
CDMTCS

Research

Report

Series

On T-codes and necklaces

T. Aaron Gulliver1 and Ulrich

Speidel2

1University of Victoria,
2University of Auckland

CDMTCS-290

October 2006

Centre for Discrete Mathematics and

Theoretical Computer Science

On T-codes and necklaces

T. Aaron Gulliver

Department of Electrical and Computer Engineering

University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC, V8W 3P6 Canada

a.gulliver@ieee.org

Ulrich Speidel

Department of Computer Science

The University of Auckland, Private Bag 92019, Auckland, New Zealand

ulrich@cs.auckland.ac.nz

October 25, 2006

Abstract

This paper describes a newly discovered aspect of T-codes, a family of

variable length codes first described by Titchener in the 1980s. We show

that the constant-length subsets of codewords generated during the T-

code construction process constitute sets of necklaces. Moreover, we show

that these sets are complete except for a small subset which we character-

ize. Bounds on the number of constant-length subsets of codewords are

determined based on necklaces.

1 Necklaces

Strings of length ℓ over an alphabet A may be divided into equivalence classes
under a cyclic shift. That is, two strings x = a1a2 . . . aℓ and y = b1b2 . . . bℓ over
A are equivalent under cyclic shift if and only if there is an integer i ≤ ℓ such
that:

aiai+1 . . . aℓ . . . a1a2 . . . ai−1 = b1b2 . . . bℓ (1)

All strings equivalent to x under under cyclic shift form an equivalence class.
The lexicographically smallest string in the set is typically known as a necklace

[9]. The set of all necklaces of length ℓ thus gives rise to the set of all strings
of length ℓ if all cyclic shifts of each necklace are included. For simplicity, we
shall deviate slightly from convention in this paper and call a set of strings a
set of necklaces whenever no two distinct strings from the set are equivalent

1

under cyclic shift. That is, we will not insist that the representative string of an
equivalence class be its lexicographically smallest member. Moreover, we will
use the term necklace to refer to all strings within the same equivalence class.

Example: The six necklaces of length 4 are given by 0000, 0001, 0011, 0101,
0111, and 1111 in accordance with conventional notation. The strings 0001,
0110, and 1010 constitute a set (not complete) of necklaces under the convention
adopted here, whereas the strings 0000, 0001, 0010, and 0101 do not.

A necklace that can be formed by concatenation of k ≥ 1 copies of a string
x is said to have period x with repetition factor k. Necklaces that do not have a
repetition factor larger than 1 are called Lyndon words [9]. They also represent
the irreducible polynomials over GF (#A).

The number of necklaces of length ℓ is given by

#Nℓ =
1

ℓ

∑

d|ℓ

φ(ℓ/d)#Ad (2)

where φ(m) is Euler’s totient function, the number of numbers less than m and
relatively prime to m. The number of Lyndon words of length ℓ is given by

#Lℓ =
1

ℓ

∑

i|ℓ

µ(i)#Aℓ/i (3)

where µ(m) is the Mobius function, which is 0 if m is not the product of distinct
primes, +1 if it is the product of an even number of distinct primes, and −1
otherwise, with µ(1) = 1.

2 T-codes

T-codes [2, 3, 6] are variable prefix codes similar to Huffman codes [1]. Every
T-code is complete, a property also called exhaustive by some authors, i.e., all
internal nodes in its decoding tree are fully populated. Prefix codes are also
sometimes known as prefix-free codes, with either terminology implying that no
codeword in the set is a proper prefix of another. Similarities largely end there,
however. Most Huffman codes are not T-codes, and from a modern perspective,
the significance of T-codes is not in Huffman-like source coding. Rather than
letting the source symbol probabilities determine the length of the codewords
and the structure of the decoding tree, T-codes are constructed without regard
to symbol probabilities. Their construction focuses instead on a recursive tree
structure.

Every finite alphabet is a (trivial) T-code set by default, with the letters be-
ing primitive codewords, and a primitive decoding tree consisting of one internal

2

.

