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Abstract

In this paper we present a lemma, which helps us to establish a
link between the distribution of success probabilities from quantum
walk based search and the symmetries of the underlying graphs. With
the aid of the lemma, we identified certain graph structures of which
the quantum walk based search provides high success probabilities at
the marked vertices. We also observed that many graph structures and
their vertices can be classified according to their structural equivalence
using the search probabilities provided by quantum walks, although
this method cannot resolve all non-equivalent vertices for strongly reg-
ular graphs.
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1 Introduction
Quantum walks are the quantum analogue of classical random walks. It

has received much attention recently due to its applicability as a computa-
tional model in quantum computation [1, 7, 15, 10], as well as a wide range
of potential applications [17, 8, 18, 12, 5, 16, 19]. In particular, the ap-
plication of quantum walks in developing search algorithms is noteworthy
[22, 2, 9, 3, 14, 11, 20, 13]. It has been observed that in a quantum walk
based search, where one or more vertices are marked with a different coin
operator, the topology of the database is crucial in determining its search
efficiency. Therefore, given an underlying graph, it is an important question
to ask how successful a quantum walk-based search would be. In reference
[4], topological facts such as symmetry and centrality of the marked element
have been studied, and some graph structures that give efficient search results
were identified. Our objective in this work is to generalise the relation be-
tween the success probabilities and the topology of the graph, and to identify
suitable graph structures for quantum walk-based search, by their topology.

The paper is organised as follows: Section 2 provides an introduction to
quantum walk-based search over a graph. Section 3 describes the lemma
that explains the distribution of success probabilities of quantum walk based
search over a graph. In Section 4 we discuss quantum search results on
complete graphs and complete bipartite graphs. In the same section, we
give clues to determine if a graph is suitable for quantum walk-based search,
by considering its topology. In Section 5, we apply the lemma discussed
in section 3 to partition many graphs by their vertex equivalence classes.
Section 6 contains our conclusions.

2 Quantum walk-based search over a graph
A graph G = (V,E) is a pair of sets, where V is non-empty and each

element of E is a set of two distinct elements of V . The elements of V are
called vertices, and the elements of E are called the edges drawn between two
distinct vertices. The discrete-time quantum walk takes place in the Hilbert
space HP⊗HC [4, 22], where HP is the position Hilbert space spanned by an
orthonormal set of vertex states {|vi〉 : i = 1, 2, . . . , n}, HC is the coin Hilbert
space spanned by an orthonormal set of coin states {|cj〉i : j = 1, 2, . . . , di},
and di is the degree of vertex vi. If vi and vj are adjacent vertices, then
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the subvertex state |vi, cj〉 corresponds to the directed edge (vi, vj) at vertex
vi. The quantum walk on a graph is the repeated application of the unitary
time-evolution operator Û = Ŝ · Ĉ, where S is the shift operator acting on
the extended space HP⊗HC as S |vi, cj〉 = |vj, ci〉, and Ĉ is the global coin
operator defined as an n× n block diagonal matrix

Ĉ =



. . . 0 0 0 0

0 Ĉi−1 0 0 0

0 0 Ĉi 0 0

0 0 0 Ĉi+1 0

0 0 0 0
. . .

 , (1)

with each di × di block Ĉi denoting the local coin operator acting on vertex
vi, defined as

Ĉik,l =

{
−δkl if vi = vm, the searched-for vertex
−δkl + 2/di otherwise

(2)

for k, l ∈ 1, 2, . . . , di [21]. In such a quantum walk based search scheme,
we apply a distinct coin operation at the marked vertex that changes its
phase by 90 degrees. This alteration propagates to other vertices through
the shifting operator in the form of probability amplitudes interpretable as
wave-like interference.

