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Abstract

The aim of this paper is to provide a probabilistic, but non-quantum, analysis
of the Halting Problem. Our approach is to have the probability space extend over
both space and time and to consider the probability that a random N -bit program
has halted by a random time. We postulate an a priori computable probability
distribution on all possible runtimes and we prove that given an integer k > 0, we
can effectively compute a time bound T such that the probability that an N -bit
program will eventually halt given that it has not halted by T is smaller than 2−k.

We also show that the set of halting programs (which is computably enumerable,
but not computable) can be written as a disjoint union of a computable set and a
set of effectively vanishing probability.

Finally, we show that “long” runtimes are effectively rare. More formally, the
set of times at which an N -bit program can stop after the time 2N+constant has
effectively zero density.

1 Introduction

The Halting Problem for Turing machines is to decide whether an arbitrary Turing
machine M eventually halts on an arbitrary input x. As a Turing machine M can be
coded by a finite string—say, code(M)—one can ask whether there is a Turing machine
Mhalt which, given code(M) and the input x, eventually stops and produces 1 if M(x)
stops, and 0 if M(x) does not stop. Turing’s famous result states that this problem cannot
be solved by any Turing machine, i.e. there is no such Mhalt. Halting computations can be
recognised by simply running them; the main difficulty is to detect non-halting programs.
In what follows time is discrete.



Since many real-world problems arising in the fields of compiler optimisation, au-
tomatised software engineering, formal proof systems, and so forth are equivalent to the
Halting Problem, there is a strong interest—not merely academic!—in understanding the
problem better and in providing alternative solutions.

There are two approaches we can take to calculating the probability that an N -bit
program will halt. The first approach, initiated by Chaitin [10], is to have the probability
space range only over programs; this is the approach taken when computing the Omega
number, [4, 2]. In that case, the probability is ProbN = #{p ∈ ΣN | p halts}/2N . For a
self-delimiting machine, ProbN goes to zero when N tends to infinity, since it becomes
more and more likely that any given N -bit string is an extension of a shorter halting
program. For a universal non-self-delimiting Turing machine, the probability is always
nonzero for large enough N : after some point, the universal non-self-delimiting Turing
machine will simulate a total Turing machine (one that halts on all inputs), so some
fixed proportion of the space will always contribute. The probability in this case is
uncomputable, machine-dependent; in general, 1 is the best computable upper bound
one can find. In this approach it matters only whether a program halts or not; the time
at which a halting program stops is irrelevant.

Our approach is to have the probability space extend over both space and time, and
to consider the probability that a random N -bit program—which hasn’t stopped by some
given time—will halt by a random later time. In this approach, the stopping time of
a halting program is paramount. The problem is that there is no uniform distribution
on the integers, so we must choose some kind of distribution on times as well. Any
distribution we choose must have that most long times are rare, so in the limit, which
distribution we choose doesn’t matter very much.

The new approach was proposed by Calude and Pavlov [7] (see also [1]) where a
mathematical quantum “device” was constructed to probabilistically solve the Halting
Problem. The procedure has two steps: a) based on the length of the program and
an a priori admissible error 2−k, a finite time T is effectively computed, b) a quantum
“device”, designed to work on a randomly chosen test-vector is run for the time T ; if the
device produces a click, then the program halts; otherwise, the program probably does
not halt, with probability higher than 1−2−k. This result uses an unconventional model
of quantum computing, an infinite dimensional Hilbert space. This quantum proposal
has been discussed in Ziegler [17].

It is natural to ask whether the quantum mechanics machinery is essential for ob-
taining the result. In this paper we discuss a method to “de-quantize” the algorithm.
We have been motivated by some recent approximate solutions to the Halting Problem
obtained by Köhler, Schindelhauer and M. Ziegler [13] and experimental work [4, 14].1

Different approaches were proposed by Hamkins and Miasnikov [15], and D’Abramo [12].