@
@@

�
��

root

0 1

@
@

@
@

@
@

@@

�
��

root

0 �
��

10 �
��

110 111

@
@

@
@

@
@
@

�
��

root

0 �
��

@
@

@
@

@@

�
�

100 �
�

1010 �
�

10110 10111

�
�
110 111

A = A
()
() A

(2)
(1) A

(2,1)
(1,10)

Figure 1: T-augmentation as a copy-and-append process of decoding trees

node (the root) and #A leaf nodes. Further, T-code sets may then be con-
structed via an iterative process called T-augmentation. Each T-augmentation
involves picking a codeword from the existing T-code set, which is then called
the T-prefix for that step, and a positive integer called the T-expansion parame-

ter or copy factor [7]. Any T-code set may thus be derived from an alphabet in a
series of n successive T-augmentations using a series of T-prefixes p1, p2, . . . , pn

and a series of T-expansion parameters k1, k2, . . . , kn. The resulting set is de-

noted A
(k1,k2,...,kn)
(p1,p2,...,pn) and is said to be a T-code set at T-augmentation level n.

The T-augmentation itself is performed according to the following equation:

A
(k1,k2,...,kn+1)
(p1,p2,...,pn+1)

=

kn+1⋃

i=0

{pi
n+1s|s ∈ A

(k1,k2,...,kn)
(p1,p2,...,pn)\{pn+1}} ∪ {pk+1

n+1} (4)

where A
()
() = A.

In the tree context, this corresponds to making ki new copies of the exist-
ing tree at each step and linking them via the leaf node pi. Figure 1 depicts

the construction of a T-code set S
(2,1)
(1,10). In the first T-augmentation in this

example, the tree for S is copied three times and the three copies are linked to
each other via the respective leaf nodes corresponding to the codeword 1. The

second T-augmentation links two copies of the tree for A
(2)
(1) via the leaf node

10.

By T-augmenting repeatedly, we can generate sets of arbitrary size.

3

2.1 T-code self-synchronization

As many of the proofs in this paper rely on arguments involving T-code self-
synchronization, we briefly review its principles here in order to aid understand-
ing.

Using codewords from a T-code set, we may generate arbitrarily long mes-
sages by concatenation of codewords from the set. We may observe that each

codeword in A
(k1,k2,...,kn)
(p1,p2,...,pn) is a message composed from codewords in A

(k1,k2,...,ki)
(p1,p2,...,pi)

for all i < n. We may speak of a codeword hierarchy in this case. Note fur-

ther that a codeword in A
(k1,k2,...,kn)
(p1,p2,...,pn) is always composed of between 0 and kn

successive copies of pn, followed by an arbitrary codeword from A
(k1,k2,...,kn−1)
(p1,p2,...,pn−1)

.

A T-code decoder for A
(k1,k2,...,kn)
(p1,p2,...,pn) is a state machine that parses an input

string over A into codewords from A
(k1,k2,...,kn)
(p1,p2,...,pn) . If the input string is allowed

to start at an arbitrary point within a codeword from A
(k1,k2,...,kn)
(p1,p2,...,pn) , the decoder

may – at least initially – produce erroneous output. A T-code decoder may be
said to produce erroneous output if the start and end positions of codewords
identified by the decoder do not correspond to actual codeword boundaries in
the string. In this case, the decoder is said to be unsynchronized. As further
input is read by the decoder, it may eventually identify the correct boundaries.
The decoder is said to be fully synchronized if and only if the decoder can deduce
by observation of the parsed portion of the input string that it is parsing the
string into correct codewords at correct positions within the string.

T-codes are known to be highly self-synchronizing, and their self-synchronization

mechanism is well understood [6]. That is, a T-code decoder for A
(k1,k2,...,kn)
(p1,p2,...,pn)

will fully synchronize in any semi-infinite sequence that does not start with the
pattern:

ζ = pr1

1 pr2

2 . . . prn
n (5)

where 0 ≤ ri ≤ ∞ and
∑n

i=1 ri = ∞. Note that this implies that ζ must
contain an infinite substring of the form p∞i for some i ≤ n in order to prevent

the decoder from synchronizing fully, with pi 6= p
kj+1
j for all j < i. In this case,

the decoder synchronizes fully up to the lower-level T-code set A
(k1,k2,...,ki−1)
(p1,p2,...,pi−1)

.

