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Abstract

We consider random Cayley digraphs of order n with uniformly distributed
generating set of size k. Specifically, we are interested in the asymptotics of the
probability such a Cayley digraph has diameter two as n →∞ and k = f(n). We
find a sharp phase transition from 0 to 1 as the order of growth of f(n) increases
past

√
n log n. In particular, if f(n) is asymptotically linear in n, the probability

converges exponentially fast to 1.
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1 Introduction

It is well known that almost all graphs and digraphs have diameter two [2]. This result has
been generalized and strengthened in various directions, of which we shall be interested
in restrictions to Cayley graphs and digraphs.

In [7] it was proved that almost all Cayley digraphs have diameter two, and in [6]
this was extended to Cayley graphs. The random model used in [7, 6] is the most
straightforward one: in terms of Cayley digraphs for a given group G, one chooses a
random generating set by choosing its elements among the non-identity elements of G
independently and uniformly, each with probability 2−n+1 where n is the order of G.
Observe that such generating sets have size at least n/2 with probability at least 1/2,
in which case the corresponding Cayley digraphs automatically have diameter at most
two. The less trivial part of [7] therefore concerns random Cayley digraphs in which the
number of generators is at most half of the order of the group.

This motivates a study of random Cayley digraphs in which the number of generators
is restricted. The fundamental problem here is the following: for which functions f is it
true that the diameter of a random Cayley digraph of an arbitrary group of order n and
of degree f(n) is asymptotically almost surely equal to 2 as n tends to infinity? By the
well known Moore bound for graphs or digraphs of diameter two we know that f has to
increase at least as fast as

√
n. However, even the case when f(n) = cn for a constant

c seems not to have been investigated before and, as we shall see, leads to interesting
questions in the study of generating functions.

In order to investigate the above problem one cannot use the model of [7]. Instead,
we will consider the uniform distribution of subsets of size k in the set of all non-identity
elements of a given group of order n. A detailed description of the model and the
associated parameters is given in Section 2. The probability that a random Cayley
digraph of (in- and out-) degree k on a group of order n has diameter 2 will be estimated
in Section 3 in terms of a certain combinatorial function p(n, k, t) where t is a parameter
that depends on the group and 2t < n. Dependence on the group is then eliminated
by showing that one can use t = bγnc for a suitable constant γ ≤ 1/2 in the estimates.
Setting k = f(n) and t = bγnc, the probability that a random Cayley digraph has
diameter two can be studied by means of the asymptotic behaviour of p(n, f(n), bγnc)
as n → ∞. The two cases of particular interest are f(n) = bcnc for a fixed constant c
with 0 < c < 1/2, and f(n) = bnαc for a fixed constant α such that 1/2 < α < 1. By
a delicate asymptotic analysis, in Section 4 we prove that in both cases the diameter of
a random Cayley graph is asymptotically almost surely equal to two. We also consider
analogous questions for random Cayley graphs on elementary abelian 2-groups. Under
this restriction we obtain tighter bounds in terms of p(n, k, t) for the probabilities, which
raises an interesting question on the probability evolution if f(n) ∼ c

√
n for a constant

c > 1.
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2 The model

Throughout, let G be a finite group of order n and let k be a positive integer not exceeding
n − 1. The set of non-trivial elements of G will be denoted by G∗. For a set A and an
integer r, the symbol

(
A
r

)
will stand for the set of all subsets of A of size r.

For S ∈
(

G∗

k

)
, the Cayley digraph on G relative to S, denoted by Cay(G, S), is the

k-valent digraph with vertex set G and arc set {(g, gs) : g ∈ G, s ∈ S}. The distance
∂(g, h) from the vertex g to the vertex h in Cay(G, S) is the length of the shortest directed
path from g to h in Cay(G, S). The diameter diam(Cay(G, S)) is the smallest integer d
such that for every ordered pair (g, h) the distance from g to h is at most d.

We are now ready to introduce our model for random Cayley digraphs of a given
valence. Let P(G, k) be the probability space (B, 2B, P ) where B =

(
G∗

k

)
, 2B is the power

set of B, and P is the uniformly distributed probability measure on B. Since |B| =
(

n−1
k

)
,

a simple counting argument shows that Pr({S}) =
(

n−1
k

)−1
for every S ∈ B. More

generally, for every subset L ⊆ G∗ of size `, the probability that a random set S ∈ B
contains L as a subset is given by

Pr(S ⊇ L) = Pr({S ∈
(

G∗

k

)
: L ⊆ S}) =

(
n− 1− `

k − `

)(
n− 1

k

)−1

=
(k)`

(n− 1)`

(1)

where (r)` = r(r − 1) . . . (r − ` + 1) denotes the `-th descending factorial of r (with the
convention that r0 = 1). We can now define a random variable Diam: B → R on the
probability space P(G, k) by letting, for every S ∈

(
G∗

k

)
,

Diam(S) = diam(Cay(G, S)). (2)

The main goal of this article is to derive bounds on the probability of the event {S ∈(
G∗

k

)
: diam(Cay(G, S)) = 2} and study the asymptotic behaviour of the bounds.