Our working hypothesis, crucial for this approach, is to postulate an a priori com-
putable probability distribution on all possible runtimes. Consequently, the probability
space is the product of the space of programs of fixed length (or of all possible lengths),
where programs are uniformly distributed, and the time space, which is discrete and has

1For example, Langdon and Poli [14] suggest that, for a specific universal machine that they describe,
about N−1/2 programs of length N halt.
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an a priori computable probability distribution. In this context we show that given an
integer k > 0, we can effectively compute a time bound T such that the probability on
the product space that an N -bit program will eventually halt given that it not stopped
by T is smaller than 2−k. This phenomenon is similar to the one described for proofs in
formal axiomatic systems [5].

We also show that for every integer k > 0, the set of halting programs (which is
computably enumerable, but not computable) can be written as a disjoint union of a
computable set and a set of probability effectively smaller than 2−k.

Of course, an important question is to what extent the postulated hypothesis is
acceptable/realistic. The next part of the paper deals with this question offering an
argument in favor of the hypothesis. First we note that for any computable probability
distribution most long times are effectively rare, so in the limit they all have the same
behavior irrespective of the choice of the distribution. Our second argument is based
on the common properties of the times when programs may stop. Our proof consists of
three parts: a) the exact time a program stops is algorithmically not too complicated;
it is (algorithmically) nonrandom because most programs either stop ‘quickly’ or never

halt, b) an N -bit program which hasn’t stopped by time 2N+constant cannot halt at a
later random time, c) since nonrandom times are (effectively) rare, the density of times
an N -bit program can stop vanishes.

We will start by examining a particular case in detail, the behavior of all programs of
length 3 for a certain Turing machine. This case study will describe various possibilities
of halting/non-halting programs, the difference between a program stopping exactly at
a time and a program stopping by some time, as well as the corresponding probabilities
for each such event.

Finally, we show some differences between the halting probabilities for different types
of universal machines.

Some comments will be made about the “practicality” of the results presented in this
paper: can we use them to approximately solve any mathematical problems?

2 A case study

We consider all programs of length N = 3 for a simple Turing machine M whose domain
is the finite set {000, 010, 011, 100, 110, 111}. The halting “history” of these programs,
presented in Table 1, shows the times at which the programs in the domain of M halt.
The program M(p1) halts at time t = 1, so it is indicated by an “h” on the row corre-
sponding to p1 and time t = 1; the program M(p4) hasn’t halted at time t = 5, so on
the row corresponding to p4 and time t = 4 there is a blank. Finally, programs which
haven’t stopped by time t = 17 never stop.
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Program/time t = 1 t = 2 t = 5 t = 8 . . . t = 14 t = 15 t = 16 t = 17
p1 = 000 h h h h h h h h h
p2 = 001
p3 = 010 h h h
p4 = 011 h h h h h h
p5 = 100 h h h h
p6 = 101
p7 = 110 h h h h h h h h h
p8 = 111 h h

Table 1: Halting “history” for 3-bit programs.

Here are a few miscellaneous facts we can derive from Table 1:

• the program M(p1) halts exactly at time t = 1,

• the set of 3-bit programs which halt exactly at time t = 1 consists of {p1, p7},
so the ‘probability’ that a randomly chosen 3-bit program halts at time t = 1 is
#{3-bit programs halting at time 1}/#{3-bit programs} = #{p1, p7}/8 = 2/8 =
1/4,

• the set of 3-bit programs which halt by time t = 8 consists of {p1, p4, p7}, so the
‘probability’ that a randomly picked 3-bit program halts by time t = 8 is #{3-bit
programs halting by time 8}/#{3-bit programs} = #{p1, p4, p7}/8 = 3/8,

• the ‘probability’ that a random 3-bit program eventually stops is #{3-bit programs
that halt}/#{3-bit programs} = 6/8,

• the program M(p4) hasn’t stopped by time t = 5, but stops at time t = 8,

• the ‘probability’ that a 3-bit program does not stop by time t = 5 and that it
eventually halts is #{3-bit programs that eventually halt that have not stopped
by time t = 5}/#{3-bit programs} = #{p3, p4, p5, p8}/8 = 4/8 = 1/2,

• the ‘probability’ that a 3-bit program eventually stops given that it has not halted
by time t = 5 is #{3-bit programs that eventually halt that have not stopped by
time t = 5}/#{3-bit programs that have not halted by time t = 5} = 4/(8− 2) =
2/3,

• the ‘probability’ that a 3-bit program halts at time t = 8 given that it has not halted
by time t = 5 is #{3-bit programs that halt by time t = 8 but not by time t =
5}/#{3-bit programs that have not halted by time t = 5} = 1/6.

