

CDMTCS
Research
Report
Series

Higher Randomness Notions and Their Lowness Properties

C. T. Chong, A. Nies, L. Yu

University of Singapore, Singapore
University of Auckland, NZ
Nanjing University, PR China

CDMTCS-302
March 2007

Centre for Discrete Mathematics and
Theoretical Computer Science

HIGHER RANDOMNESS NOTIONS AND THEIR LOWNESS PROPERTIES

C. T. CHONG, ANDRE NIES, AND LIANG YU

Abstract

We study randomness notions given by higher recursion theory, establishing the relationships Π_{1}^{1}-randomness $\subset \Pi_{1}^{1}$-Martin-Löf randomness $\subset \Delta_{1}^{1}$ randomness $=\Delta_{1}^{1}$-Martin-Löf randomness. We characterize the set of reals that are low for Δ_{1}^{1} randomness as precisely those that are Δ_{1}^{1}-traceable. We prove that there is a perfect set of such reals.

1. Introduction

In recent years the study of algorithmic randomness has been focused almost exclusively on the arithmetical hierarchy, and with considerable success. In particular, n-randomness and weak n-randomness were investigated for $n<\omega$. (Recall here that a real in 2^{ω} is n-random if it is not in the intersection of any nested uniformly Σ_{n}^{0} sequence $\left(V_{n}\right)_{n \in \omega}$ of sets of reals so that $\mu\left(V_{n}\right) \leq 2^{-n}$. A real is weakly n-random if it is not in any Π_{n}^{0} null set of reals.) Nevertheless, the conceptualization of algorithmic randomness may be approached from a different direction. If one accepts the view that a real is random if it does not satisfy any "reasonable" collection of properties of measure zero, then it makes sense to study randomness relative to a naturally defined notion, and investigate the mathematical properties of reals that are random in the given context. There are two ways of doing this: The first is to study algorithmic n-randomness by varying the notion of the underlying measure (recent work of Reimann and Slaman, to appear, points to a significant link between being n-random and the measure that determines randomness), while the second is to retain the classical notion of Lebesgue measure and raise the logical complexity of the sets of reals being considered in the investigation of randomness. In this paper we adopt the second approach and consider randomness within the realm of second order arithmetic. In the spirit of higher recursion theory, we call this the theory of higher randomness.

From the point of view of higher recursion theory, a natural extension of the notion of recursive enumerability for subsets of ω in second order arithmetic is Π_{1}^{1} definability. An extensive theory has been developed by Kleene, Spector, Gandy, Sacks and others (cf. Sacks [18] for a thorough treatment of the subject). Martin-Löf [11] was the first to study randomness in the setting of higher recursion theory, when he showed that

[^0]the intersection of a sequence of hyperarithmetical sets of reals of measure one forms a nonempty Σ_{1}^{1} set. For almost 40 years this remained the only contribution to the subject of higher randomness, with the marginal exception of Sacks [18] (Chapter IV, Exercise 2.5). He defined what we call in this paper Π_{1}^{1} and Δ_{1}^{1} random reals, namely those reals avoiding Π_{1}^{1} and Δ_{1}^{1} null sets, respectively. The recent work of Hjorth and Nies [5] may be regarded as the first systematic study of randomness via effective descriptive set theory. In this paper we follow the same direction, by examining various notions we consider to be central to any reasonable theory of randomness. We study them in the setting of higher recursion theory. The motivation is to understand how the choice of a mathematical definability setting determines the key properties of random reals within the structure. We first investigate the analogs of various naturally defined, competing and inequivalent notions of randomness in first order theory. We show that under some circumstances, their analogs are equivalent in second order arithmetic. For instance, a real x is Δ_{1}^{1} random if and only if it is Δ_{1}^{1} random in the sense of Martin-Löf tests. In the case when $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, the equivalence extends to x being Π_{1}^{1} random and being Π_{1}^{1} random in the sense of Martin-Löf (Theorem 3.3 and Corollary 3.5 ; see $\S 3$ for the definitions). In general, however, the last two notions do not coincide (Theorem 3.12). In $\S 4$ we study an analog of the notion of a real of hyperimmune-free degree, being Δ_{1}^{1} dominated. We show that the set of Δ_{1}^{1}-dominated reals has measure 1 , and that every Π_{1}^{1}-random real is Δ_{1}^{1} dominated (Theorem 4.2 and Corollary 4.3). In $\S 5$ we study the class of Δ_{1}^{1} and Π_{1}^{1}-traceable sets as analogs of recursive and r.e. traceable reals. It turns out that these two classes are identical, of size the continuum (Theorem 5.4), and properly contained in the class of Δ_{1}^{1} dominated reals. This is used to study the class of low for Δ_{1}^{1} random reals where it is proved in $\S 6$ Theorem 6.2 that a real is low for Δ_{1}^{1} random if and only if it is Δ_{1}^{1}-traceable. We end the paper with further comments on higher randomness, one result on low for Π_{1}^{1}-randomness, and some open problems.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as presented, for instance, in Sacks [18]. Fix a standard Π_{2}^{0} set $H \subseteq \omega \times 2^{\omega} \times 2^{\omega}$ so that for all x and $n \in \mathcal{O}$, there is a unique real y satisfying $H(n, x, y)$. Moreover, if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then each real $z \leq_{h} x$ is Turing reducible to some y so that $H(n, x, y)$ holds for some $n \in \mathcal{O}$. Roughly speaking, y is the $|n|$-th Turing jump of x. These y 's are called H^{x} sets and denoted by H_{n}^{x} s.

