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1 Introduction

Iterated function systems (IFS) are well-known in fractal geometry as a means to describe
sets of fractal nature [Edgar 1990, Falconer 1990]. Usually, an IFS consists of a finite set of
contracting mappings of a metric spae# into itself and defines in a unique way a (largest)
fixed point which is also called its attractor. This fixed point (or attractor) is a nonempty closed
subset of 7.

If one considers infinite iterated function systems (IIFS)

(cf. [Fernau 19944], [Fernau 1994b], [Mauldin 1995] or
[Mauldin and Urbaski 1996]) unlike the case of finite IFS the fixed point need not be
closed. Thus, for IIFS, fixed point and attractor, which we define as the closure of the fixed
poinf, in general, do not coincide.

In a recent paper [Staiger 2005a] we provided a series of simple examples for several levels
of the non-coincidence of fixed point and attractors for infinite iterated function systems using
means of formal language theory. As a criterion for the distinction we used a combination
of Hausdorff dimension and Hausdorff measure. The underlying space is the Cantor space
(X® p), the contracting mappings, were defined by pre-multiplication with finite strings
w e X*, ow(&) :=wE for & € X?®, and, therefore, the 1IF$py)wew considered are most
simply described by formal languagésC X*.

For languages simplicity can be expressed in terms of structure and complexity. The struc-
ture we required in [Staiger 2005a] was prefix-freeness, that isy,foe W, w # v the images
ow(X?) andgy(X?) are disjoint. This results also in a simple topological structure of the fixed
point. From the complexity point of view, with three exceptions, the languages (examples)
constructed in [Staiger 2005a] were context-free languages having low complex acceptors (cf.
[Autebert et al. 1997]): they are accepted by one- or two-turn deterministic one-counter au-
tomata.

In this paper, we continue this line of investigation to construct simple IIFS in Cantor
space which exhibit a certain level of distinction between fixed point and attractor and which
are described by prefix-free deterministic context-free languages.

As an additional instance we investigate the possibility to obtain fixed points and attrac-
tors which exhibit, besides the self-similarity induced by the generating IIFS, a certain kind
of finite self-similarity as described in the graph-directed constructions of [Bandt 1989] and
[Mauldin and Williams 1988] (see also [Edgar 1990]). In our special case of Cantor space such
sets are also known as finite-state subsed“f{see [Trakhtenbrot 1962], [Staiger 1983]).

In our examples we shall use tukasiewicz languages (see
[Staiger 2005b]).  Their construction exhibits interesting information-theoretic proper-
ties (see[[Kuich 1970, Staiger 2005b]), which in view of the close relation between the
entropy of languages and Hausdorff dimension (see [Staiger 1993]) could result in IIFS whose
fixed points have the desired properties and whose underlying languages can be constructed
as deterministic context-free languages of low complex structure.

2 Notation and Preliminary Results

Next we introduce the notation used throughout the paper. By 0,1,2 ...} we denote
the set of natural numbers. L¥tbe an alphabet of cardinalitX| = r. By X* we denote
the set (monoid) of words oK, including theempty word eand X? is the set of infinite
sequencesaf-words) overX. Forw € X* andn € X*UX® let w-n be theirconcatenation

1Since there is no standard terminology, we use these terms to denote the two sets related to an IIFS.
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This concatenation product extends in an obvious way to subé&isXx* andB C X* U X?.

For a languag®V letW* := ;. W' be thesubmonoicf X* generated by, and byw® :=
{wi---wi--- 1w € W\ {e}} we denote the set of infinite strings formed by concatenating
words inW. Furthermorgw]| is thelengthof the wordw € X* andA(B) is the set of all finite
prefixes of strings iB C X* UX®. We shall abbreviater € A(1) (n € X*UX?®) bywLC 1.

A languagey/ C X* is called aprefix-freeprovided for arbitrary, v € V the relationw C v
impliesw =v.

Further we denote b/w := {n : w-n € B} theleft derivativeor stateof the setB C
X*UX® generated by the word. We refer toB asfinite-stateprovided the set of states
{B/w:we X*} is finite. As usual a finite-state languageC X* is calledregular.

In the case otw-languagesegular w-languagesthat is, w-languages accepted by finite
automata, are the finite unions of sets of the fakmV®, whereW andV are regular lan-
guages (cf. e.g. [Staiger 1997a]). In particular, every regukanguage is finite-state, but,
as it was observed in [Trakhtenbrot 1962], not every finite-stalenguage is regular (cf. also
[Staiger 1983]).