We can express the above facts in a bit more formal way as follows. We fix a universal
Turing machine U (see section 3 for a definition) and a pair (N, T ), where N represents
the length of the program and T is the “time-window”, i.e. the interval {1, 2, . . . , T},
where the computational time is observed. The probability space is thus

SpaceN,T = ΣN × {1, 2, . . . , T}.
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Both programs and times are assumed to be uniformly distributed. For A ⊆ SpaceN,T

we define ProbN,T (A) to be #(A) · 2−N · T−1.

Define
AN,T = {(p, t) ∈ SpaceN,T | U(p) stops exactly at time t},

and
BN,T = {(p, t) ∈ SpaceN,T | U(p) stops by time t}.

Fact 1. We have: ProbN,T (AN,T ) ≤ 1
T

and ProbN,T (BN,T ) ≤ 1.

Proof. It is easy to see that #(A) ≤ 2N , consequently,

ProbN,T (AN,T ) =
#(AN,T )

2N · T
≤ 2N

2N · T
=

1

T
, ProbN,T (BN,T ) ≤ #(BN,T )

2N · T
≤ 2N · T

2N · T
= 1.

Comment. The inequality ProbN,T (BN,T ) ≤ 1 does not seem to be very informa-
tive. However, for all N , one can construct a universal Turing machine UN such that
ProbN,T (B) = 1; UN cannot be self-delimiting (see, for a definition, section 4). There is
no universal Turing machine U such that ProbN,T (B) = 1, for all N , so can we do better
than stated in Fact 1?

More precisely, we are interested in the following problem:

We are given a universal Turing machine U and a randomly chosen program
p of length N that we know not to stop by time t. Can we effectively evaluate
the ‘probability’ that U(p) eventually stops?

An obvious way to proceed is the following. Simply, run in parallel all programs of
length N till the time TN = max{tp | |p| = N, U(p) halts} = min{t | for all |p| = N, tp ≤
t}, where tp is the exact time U(p) halts (if indeed it stops). In other words, get the
analogue of the Table 1 for U and N , and then calculate directly all probabilities. This
method, as simple as it may look, isn’t very useful, since the time TN is not computable
because of the undecidability of the Halting Problem.

Can we overcome this serious difficulty?

3 Notation

All strings are binary and the set of strings is denoted by Σ∗. The length of the string x is
denoted by |x|. The logarithms are binary too. Let N = {1, 2, . . .} and let bin : N → Σ∗

be the computable bijection which associates to every n ≥ 1 its binary expansion without
the leading 1,
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n n2 bin(n) |bin(n)|
1 1 λ 0
2 10 0 1
3 11 1 1
4 100 00 2
...

...
...

...

We will work with Turing machines M which process strings into strings. The domain
of M , dom(M), is the set of strings on which M halts (is defined). The natural complexity
[9] of the string x ∈ Σ∗ (with respect to M) is ∇M(x) = min{n ≥ 1 | M(bin(n)) =
x}. The Invariance Theorem [2] has the following form: we can effectively construct a
machine U (called universal) such that for every machine M , there is a constant ε > 0
(depending on U and M) such that ∇U(x) ≤ ε · ∇M(x), for all strings x. For example,
if U(0i1x) = Mi(x) (where (Mi) is an effective enumeration of all Turing machines),
then ∇U(x) ≤ (2i+1 + 1) · ∇Mi

(x), because 0i1bin(m) = bin(2i+1+blog(m)c + m), for all
m ≥ 1. In what follows we will fix a universal Turing machine U and we will write ∇
instead of ∇U . There are some advantages in working with the complexity ∇ instead
of the classical complexity K (see [2]); for example, for every N > 0, the inequality
#{x ∈ Σ∗ : ∇(x) < N} ≤ N is obvious; a better example appears in [8] where ∇ is a
more natural measure to investigate the relation between incompleteness and uncertainty.

