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Abstract

In nonparametric Bayesian time series analysis, Whittle’s likelihood provides a well-established method to model a stationary time series. In general, Whittle’s likelihood constitutes an approximation
to the true likelihood. It often yields asymptotically correct inference results, however at the price of losses in efficiency. Recently, Whittle’s likelihood was generalized [1] by first fitting any suitable
parametric model (beyond Gaussian white noise) in the time domain and then applying a nonparametric correction in the frequency domain. This yields a pseudo likelihood that inherits the correct
second order structure from the nonparametric spectral correction as well as the dependence between periodogram ordinates from the parametric fit. We present an extension of this approach to
multivariate time series and give an outlook to upcoming tasks and challenges.

Whittle’s likelihood: The multivariate case

Let {Xn : n = 0,±1, ...} be a stationary and centered real d -dimensional time series with
absolute summable autocovariance matrix function Γ(h) = E[X tX

�
t+h] and spectral density
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The Fourier coefficients of Xn = (X 1, ...,Xn)
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and the periodogram matrix is defined as
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Asymptotically, the periodogram ordinates are independent Wishart distributed with
asymptotic mean f(λk), motivating Whittle’s likelihood:
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• Periodogram covariances depend mainly on excess kurtosis of innovations [2].

• Whittle’s likelihood neglects this weak dependence between periodogram ordinates.

Beyond Whittle: The corrected parametric likelihood

• Idea: Fit a parametric model that mimics [2] the weak periodogram dependence!

• Problem: If the parametric model is misspecified, spectral inference becomes wrong:
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1

2π
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∗� → fparam(λk) �= f(λk).

• Solution: Correction Q(λ) := f(λ)1/2fparam(λ)−1/2 in frequency domain [1], [2], [3]:
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time domain frequency domain
mDFT

Xn = (X 1, ...,Xn) ∼ pparam −−−−−−−−−−−→ (X̃ (λ1), ..., X̃ (λn))
� =: FnXn�Correction with Q(λk)

mDFT−1

F−1
n QnFnXn ∼ pCparam ←−−−−−−−−−−− (Q(λ1)X̃ (λ1), ...,Q(λn)X̃ (λn))
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Accordingly, the corrected parametric likelihood is given by

pCparam(xn|f) ∝
n�

k=1
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n Fnxn).

Full Bayesian model

The pseudo posterior distribution of f is given by

pCpost(f|xn,α) ∝ p(f|α)
n�

k=1

|detQ(λk)|−1 pparam(F−1
n Q−1

n Fnxn).

• Prior on f: Wavelet-based [4] on Cholesky components [5].

• Sample from pCpost: MCMC scheme similar to [4].

Next research steps

• Show consistency: For Gaussian time series [6], [1].

• Other priors: Bernstein polynomials [6], [1], B-Splines.

• Simulation study: Parametrize innovation excess curtosis.

• Shrinkage approaches: Cope with the course of dimensionality.

Simulations

• Data: Univariate AR(1)-process Xt = aXt−1 + et with Gaussian White noise et.

• Parametric working model: Xt = aparamXt−1 + et with prior aparam ∼ U(−1, 1) and Gaussian White noise et.

Uniform Credible Intervals around pointwise median (pseudo) posterior spectral density with a = 0.75 for Whittle’s likelihood (left) and the corrected Gaussian AR(1)-likelihood (right):

Integrated Absolute Error (IAE) of pointwise median pseudo posterior spectral density:

IAE a = 0.5 a = 0.75 a = 0.95 AR(2), a1 = 0.75, a2 = −0.2

pW 0.097 0.244 3.532 0.151

pCAR(1) 0.080 0.183 2.142 0.174

Uniform Credible Interval Coverage of pseudo posterior:

CI Coverage a = 0.5 a = 0.75 a = 0.95 AR(2), a1 = 0.75, a2 = −0.2

pW 0.986 0.895 0.11 0.991

pCAR(1) 0.992 0.999 0.912 0.996
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