Since Cayley digraphs are vertex-transitive, the diameter of Cay(G, S) coincides with
the maximum value of ∂(1, y) over all y ∈ G∗. Clearly, if ∂(1, y) ≤ 2, then y ∈ S, or
there exists x ∈ S such that (1, x, y) is a directed path from 1 to y of length 2. The latter
is equivalent to requiring that {x, x−1y} ⊆ S. This shows that the following events will
play an important role:

Definition 2.1. For x, y ∈ G∗, let

T (x, y) = {S : S ∈
(

G∗

k

)
, {x, x−1y} ⊆ S} and X(y) =

⋃
x∈G∗

T (x, y).

Let S be an arbitrary element of
(

G∗

k

)
. Clearly, there is a directed path from 1 to

y of length 2 in Cay(G, S) if and only if S ∈ X(y). In other words, S ∈ X(y) if and
only if there is no directed path from 1 to y in Cay(G, S) of length exactly 2. Thus, if
diam(Cay(G, S)) > 2 then S ∈ ∪y∈G∗X(y). Therefore we have the following inequality:

Pr(Diam > 2) ≤
∑
y∈G∗

Pr(X(y)). (3)
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On the other hand, if diam(Cay(G, S)) ≤ 2, then for every y ∈ G∗ we have y ∈ S
or S ∈ X(y). Hence Pr(Diam ≤ 2) ≤ Pr(X(y)) + Pr(y ∈ S), and by (1), it follows that
Pr(Diam ≤ 2) ≤ Pr(X(y))+ k

n−1
, which is equivalent to Pr(Diam > 2) ≥ Pr(X(y))− k

n−1
.

This, together with (3), shows that

M − k

n− 1
≤ Pr(Diam > 2) ≤ (n− 1)M, where M = max

y∈G∗
Pr(X(y)). (4)

The inequality (4) provides the basis for our investigation. In what follows we consider
estimates for the quantity M appearing in (4).

3 The estimates

The key to deriving bounds on M is the evaluation of the probability Pr(X(y)) = 1 −
Pr(∪x∈G∗T (x, y)). As Lemma 3.1 below shows, this probability is closely related to the
values of p(n, k, t), t, k ≤ n, where p(n, k, t) is defined by

p(n, k, t) =
t∑

i=0

(−1)i

(
t

i

)(
n− 1− 2i

k − 2i

)(
n− 1

k

)−1

=
t∑

i=0

(−1)i

(
t

i

)
(k)2i

(n− 1)2i

. (5)

Lemma 3.1. Let y ∈ G∗ and let J ⊆ G∗ \ {y} be a set of size t such that the sets
{x, x−1y}, with x ∈ J , are pairwise disjoint and of size 2. Then

Pr(X(y)) ≤ p(n, k, t).

Proof. We start with a simple inequality

Pr(X(y)) = 1− Pr(X(y)) = 1− Pr(∪x∈G∗T (x, y)) ≤ 1− Pr(∪x∈JT (x, y)).

Now observe that the set ∩x∈IT (x, y) consists of all those S ∈
(

G∗

k

)
for which ∪x∈I{x, x−1y} ⊆

S. Hence, if I ⊆ J and |I| = i, then

Pr(∩x∈IT (x, y)) =

(
n− 1− 2i

k − 2i

)(
n− 1

k

)−1

=
(k)2i

(n− 1)2i

.

By the inclusion-exclusion formula, we have

Pr(∪x∈JT (x, y)) =
t∑

i=1

(−1)i−1
∑

I⊆(J
i)

Pr(∩x∈IT (x, y))

=
t∑

i=1

(−1)i−1

(
t

i

)(
n− 1− 2i

k − 2i

)(
n− 1

k

)−1

=
t∑

i=1

(−1)i−1

(
t

i

)
(k)2i

(n− 1)2i

;

and the result follows.
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A straightforward consequence of the above proof is the fact that 0 ≤ p(n, k, t) ≤ 1
and that p(n, k, t) is decreasing in t (in the range for which there is an appropriate group
G for which the above lemma can be used).

We continue with establishing an upper bound on the parameter t appearing in the
sums above. For this we need an estimate of the number of ‘square roots’ of a non-
identity element in a group. Therefore, for an element y ∈ G let σ(y) denote the set of
x ∈ G such that x2 = y.

Lemma 3.2. If y is a non-trivial element of a finite group G, then |σ(y)| ≤ 3
4
|G|.