The rationale behind these patterns is the following: Consider a decoder

decoding a message composed of codewords in A
(k1,k2,...,kn)
(p1,p2,...,pn) . Let the decoder

start in an unsynchronized state at an arbitrary symbol within the message. At
this point, the decoder is only synchronized with respect to A, and it is said to
be at synchronization level 0. That is, the decoder is able to ascertain the end
of the present symbol from A and the beginning of the next, but cannot tell
where within the string any of the codewords from the higher level T-code sets
start or end.

4

As the decoder reads symbols from the message, note that any symbol other
than the first level T-prefix p1 marks the end of codewords in Ak1

p1
. This is

a direct consequence of the T-augmentation construction. Hence, once one of
these symbols is received, the decoder can deduce that it has found the end
of a codeword in Ak1

p1
. It is now synchronized to this set and is said to be at

synchronization level 1.

As the decoder achieves synchronization to level i−1, it has just read the last

symbol of a codeword in A
(k1,k2,...,ki−1)
(p1,p2,...,pi−1)

and knows that the following symbols

are the start of a codeword in A
(k1,k2,...,ki−1)
(p1,p2,...,pi−1)

. Unless this codeword is pi, the

decoder has achieved synchronization to level i after decoding it. If the codeword
is pi, the situation is ambiguous: The decoder may be at the end of a codeword

A
(k1,k2,...,ki)
(p1,p2,...,pi)

, but because these codewords can also be a concatenation starting

with pi, the decoder may only be part-way through a codeword in A
(k1,k2,...,ki)
(p1,p2,...,pi)

.

To resolve the situation, the decoder will have to read the next codeword at
level i − 1, and so on, until it encounters a codeword that is not pi. Hence, an
infinite sequence of pi prevents a T-code decoder from synchronizing fully.

Example: Consider A
(2,1)
(1,10) as in Figure 1. Consider a decoder synchronizing

a concatenation of the codewords 110, 1010, and 111. The subscripts indicate
the synchronization level before/after each symbol is read (from the left to the
right):

010100110110111

Note that here, synchronization to level 1 is initially delayed by two copies of
p1 = 1, subsequently synchronization to level 2 is held up while p2 = 10 is

received. Once 0 from A
(2)
(1) is encountered at level 1, it is obvious that the

decoder has reached the end of a codeword in A
(2,1)
(1,10), as only the codewords 0

and 100 in A
(2,1)
(1,10) end with 0 ∈ A

(2)
(1), and it is not equal to p2 = 10.

2.2 Systematic T-augmentation

For the purposes of this paper, we will restrict ourselves to the discussion of T-
codes for which all ki = 1. These are known as the simple T-codes. Moreover, we
will restrict ourselves to the discussion of T-codes generated using systematic T-

augmentation, which generates a special class of simple T-codes. In systematic
T-augmentation, each pi is chosen from one of the shortest codewords in the

set such that A
(k1,k2,...,ki−1)
(p1,p2,...,pi−1)

contains no codeword that is shorter than |pi|.

Equation (4) thus simplifies to:

A(p1,p2,...,pn+1) = {pn+1s|s ∈ A(p1,p2,...,pn)} ∪ A(p1,p2,...,pn)\{pn+1}. (6)

We may observe two facts about this type of T-augmentation: Firstly, all

5

new codewords generated by each systematic T-augmentation are at least twice
as long as the T-prefix pi used in the T-augmentation, because all other code-
words in A(p1,p2,...,pn) are at least of length |pi|. Secondly, a codewords that is
generated remains in A(p1,p2,...,pn) and its T-augmented sets until it is used as
a T-prefix in a T-augmentation.

3 T-code codewords generated during system-

atic T-augmentation

While T-codes are variable-length codes, subsets of codewords of length ℓ are ob-
served for all ℓ in the course of an infinitely iterating systematic T-augmentation.
The subset of codewords of length ℓ exists in the respective T-code sets in its
entirety

• from the T-augmentation in which the last available T-prefix pi ≤ ℓ/2 was
used

• until the T-augmentation in which the first codeword of length ℓ is used
as the T-prefix.