The quantum walker is initially assumed to be in an equal superposition
of all subvertex states, i.e.

|Ψ0〉 =
1√
n

n∑
i=1

di∑
j=1

1√
di
|vi, cj〉 . (3)

The success probability Ps(t) is defined as the probability of finding the
walker at the marked vertex vm at time t, given by

Ps(t) =
dm∑
j=1

|〈vm, cj | Ψ(t)〉|2 , (4)

where |Ψ(t)〉 = (Ŝ · Ĉ)t |Ψ0〉 and t represents the number of time steps.
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3 Quantum walk-based search and equivalence
classes

On graph theoretic properties, global symmetry relations are of our par-
ticular interest. These symmetries are defined in terms of graph automor-
phisms. The automorphism group of a graph G is the group formed by all
structure-preserving permutations of its vertices, and is denoted by aut(G).
Two vertices u and v in G are said to be structurally equivalent if there is an
automorphism σ in aut(G) such that σ(u) = v. Therefore, aut(G) is a per-
mutation group. The orbit of an element in a permutation group is defined
as follows: If Γ is a permutation group on Ω, the orbit of the element α in Ω
is defined as its image under Γ. i.e. Γ(α) = {ϕ(α) : ϕ ∈ Γ}. A permutation
group Γ is said to be transitive if there is some α in Γ so that Γ(α) = Ω. A
graph is said to be vertex-transitive, if all its vertices are structurally equiv-
alent. It is an immediate consequence of the definition that the transitivity
of the automorphism group is equivalent to the vertex transitivity of the
graph. Thus, a graph can be tested for vertex transitivity by its associated
automorphism group.

On quantum walk based search over a graph, we establish the following
relation:

Lemma 1. In the quantum walk based search over a connected graph G
with vertex vm marked as described above, provided all vertices adjacent to
vm are structurally equivalent, all structurally equivalent vertices in G − vm
that are non-adjacent to vm in the original graph G produce identical success
probabilities. Here, G− vm is the graph obtained by removing vm and all its
incident edges from G.

Proof. Let u1, u2, . . . , uk be the vertices adjacent to the marked vertex
vm and structurally equivalent in G. The phase inverted alteration to the
amplitudes of subvertex states {|vm, cj〉 : j = 1, 2, . . . , dm}, due to the special
coin operator at vm, is propagated to u1, u2, . . . , uk by the shift operation.
Since u1, u2, . . . , uk have the same structural relationship with vm in graph
G, the amplitudes assigned to them by the coin and shift operations are
exactly the same. Now take two vertices v1 and v2 that are not adjacent to
vm in the original graph G, but structurally equivalent in G− vm. Since G is
a connected graph, both v1 and v2 would have to be connected to the vertex
set u1, u2, . . . , uk via a sequence of edges. Due to the structural equivalence
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of v1 and v2 in G−vm, every path connecting v1 and ui (i = 1, 2, ..., k) has an
equivalent path connecting v2 and uj for some j ∈ 1, 2, ..., k. The propagation
of the phase inverted alteration at vm is clearly identical along equivalent
paths. Consequently, v1 and v2 produce identical success probabilities.

The importance of the above relation is that the vertices of a graph can
be classified by the success probability defined by Eq. 4 in the following
manner: the marked vertex vm, vertices adjacent to vm, and groups of struc-
turally equivalent vertices in G− vm. The first in the above classification is
the marked vertex itself. Highly distinguishable success probabilities at the
marked vertex vm are often expected due to the action of a marker at this
vertex. The second class is formed by the vertices adjacent to the marked ver-
tex, which often have sufficiently high success probabilities, especially when
they are structurally equivalent in G. The groups of structurally equivalent
vertices in G − vm would have the same success probabilities within their
respective groups, provided all vertices adjacent to vm are structurally equiv-
alent. This leads to the classification of the 3rd, 4th, etc classes.

As an example, we consider the Pappus graph which is one of 12 graph
structures with cubic regularity and distance transitivity. A graph is said
to be distance transitive if any two pairs of vertices which are at the same
distance apart behave in the same way, where the distance is the size of the
shortest path between two vertices. Distance transitivity is a higher level of
symmetry that immediately implies vertex transitivity, and thus the Pappus
graph is considered to have a high degree of symmetry

The vertices of Pappus graph are labelled v1, v2,. . . ,v18, as illustrated in
Figure 1. We can categorise these vertices into four classes by their success
probabilities. The marked vertex v1 has produced a distinguishably high
probability pattern that is not followed by any other vertex. A second class
is formed by the three vertices v2, v8, and v18, which are adjacent to v1 and
structurally equivalent in G. Consequently, according to Lemma 1, struc-
turally equivalent vertices in G − v1 produce identical success probabilities,
as shown in Figure 2. Such properties can be used to partition the rest of
the vertex set in G into equivalence classes. For example, the vertices v4, v5,
v6, v10, v12, v14, v15 and v16 possess the same success probability and they
form the third class. A different success probability pattern is observed at
vertices v3, v7, v9, v11, v13 and v17 to form the fourth class. In summary, the
quantum walk based search procedure has partitioned the vertex set in G
into the structural equivalence classes.
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Figure 1: (a) Pappus graph; (b) Structurally equivalent vertices in G − vm,
grouped by dots, circle-dots, and square-dots.