In the sequel we assume the reader to be familiar with basic facts
of language theory (e.g. Vol. 1 of | [Rozenberg and Salomaal1997] or
[Berstel and Perrin 1985], [Hopcroft and Uliman 1979])

For a languag®/ C X* letsw : IN — IN wheresy (n) := [WNX"| be itsstructure function
Thestructure generating functiocorresponding tey is

5W<t) = 2i€|N S\N(I) tl (1)

sw is a power series with convergence radiadW := liminf —=

n—o  /sw(n)’
sidersy also as a function mappiri@,«) to [0,0) U {o}. If W Z {e} thensy is a continuous
and strictly increasing mapping @, rad\W).
The convergence radiusdW is closely related to the entropy of the language (cf.
[Kuich 1970, Staiger 1993, Staiger 2005b]),

It is convenient to con-

log; (1+sw(n)

Hw = limsup,_. .

The parametetr; (W) :=sup{t : t > 0Asw(t) < 1} <radW is important for the calculation of
radW*. It fulfills the following (seel[Kuich 1970, Staiger 1993]).

Lemma 1 It holdssw(t1(W)) =1 or sw(radW) < 1.
If sw(radW) < 1, thent;(W) = radW = radW*. If syy(radW) > 1 thenradW* < t1(W).
If W is prefix-free then we have alwaysl\W* = t1(W) and, moreovesy (radW*) = 1 or
radW* = radW.

We consider the se&X® as a metric space (Cantor spac¢¥)’,p) of all w-words over the
alphabeiX where the metrip is defined as follows.

p(&,n) =inf{r’™:wc Eawe n}

This space is a compact, at{F ) := {& : A(§) C A(F)} is theclosureof the setF (smallest
closed subset containirig) in (X“, p).

The mappingpw(&) := w- & is a contracting similitude if onlyv # e. Thus a language
W C X*\ {e} defines a possibly infinite IFS (IIFS) itX®, p). Its (maximal)fixed pointis the
w-powerW® of the languag®V. It was observed irj [Staiger 1997b] that, in general, the IIFS
(ow)wew has a great variety of fixed points, that is, solutions of the equifjpRy, ¢w(F) =F.
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All of these fixed points are containedW®, and, except for the empty set 0, their closure
equalsg’ (W®), which is theattractor of (¢w),ycw-
If e¢ W andW is prefix-free itsm-power satisfie8V® = oy W' - X?, that is, is aGg-set
(a countable intersection of open sets}X{’, p). In general, the topological structure\of”
can be more complex (ci. [Finkel 2001, Staiger 1997a, Staiger 1997b]).
Next we recall the definition of the Hausdorff measure and Hausdorff dimension of a subset
of (X?,p) (see[[Edgar 1990, Falconer 1990]). In the setting of language@dadguages this
can be read as follows (s€e [Staiger 1993], [Merzenich and Staiger 1994]F EoX® and
0 < a < 1the equation

L (F) = lim inf{ ZNrO"W F CW- X AYWweW — |w| > |)} @)

| —o0 we

defines thex-dimensional metric outer measure ¥fl. The measuré , satisfies the follow-

ing.
Corollary 2 IfILy (F) < oo then ILy1¢ (F) =0for all € > 0.
Then theHausdorff dimensioof F is defined as
dimF :=sup{a:a=0VILy(F) =} =inf{a:ILy(F)=0}.
It should be mentioned that dim is countably stable and shift invariant, that is,
dimUien F =sup{dimF :i€IN} and dimw-F =dimF. (3)

We list some relations of the Hausdorff dimension and measure for
w-power languages to the properties of the structure generation func-
tions of the corresponding languages (see/ [Merzenich and Staiger 1994,
[Staiger 19983] or, in a more general setting [Fernau and Staigef 2001]).

dimW® = —log, radW* 4)

Proposition 3 If o = dimW® then I, (W?) < 1.
If, moreover, W is a regular language then

0<ILg (W®) <ILg (Z(W?)) <1,
and if W is regular and prefix-free thenJW®) = ILy (€' (W?)).

From [Staiger 1997b] we have the following connection between finite-state and regular
powers.