Table 3 lists the codewords generated in the process for a binary alphabet, the
T-augmentation level at which they first appear in the set, and their lexico-
graphically smallest equivalent under cyclic shift. Note that each codeword of
length ℓ is created by prefixing a T-prefix of at most length ℓ/2 to a suffix of
at least length ℓ/2. The point of concatenation is indicated by a dot for each
codeword. The astute reader may have noticed that for each length the strings
represent a set of necklaces, and that the set of necklaces is complete for ℓ = 2
and ℓ = 4. The proof for the necklace property will be given later.

4 Codeword groups of equal length are sets of

necklaces

Based on the evidence presented above, we may state the following theorem:

Theorem 4.1 Consider the T-code set A(p1,p2,...,pn), which has been derived

from A through systematic T-augmentation. Any group of codewords of length ℓ
from A(p1,p2,...,pn) constitutes a set of necklaces, i.e., no codeword in the group

is a cyclic shift of another codeword.

Proof: Assume that two codewords x, y exist in A(p1,p2,...,pn) with x 6= y, |x| =
|y| = ℓ such that x is a cyclic shift of y. Now consider a semi-infinite string z

6

Level Codeword Shifted
0 0 0
0 1 1
1 0.0 00
1 0.1 01
2 1.1 11
2 1.00 001
2 1.01 101
3 00.00 0000
3 00.01 0001
3 00.11 0011
4 01.01 0101
4 01.11 0111
5 11.11 1111
3 00.100 00001
3 00.101 00101
4 01.100 00011
4 01.101 01011
5 11.100 00111
5 11.101 01111
4 01.0000 000001
4 01.0001 000101
4 01.0011 001101
5 11.0000 000011
5 11.0001 000111
5 11.0011 001111
5 11.0101 010111
5 11.0111 011111
6 100.100 001001
6 100.101 001011
7 101.101 011011
.

Table 1: Codewords up to length 6 created under systematic T-augmentation.

7

constructed by concatenating an infinite number of copies of x. The string z
will thus also contain a semi-infinite concatenation of y, starting i < ℓ positions
from the beginning of the sequence. Further, consider a T-code decoder for
A(p1,p2,...,pn), which starts decoding at an arbitrary point in z. This decoder
will eventually either fully synchronize or will encounter a substring p∞i of ζ
and remain synchronized to level i − 1 only.

• If the decoder fully synchronizes, we have a contradiction because the
decoder would have to synchronize with respect to both the series of x
and the series of y. However, it can only output either a series of x or a
series of y. Hence, x and y cannot both be codewords in A(p1,p2,...,pn).

• If the decoder encounters a substring p∞i and thus does not synchronize
fully, then both x and y must necessarily be of the form pk

i , i.e., x = y.

Therefore a cyclic shift of a codeword x can only be another codeword y if x = y.
QED.

We have now shown that T-code codewords of length ℓ forms sets of neck-
laces. However, an inspection of the experimental data reveal that the sets of
necklaces generated by systematic T-augmentation are not complete. For exam-
ple, the necklaces 000 and 111 are missing for ℓ = 3. The next section provides
an identification and construction of these “missing” necklaces.

5 The “missing” necklaces

It is also interesting to look at which necklaces do not get created during the
systematic T-augmentation process, and why. The only way to create 000 and
111, for example, would have been to concatenate a 0 with a 00 or a 1 with a 11.
Both options are infeasible due to the disappearance of the required T-prefix
along with the appearance of the suffix. This is a general rule, which we may
formulate as follows:

Theorem 5.1 Let x be a codeword in a T-code set A(p1,p2,...,pn) generated under

systematic T-augmentation. Systematic T-augmentation only generates code-

words of the form xk as a concatenation of x with k being a power of 2. xk is

never generated if k has at least one odd factor greater than 1.