However, this scheme only works when both conditions of Lemma 1 are
satisfied. As an example, if the vertices adjacent to the marked vertex vm are
not structurally equivalent in G, then the success probability may be very
different even for structurally equivalent vertices in G− vm, as illustrated by
v1 and v8 in Figure 3 and 4.

4 Quantum walk-based search and symmetries
in graphs

4.1 Complete graphs

A graph with n vertices and the maximum number of edges is called a com-
plete graph denoted by Kn. The quantum walk based search over the com-
plete graph Kn is the most successful out of all graphs on n vertices, since it
minimises the diversity of the vertices adjacent to the marked vertex. It is
seen instantly that the adjacency factor is neutralised as the marked vertex
is adjacent to all other vertices. And, the removal of this vertex from Kn

results in Kn−1, again a graph with the highest degree of symmetry. In this
case, there are exactly two classes in the probability distribution: the marked
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Figure 2: Success probabilities at vertices (a)v1; (b)v2, v8, v18; (c)v4, v5, v6,
v10, v12, v14, v15, v16; and (d) v3, v7, v9, v11, v13, v17 of the Pappus graph.

vertex and all other vertices. As a result, the marked vertex can be clearly
distinguished from the other vertices, making the search successful. Figure 5
shows the search results on K10 with vertex v1 marked, which has a much
higher search probability than the other vertices.

4.2 Complete bipartite graphs

A graph is said to be bipartite if the vertex set is partitioned into two
subsets, each subset having no internal edges. The complete bipartite graph
denoted by Km,n is the bipartite graph on partitions with m and n vertices
so that each vertex in a partition is adjacent to all vertices in the other
partition, as shown in Figure 6. If m > n, we refer vertex in the partition
with n vertices as a higher degree vertex, and a vertex in the other partition
as a lower degree vertex. Quantum search on complete bipartite graphs were
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Figure 3: (a) An example graph G with v4 marked; (b) four structurally
equivalent vertices v1, v3, v7 and v8 in G− v4.
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Figure 4: (a) and (b) success probabilities at the two structurally equivalent
vertices v1 and v8 in G− v4. Here, G is the example graph shown in Figure
3.

of particular interest. The searches can be categorised as higher degree vertex
marked (HDVM) and lower degree vertex marked (LDVM). Our observations
of HDVM search suggest that the search becomes most successful on Km,n

whenm = 1. Thus, K1,n is recommended as a highly suitable graph structure
for quantum walk based search. We have observed the probability amplitudes
for HDVM search onKm,n for fixed n andm=1,2,. . . ,n. Though the search on
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Figure 5: Success probabilities in quantum search on K10 at (a) the marked
vertex and (b) all other non-marked vertices

(a) (b)

Figure 6: Two complete bipartite graphs: (a)K2,3 and (b) K4,4
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K1,n was successful, K2,n gives the most unsuccessful search result amongst
all complete bipartite graphs for HDVM search. In general, the two higher
degree vertices exhibit the same pattern for quantum search despite the fact
that only one of these vertices is marked. When the index m increases from
3, the success of the search starts to increase gradually. A considerably
successful search result is obtained at m = n.

