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1 Introduction

Iterated function systems (IFS) are well-known in fractal geometry as a means to describe
sets of fractal nature [Edgar 1990, Falconer 1990]. Usually, an IFS consists of a finite set of
contracting mappings of a metric spaceM into itself and defines in a unique way a (largest)
fixed point which is also called its attractor. This fixed point (or attractor) is a nonempty closed
subset ofM .

If one considers infinite iterated function systems (IIFS)
(cf. [Fernau 1994a], [Fernau 1994b], [Mauldin 1995] or
[Mauldin and Urbánski 1996]) unlike the case of finite IFS the fixed point need not be
closed. Thus, for IIFS, fixed point and attractor, which we define as the closure of the fixed
point1, in general, do not coincide.

In a recent paper [Staiger 2005a] we provided a series of simple examples for several levels
of the non-coincidence of fixed point and attractors for infinite iterated function systems using
means of formal language theory. As a criterion for the distinction we used a combination
of Hausdorff dimension and Hausdorff measure. The underlying space is the Cantor space
(Xω ,ρ), the contracting mappingsφw were defined by pre-multiplication with finite strings
w ∈ X∗, φw(ξ ) := wξ for ξ ∈ Xω , and, therefore, the IIFS(φw)w∈W considered are most
simply described by formal languagesW ⊆ X∗.

For languages simplicity can be expressed in terms of structure and complexity. The struc-
ture we required in [Staiger 2005a] was prefix-freeness, that is, forw,v∈W,w 6= v the images
φw(Xω) andφv(Xω) are disjoint. This results also in a simple topological structure of the fixed
point. From the complexity point of view, with three exceptions, the languages (examples)
constructed in [Staiger 2005a] were context-free languages having low complex acceptors (cf.
[Autebert et al. 1997]): they are accepted by one- or two-turn deterministic one-counter au-
tomata.

In this paper, we continue this line of investigation to construct simple IIFS in Cantor
space which exhibit a certain level of distinction between fixed point and attractor and which
are described by prefix-free deterministic context-free languages.

As an additional instance we investigate the possibility to obtain fixed points and attrac-
tors which exhibit, besides the self-similarity induced by the generating IIFS, a certain kind
of finite self-similarity as described in the graph-directed constructions of [Bandt 1989] and
[Mauldin and Williams 1988] (see also [Edgar 1990]). In our special case of Cantor space such
sets are also known as finite-state subsets ofXω (see [Trakhtenbrot 1962], [Staiger 1983]).

In our examples we shall use Łukasiewicz languages (see
[Staiger 2005b]). Their construction exhibits interesting information-theoretic proper-
ties (see [Kuich 1970, Staiger 2005b]), which in view of the close relation between the
entropy of languages and Hausdorff dimension (see [Staiger 1993]) could result in IIFS whose
fixed points have the desired properties and whose underlying languages can be constructed
as deterministic context-free languages of low complex structure.

2 Notation and Preliminary Results

Next we introduce the notation used throughout the paper. By IN= {0,1,2, . . .} we denote
the set of natural numbers. LetX be an alphabet of cardinality|X| = r. By X∗ we denote
the set (monoid) of words onX, including theempty word e, andXω is the set of infinite
sequences (ω-words) overX. For w∈ X∗ andη ∈ X∗ ∪Xω let w ·η be theirconcatenation.

1Since there is no standard terminology, we use these terms to denote the two sets related to an IIFS.
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This concatenation product extends in an obvious way to subsetsW ⊆ X∗ andB⊆ X∗∪Xω .
For a languageW let W∗ :=

⋃
i∈IN Wi be thesubmonoidof X∗ generated byW, and byWω :=

{w1 · · ·wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings formed by concatenating
words inW. Furthermore|w| is thelengthof the wordw∈ X∗ andA(B) is the set of all finite
prefixes of strings inB⊆ X∗∪Xω . We shall abbreviatew∈ A(η) (η ∈ X∗∪Xω) by wv η .

A languageV ⊆ X∗ is called aprefix-freeprovided for arbitraryw,v∈V the relationwv v
impliesw = v.