To facilitate the proof of this theorem, we first prove the following lemma:

Lemma 5.2 Let x be a codeword in a T-code set A(p1,p2,...,pn) generated under

systematic T-augmentation. Then systematic T-augmentation will eventually

generate all codewords of the form x2q

for q = 1, 2, 3

8

We can prove this lemma by induction: x exists and using x2q−1

as a T-prefix
generates x2q

as a codeword. QED.

The proof of the theorem then follows from the construction algorithm: By
Lemma 5.2, xk is generated whenever k is a power of 2.

Now assume that k has an odd factor and denote by κ the smallest power of
2 larger than k. Then we know that codewords of length |xκ| are generated by
using T-prefixes of length |xκ/2| or smaller. This includes xκ being generated
by prefixing xκ/2 to itself. Since there are no codewords shorter than xκ/2 in
the set at the time that xκ is generated, codewords shorter than |xκ| can no
longer be generated. If xk is generated, it must be generated before xκ/2 is used
as a T-prefix. However, as xk is longer than xκ/2, it would not have been used
as a T-prefix yet, so it would still have to be in the T-code set at that time. As
we know that xκ/2 is in the set and xκ/2 is a prefix of xk, the existence of xk

would violate the prefix-free property of the set. Hence, xk is never generated.
QED.

Example: At ℓ = 6, ℓ has the odd factor 3, with codewords of the form
x3 not being constructed. With three codewords of length 2 being available as
choices for x, namely 00, 01, and 11, the strings 000000, 010101 and 111111
never appear as codewords, even though they are all necklaces of length 6.
Consequently, there are only 11 rather than 14 sequences of length 6 present.

Note also that when multiple odd factors are present, care must be taken to
account for all non-generated necklaces. In the case of ℓ = 30, we have factors
2, 3, and 5, but the odd divisors we need to consider are 3, 5, and 15. The
strings of length 30 that are not created as codewords include:

1. codewords of length 1 concatenated 30 times:030 and 130.

2. codewords of length 2 concatenated 15 times: (00)15, (01)15, and (11)15,
but note that the first and last of these are identical with 030 and 130, so
one does not need to take the first item into account.

3. codewords of length 3 concatenated 10 times: (100)10 and (101)10.

4. codewords of length 5 concatenated 6 times: (00100)6, (00101)6, (01100)6,
(01101)6, (11100)6 and (11101)6.

5. codewords of length 6 concatenated 5 times. Note that these include the
codewords in the third item as both 100100 and 101101 are generated,
so the codewords under this item do not need to be taken into account
separately.

6. codewords of length 10 concatenated 3 times. These include all codewords
of codewords of length 5 concatenated 6 times, so the fourth item is surplus
to requirements.

9

This leaves us with the non-generation of codewords of the form x15 with |x| = 2,
x5 with |x| = 6 and x3 with |x| = 10.

Theorem 5.1 gives rise to another useful theorem:

Theorem 5.3 Each codeword y generated by systematic T-augmentation can be

written as xk such that k is a power of two and x is a codeword in some T-code

set A(p1,p2,...,pn) generated in the course of the same systematic T-augmentation

sequence. Iff k = 1 = 20 is the only solution for k, y is a Lyndon word.

Proof: The proof is similar to that of Theorem 4.1. If y is a Lyndon word,
it follows immediately from the definition of Lyndon words that k = 1 = 20

is the only solution for k. It remains to be shown that if y is not a Lyndon
word, there must be a solution for k > 1 with k being a power of 2. If y is
not a Lyndon word, then there must be a string x and some k > 1 such that
y = xk. By inspection of the code sets, the theorem holds for small ℓ. Now
consider a semi-infinite sequence formed by semi-infinite concatenation of y.
A T-code decoder cannot fully synchronize because the location of the actual
codeword boundaries is ambiguous as a result of the factor being greater than
one. We know, however, that synchronization is prevented by strings of the
form p∞i . Hence, y must be a concatenation of codewords of the form p2

i . Since
systematic T-augmentation creates only concatenations of the form (p2

i)
k where

k is a power of 2, the theorem holds. QED.

The “missing necklaces” – or, as we are restricted to claiming at the moment,
some of them – can then be constructed by concatenating codewords x of length
|x| = ℓ/k into strings xk for odd divisors k > 1 of ℓ. Note that this construction
inherently implies that these necklaces cannot be Lyndon words as they have
periods ℓ/k < ℓ.