Figure 7 shows the success of HDVM search on K1,10. The maximum
success probability at the marked vertex is significantly higher than that at
the low degree vertex. Removal of the higher degree vertex from K1,n results
the null graph on n vertices. The null graph is highly symmetric and also
the adjacency factor is uniform on all these n vertices. Therefore, the search
is expected to be successful on K1,n. Also it is the complete bipartite graph
in which a high degree of symmetry is achieved due to the removal of the
marked vertex. The variation of the success of HDVM search with m on
Km,10 is depicted in Figures 8, 9 and 10. Maximum success probability at a
non-marked vertex changes rapidly with m. Figure 11 illustrates the failure
of HDVM search on K2,m. In particular, for K2,3, the success probabilities at
the marked vertex is exactly the same as the ones at the non-marked vertex
as shown in Figure 11(a) and 11(b). Consequently, the search procedure
would not be able to distinguish the marked vertex. For K2,4 and K2,10,
the maximum success probability at the marked vertex is too low to be a
useful measure, as shown in Figure 11(c) to 11(f). The results of HDVM
search on Km,n can be summarised as follows: (1) HDVM quantum search
is highly applicable on K1,n; (2) HDVM search fails on K2,n; (3) the success
of the HDVM search is monotonically increased with the index i on Ki,n for
i=3,4,. . . ,n.

When the HDVM search onKm,n form=3,4,. . . ,n is considered, note that
the effect on symmetry after removing a higher degree vertex is decreasing
with m. As the adjacency factor and the equivalence factor overlap at lower
degree vertices, only three classes of probability amplitudes will occur. The
probability amplitudes at the higher degree vertices other than the marked
vertex are decreasing with i. Therefore, a considerably successful search is
performed on the regular complete bipartite graph Kn,n. On the other hand,
K2,n is the complete bipartite graph in which the symmetry is most affected
due to the removal of the marked vertex in HDVM search, leading to an
unsuccessful search on this graph.

LDVM search on complete bipartite graphs does not in general achieve
the success of a HDVM search, nevertheless it does not fail completely as in
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Figure 7: Success probabilities in HDVM quantum search over K1,10 (a): the
marked vertex; (b) all other non-marked vertices
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Figure 8: Success probabilities in HDVM quantum search over K4,10: (a)
marked vertex; (b) all high-degree non-marked vertices; (c) all low degree
non-marked vertices.
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Figure 9: Success probabilities in HDVM quantum search over K6,10: (a)
marked vertex; (b) all high-degree non-marked vertices; (c) all low degree
non-marked vertices.
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Figure 10: Success probabilities in HDVM quantum search over K10,10 (a)
marked vertex; (b) all vertices non-adjacent to the marked vertex; (c) all
vertices adjacent to the marked vertex.
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Figure 11: Success probabilities in HDVM quantum search over (a) K2,3 at
the marked and non-marked degree-3 vertex; (b) K2,3 at all degree-2 vertices;
(c)K2,4 at the marked and non-marked degree-4 vertex; (d)K2,4 at all degree-
2 vertices; (e)K2,10 at the marked and non-marked degree-10 vertex; (f)K2,10

at all degree-2 vertices.
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Figure 12: LDVM search results for K4,10 at (a) the marked vertex (b) all
non-marked degree-4 vertices and (c) all non-marked degree-10 vertices

the case of HDVM search on K2,n. It should be noted that the adjacency and
the equivalence factors describe LDVM search too. In LDVM search results,
three explicit probability classes are vigilant: (1) the marked vertex, (2) high
degree vertices, and (3) low degree vertices except the marked. LDVM search
results on K4,10 are depicted in Figure 12.

4.3 Cayley trees

Most widely known and extensively studied family of vertex transitive graphs
are the Cayley graphs. These graphs are formed by a group G and one of its
proper subsets S. The condition that must be satisfied by S are as follows:
the identity element of the group must not belong to S, and if S contains an
element x, its inverse x−1 also must be contained in S. The Cayley graph G
with the connection set S is denoted by Cay(G,S)=(V,E), where V is the
set of elements in G and (g, h)∈E if and only if there exists some s in S so
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that h = sg. A Cayley graph of the free group on n generators is called an
n-Cayley tree, which is a connected and acyclic graph in which each vertex
of degree more than 1 has a constant number of branches. This graph can be
extended to layers, and an r-generation n-Cayley tree is such a graph with r
layers. A 2nd generation 3-Cayley tree is illustrated in Figure 13(a).

