parameters based on prior and sampling information are essential in

this scientific context.

In addition, for high-dimensional problems the Bayesian approach pro-

vides the only viable solution particularly with regard to model selection on a

large set of models. However, it has been shown that the Markov chain Monte

Carlo framework provides the means of tackling such complex Bayesian anal-

ysis problems. The re-parametrisation in Chapter 2 is of vital importance

and yields a more tractable parameter space that is more effectively sampled.

The implementation of a Metropolis-Coupled Chain [31], although slowing

down the computation, is necessary in order to avoid getting trapped in the

countless local posterior modes. Different types of proposal distributions are

required in order to be responsive to different areas of the posterior distribu-

tion. In this matter, the delayed rejection method [30] speeds up the burn-in

process due to the fact that more stage 1 proposals are accepted leaving out

unnecessary timid moves. The combination of these methods allow for a

parameter estimation of a single signal described by a realistic model of a

gravitational wave emitted by a pulsar. A modern standard desktop PC is

121
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sufficient to conduct the computation.

For the LISA data analysis challenge with its expected many thousands

of signals, however, it appears that the demand on the hardware will be far

higher, particularly for realistically modelled signals. The simplified problem

that was discussed in Chapter 3 by using a single PC helps to explore on a

small scale problems and potentials of Bayesian MCMC methods when fac-

ing many signals with signal confusion. It demonstrates that this enormous

challenge must and can be countered by the Bayesian RJMCMC method-

ology, particularly against the background of the perpetual improvement in

the computer hardware sector.

The RJMCMC method provides the framework that can handle the model

selection between thousands of models. The label switching problem that is

caused by the invariance of the likelihood under relabelling of the compo-

nents exhibits a challenge in presence of thousands of signals. In order to

draw inference from MCMC output using ergodic averaging, an appropri-

ate relabelling technique is required. The fact that the parameters have a

physical meaning in which a signal is identified by its frequency has been

exploited here in order to circumvent the consideration of the possible per-

mutations. The interval separation technique has been demonstrated to be

highly efficient and able to cope with a large number of signals.

In a next step, the models need to be extended to data from the six LISA

data streams which can be linearly combined to Time-Delay Interferometry

(TDI) variables [88] in order to cancel out noise from the three lasers by

appropriate time delays. In addition, the development of realistic models

and suitable Bayesian MCMC methods will be an essential task for the next

years before LISA will be launched.
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