Proof. Suppose the contrary and let y ∈ G∗ be such that |σ(y)| > 3
4
|G|. Take an arbitrary

element z ∈ G, and observe that σ(yz) = σ(y)z. In particular, |σ(yz)| = |σ(y)| > 3
4
|G|,

implying that σ(y) ∩ σ(yz) is non-empty. Take any x ∈ σ(y) ∩ σ(yz), and note that
y = x2 = yz. Hence y is in the centre of G. Now consider the quotient projection
π : G → G/〈y〉, let s be the order of y in G, and let T denote the set of elements x ∈ G/〈y〉
such that x2 = 1. Clearly, π(σ(y)) ⊆ T . Suppose that π(x1) = π(x2) for some pair of
x1, x2 ∈ σ(y), x1, 6= x2. Then x2 = x1y

r for 1 ≤ r < s, and so y = x2
2 = x2

1y
2r = y1+2r,

implying that s = 2r. This shows that the π-preimage of each element in T contains
at most 2 elements from σ(y), and contains at most one element from σ(y) if s is odd.

Therefore |T | ≥ |σ(y)|
2

> 3s
8
|G/〈y〉| if s is even, and |T | ≥ |σ(y)| > 3s

4
|G/〈y〉| if s is odd.

On the other hand, |T | ≤ |G/〈y〉|, implying that s = 2 and |T | > 3
4
|G/〈y〉|. It is known

that the only groups for which the proportion of the involutions is more than 3
4

are the
elementary abelian 2-groups (see [12]). Hence G/〈y〉 is an elementary abelian 2 group, say
G/〈y〉 ∼= Zp

2, where p is a positive integer, and consequently, G ∼= Zp+1
2 or G ∼= Zp−1

2 ×Z4.
However, it is clear that no element y in such groups satisfies |σ(y)| > 3

4
|G|.

We remark that the bound in the previous lemma is sharp. For example, if Q =
{±1,±i,±j,±k} is the quaternion group and if G = Q × Zq

2, then for the element
y = (−1, 0, . . . , 0) we have σ(y) = 3

4
|G|.

We are now ready to prove the main result of this section, which is an upper bound
on the probability Pr(Diam > 2) in terms of p(n, k, t).

Theorem 3.3. Let G be a finite group, and let k be such that 1 ≤ k ≤ n = |G|. Then
for the random variable Diam on the probability space P(G, k) we have

Pr(Diam > 2) ≤ (n− 1)p(n, k, b(n− 4)/12c).

Proof. Let y ∈ G∗ and let s = |σ(y)|. We first show that there exists a set J ⊆ G \ {1, y}
of size at least t = bn−1−s

3
c such that the sets {x, x−1y}, where x ∈ J , are pairwise

disjoint and of size 2. We shall define such a set J recursively.
If s ≥ n−3, then t = 0, and J = ∅ will do the job. So we may assume that s ≤ n−4.

Then the set C = G∗ \ (σ(y) ∪ {y}) is non-empty, and we can choose x1 ∈ C and set
J1 = {x1}.

Now suppose that J1, . . . , J` have been already defined for some ` < t, and suppose
that this has been done in such a way that Ji ⊆ C, |Ji| = i and | ∪x∈Ji

{x, x−1y}| = 2i
for every i ∈ {1, . . . , `}. Let K` = ∪x∈J`

{x, yx−1, x−1y}. Then |K`| ≤ 3` ≤ 3t − 3 ≤
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n− s− 4 < n− s− 2 = |C|. Hence, we can choose an element x`+1 ∈ C \K`, and define
J`+1 = J` ∪ {x`+1}. Clearly, |J`+1| = |J`|+ 1 = ` + 1, and since x`+1 ∈ C, also J`+1 ⊆ C.
Now suppose that | ∪x∈J`+1

{x, x−1y}| < 2`+2. Then one of the elements x`+1 and x−1
`+1y

belongs to ∪x∈J`
{x, x−1y}. However, both cases imply that x`+1 ∈ K`, which contradicts

our assumption. Hence this construction yields a set J = Jt with the desired properties.
From Lemma 3.1 it follows that Pr(X(y)) ≤ p(n, k, b(n−1−s)/3c). Then by Lemma

3.2 we have s ≤ 3
4
n and therefore (n−1−s)/3 ≥ (n−4)/12. Using (4), and the fact that

p(n, k, t) is decreasing in t we arrive at the inequality in the statement of the theorem.

If the group G is an elementary abelian 2-group, then the value of M in (4) can be
expressed in terms of p(n, k, t) exactly. This leads to the following result.

Theorem 3.4. Let G ∼= Zd
2 be an elementary abelian 2-group, and let 1 ≤ k ≤ n = 2d.

Then for the random variable Diam on the probability space P(G, k) we have

p(n, k, (n− 2)/2)− k

n− 1
≤ Pr(Diam > 2) ≤ (n− 1)p(n, k, (n− 2)/2).

Proof. We show that for any y ∈ G∗ we have Pr(X(y)) = p(n, k, n−2
2

). Let Jy be
any transversal of the subgroup 〈y〉 in G, and let J = Jy \ {1, y}. Then Pr(X(y)) =
Pr(∪x∈G∗T (x, y)) = Pr(∪x∈JT (x, y)). On the other hand, the set J satisfies the conditions
of Lemma 3.1. Since |J | = n−2

2
, we have

Pr(X(y)) = 1− Pr(∪x∈JT (x, y)) = p(n, k, (n− 2)/2).