Berry and Wang [4] studied the relation of centrality of a vertex to its
success probability in some details. In particular, they observed a close corre-
lation between classically defined random walk centrality and the maximum
quantum search probability for Cayley trees. Another measure of centrality
of a vertex v in a given graph is the greatest geodesic distance between v and
any other vertex, defined as [6]

ecc(v) = max{dist(u, v) : u ∈ V (G)}. (5)

We observe that the quantum-walk based search on Cayley trees becomes
more successful when the marked vertex has a lower eccentricity, as shown
in Figure 13(b). When the central vertex (the vertex with minimum eccen-
tricity) of a k-generation r-Cayley tree is marked, the adjacency factor is
the same for all vertices in the next level. Furthermore, any two vertices
non-adjacent to the central vertices taken from the same level will be struc-
turally equivalent in G − vm, and consequently they produce identical suc-
cess probabilities following to Lemma 1. For the non-central vertex marked
search, results on Cayley trees can also be readily explained and predicted
by Lemma 1.

5 Partitioning the vertex set of a graph by quan-
tum walk-based search

Though the quantum algorithms were originally implemented on graphs in
order to search through databases, later on they were used to identify certain
topological properties of that database [4]. Here, we make use of our obser-
vation to formulate a method that serves as an algorithm for partitioning a
wide range of graphs according to its vertex equivalence. Suppose we are
given a graph G with n vertices to be partitioned by its vertex symmetries.
We add a new vertex vm to that graph, and join it with each vertex of the
graph, making its degree equal to n. The resulting graph on n+ 1 vertices is
to be subjected to the quantum walk based search, where vm is the marked
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Figure 13: (a) 2nd generation 3-Cayley tree; Success probabilities at (b) the
central marked vertex v1, (c) level one vertices {v2, v3, v4}, and (d) level two
vertices {v5, ..., v10}
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vertex. We observe that the final pattern of success probabilities are entirely
determined by vertex symmetries of G, as the adjacency factor has been
neutralised by joining vm to all the vertices in G. Consequently, for graph
structures and vertices satisfying the conditions imposed in Lemma 1, struc-
turally equivalent vertices will exhibit identical success probabilities, and the
graph can be readily partitioned without computing its automorphism group.

However, several researchers had observed that a single-particle quantum-
walk-based algorithm fails in isomorphism testing over strongly regular graphs
if no other utensil is applied to break their inherent symmetry [12]. A k-
regular graph on n vertices is said to be strongly regular with parameters
(n, k, λ, µ), if every pair of adjacent vertices have λ common neighbours and
every pair of non-adjacent vertices have µ common neighbours. Note that
certain necessary and sufficient conditions for strongly regular graphs can be
derived in terms of Seidel adjacency matrices. The Seidel adjacency matrix
of a graph G is defined as the matrix A = (aij) where ajj = 0, aij = −1 if vi
and vj are adjacent, and aij = 1 if vi and vj are non-adjacent. A graph with
Seidel adjacency matrix A is said to be strong if there exist two real numbers
ρ1 and ρ2 satisfying (A − ρ1I)(A − ρ2I) = (n − 1 + ρ1ρ2)J , where n is the
number of vertices of the graph, I is the identity matrix of order n, and J
is the matrix of whose elements equal to one. A graph is regular whenever
there exists an integer ρ0 so that AJ = ρ0J . Thus, a strongly regular graph
is characterized by combining the above conditions. As an example, we ap-
plied the above described method to partition (by its vertex equivalence) the
Paulus graphs, which are derivable from the Seidel adjacency matrix and
strongly regular with parameters of (n = 26, k = 10, λ = 3, µ = 4). Note
these graphs are not vertex transitive and none of their vertices are struc-
turally equivalent. However, all vertices except the marked produce identical
success probabilities at all time steps, as shown in Figure 14. Nonetheless,
this failure does not contradict Lemma 1, namely no pair of identical vertices
produce different success probabilities.

6 Discussion and conclusions
Lemma 1 can be used to predict the quantum search results over graphs

with certain degree of symmetry. We have also demonstrated its applicability
in classifying certain graph structures such as complete graphs and complete
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Figure 14: Success probabilities at (a) marked vertex and (b) all non-marked
vertices of the Paulus graph with parameters (26, 10, 3, 4)

bipartite graphs according to the success of quantum search upon them. It
should be noted that for any class of graphs that satisfy the conditions in
the lemma, this classification holds. Also the lemma was used to partition
some graphs by vertex equivalence classes.