Further we denote byB/w := {η : w ·η ∈ B} the left derivativeor stateof the setB⊆
X∗ ∪Xω generated by the wordw. We refer toB as finite-stateprovided the set of states
{B/w : w∈ X∗} is finite. As usual a finite-state languageW ⊆ X∗ is calledregular.

In the case ofω-languagesregular ω-languages, that is,ω-languages accepted by finite
automata, are the finite unions of sets of the formW ·Vω , whereW andV are regular lan-
guages (cf. e.g. [Staiger 1997a]). In particular, every regularω-language is finite-state, but,
as it was observed in [Trakhtenbrot 1962], not every finite-stateω-language is regular (cf. also
[Staiger 1983]).

In the sequel we assume the reader to be familiar with basic facts
of language theory (e.g. Vol. 1 of [Rozenberg and Salomaa 1997] or
[Berstel and Perrin 1985], [Hopcroft and Ullman 1979])

For a languageW⊆ X∗ let sW : IN → IN wheresW(n) := |W∩Xn| be itsstructure function.
Thestructure generating functioncorresponding tosW is

sW(t) := ∑i∈IN sW(i) · t i . (1)

sW is a power series with convergence radiusradW := liminf
n→∞

1
n
√

sW(n)
. It is convenient to con-

sidersW also as a function mapping[0,∞) to [0,∞)∪{∞}. If W 6⊆ {e} thensW is a continuous
and strictly increasing mapping on[0, radW).

The convergence radiusradW is closely related to the entropy of the language (cf.
[Kuich 1970, Staiger 1993, Staiger 2005b]),

HW = limsupn→∞
logr (1+sW(n))

n .

The parametert1(W) := sup{t : t ≥ 0∧ sW(t)≤ 1} ≤ radW is important for the calculation of
radW∗. It fulfills the following (see [Kuich 1970, Staiger 1993]).

Lemma 1 It holdssW(t1(W)) = 1 or sW(radW) < 1.
If sW(radW)≤ 1, thent1(W) = radW = radW∗. If sW(radW) > 1 thenradW∗ ≤ t1(W).
If W is prefix-free then we have alwaysradW∗ = t1(W) and, moreover,sW(radW∗) = 1 or

radW∗ = radW.

We consider the setXω as a metric space (Cantor space)(Xω ,ρ) of all ω-words over the
alphabetX where the metricρ is defined as follows.

ρ(ξ ,η) := inf{r−|w| : w @ ξ ∧w @ η}

This space is a compact, andC (F) := {ξ : A(ξ )⊆ A(F)} is theclosureof the setF (smallest
closed subset containingF) in (Xω ,ρ).

The mappingφw(ξ ) := w · ξ is a contracting similitude if onlyw 6= e. Thus a language
W ⊆ X∗ \{e} defines a possibly infinite IFS (IIFS) in(Xω ,ρ). Its (maximal)fixed pointis the
ω-powerWω of the languageW. It was observed in [Staiger 1997b] that, in general, the IIFS
(φw)w∈W has a great variety of fixed points, that is, solutions of the equation

⋃
w∈W φw(F) = F .
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All of these fixed points are contained inWω , and, except for the empty set /0, their closure
equalsC (Wω), which is theattractor of (φw)w∈W.

If e /∈W andW is prefix-free itsω-power satisfiesWω =
⋂

i∈IN Wi ·Xω , that is, is aGδ -set
(a countable intersection of open sets) in(Xω ,ρ). In general, the topological structure ofWω

can be more complex (cf. [Finkel 2001, Staiger 1997a, Staiger 1997b]).
Next we recall the definition of the Hausdorff measure and Hausdorff dimension of a subset

of (Xω ,ρ) (see [Edgar 1990, Falconer 1990]). In the setting of languages andω-languages this
can be read as follows (see [Staiger 1993], [Merzenich and Staiger 1994]). ForF ⊆ Xω and
0≤ α ≤ 1 the equation

ILα (F) := lim
l→∞

inf
{

∑
w∈W

r−α·|w| : F ⊆W ·Xω ∧∀w(w∈W → |w| ≥ l)
}

(2)

defines theα-dimensional metric outer measure onXω . The measureILα satisfies the follow-
ing.