The statement now follows from (4).

It is now clear that knowledge of the asymptotic behaviour of p(n, k, t) would allow
us to make conclusions about the asymptotic behaviour of the random variable Diam.
As explained in the Introduction, the most interesting cases to study are f(n) = bcnc for
0 < c < 1/2 and f(n) = bnαc for 1/2 < α < 1. For example, Theorem 3.3 shows that if
limn→∞(n−1)p(n, bcnc, b(n−4)/12c) = 0 for a constant c such that 0 < c < 1/2, then the
diameter of a random Cayley digraph of order n and degree bcnc is asymptotically almost
surely equal to two. By the same token, if limn→∞(n− 1)p(n, bnαc, b(n− 4)/12c) = 0 for
1/2 < α < 1, then the diameter of a random Cayley digraph of order n and degree bnαc
is also asymptotically almost surely equal to two. Similar statements, with n a power of
two and with (n − 2)/2 in the third position, hold for random abelian Cayley digraphs
on the basis of Theorem 3.4. In the next section we will show that the above limits are
indeed equal to zero and therefore the corresponding random Cayley digraphs almost
surely have diameter two. Since Theorem 3.4 gives also a lower bound, it is natural to
ask if, for n a power of two, limn→∞ p(n, bcn1/2c, (n − 2)/2) = 1 for sufficiently large c.
As we shall see, the answer to this question is in the negative. In what follows we also
describe more precisely the threshold at which Pr(Diam ≤ 2) jumps asymptotically away
from 0.
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4 Asymptotic analysis

We use a mixture of techniques, based on generating functions, with varying levels of
sophistication. Some of the questions of the previous section are quickly addressed by
relatively simple means, while for others it is cleaner to apply asymptotic techniques for
the analysis of coefficients of multivariate generating functions as developed in [9, 10,
8, 1, 5]. See [11] for a detailed survey of the use of such techniques in combinatorial
problems. For the hardest questions we use the recently developed machinery of [3, 4].

The quantity a(n, k, t) :=
(

n
k

)
p(n + 1, k, t) is simpler to analyse in this way than

p(n, k, t) itself. It is easily seen from above that a(n, k, t) has a purely combinatorial
description. Namely, given a set of size n, we choose t disjoint pairs from this set. Then
a(n, k, t) is the number of subsets of size k that contain none of the pairs. Note that
a(n, k, t) = 0 if k + t > n, by the pigeonhole principle (since the complement of S has
size less than t, S must contain at least t + 1 of the 2t paired elements).

From the statement of the problem, a(n, k, t) is not defined if 2t > n; however,
formula (5) still makes sense in that case, even though it does not define the probability
of any event. In fact, a(n, k, t) can be negative for large t. Asymptotic analysis in this
case is considerably more difficult than what is presented below, and we will avoid this
case in the present paper, since it is not relevant to the original combinatorial question.

4.1 Generating functions

We first compute the trivariate generating function of a(n, k, t). The most direct approach
is to use some well-known bivariate generating functions

∑
i,j aijx

iyj. Throughout, we use

the convention that the binomial coefficient
(

k
l

)
, with k, l ∈ Z, is zero unless 0 ≤ l ≤ k.

If aij =
(

i+j
i

)
then the generating function is (1 − x − y)−1, while that for aij =

(
i
j

)
is

(1− x(1 + y))−1. We now compute∑
n,k,t,i

xnykztwi

(
t

i

)(
n− 2i

k − 2i

)
=
∑

N,K,i,j

xN+2iyK+2izi+jwi

(
i + j

i

)(
N

K

)

=

(∑
i,j

(
i + j

i

)
(zwx2y2)izj

)(∑
N,K

(
N

K

)
xNyK

)

=
1

1− z(1 + wx2y2)

1

1− x(1 + y)
,

which yields the trivariate generating function

G(x, y, z) =
∑
n,k,t

a(n, k, t)xnykzt =
1

1− z(1− x2y2)

1

1− x(1 + y)
. (6)

Note that if we impose the restriction 2t ≤ n, then the sum over N is restricted to
N ≥ 2j. Now summing over N, K, i, j as above we obtain the more relevant restricted
trivariate generating function

G1(x, y, z) =
∑

{n,k,t : 2t≤n}

a(n, k, t)xnykzt =
1

1− x(1 + y)

1

1− zx2(1 + 2y)
=:

1

H1H2

. (7)
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The series G1 is more useful for our purposes, since all coefficients are nonnegative.

4.2 Basic asymptotic approximations

We list here some standard asymptotic approximations that will be used later.