Though strongly regular graphs obey lemma 1, that is any two struc-
turally equivalent vertices in G− vm produce identical success probabilities,
we have shown that structurally non-equivalent vertices may also produce
identical success probabilities. Producing identical success probabilities is a
necessary condition for two vertices to be structurally equivalent. However
it is not a sufficient condition, as illustrated by an explicit counterexample
of the Paulus graphs, which are strongly regular. It is an interesting subject
for further study to reveal a necessary and sufficient condition.

7 Acknowledgements
The authors would like to thank the University of Colombo and the Uni-
versity of Western Australia for financial support, in particular through the
University of Colombo doctoral grants. JBW would like to thank Gordon
Royle and John Bamberg for helpful discussions.

19



References
[1] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks.

Physical Review A, 48(2):1687, 1993.

[2] A. Ambainis. Quantum walks and their algorithmic applications. Int.
J. Quantum Inf., 1:507, 2003.

[3] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks
faster. In SODA’05: Proceedings of the 16th annual ACM-SIAM sym-
posium on Discrete algorithms, pages 1099–1108. Society for Industrial
and Applied Mathematics, 2005.

[4] S. D. Berry and J. B. Wang. Quantum-walk-based search and centrality.
Physical Review A, 82, 2010.

[5] S. D. Berry and J. B. Wang. Two-particle quantum walks: Entanglement
and graph isomorphism testing. Physical Review A, 83(4):042317, April
2011.

[6] F. Buckley and F. Harary. Distance in graphs. Addison-Wesley, 1990.

[7] A. M. Childs. Universal computation by quantum walk. Physical Review
Letters, 102(18):180501, May 2009.

[8] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A.
Spielman. Exponential algorithmic speedup by a quantum walk. In Pro-
ceedings of the thirty-fifth annual ACM symposium on Theory of com-
puting, STOC ’03, pages 59–68, New York, NY, USA, 2003. ACM.

[9] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Phys-
ical Review A, 70(2):022314, 2004.

[10] A. M. Childs, D. Gosset, and Z. Webb. Universal computation by multi-
particle quantum walk. Science, 339:791, 2013.

[11] E. Feldman D. Reitzner, M. Hillary and V. Buzek. Quantum searches
on highly symmetric graphs. Physical Review A, 79, 2009.

[12] B. L. Douglas and J. B. Wang. A classical approach to the graph iso-
morphism problem using quantum walks. Journal of Physics A: Math-
ematical and Theoretical, 41(7):075303, February 2008.

20



[13] B. L. Douglas and J.B. Wang. Complexity analysis of quantum walk
based search algorithms. Journal of Computational and Theoretical
Nanoscience, 10:1601–1605, 2013.

[14] B.L. Douglas and J.B. Wang. Efficient quantum circuit implementation
of quantum walks. Physical Review A, 79:052335, 2009.

[15] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the
hamiltonian NAND tree. arXiv preprint quant-ph/0702144, 2007.

[16] J. A. Izaac, J.B. Wang, and Z. J. Li. Continuous-time quantum walks
with defects and disorder. Physical Review A, 88:042334, 2013.

[17] J. Kempe. Quantum random walks: An introductory overview. Con-
temporary Physics, 44(4):307–327, July 2003.

[18] V. Kendon. Quantum walks on general graphs. Int. J. Quantum Inf.,
4:791, 2006.

[19] Z. J. Li, J. A. Izaac, and J.B. Wang. Position-defect-induced reflec-
tion, trapping, transmission, and resonance in quantum walks. Physical
Review A, 87:012314, 2013.

[20] T. Loke and J.B. Wang. Efficient circuit implementation of quantum
walks on non-degree-regular graphs. Physical Review A, 86:042338, 2012.

[21] Kia Manouchehri and J.B. Wang. Physical Implementation of Quantum
Walks. Springer, 2014.

[22] N. Shenvi, J. Kempe, and K. B. Whaley. Quantum random-walk search
algorithm. Physical Review A, 67, 2003.

21


	Introduction
	Quantum walk-based search over a graph
	Quantum walk-based search and equivalence classes
	Quantum walk-based search and symmetries in graphs
	Complete graphs
	Complete bipartite graphs
	Cayley trees

	Partitioning the vertex set of a graph by quantum walk-based search
	Discussion and conclusions
	Acknowledgements