Corollary 2 If ILα (F) < ∞ then ILα+ε (F) = 0 for all ε > 0.

Then theHausdorff dimensionof F is defined as

dimF := sup{α : α = 0∨ ILα (F) = ∞}= inf{α : ILα (F) = 0} .

It should be mentioned that dim is countably stable and shift invariant, that is,

dim
⋃

i∈IN Fi = sup{dimFi : i ∈ IN} and dimw ·F = dimF . (3)

We list some relations of the Hausdorff dimension and measure for
ω-power languages to the properties of the structure generation func-
tions of the corresponding languages (see [Merzenich and Staiger 1994],
[Staiger 1993] or, in a more general setting [Fernau and Staiger 2001]).

dimWω =− logr radW∗ (4)

Proposition 3 If α = dimWω then ILα (Wω)≤ 1.
If, moreover, W is a regular language then

0 < ILα (Wω)≤ ILα (C (Wω))≤ 1,

and if W is regular and prefix-free then ILα (Wω) = ILα (C (Wω)).

From [Staiger 1997b] we have the following connection between finite-state and regularω-
powers.

Proposition 4 If V ω is finite-state thenC (Vω) is regular and there is a regular language W
such thatC (Vω) = C (Wω).

The following direct connections between the structure generation functionsW and Haus-
dorff measureILα (Wω) or dimWω are helpful.

Proposition 5 1. If sW(r−α) < 1 then ILα (Wω) = 0.

2. If W is prefix-free andsW(r−α) = 1 thenα = dimWω .
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3 Properties of Łukasiewicz languages

In this section we recall known and derive some new properties of Łukasiewicz languages.
We start with the definition of the{C,B}-n-Łukasiewicz language (cf. [Staiger 2005b]). Let
C,B⊆ X∗ \{e} be two disjoint languages. Then

Ł = C∪B·Łn (5)

is then-Łukasiewicz language derived fromC andB. Closely related to Ł is its derived lan-
guage defined as follows.

K =
⋃n−1

i=0
B·Ł i . (6)

The languages Ł and K have the following properties (see [Staiger 2005b]).

Proposition 6 Let C∩B = /0.

1. Ł ⊆ (C∪B)∗ ·C⊆ (C∪B)∗

2. A(Ł∗) = A((C∪B)∗)

3. If C∪B is prefix-free thenŁ is also a prefix-free andK is the union of n prefix-free
languages B·Ł i (i = 0, . . . ,n−1).

4. A(Ł) = K∗ ·A(C∪B) and ifŁ is prefix-free thenK∗ ⊆ A(Ł)\Ł.

5. (C∪B)∗ = Ł∗ ·K∗, and if C∪B is prefix-free every w∈ (C∪B)∗ has a unique factorisa-
tion w= v·u where v∈ Ł∗ and u∈ K∗.

SinceA(W∗ \{e}) = A(Wω) from Proposition 6.2 we have the following.

C ((C∪B)ω) = C (Łω) (7)

Under certain assumptions we can express(C∪B)ω in terms of Ł and K.

Theorem 7 Let C,B⊆ X∗ be disjoint, C∪B prefix-free andŁ andK defined as in Eqs. (5) and
(6), respectively. Then

(C∪B)ω = Łω ∪ Ł∗ ·Kω and (8)

ILα ((C∪B)ω) = ILα (Łω)+ ∑
i∈IN

sŁ(r−α)i · ILα (Kω) (9)

Before we proceed to the proof we need some preparatory considerations which can be found
e.g. in [Staiger 1997b].

Let Wδ := {ξ : A(ξ )∩W is infinite}. This δ -limit and theω-power ofW are related via
the following equations.

(W ·V)δ = W ·Vδ ∪Wδ if e∈V (10)

(W∗)δ = Wω ∪W∗ ·Wδ (11)

Proof. First observe that, sinceC∪B is prefix-free, we have|A(ξ )∩ (C∪B)| ≤ 1 and from
Proposition 6.3 we have that|A(ξ )∩K| ≤ n for arbitraryξ ∈ Xω . Thus(C∪B)δ = Kδ = /0
and from Eq. (11)((C∪B)∗)δ = (C∪B)ω and(K∗)δ = Kω follow.