We next prove that these “missing necklaces” actually constitute a set of
necklaces. Denote by Mℓ the set of all strings y = xk with |y| = ℓ, k odd, and
x ∈ A(p1,p2,...,pn) for some n under systematic T-augmentation.

Lemma 5.4 Mℓ forms a set of necklaces.

Proof: By Theorem 5.3, the number of repetitions of a period in a codeword
x generated by systematic T-augmentation is always a power of two (including
possibly 20). Thus, the periods in two strings constructed with different k
repeat a different number of times, so the two strings cannot represent the
same necklace. Moreover, two different strings for a given k cannot represent
the same necklace either, because the codewords they are based on represent
different necklaces. QED.

We now show that Mℓ does not overlap with the necklaces generated by
systematic T-augmentation.

10

Lemma 5.5 Mℓ and the set of necklaces of length ℓ generated by systematic

T-augmentation are disjoint.

Proof: All necklaces in Mℓ have periods shorter than ℓ, and the number of times
they repeat in each of these necklaces is divisible by an odd number larger than
1. All necklaces in the second set have periods that repeat a power of two times.
This rules out any overlap. QED.

Denote by mℓ the maximum number of codewords of length ℓ generated
during systematic T-augmentation. Then

#Mℓ =
∑

k|ℓ,k odd

mk. (7)

6 Completeness

The question now arises as to whether the union of the set of codewords of
length ℓ and Mℓ is a complete set of necklaces. If it is complete, then it is not
possible to add an additional string of length ℓ that represents a new equivalence
class.

The number of necklaces of length ℓ is given by (2). mℓ is given by (25)
in [8] as

mℓ =
#Aℓ

ℓ
−

∑

k|ℓ,k<ℓ

(−1)
ℓ
k
+1 kmk

ℓ
(8)

If our assertion holds, then the following theorem must be true.

Theorem 6.1 The union of the set of all codewords of length ℓ generated under

systematic T-augmentation and the corresponding set Mℓ constitute the complete

set of necklaces Nℓ and

#Nℓ = mℓ + #Mℓ, (9)

i.e., ∑

k|ℓ

φ(ℓ/k)#Ak = #Aℓ −
∑

k|ℓ,k<ℓ

(−1)
ℓ
k
+1kmk + ℓ

∑

k|ℓ,k odd

mk (10)

holds for all ℓ under systematic T-augmentation.

Proof: We have already shown that the two constituent sets are disjoint. It is
thus a necessary and sufficient condition to show that any necklace of length ℓ
has to belong to one of these sets. Consider A(p1,p2,...,pn) such that |pn| = ℓ− 1
and A(p1,p2,...,pn) contains no further codewords of length ℓ − 1. Assume that
there exists a necklace y of length ℓ that is neither in A(p1,p2,...,pn) nor in Mℓ.
By inspection, we can decide whether y has a period of less than ℓ or not. The
argument is then as follows:

11

• If y has a period of length ℓ/k < ℓ, we may use induction over ℓ. We
know from inspection that the theorem holds for small ℓ. The string x
with xk = y must thus have a shift equivalent x′ that is a codeword of
length ℓ/k or is in Mℓ/k. If k has an odd factor or x′ ∈ Mℓ/k, y has a shift
equivalent y′ that is in Mℓ. If k is a power of 2 and x′ was a codeword,
y has a shift equivalent y′ that is in the current T-code set. Thus, y, if it
exists, must be aperiodic.