4 Halting according to a computable time distribu-

tion

We postulate an a priori computable probability distribution on all possible runtimes.
Consequently, the probability space is the product of the space of programs—either taken
to be all programs of a fixed length, where programs are uniformly distributed, or to be
all programs of all possible lengths, where the distribution depends on the length—and
the time space, which is discrete and has an a priori computable probability distribution.

In what follows we randomly choose a time i from according to a probability distri-
bution ρ(i) which effectively converges to 1, that is, there exists a computable function
B such that for every n ≥ B(k),

|1−
n∑

i=1

ρ(i)| < 2−k.

How long does it take for an N -bit program p to run without halting on U to conclude
that the probability that U(p) eventually stops is less than 2−k?

It is not difficult to see that the probability that an N -bit program which hasn’t
stopped on U by time tk (which can be effectively computed) will eventually halt is not
larger than

∑
i≥tk

ρ(i), which effectively converges to 0, that is, there is a computable

function b(k) such that for n ≥ b(k),
∑

i≥n ρ(i) < 2−k.
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The probability distribution ρ(i) may or may not be related to the computational
runtime of a program for U . Here is an example of a probability distribution which
effectively converges to 1 and relates the observer time to the computational runtime.
This probability distribution is reminiscent of Chaitin’s halting probability [2], but in
contrast, is computable.

The idea is to define the distribution at moment i to be 2−i divided by the exact
time it takes U(bin(i)) to halt, or to be 0 if U(bin(i)) does not halt. Recall that tp is the
exact time U(p) halts (or tp = ∞ when U(p) does not halt).

First we define the number

ΥU =
∑
i≥1

2−i/tbin(i).

It is clear that 0 < ΥU < 1. Moreover, ΥU is computable. Indeed, we construct
an algorithm computing, for every positive integer n, the nth digit of ΥU . The proof
is simple: only the terms 2−i/tbin(i) for which U(bin(i)) does not halt, i.e. tbin(i)

= ∞,

produce ‘false’ information because at every finite step of the computation they appear to
be non-zero when, in fact, they are zero! The solution is to run all non-stopping programs
U(bin(i)) for enough time such that their cumulative contribution is too small to affect
the nth digit of ΥU : indeed, if n > 2, and tbin(i)

= 1, for i ≥ n, then
∑∞

i=n 2−i/tbin(i) <

2−n.

So, ΥU induces a natural probability distribution on the runtime: to i we associate2

ρ(i) =
2−i

tbin(i) ·ΥU

. (1)

The probability space is

SpaceN,{ρ(i)} = ΣN × {1, 2, . . .},

where N -bit programs are assumed to be uniformly distributed, and we choose at random
a runtime from distribution (1).

Theorem 2. Assume that U(p) has not stopped by time T > k − blog ΥUc. Then, the
probability (according to the distribution (1)) that U(p) eventually halts is smaller than
2−k.

Proof. It is seen that
1

ΥU

∞∑
i=T

2−i

tbin(i)

≤ 1

ΥU · 2T−1
< 2−k,

for T > k − blog ΥUc. The bound is computable because ΥU is computable.

2Of course, instead of 2−i/tbin(i) we can take ri/tbin(i), where
∑

i≥1 ri < ∞, effectively.
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We now consider the probability space to be

Space{ρ(i)} = Σ∗ × {1, 2, . . .},

where N -bit programs are assumed to be uniformly distributed, and the runtime is chosen
at random from the computable probability distribution {ρ(i)}.

Theorem 3. Assume that U and Space{ρ(i)} have been fixed. For every integer k > 0,
the set of halting programs for U can be written as a disjoint union of a computable set
and a set of probability effectively smaller than 2−k.