Lemma 4.1. Write n = λk with 0 < λ < 1. Then(
n

k

)
= exp(nR(λ)) P (λ) n−1/2 C(n, λ) (8)

where

R(λ) = −λ log λ− (1− λ) log(1− λ)

P (λ) = (2πλ(1− λ))−1/2

C(n, λ) = (1 + O(n−1) + O((nλ)−1) + O((n(1− λ))−1) as n →∞.

Proof. A direct application of Stirling’s approximation.

We call R the exponential rate and P the leading coefficient, while C is the correction
term. Of course R depends on λ and so may vary with n as n →∞.

Lemma 4.2. For t ≥ k ≥ 0 define

b(t, k) :=
2k
(

t
k

)(
2t
k

) .

Then with t = λk we have

b(t, k) = exp(tR(λ)) P (λ) C(t, k) (9)

where

R(λ) := (2− λ) log(1− λ/2)− (1− λ) log(1− λ))

P (λ) :=

(
2− λ

2− 2λ

)1/2

C(λ) := 1 + O(t−1) + O((tλ)−1) + O((t(1− λ))−1) as t →∞.

Proof. An immediate application of the previous lemma (replace n by 2t and λ by λ/2
in the denominator and replace n by t in the numerator).

We also need some standard facts about the stationary phase approximation of an
oscillatory integral. We recall them below and refer to a standard text such as [13] for
details. Define

I(f ; n) =

∫ b

a

enf(θ)g(θ) dθ

where f and g are smooth functions and <f ≥ 0 on [a, b].

8



Lemma 4.3 (Laplace approximation). Let I(f ; n) be as defined above. Suppose that
<f > 0 on [a, b] except at a single point x ∈ (a, b). Furthermore suppose that f ′(x) = 0
and f ′′(x) 6= 0, while g(x) 6= 0. Then

I(f ; n) = exp(nf(x))
g(x)√

2πnf ′′(x)
(1 + O(n−1)) as n →∞.

The implied constant in the O-term remains bounded as we vary f and g provided that
no hypotheses change, x remains in a compact subset of (a, b), f ′′(x) remains bounded
away from zero, and the maximum of |g| remains bounded.

�

4.3 Abelian groups

4.3.1 The linear case

The simpler form of the bounds involving p(n, k, t) in the abelian case allows an easy
elementary approach, which we now present.

Suppose that t = (n−2)/2, so that n−1 = 2t+1. A direct evaluation as in Section 4.1
above shows that ∑

k,t

a(2t + 1, k, t)ykzt =
1 + y

1− z(1 + 2y)

and hence we may extract coefficients to obtain

a(2t + 1, k, t) = 2k

(
t

k

)
+ 2k−1

(
t

k − 1

)
.

Now

p(2t + 2, k, t) =

(
2t + 1

k

)−1

a(2t + 1, k, t)

=

[(
2t

k

)−1

2k

(
t

k

)][
(2t− k + 2)(2t + 1− k)

(2t− 2k + 2)(2t + 1)

]
=: [b(t, k)][c(t, k)].

When k = t + 1, the right side above should be replaced by 2t, but we do not deal
with this case below anyway (since k < n/2, n is even and k is an integer we must have
k ≤ (n− 2)/2 = t).

From (9), we obtain the exponential rate of b(t, k) with respect to t as

R(λ) = (2− λ) log(1− λ/2)− (1− λ) log(1− λ)

with λ = k/t. This is easily seen by elementary calculus to be negative for 0 < λ ≤ 1.
Furthermore c(t, k) has exponential rate zero. Thus in combination with Theorem 3.4
we have:

Theorem 4.4. For any constant c such that 0 < c < 1/2, the diameter of a random
Cayley digraph on an elementary abelian 2-group of order n and degree bcnc is asymp-
totically almost surely equal to two. Furthermore the convergence is exponentially fast.
�
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4.3.2 The sublinear case

We now consider the case where k is of order nα with 1/2 < α < 1. For k = λt with
λ = o(1) as t →∞, we have c(t, k) = 1 + O(λ). By (9) we again have

R(λ) = (2− λ) log(1− λ/2)− (1− λ) log(1− λ) = −λ2/4 + O(λ3).

Thus if k grows at least as fast as nα with α > 1/2, it is definitely the case that the
upper bound (2t + 1)b(t, k)c(t, k) decays faster than polynomially. Using Theorem 3.4
again, we have the following conclusion.

Theorem 4.5. For any constant α such that 1/2 < α < 1, the diameter of a random
Cayley digraph on an elementary abelian group of order n and degree bnαc is asymptoti-
cally almost surely equal to two. �

Also, the approximation above shows that if k = bc
√

nc then the lower bound
b(t, k)c(t, k) converges to exp(−c2/2), and not 1. This shows that for n a power of
two, p(n, bcn1/2c, (n− 2)/2) does not tend to 1 as n →∞.