Now we apply Eq. (10) to Proposition 6.5, and we obtain Eq. (8)(C∪B)ω = Łω ∪Ł∗ ·Kω .
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Since Ł is also prefix-free, Proposition 6.4 implies Ł∗ ·Kω ∩Łω = /0 and also Łi ·Kω ∩Ł j ·
Kω = /0 for i 6= j.

Then Property 2 of [Merzenich and Staiger 1994] proves Eq. (9). ❏

Next we investigate the relations between(C∪B)ω and Łω . It turns out that the value of
sŁ(rad(C∪B)∗) plays a crucial r̂ole in this respect.

To this end we recall the following properties ofradŁ∗ which can be found in Section 4 of
[Staiger 2005b].

Proposition 8 Let C∩B = /0 and C∪B prefix-free. Then

1. radC∪B≥ radŁ ≥ radŁ∗ ≥ rad(C∪B)∗

2. It holdsradŁ∗ = rad(C∪B)∗ or radŁ∗ = radŁ.

3. sŁ(t)≤ sC∪B(t)≤ 1 for 0≤ t ≤ rad(C∪B)∗.

4. If sŁ(t) = 1 for some0≤ t ≤ radŁ then we have alsosC∪B(t) = 1.

As a corollary we obtain the following.

Corollary 9 If sŁ(rad(C∪B)∗) < 1 thensŁ(t) < 1 for 0≤ t ≤ radŁ.

For the sake of completeness we give a short proof.

Proof. If t ≤ rad(C∪B)∗ the assertion is trivial. In caset > rad(C∪B)∗ we obtain from
sŁ(t) = 1 via Proposition 8.4 thatsC∪B(t) = 1 which is impossible, sincesC∪B is strictly in-
creasing. ❏

This much of preparations yields the following results. Observe that dimWω =− logr radW∗

in view of Eq. (4).

Lemma 10 Let C∩B = /0 and C∪B prefix-free.

1. If sŁ(rad(C∪B)∗) = 1 thendimŁω = dim(C∪B)ω and ILα (Łω) = ILα ((C∪B)ω) for
α = dimŁω .

2. If radC∪B = rad(C∪B)∗ thendimŁω = dim(C∪B)ω .

3. If radC∪B > rad(C∪B)∗ and sŁ(rad(C∪B)∗) < 1 thendimŁω < dim(C∪B)ω and
ILα (Łω) = 0 for α = dimŁω .

Proof. The first property follows from Eq. (9) and Proposition 3, and the second is an
immediate consequence of Proposition 8.1.

In order to prove the third one observe that in view of Lemma 1radC∪B> rad(C∪B)∗ im-
pliessC∪B(rad(C∪B)∗) = 1. Now by the results of the table in Section 4.3 of [Staiger 2005b]
sŁ(rad(C ∪ B)∗) < 1 implies sB(rad(C ∪ B)∗) > 1

n. Then sC(rad(C ∪ B)∗) < n−1
n and

sC(rad(C∪B)∗)n−1 · sB(rad(C∪B)∗) < (n−1)n−1

nn .
The functionssC(t),sB(t) are continuous and increasing in[0, radC∪B). Consequently,

sC(rad(C ∪ B)∗ + ε)n−1 · sB(rad(C ∪ B)∗ + ε) < n−1
n for some ε > 0 and Eq. (21) of

[Staiger 2005b] gives the following estimateradŁ = sup{t : sC(t)n−1 · sB(t) ≤ (n−1)n−1

nn } ≥
rad(C∪B)∗+ ε.

Now, Corollary 9 showssŁ(t) < 1 for 0≤ t ≤ radŁ whence, using again Lemma 1 we
obtainradŁ∗ = radŁ > rad(C∪B)∗.

Finally, the assertionILα (Łω) = 0 follows fromsŁ(radŁ∗) < 1. ❏

From the preceding consideration the following corollary is immediate.
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Corollary 11 Let C∩B = /0 and C∪B prefix-free. ThensŁ(rad(C∪B)∗) < 1 if and only if
sC∪B(rad(C∪B)∗) < 1 or sŁ(rad(C∪B)∗) = 1 andsB(rad(C∪B)∗) > 1

n.