Proof. Let b be a computable function such that for n ≥ b(k) we have
∑

i≥n ρ(i) < 2−k.
The set of halting programs for U can be written as a disjoint union of the computable
set {(p, tp) | tp < 2b(k+|p|+2)} and the set {(p, tp) | 2b(k+|p|+2) ≤ tp < ∞}. The last set has
probability effectively less than

∞∑
N=1

∞∑
n=b(k+N+2)

ρn ≤
∞∑

N=1

2−N−k−2 = 2−k−1.

Comment. A stronger (in the sense that the computable set is even polynomially de-
cidable), but machine-dependent, decomposition theorem for the set of halting programs
was proved in [15].

5 How long does it take for a halting program to

stop?

The common wisdom says that it is possible to write short programs which stop after
a very long time. However, it is less obvious that there are only a few such programs;
these programs are “exceptions”.

Working with self-delimiting Turing machines, Chaitin [11] has given the following
estimation of the complexity3 of the runtime of a program which eventually halts: there
is a constant c such that if U(bin(i)) halts in time t, then

∇(bin(t)) ≤ 2|bin(i)| · c ≤ i · c. (2)

Here t is the first time U(bin(i)) halts.4 The above relation puts a limit on the complexity
of the time t a program bin(i), that eventually halts on U , has to run before it stops; this
translates into a limit on the time t because only finitely many strings have complexity

3Chaitin used program-size complexity.
4Of course, if U(bin(i)) halts in time t, it stops also in time t′ > t, but only finitely many t′ satisfy

the inequality (2). For the reader more familiar with the program-size complexity H—with repsect to a
universal self-delimiting Turing machine [2]—the inequality (2) corresponds to H(bin(t)) ≤ |bin(i)|+ c.
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bounded by a constant. In view of (2), the bound depends only upon the length of the
program; the program itself (i.e. bin(i)) does not matter.

Because limt→∞∇(bin(t)) = ∞, there are only finitely many integers t satisfying
the inequality (2). That is, there exists a critical value Tcritical (depending upon U and
|bin(i)|) such that if for each t < Tcritical, U(bin(i)) does not stop in time t, then U(bin(i))
never halts. In other words,

if U(bin(i)) does not stop in time Tcritical, then U(bin(i)) never halts.

So, what prevents us from running the computation U(bin(i)) for the time Tcritical

and deciding whether it halts or not? Obviously, the uncomputability of Tcritical. Neither
the natural complexity ∇ nor any other size complexity, like K or H, is computable (see
[2]). Obviously, there are large integers t with small complexity ∇(bin(t)), but they
cannot be effectively “separated” because we cannot effectively compute a bound b(k)
such that ∇(bin(t)) > k whenever t > b(k).

The above analysis suggests that a program that has not stopped after running for
a long time has smaller and smaller chances to eventually stop. The bound (2) is not
computable. Still, can we “extract information” from the inequality (2) to derive a
computable probabilistic description of this phenomenon?

Without loss of generality, we assume that the universal Turing machine U has a
built-in counting instruction. Based on this, there is an effective transformation which
for each program p produces a new program time(p) such that there is a constant c > 0
(depending upon U) for which the following three conditions are satisfied:

1. U(p) halts iff U(time(p)) halts,

2. |time(p)| ≤ |p|+ c,

3. if U(p) halts, then it halts at the step tp = bin−1(U(time(p))).

Intuitively, time(p) either calculates the number of steps tp till U(p) halts and prints
bin(tp), or, if U(p) is not defined, never halts. The constant c can be taken to be less
than or equal to 2, as the counting instruction is used only once, and we need one more
instruction to print its value; however, we don’t need to print the value U(p).

We continue with a proof of the inequality (2) for an arbitrary universal Turing
machine.