Proposition 4 If V@ is finite-state therg’(V®) is regular and there is a regular language W
such thate’(V?®) = € (W?).

The following direct connections between the structure generation fungti@and Haus-
dorff measurdL , (W®) or dimW® are helpful.

Proposition5 1. Ifsw(r—%) < 1then Iy (W?®) =0.

2. IfW is prefix-free andy (r %) = 1 theno = dimW©.
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3 Properties of Lukasiewicz languages

In this section we recall known and derive some new properties of Lukasiewicz languages.
We start with the definition of th¢C, B}-n-Lukasiewicz language (cf| [Staiger 2005b]). Let
C,B C X*\ {e} be two disjoint languages. Then

L =CUB-t" (5)

is then-Lukasiewicz language derived froBhandB. Closely related to Lt is its derived lan-
guage defined as follows.

K=" Bt 6)
The languages t and K have the following properties (see [Staiger 2005b]).
Proposition 6 Let CNB = 0.
1. £ C (CUB)*-CC (CUB)*
2. A(L*) =A((CuB)*)

3. If CUB is prefix-free thert is also a prefix-free an& is the union of n prefix-free
languages B! (i=0,...,n—1).

4. A(k) =K*-A(CUB) and ift is prefix-free theiK* C A(L) \ L.

5. (CuB)*=+t*-K*, and if CUB is prefix-free every w (CUB)* has a unique factorisa-
tion w=v-u where v L* and ue K*.

SinceA(W*\ {e}) = A(W?) from Proposition 52 we have the following.
¢((CUB)®) =7(L?) (7)
Under certain assumptions we can expt@s B)® in terms of £ and K.

Theorem 7 Let C,B C X* be disjoint, GJB prefix-free and. andK defined as in Egs|. [5) and
(), respectively. Then

(CuB)® = t?Ut*-K?and (8)
ILy (CUB)®) = ILg(?)+ %q(r‘)‘)i g (K?) 9)
i€
Before we proceed to the proof we need some preparatory considerations which can be found
e.g. in [Staiger 1997b].
LetW?® := {& : A(£) NW is infinite }. This §-limit and thew-power of W are related via
the following equations.

W-V)? = w-viuwlifeeVv (10)
W% = weuw*.w? (11)

Proof. First observe that, sind@UB is prefix-free, we havga(£) N (CUB)| < 1 and from
Propositior] 6.8 we have th& (&) NK| < n for arbitraryé € X®. Thus(CUB)® =K% =0
and from Eq.|[(1[1Y(CUB)*)® = (CUB)® and(K*)® = K follow.

Now we apply Eq.[(20) to Propositi¢f] 6.5, and we obtain Fjq(@) B)® =+ ®UL*-K®.
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Since t is also prefix-free, PropositiﬂﬂiA implies K®Nt® =0 and also £- K NLJ.
K® =0 fori# j.

Then Property 2 of [Merzenich and Staiger 1994] proves|[Eq. (9). [
Next we investigate the relations betwe@u B)® and t®. It turns out that the value of
s; (rad (CUB)*) plays a crucialdle in this respect.

To this end we recall the following propertiesratit.* which can be found in Section 4 of
[Staiger 2005D].

Proposition 8 Let CN B = 0 and CU B prefix-free. Then
1. radCUB >radt >radt* > rad (CUB)*

2. Itholdsradt* =rad (CUB)* or radL* =radt.
3. 5. (t) <scup(t) <1lfor0<t <rad(CUB)*.

4. If s, (t) = 1for somed <t < radt then we have alsec g(t) = 1.
As a corollary we obtain the following.
Corollary 9 If s, (rad (CUB)*) < 1thens, (t) <1for0<t <radt.
For the sake of completeness we give a short proof.

Proof. If t <rad(CUB)* the assertion is trivial. In cage> rad (CUB)* we obtain from
s, (t) = 1 via Propositior B4 thatc g(t) = 1 which is impossible, sincec g is strictly in-
creasing. O

This much of preparations yields the following results. Observe that\ffre= — log, rad W*
in view of Eq. [4).

Lemma 10 Let CNB = 0 and CUB prefix-free.

1. If s, (rad (CUB)*) = 1 thendimt® = dim(CUB)® and ILy (L?) = ILy ((CUB)®) for
o =dimL®.

2. IfradCUB =rad (CUB)* thendimt® = dim(CUB)®.

3. IfradCUB > rad (CUB)* and s, (rad (CUB)*) < 1 thendimt® < dim(CUB)® and
ILy (E?) =0for oo =dimt®.

Proof. The first property follows from Eq[[9) and Propositijoph 3, and the second is an
immediate consequence of Proposifigr 8.1.