4 The Łukasiewicz Construction

This last section is devoted to the construction of the our examples. In [Staiger 2005a] we
considered twelve cases for the relations between the dimensionsα = dimVω , α̂ = dimC (Vω)
and the corresponding measuresILα (Vω) andILα̂ (C (Vω)) of the fixed point and the attractor
of IIFS derived from a languageV ⊆ X∗ \ {e}. What concernsILα (Vω) and ILα̂ (C (Vω))
we distinguished only the three cases of null measure, non-null finite measure and infinite
measure. Due to the constraintsα ≤ α̂ and ILα (Vω) ≤ 1 < ∞ (see Proposition 3) in total
twelve cases are possible.

As it was mentioned above the examples found in [Staiger 2005a] are, with the exception
of three cases, context-free languages accepted by deterministic one- or two-turn one-counter
automata. Only the following ones (L9,L10 andL11 in [Staiger 2005a]) were not supported by
examples of context-free languages:

1. α = α̂, ILα

(
Lω

9

)
= 0 and 0< ILα̂

(
C (Lω

9 )
)

< ∞

2. α < α̂, ILα

(
Lω

10

)
= 0 andILα̂

(
C (Lω

10)
)

= 0, and

3. α < α̂, ILα

(
Lω

11

)
> 0 andILα̂

(
C (Lω

11)
)

= 0

In the subsequent part of this section we investigate in which cases the results of Section 3
might be helpful to generate less complex examples thanL9,L10 andL11 mentioned just now.

4.1 The limitations of the construction

First we focus on the the case finite-state fixed pointsVω . This issue was not taken into
account in [Staiger 2005a]. Only in the case of regular prefix-free languagesV whereα = α̂

and 0< ILα (Vω) = ILα (C (Vω)) < ∞ we have a finite-state (even regular) fixed pointVω in
[Staiger 2005a].

If Vω is finite-state thenC (Vω) is a regularω-language and in view of Proposition 4 we
can find a regular languageW ⊆ X∗ such thatC (Vω) = C (Wω). Thus 0< ILα̂ (C (Vω)) ≤ 1
for α̂ = dimC (Vω).

Consequently, for our levels of distinction between fixed pointVω and attractorC (Vω),
we may find examples of finite-state fixed pointsVω only if 0 < ILα̂ (C (Vω)) < ∞.

Next we turn to the limitations of the construction of Łukasiewicz languages. We start with
a prefix-free languageV and split it into disjoint nonempty partsC andB, choose ann∈ IN, n≥
2 and define Ł according to Eq. (5). Then Eq. (7) showsC (Vω) = C (Łω) independently of
the splitting and the choice of the parametern∈ IN.

What concerns the relation between the dimensions and the measures of Łω and Vω

Lemma 10.1 shows that forsŁ(radV∗) = 1 these values coincide. Consequently, in this case
the Łukasiewicz construction does not yieldω-languages with new parameters.

In order to obtain languages Ł for which at least one of the values dimŁω and dimVω or
ILα (Łω) andILα (Vω) differ we have to choose our splitting in such a way thatsŁ(radV∗) < 1.
Then by Corollary 9 and Proposition 5.1 we get necessarilyILα (Łω) = 0 for α = dimŁω . Thus
it it not to expect to simplify the example of languageL11 of [Staiger 2005a] (see also Item 3
above).

Moreover, ifsŁ(radV∗) < 1 then Lemma 10 shows thatradV∗ = radV implies dimŁω =
dimVω , andradV∗ < radV implies dimŁω < dimVω ≤ dimC (Łω).
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4.2 Examples

The examples presented here are simple deterministic context-free languages (cf.
[Autebert et al. 1997]) and yield, in two cases, finite-state fixed points. The third case has
ILα̂ (C (Vω)) = 0. As mentioned before, we can address only two of the above mentioned
three items.

We start with an extra example of a Łukasiewicz language Ł showing that Łω is finite-
state,α = dimŁω < α̂ = dimC (Łω), ILα (Łω) = 0 andILα̂ (C (Łω)) = 1. Here the language
L7 in Example 7 of [Staiger 2005a] which is accepted by a deterministic two-turn one-counter
automaton defines a fixed pointLω

7 which is not finite-state.