Theorem 4. Assume that U(p) stops at time tp, exactly. Then,

∇(bin(tp)) ≤ 2|p|+c+1. (3)

Proof. First we note that for every program p of length at most N , bin−1(p) < 2N+1.
Indeed, |p| = |bin(bin−1(p))| ≤ N implies

2|p| ≤ bin−1(p) < 2|p|+1 ≤ 2N+1. (4)
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Since U(p) = U(bin(bin−1(p))) we have:

∇(U(p)) = min{i ≥ 1 : U(bin(i)) = U(p)} ≤ bin−1(p),

hence
∇(bin(tp)) = ∇(U(time(p))) ≤ bin−1(time(p)) < 2|p|+c+1,

because |time(p)| ≤ |p|+ c and (4).

6 Can a program stop at an algorithmically random

time?

In this section we prove that no program of length N ≥ 2 which has not stopped by time
22N+2c+1 will stop at an algorithmically random time. Consequently, since algorithmically
nonrandom times are (effectively) rare, there are only a few times an N -bit program can
stop in a suitably large range. As a consequence, the set of times at which an N -bit
program can stop after the time 2N+constant has effectively zero density.

A binary string x is “algorithmically random” if ∇(x) ≥ 2|x|/|x|. Most binary strings
of a given length n are algorithmically random because they have high density: #{x ∈
Σ∗ : |x| = n,∇(x) ≥ 2n/n} · 2−n ≥ 1− 1/n which tends to 1 when n →∞.5

A time t will be called “algorithmically random” if bin(t) is algorithmically random.

Theorem 5. Assume that an N-bit program p has not stopped on U by time 22N+2c+1,
where N ≥ 2 and c comes from Theorem 4. Then, U(p) cannot exactly stop at any
algorithmically random time t ≥ 22N+2c+1.

Proof. First we prove that for every n ≥ 4 and t ≥ 22n−1, we have:

2|bin(t)| > 2n · |bin(t)|. (5)

Indeed, the real function f(x) = 2x/x is strictly increasing for x ≥ 2 and tends to
infinity when x →∞. Let m = |bin(t)|. As 22n−1 ≤ t < 2m+1, it follows that m ≥ 2n−1,
hence 2m/m ≥ 22n−1/(2n − 1) ≥ 2n. The inequality is true for every |bin(t)| ≥ 2n − 1,
that is, for every t ≥ 22n−1.

Next we take n = N + c + 1 in (5) and we prove that every algorithmically random
time t ≥ 22N+2c+1, N ≥ 2, does not satisfy the inequality (3). Consequently, no program
of length N which has not stopped by time 22N+2c+1 will stop at an algorithmically
random time.

A time t is called “exponential stopping time” if there is a program p which stops on
U exactly at t = tp > 22|p|+2c+1. How large is the set of exponential stopping times? To
answer this question we first need a technical result.

5In the language of program-size complexity, x is “algorithmically random” if H(x) ≥ |x| − log(|x|).
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Lemma 6. Let m ≥ 3, s ≥ 1. Then

1

2s − 1
·

s∑
i=0

2i

m + i
<

5

m + s− 1
.

Proof. Let us denote by xm
s the left-hand side of the inequality below. It is easy to see

that

xm
s+1 =

2s − 1

2s+1 − 1
· xm

s +
2s+1

m + s + 1
≤ xm

s

2
+

2

m + s + 1
.

Next we prove by induction (on s) the inequality in the statement of the lemma. For
s = 1 we have xm

1 = 1/m + 2/(m + 1) < 5/m. Assume that xm
s < 5/(m + s− 1). Then:

xm
s+1 ≤

xm
s

2
+

2

m + s + 1
<

5

2(m + s− 1)
+

2

m + s + 1
≤ 5

m + s
.

The density of times in the set {1, 2, . . . , N} satisfying the property P is the ratio
#{t | 1 ≤ t ≤ N, P (t)}/N . A property P of times has “effective zero density” if the
density of times satisfying the property P effectively converges to zero, that is, there is a
computable function B(k) such that for every N > B(k), the density of times satisfying
the property P is smaller than 2−k.

Theorem 7. For every length N , we can effectively compute a threshold time θN (which
depends on U and N) such that if a program of length N runs for time θN without halting,
then the density of times greater than θN at which the program can stop has effective zero
density. More precisely, if an N-bit program runs for time T > max{θN , 22+5·2k}, then
the density of times at which the program can stop is less than 2−k.