• If y is aperiodic, consider a semi-infinite string y∞ of copies of y and a
T-code decoder for A(p1,p2,...,pn) synchronizing into this string. Since y is
aperiodic and |y| > |pn|, the y∞ cannot contain patterns of the form p∞i .
The decoder must therefore synchronize fully. Since our assumption states
that y and its cyclic shifts are not in A(p1,p2,...,pn), y∞ cannot contain code-
words of length ℓ from A(p1,p2,...,pn), and so a synchronized decoder cannot
encounter them. Instead, it must now be decoding codewords larger than
ℓ as the set does not contain codewords shorter than ℓ. Now consider
two decoders starting at two positions in y∞, with the first position arbi-
trary and the second separated by ℓ symbols from the first. After a finite
synchronisation delay, both decoders are fully synchronized and output
the same sequence of codewords at the same codeword boundaries. As
the synchronization process is invariant under a shift of ℓ symbols (both
decoders are fed the same data), the second decoder achieves synchroniza-
tion exactly ℓ symbols after the first. Since the points of synchronization
are codeword boundaries at level n, the string between the boundaries is
a codeword of length ℓ, which we have just concluded must not exist in
y∞.

Theorem 6.1 thus holds. QED.

We can now state the following results.

Lemma 6.2 Codewords x generated by systematic T-augmentation are Lyndon

words where |x| is an odd prime. If |x| is a power of 2, all necklaces of length

|x| are generated.

Proof: Sequences of prime lengths are always aperiodic or have period 1, and
the period 1 sequences are not generated as codewords because the number
of repetitions required is odd. For |x| = 2q, the length has no odd factor, so
M2q = ∅. QED.

The following two corollaries provide bounds on mℓ.

Corollary 6.3 The number of necklaces of length ℓ is an upper bound for mℓ.

Proof: This follows immediately from Theorem 6.1. QED.

12

Corollary 6.4 The number of Lyndon words of length ℓ is a lower bound for

mℓ.

Proof: This follows from Theorem 6.1 and the fact that Mℓ does not contain
Lyndon words. QED.

7 Conclusions

A correspondence between T-code codewords and necklaces has been estab-
lished. The systematic T-code augmentation process generates all necklaces
except for a specific subset. This subset has been characterized. These results
were used to derive a new expression for the number of codewords which is much
simpler than that in [8]. The number of necklaces provides an upperbound on
the number of codewords, while the number of Lyndon words provides a lower
bound.

References

[1] D. Huffman: A Method for the Construction of Minimum Redundancy
Codes. Proc. Inst. Radio Eng., 40:1098-1101, September 1952

[2] M. R. Titchener: Generalized T-codes: an Extended Construction Algo-
rithm for Self-Synchronizing Variable-Length Codes, IEE Proceedings –
Computers and Digital Techniques, 143(3), June 1996, pp. 122-128.

[3] U. Guenther: Data Compression and Serial Communication with Gener-
alized T-Codes, Journal of Universal Computer Science, V. 2, N 11, 1996,
pp. 769-795. http://www.iicm.edu/jucs 2 11

[4] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titch-
ener: Representing Variable-Length Codes in Fixed-Length T-
Depletion Format in Encoders and Decoders, CDMTCS Research
Report no.44, Centre of Discrete Mathematics and Theoreti-
cal Computer Science, The University of Auckland, August 1997.
http://www.cs.auckland.ac.nz/CDMTCS/researchreports/044ulrich.pdf.

[5] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener: Representing
Variable-Length Codes in Fixed-Length T-Depletion Format in Encoders
and Decoders, Journal of Universal Computer Science, 3(11), Nov. 1997,
pp. 1207–1225. http://www.iicm.edu/jucs 3 11.

[6] U. Guenther: Robust Source Coding with Generalized T-
Codes. PhD Thesis, The University of Auckland, 1998.
http://www.tcs.auckland.ac.nz/~ulrich/phd.ps.gz

13

[7] W. Ebeling, R. Steuer, and M. R. Titchener: Partition-Based Entropies
of Deterministic and Stochastic Maps, Stochastics and Dynamics, 1(1), p.
45., March 2001.

[8] M. R. Titchener and A. Gulliver and R. Nicolescu and U. Speidel and L.
Staiger: Deterministic Complexity and Entropy, Fundamenta Informaticae,
v. 64(1-4), 443-461, 2005

[9] K. Cattell, F. Ruskey, J. Sawada, M. Serra and C.R. Miers, Fast Algorithms
to Generate Necklaces, Unlabeled Necklaces, and Irreducible Polynomials
over GF(2), J. Algorithms, vol. 37, pp. 267–282, 2000.

14