In order to prove the third one observe that in view of Lemiip@C UB > rad (CUB)* im-
pliesscug(rad (CUB)*) = 1. Now by the results of the table in Section 4.3|of [Staiger 2005b]
s¢(rad (CUB)*) < 1 implies sg(rad (CUB)*) > L. Then sc(rad(CUB)*) < =% and

n
sc(rad (CUB)*)™ L. sg(rad (CUB)*) < M1
The functionssc(t),sg(t) are continuous and increasing [ radCUB). Consequently,

sc(rad (CUB)* + &)" 1. sg(rad(CUB)* +¢) < ™1 for somee > 0 and Eqg. (21) of
[Staiger 2005p] gives the following estimatedt. = sup{t : sc(t)"1 - sg(t) < (”’:,anl} >
rad (CUB)* +¢.

Now, Corollary[9 shows (t) < 1 for 0 <t < radt whence, using again Lemnja 1 we
obtainradt* = radt > rad (CUB)*.

Finally, the assertioiL o (L) = 0 follows froms, (radt*) < 1. O

From the preceding consideration the following corollary is immediate.
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Corollary 11 Let CnB = 0 and CuB prefix-free. Thes, (rad(CUB)*) < 1 if and only if
scup(rad (CUB)*) < 1lor s, (rad(CUB)*) = 1andsg(rad (CUB)*) > %

4 The tukasiewicz Construction

This last section is devoted to the construction of the our examples. In [Staiger 2005a] we
considered twelve cases for the relations between the dimersiertsmV®, & = dimé' (V®)

and the corresponding measulieg (V¢) andIL4 (¢’ (V®)) of the fixed point and the attractor

of IIFS derived from a languagé C X*\ {e}. What concerndL, (V?®) andIL4 (€(V?))

we distinguished only the three cases of null measure, non-null finite measure and infinite
measure. Due to the constraints< & andIL, (V?) < 1 < « (see Propositioh|3) in total
twelve cases are possible.

As it was mentioned above the examples found in [Staiger 2005a] are, with the exception
of three cases, context-free languages accepted by deterministic one- or two-turn one-counter
automata. Only the following onekd, L1p andL,1 in [Staiger 2005a]) were not supported by
examples of context-free languages:

1 a=@,ILg(LY) =0and 0< ILy (F(LY)) <
2. a <@,y (L) =0andiLy (€(LS,)) =0, and

3. <@,y (LY) >0andlLg (F(LY)) =0

In the subsequent part of this section we investigate in which cases the results of Section 3
might be helpful to generate less complex examples thyaly o andL1; mentioned just now.

4.1 The limitations of the construction

First we focus on the the case finite-state fixed poiffts This issue was not taken into
account in[[Staiger 2005a]. Only in the case of regular prefix-free langlagderea = &
and 0< ILy (V?) =1L (¥ (V?)) < 0 we have a finite-state (even regular) fixed paiiftin
[Staiger 2005a].

If V¢ is finite-state ther¥’(V?) is a regularw-language and in view of Propositiph 4 we
can find a regular languad¥ C X* such thats'(V®) = €(W?®). Thus 0< IL; (%(V?®)) <1
for & =dimé(V?).

Consequently, for our levels of distinction between fixed pbifitand attractofs’(V®),
we may find examples of finite-state fixed poikt8 only if 0 < ILg (¢(V?)) < co.

Next we turn to the limitations of the construction of Lukasiewicz languages. We start with
a prefix-free languagé and split it into disjoint nonempty par@andB, choose am < IN, n >
2 and define t according to Eq.|(5). Then Hg. (7) shai¥“) = ¢ (L) independently of
the splitting and the choice of the parameatet IN.

What concerns the relation between the dimensions and the measurés asfdty
Lemma 1{).] shows that fag (radV*) = 1 these values coincide. Consequently, in this case
the Lukasiewicz construction does not yigddlanguages with new parameters.