Proof. We choose the bound θN = 22N+2c+1 +1, where c comes from (3). Let T > θN and
put m = 2N + 2c + 1, and s = blog(T + 1)c−m. Then, using Theorem 5 and Lemma 6,
we have:

1

T − 2m + 1
·#

{
2m ≤ t ≤ T | ∇(bin(t)) ≥ 2|bin(t)|

|bin(t)|

}

≥ 1

T − 2m + 1
·

s∑
i=0

#

{
2m+i ≤ t ≤ 2m+i+1 − 1 | ∇(bin(t)) ≥ 2|bin(t)|

|bin(t)|

}

=
1

T − 2m + 1
·

s∑
i=0

#

{
2m+i ≤ t ≤ 2m+i+1 − 1 | ∇(bin(t)) ≥ 2m+i

m + i

}

≥ 1

T − 2m + 1
·

s∑
i=0

2m+i

(
1− 1

m + i

)
≥ 1− 1

T − 2m + 1
·

s∑
i=0

2m+i

m + i
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≥ 1− 1

(2s − 1)
·

s∑
i=0

2i

m + i

> 1− 5

m + s− 1
,

consequently, the density of algorithmically random times effectively converges to 1:

lim
T→∞

#{t | t > θN , t ≤ T, t 6= tp, for all p with |p| = N}
T − 2m + 1

≥ lim
T→∞

1

T − 2m + 1
·#

{
2m ≤ t ≤ T | ∇(bin(t)) ≥ 2|bin(t)|

|bin(t)|

}
= 1,

so the density of times greater than θN at which an N -bit program can stop effectively
converges to zero.

The next result states that “almost any” time is not an exponential stopping time.

Corollary 8. The set of exponential stopping times has effective zero density.

Proof. It is seen that

{t | t = tp, for some p with t > 22|p|+2c+1}

⊆
⋃
N≥1

{
t | t > 22|p|+2c−1, |p| = N, ∇(bin(t)) <

2|bin(t)|

|bin(t)|

}

⊆

{
t | t > 22c+1, ∇(bin(t)) <

2|bin(t)|

|bin(t)|

}
,

which has effectively zero density in view of Theorem 7.

7 Halting probabilities for different universal ma-

chines

In this section we show a significant difference between the halting probability of a pro-
gram of a given length for a universal Turing machine and for a universal self-delimiting
Turing machine: in the first case the probability is always positive, while in the second
case the probability tends to zero when the length tends to infinity.

The probability that an arbitrary string of length N belongs to A ⊂ Σ∗ is ProbN(A) =
#(A ∩ ΣN) · 2−N , where ΣN is the set of N -bit strings.

If U is a universal Turing machine, then the probability that an N -bit program p
halts on U is ProbN(dom(U)).
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Fact 9. Let U be a universal Turing machine. Then, limN→∞ ProbN(dom(U)) > 0.

Proof. We consider the universal Turing machine U(0ix) = Ti(x), described in section 3.
If N is sufficiently large, then there exists an i < N such that Ti is a total function,
i.e. Ti is defined on each input, so #(dom(U) ∩ ΣN) ≥ 2N−i−1. For all such N ’s,
ProbN(dom(U)) ≥ 2−i−1 > 0. The result extends to any universal Turing machine
because of universality.

A convergent machine V is a Turing machine such that its ζ number is finite:

ζV =
∑

bin(n)∈dom(V )

1/n < ∞,

see [9]. The Ω number of V is ΩV =
∑∞

N=1 ProbN(dom(V )). Because ζV < ∞ if and
only if ΩV < ∞, see [9], we get:

Fact 10. Let V be a convergent machine. Then, limN→∞ ProbN(dom(V )) = 0.

Recall that a self-delimiting Turing machine V is a machine with a prefix-free domain.
For such a machine, ΩV < 1, hence we have:

Corollary 11. Let V be a universal self-delimiting Turing machine. Then
limN→∞ ProbN(dom(V )) = 0.