Example 1 (see also Example 6 of [Staiger 1993])Let X := {a,b} and define
Ł1 = {a}∪b·Ł3

1. Then C ∪ B = {a,b} is a regular language, rad{a,b}∗ = 1
2 and

dimC (Łω
1 ) = 1.

Now, since sC∪B(1
2) = 1 and sB(1

2) = 1
2 > 1

3, Corollary 11 and Lemma 10.3 yield
dimŁω

1 < 1 and ILα

(
Łω

1

)
= 0.

Łω
1 = ({a}∪b·Ł3

1) ·Łω
1 = {a,b} ·Łω

1 proves that Łω
1 /w = Łω

1 for all w∈ {a,b}∗. Thus Łω
1

is finite-state.
Finally, C (Łω

1 ) = {a,b}ω , whence ILα̂

(
C (Łω

1 )
)

= 1. ❏

The next example addresses Item 1. It provides a Łukasiewicz language Ł for the case that
ILα (Łω) = 0 andILα (C (Łω)) = 1 where, additionally, Łω is finite-state.

Example 2 We let X := {a,b} and we start with C∪B = V where V is the Łukasiewicz
language defined by V = {a}∪b ·V2. This language has radV = radV∗ = 1

2 and sV(1
2) = 1

(see [Kuich 1970]).
We define Ł2 = (V \{a})∪a·Ł3

2. Since sB(1
2) = 1

2 > 1
3, from Corollary 11 and

Lemma 10.2 we have α = dimŁω
2 = dimVω = 1 and ILα

(
Łω

2

)
= 0.

In order to show that Łω
2 is finite-state we calculate Łω

2 = ((V \{a})∪a·Ł3
2) ·Łω

2 = V ·Łω
2 .

This yields {a,b} ·Łω
2 = a·Łω

2 ∪b·V2 ·Łω
2 = V ·Łω

2 = Łω
2 .

As in the previous example we have also C (Łω
2 ) = {a,b}ω and, therefore, ILα

(
C (Łω

2 )
)
=

1.
Finally, we show that the language Ł2 is a simple deterministic context-free language

giving a corresponding grammar ({a,b},{S,A},S,P) with rules P:

S → a·SSS| b·AA

A → a | b·AA

❏

The last example provides a Łukasiewicz language Ł for whichα = dimŁω < α̂ = dimC (Łω)
andILα (Łω) = ILα̂ (C (Łω)) = 0, thus addressing Item 2.

Example 3 We start with the language V := {d̃3|w|w : w∈ {a,b}∗ \{e}} ⊆ {a,b,d, d̃}∗ from
Example 2 of [Staiger 2005a]. For this language, it is shown that radV > radV∗ = 1√

2
,

sV(radV∗) = 1, α̂ = dimVω = dimC (Vω) = 1
4 and ILα̂ (Vω) = ILα̂ (C (Vω)) = 0

If we split V =C∪B with B := {d̃3a, d̃3b} and C :=V \B we have sB(radV∗) = 1
2. Then ac-

cording to Corollary 11 and Lemma 10.3 the language Ł3 defined by Ł3 = C∪B·Ł3
3 satisfies

dimŁω
3 < α̂ = dimC (Łω

3 ) and ILα

(
Łω

3

)
= 0.
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Again we show that the language Ł3 is a simple deterministic context-free language by
giving a corresponding grammar ({a,b,d, d̃},{S,S′,A,B},S,P):

P : S → d̃3 ·S′ S′ → a·S3 | b·S3 | d̃3 ·AB
A → d̃3 ·AB | a | b B → a | b

As it is clear from the discussion above the ω-language Łω
3 in Example 3 cannot be finite-

state. ❏

4.3 Concluding Remark

On the one hand, our Examples 2 and 3 improve the results of Examples 9 and 11 of
[Staiger 2005a], because the languagesL9 and L11 given there were not even context-free,
and on the other hand, Examples 1 and 2 give a new insight by constructing languages Ł
for which the fixed point Łω is finite-state. This is another indication for the fact observed
in [Kuich 1970, Staiger 2005b] that Łukasiewicz languages have remarkable information-
theoretic properties.
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