In order to obtain languages t for which at least one of the values #iartd dimv® or
ILy (£?) andIL, (V) differ we have to choose our splitting in such a way th@tadV*) < 1.
Then by Corollary P and Propositipij 5.1 we get necesshrilyt ©) = 0 for & = dimt®. Thus
it it not to expect to simplify the example of langualgg of [Staiger 2005a] (see also Itgm 3
above).

Moreover, ifs, (radV*) < 1 then Lemma 10 shows thetdV* = radV implies dimt® =
dimV®, andradV* < radV implies dimt® < dimV® < dim%'(L?).
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4.2 Examples

The examples presented here are simple deterministic context-free languages (cf.
[Autebert et al. 1997]) and yield, in two cases, finite-state fixed points. The third case has
IL; (€(V?®)) = 0. As mentioned before, we can address only two of the above mentioned
three items.

We start with an extra example of a tukasiewicz language £ showing tHas finite-
state,a = dimt® < o =dimé(L?), ILy (L?) =0 andILg (¢ (L?)) = 1. Here the language
L7 in Example 7 of|[Staiger 2005a] which is accepted by a deterministic two-turn one-counter
automaton defines a fixed poinf which is not finite-state.

Example 1 (see also Example 6 of| [Staiger 1993))et X := {a,b} and define
Lm:{a}ub-’r_[%. Then CUB = {a,b} is a regular language, rad{a,b}* = % and
dim?(Lg) = 1.

Now, since 5cuB(%) 1 and 55(%) = % > % Corollary and Lemma . yield
dimtf < land Ly (LF) = 0.

L = ({afub-3) -£§ = {a,b} - £§ proves that £ /w =+ for all w € {a,b}*. Thus £
is finite-state.

Finally, ' (£§) = {a,b}®, whence IL; (€ (1)) = 1. 0

The next example addresses Iten 1. It provides a tukasiewicz language t for the case that
ILy (E?) =0andlLy (% (L?)) = 1 where, additionally, £ is finite-state.

Example 2 We let X := {a,b} and we start with CUB =V where V is the tukasiewicz
language defined by V = {a} Ub-V?2. This language has radV = radV* = 5 1 and 5\/( )=1
(see [Kuich 1970]).
We define tpg=(V\{a})Ua- LIZ Since 55( ) = % >
Lemma [10[2we have a = dimtg = dimV® = 1and IL4 (£5)
In order to show that £3 is finite-state we calculate £5 = ((V
This yields {a,b} - £§ =a-£§Ub-VZ.£8 =V -£§ =+5.
As in the previous example we have also %' (£§ ) = {a,b} and, therefore, ILy (¢'(L5)) =

% from Corollary [11] and

( {a})Ua-£3) £ =V -£3.

1
Finally, we show that the language tp is a simple deterministic context-free language
giving a corresponding grammar ({a,b},{S A}, S P) with rules P:

S — a-SSSb-AA
A — a|b-AA

O

The last example provides a tukasiewicz language t for whiehdimt® < & = dim%’ (L ?)
andlLq (L®) = ILg (¢ (L®)) = 0, thus addressing Itej 2.

Example 3 We start with the language V := {d3Ww: w e {a,b}*\ {e}} C {a,b,d,d}* from

Example 2 of [Staiger 2005a]. For this Ianguage it is shown that radV > radV* = %

sv(radV*) = 1, & = dimV® = dim%(V®) = L and IL5 (V®) = Lz (€(V®)) =0
If we splltV :CUBW|th B:= {d%,d®b} and C:=V \ Bwe have sg(radV*) = 3. Then ac-

cording to Corollary [11]and Lemma the language g3 defined by g = CUB- £ satisfies
dimtg < @ =dim%(L3) and ILg (L) = 0.
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Again we show that the language tj is a simple deterministic context-free language by
giving a corresponding grammar ({a,b,d,d},{S S,A B},S P):

P: S — &S S - aS|b-S|d3AB
A — d3-AB\a\b B — al|b

As itis clear from the discussion above the w-language Lé’ in Examplecannot be finite-
state. il

4.3 Concluding Remark

On the one hand, our Examplgs 2 drjd 3 improve the results of Examples 9 and 11 of
[Staiger 2005a], because the languagesandLi1 given there were not even context-free,
and on the other hand, Examplgs 1 and 2 give a new insight by constructing languages t
for which the fixed point £ is finite-state. This is another indication for the fact observed

in [Kuich 1970,| Staiger 2005b] that tukasiewicz languages have remarkable information-
theoretic properties.
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