The probability that an N -bit program never stops on a convergent Turing machine
tends to one when N tends to infinity; this is not the case for a universal Turing machine.

8 Final comments

We studied the halting probability using a new approach, namely we considered the
probability space extend over both space and time, and the probability that a ran-
dom N -bit program will halt by a random later time given that it hasn’t stopped by
some threshhold time. We postulated an a priori computable probability distribution on
all possible runtimes. Consequently, the probability space is the product of the space
of programs—either taken to be all programs of a fixed length, where programs are
uniformly distributed, or to be all programs of all possible lengths, where the distribu-
tion depends on the length—and the time space, which is discrete and has an a priori
computable probability distribution. We proved that given an integer k > 0, we can
effectively compute a time bound T such that the probability that an N -bit program
will eventually halt, given that it has not stopped by time T , is smaller than 2−k.

We also proved that the set of halting programs (which is computably enumerable,
but not computable) can be written as a disjoint union of a computable set and a set of
probability effectively smaller than any fixed bound.
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Finally we showed that runtimes much longer than the lengths of their respective
halting programs are (effectively) rare. More formally, the set of times at which an

N -bit program can stop after the time 2N+constant has effectively zero density.

Can we use this type of analysis for developing a probabilistic approach for proving
theorems?

The class of problems which can be treated in this way are the “finitely refutable
conjectures”. A conjecture is finitely refutable if verifying a finite number of instances
suffices to disprove it [6]. The method seems simple: we choose a natural universal
Turing machine U and to each such conjecture C we can effectively associate a program
ΠC such that C is true iff U(ΠC) never halts. Running U(ΠC) for a time longer than the
threshold will produce a good evidence of the likelihood validity of the conjecture. For
example, it has been shown [3] that for a natural U , the length of the program validating
the Riemann Hypothesis is 7,780 bits, while for the Goldbach’s Conjecture the length of
the program is 3,484 bits.

Of course, the choice of the probability distribution on the runtime is paramount.
Further, there are at least two types of problems with this approach.

First, the choice of the universal machine is essential. Pick a universal U and let p be
a program such that U(p) never stops if and only if a fixed finitely refutable conjecture
(say, the Riemann Hypothesis) is true. Define W such that W (1) = U(p) (tests the
conjecture), and W (0x) = U(x). The Turing machine W is clearly universal, but working
with W “artificially” makes the threshold θ very small. Going in the opposite direction,
we can write our simulator program in such a way that it takes a huge number of steps
to simulate the machine—say Ackermann’s function of the runtime given by the original
machine. Then the new runtime will be very long, while the program is very short. Or
we could choose very powerful instructions so that even a ridiculously long program on
the original machine would have a very short runtime on the new one.

The moral is that if we want to have some real idea about the probability that a
conjecture has a counter-example, we should choose a simulator and program that are
“honest”: they should not overcharge or undercharge for each time-step advancing the
computation. This phenomenon is very similar to the fact that the complexity of a single
string cannot be independent of the universal machine; here, the probability of halting
cannot be independent of the machine whose steps we are counting.

Secondly, the threshold T will increase exponentially with the length of the program
ΠC (of course, the length depends upon the chosen U). For most interesting conjectures
the length is greater than 100, so it is hopeless to imagine that these computations can
be effectively carried out (see [16] for an analysis of the maximum speed of dynami-
cal evolution). It is an open question whether another type of computation (possibly,
quantum) can be used to speed-up the initial run of the program.

Acknowledgements

We are grateful to M. Zimand for comments and suggestions which significantly improved
the paper. We are indebted to E. Calude, G. Chaitin, M. Dinneen, M. Dumitrescu, N.

14



Hay, and K. Svozil for illuminating discussions on the topic of this paper.

References

[1] V. A. Adamyan, C. S. Calude, B. S. Pavlov. Transcending the limits of Turing
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[13] S. Köhler, C. Schindelhauer, M. Ziegler. On approximating real-world halting prob-
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