The case of general groups could be attacked in a similar way to the elementary
approach above, but with more effort. For example, p(n, k, t) is decreasing in t, so that
p(n, k, (n − 2)/12) ≥ p(n, k, b(n − 4)/12c) ≥ p(n, k, (n − 4)/12) for sufficiently large
n. As above we can compute the bivariate generating function for F (12t + 3, k, t) and
F (12t + 1, k, t), and estimate each of these as above when k is of order nα. However,
this approach depends heavily on the relatively nice formula for p(n, k, t) involving well-
studied binomial coefficients. For variety, and to illustrate that more detailed expansions
can be obtained in more generality, we use a different approach in Section 4.4.

4.4 General groups

In this section we use Theorem 3.3 to study the asymptotic behavior of the diameter of a
general random Cayley digraph of order n and degree k. We again consider two different
regimes, namely k = bcnc and k = bnαc where 0 < c < 1/2 < α < 1.

Our analysis is in terms of parameter-varying integrals that lead to uniform asymp-
totic expansions for the coefficients a(n, k, t), with t = b(n− 4)/12c. We make heavy use
of the fact that n ≥ 2k and n ≥ 2t for both regimes to reduce the problem to the analysis
of a one-dimensional parameter-varying integral. For the first regime, the asymptotic
behavior of the resulting integral relies on the stationary phase method as found for ex-
ample in [13]. Instead, for the second regime, the analysis follows the lines of [3] and [4]
to properly use the Laplace approximation of Lemma 4.3.

In what follows it is always assumed that n ≥ 2k ≥ 0 and n ≥ 2t ≥ 0. We first reduce
the problem to computing the asymptotics of a certain one-dimensional integral. Since
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a(n, k, t) = [xnykzt]G1(x, y, z), we obtain

a(n, k, t) = [xnykzt]
∞∑
l=0

zlx2l(1 + 2y)l

1− x(1 + y)
,

= [xn−2tyk]
(1 + 2y)t

1− x(1 + y)
,

= [xn−2tyk]
∞∑
l=0

xl(1 + y)l(1 + 2y)t,

= [yk](1 + y)n−2t(1 + 2y)t.

Using Cauchy’s formula, the above implies for all r > 0 that

a(n, k, t) =
r−k

2π

∫ π

−π

(1 + reiθ)n−2t(1 + 2reiθ)te−ikθdθ. (10)

In particular, we can rewrite

a(n, k, t) = (2π)−1 · E(r; n, k, t) · I(r; n, k, t), (11)

where

E(r; n, k, t) := r−k(1 + r)n−2t(1 + 2r)t,

I(r; n, k, t) :=

∫ π

−π

(
1 + reiθ

1 + r

)n−2t(
1 + 2reiθ

1 + 2r

)t

e−ikθdθ.

The integral in (10) has been normalized by the factor (1+r)n−2t(1+2r)t to emphasize
that the modulus of each of the two factors in the integrand is maximized at θ = 0.

To determine the asymptotic behavior of a(n, k, t) the goal is to tune r with (n, k, t) so
that I(r; n, k, t) decays polynomially with n, in other words so that E(r; n, k, t) captures
the precise exponential growth rate of the coefficients a(n, k, t).

To accomplish our goal, motivated by the stationary phase method, we rewrite the
integrand of I(r; n, k, t) in an exponential-logarithmic form to obtain

I(r; n, k, t) =

∫ π

−π

exp
{
− n · F (θ; r, d1, d2, d3)

}
dθ, (12)

where

F (θ; r, d1, d2, d3) := d3 · iθ − d1 · ln
{

1 + reiθ

1 + r

}
− d2 · ln

{
1 + 2reiθ

1 + 2r

}
,

d1 :=
n− 2t

n
,

d2 :=
t

n
,

d3 :=
k

n
.

11



In what follows all logarithms are to be interpreted in the principal sense. In addition,
unless otherwise stated, d1, d2 and d3 always stand as short forms of the functions defined
above. As a note on our terminology, we refer to I(r; n, k, t) as a parameter-varying
integral because F (θ; r, d1, d2, d3), the so called phase term, depends upon the parameter
n itself.

We note for later that the exponential rate of E(r; n, k, t) in these variables is given
by

lim sup
n

log E(r; n, k, t)

n
= −d3 log r + d1 log(1 + r) + d2 log(1 + 2r). (13)

Before analyzing the asymptotic behavior of I(r; n, k, t), we discuss the properties
satisfied by the phase term that are essential for the application of the Laplace approxi-
mation. For this and based upon analytic properties to be clarified shortly, observe first
that

∂F

∂θ
(0; r, d1, d2, d3) = i

{
d3 −

d1r

1 + r
− 2d2r

1 + 2r

}
, (14)

∂2F

∂θ2
(0; r, d1, d2, d3) =

d1r

2(1 + r)2
+

d2r

(1 + 2r)2
. (15)

Thus, in order for θ = 0 to be a stationary point of F (θ; r, d1, d2, d3), r and (n, k, t) must
satisfy the relation d3 = d1r/(1 + r) + 2d2r/(1 + 2r). A solution r ≥ 0 to this equation
is given by the formula

r =
2d3

(1− 3d3) +
√

(1− 3d3)2 + 8d3(d1 + d2 − d3)
. (16)

Note that there is a unique positive solution for r. On the other hand, using that
d1 + 2d2 = 1, it follows almost immediately that

∂2F

∂θ2
(0; r, d1, d2, d3) ≥

r

2(1 + 2r)2
. (17)

Similarly, but after using that ln(1− w) ≤ −w/2, for all 0 ≤ w ≤ 1, it follows that

<{F (θ; r, d1, d2, d3)} ≥
(1− cos θ)r

2(1 + 2r)2
. (18)

Thus for given d1, d2, d3 in the right range, F has a single stationary point at θ = 0,
satisfying the hypotheses of Lemma 4.3. Furthermore since g = 1 there the Laplace
approximation is uniform as long as no hypotheses change and r remains bounded away
from zero.

In what follows, unless otherwise stated, r always stands for the short form of the term
defined in (16). In addition, we write E(n, k, t), I(n, k, t) and F (θ; d1, d2, d3) respectively
as a short form for E(r; n, k, t), I(r; n, k, t) and F (θ; r, d1, d2, d3).

12



4.4.1 The linear case

We first study the asymptotic behavior of the coefficient a(n, k, t) for the regime where
k = bcnc and t = b(n − 4)/12c, with 0 < c < 1/2. In this case, as n → ∞, d1 → 5/6,
d2 → 1/12, d3 → c and r → rc, where rc > 0 is the quantity defined as

rc :=
2c

(1− 3c) +
√

(1− 3c)2 + 8c(11/12− c)
. (19)

In particular, if c is bounded away from zero then for sufficiently large n independent
of c, r is also bounded away from zero. Thinking momentarily of (θ; r, d1, d2, d3) as a
vector of unrelated variables, observe that there exists a sufficiently small 0 < δ < π
such that F (θ; r, d1, d2, d3) is an analytic function of θ for |θ| < 2δ, for all (r, d1, d2, d3)
such that |r − rc| < 2δ. Thus by Laplace’s approximation I(n, k, t) is asymptotically of
order n−1/2 as n →∞. Hence the exponential rate of p(n, k, t) is indeed given by that of(

n
k

)−1
E(n, k, t). Using (8) and (13) we see that this rate is

5

6
ln(1 + rc) +

1

12
ln(1 + 2rc)− c ln(rc) + (1− c) ln(c) + c ln(c).

It is readily computed that the supremum of the exponential rate for 0 ≤ c < 11/12
occurs only when c → 0+ and has value 0. Thus certainly for 0 < c < 1/2, the exponential
rate is negative. This together with Theorem 3.3 yields the following result.

Theorem 4.6. The diameter of a random Cayley digraph of order n and degree k is
asymptotically almost surely equal to two provided that k/n remains in a compact subset
of the interval (0, 1/2) as n →∞. Furthermore, the convergence is exponentially fast. �

Of course the same result will hold for larger values of c. Note that when c > 11/12
then for large enough n, k + t > n for the value of t considered here and so a(n, k, t) = 0.

We note in passing that in this case where k is asymptotically linear in n, the analysis
of the asymptotics of a(n, k, t) is easily accomplished by the recently developed methods
of Robin Pemantle and Mark Wilson [9, 10]. The resulting asymptotic expansion can be
read off almost directly from the explicit expression for G1. We refer to [11, Section 4.9]
for more details. However, the methods of [9, 10] do not work directly in the sublinear
case, unlike the methods of the present paper.

4.4.2 The sublinear case

Next we study the asymptotic behavior of a(n, k, t) for the regime where k = bnαc and
t = b(n − 4)/12c, with 1/2 < α < 1. As before, d1 → 5/6 and d2 → 1/12. However,
d3 → 0 and therefore r → 0 as n → ∞. The new difficulty here is that the phase term
of I(r; n, k, t) converges uniformly to 0 for all −π ≤ θ ≤ π as n →∞.

To resolve this issue we factor out r, exploiting the fact that F (θ; r, d1, d2, d3) is
also analytic with respect to r. Indeed, thinking again of (θ; r, d1, d2, d3) as a vector
of unrelated variables, observe that there exists δ > 0 such that F (θ; r, d1, d2, d3) is an
analytic function of (θ; r) for |θ| < 2π and |r| < 2δ, for all (d1, d2, d3). Thus since

13



F (θ; 0, d1, d2, d3) − ∂F
∂θ

(0; 0, d1, d2, d3)θ = 0, there exists a function F1(θ; r, d1, d2, d3), an-
alytic in (θ; r) for |θ| < 2π and |r| < 2δ, such that

F (θ; r, d1, d2, d3)−
∂F

∂θ
(0; r, d1, d2, d3)θ = r · F1(θ; r, d1, d2, d3).

In what follows we write F1(θ; d1, d2, d3) as a short form for F1(θ; r, d1, d2, d3). Re-
verting to our value of r given by (16), we see that

F (θ; d1, d2, d3) = r · F1(θ; d1, d2, d3). (20)

Using (12) and (20), we obtain

I(n, k, t) =

∫ π

−π

e−nr·F1(θ;d1,d2,d3)dθ, (21)

for all (n, k, t) such that 0 < r ≤ δ. Furthermore, given the factorization in (20), it
follows from (14), (16), (17) and (18) that ∂F1

∂θ
(0; d1, d2, d3) = 0 and that

∂2F1

∂θ2
(0; d1, d2, d3) ≥

1

2(1 + 2r)2
,

<{F1(θ; d1, d2, d3)} ≥
1− cos θ

2(1 + 2r)2
.

Now it is readily computed from the definition that

r ∼ d3 − d3(d1 − 5/6)− 2d3(d2 − 1/12) + 7d2
3/6. (22)

In particular, given that d1 → 5/6 and d2 → 1/12, we have n · r ∼ n · d3 = k → ∞,
as n →∞.

Since F1(θ; d1, d2, d3) is analytic in the disk |θ| < 2π, the Laplace approximation can
be reapplied but this time to determine the asymptotic behavior of the integral on the
right-hand side of (21). It follows that I(n, k, t) is asymptotically of order (nr)−1/2 ∼
k−1/2 = O(n−1/2). As a result, the exponential growth rate of p(n, k, t) is again given by

that of
(

n
k

)−1
E(n, k, t).

The exponential rate in question is

d3 log d3 + (1− d3) log(1− d3)− d3 log r + (1− 2d2) log(1 + r) + d2 log(1 + 2r).

Using (22) we see that as n → ∞ this rate is asymptotic to −d2
3/12. When k = bnαc

with α > 1/2 the exponential part of p(n, k, t) is therefore exp(n(1−2α)/12(1+ o(1)). With
the help of Theorem 3.3 we finally obtain:

Theorem 4.7. For any constant α such that 1/2 < α < 1, the diameter of a random
Cayley digraph of order n and degree bnαc is asymptotically almost surely equal to two.
�

Note that convergence of the upper bound to zero is faster than polynomial, but
subexponential.
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4.5 The threshold

We have not yet answered the original question in the introduction, concerning the thresh-
old for k = f(n) at which the asymptotic value of Pr(Diam > 2) undergoes a phase
transition, switching abruptly from 1 to 0 as k increases.

The methods above give a lot of information on this point. Consider the simpler
analysis of Section 4.3, concerning abelian 2-groups (similar calculations occur when
considering the bounds for general groups). Assuming that k = o(t), we see that the
lower bound has order of growth equal to that of b(t, k) as t → ∞. As we have seen,
if k = Ω(tα) with α > 1/2, then b(t, k) converges to zero faster than any polynomial,
so the upper bound converges to zero. To see where the upper bound is asymptotically
constant, we observe from the approximation that exp(−λ2t/4) must be of order t−1.
Thus we require k ≈ 2

√
t log t for this to occur. At this stage the upper bound converges

to 2; the more precise k = 2
√

t log t + log 2 yields a limiting upper bound of 1. At this
stage the lower bound looks like 1/t and converges to 0. The lower bound converges to
1 when k = 2

√
t log t + log 2 + log t. If k grows faster than

√
t log t, the upper bound

converges to zero. If k grows slower than
√

t log t, then the upper bound goes to infinity
with t. This gives a sharp explicit threshold in the abelian case.

In the nonabelian case we can make a similar argument with the upper bound. How-
ever we do not have a good lower bound on the probability. It may be possible to extract
one by refining our arguments of Sections 2 and 3. However Robin Pemantle (personal
communication) has discovered an approach using probabilistic techniques and along
these lines that gives sharper results on the threshold. Thus we do not proceed further
here, preferring to await the appearance of Pemantle’s work.

5 Conclusions

We have derived precise information on the event that a random Cayley digraph has
diameter 2, in the abelian group case, and slightly less precise information in the general
case. Many natural questions have been answered by our asymptotic analysis of upper
and lower bounds on probability. An open question concerns the behaviour in the abelian
case when k = c

√
n. Our upper bound on probability converges to∞ and the lower bound

to exp(−c2/2). Perhaps better bounds will allow us to determine the exact limiting
probability using methods similar to those in this paper.

The genesis of this paper may be of interest. PP and the first JS were visiting the
second JS in Auckland, where they derived the bounds of Section 3 and posed several
questions regarding the asymptotic behaviour. Their enquiries about asymptotic analysis
led from Auckland to Slovenia (M. Petkovsek) to Pennsylvania (H. Wilf) and then via
Robin Pemantle to ML and MW, the latter being blissfully unaware in Auckland of the
existence of the work going on in the same building!
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