We use the Cantor pairing function, the bijection $p: \omega^{2} \rightarrow \omega$ given by $p(n, s)=$ $\frac{(n+s)^{2}+3 n+s}{2}$, and write $\langle n, s\rangle=p(n, s)$.
The following results will be used in later sections.

Theorem 2.1 (Gandy). If $A \subset 2^{\omega}$ is a nonempty Σ_{1}^{1} set, then there is a real $x \in A$ so that $\mathcal{O}^{x} \leq{ }_{h} \mathcal{O}$.

Theorem 2.2 (Spector [19] and Gandy [4]). $A \subset 2^{\omega}$ is Π_{1}^{1} if and only if there is an arithmetical predicate $P(x, y)$ such that

$$
y \in A \leftrightarrow \exists x \leq_{h} y P(x, y)
$$

Theorem 2.3 (Sacks[17]). If x is non-hyperarithmetical, then $\mu\left(\left\{y \mid y \geq_{h} x\right\}\right)=0$.
Theorem 2.4 (Sacks [18]). The set $\left\{x \mid x \geq_{h} \mathcal{O}\right\}$ is Π_{1}^{1}. Moreover, $x \geq_{h} \mathcal{O}$ if and only if $\omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}$.

A consequence of the last two theorems above is that the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is a Π_{1}^{1} null set.

The ramified analytical hierarchy was introduced by Kleene, and applied by Fefferman [2] and Cohen [1] to study forcing, a tool that turns out to be powerful in the investigation of higher randomness theory. We recall some basic facts here following Sacks [18] whose notations we mostly follow, as given below:

The ramified analytic hierarchy language $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ contains the following symbols:
(1) Number variables: j, k, m, n, \ldots;
(2) Numerals: $0,1,2, \ldots$;
(3) Constant: \dot{x};
(4) Ranked set variables: $x^{\alpha}, y^{\alpha}, \ldots$ where $\alpha<\omega_{1}^{\mathrm{CK}}$;
(5) Unranked set variables: x, y, \ldots;
(6) Others symbols include: $+, \cdot($ times $), '($ successor) and \in.

Formulas are built in the usual way. A formula φ is ranked if all of its set variables are ranked. Due to its complexity, the language is not codable in a recursive set but rather in the countable admissible set $L_{\omega_{1}^{\mathrm{CK}}}$.

To code the language in a uniform way, we fix a Π_{1}^{1} path \mathcal{O}_{1} through \mathcal{O} (by [3] such a path exists). Then a ranked set variable x^{α} is coded by the number $(2, n)$ where $n \in \mathcal{O}_{1}$ and $|n|=\alpha$. Other symbols and formulas are coded recursively. With such a coding, the set of Gödel number of formulas is Π_{1}^{1}. Moreover, the set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique notation for α in \mathcal{O}_{1}. Hence there is a recursive function f so that $W_{f(n)}$ is the set of Gödel numbers of the ranked formula of rank less than $|n|$ when $n \in \mathcal{O}_{1}\left(\left\{W_{e}\right\}_{e}\right.$ is, as usual, an effective enumeration of r.e. sets).

One now defines a structure $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, where x is a real, analogous to the way Gödel's L is defined, by induction on the recursive ordinals. Only at successor stages are new sets defined in the structure. The reals constructed at a successor stage are arithmetically definable by the reals constructed at earlier stages. The details may be found in [18]. We define $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ for a formula φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ by allowing the unranked set variables to range over $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, while the symbol x^{α} will be interpreted as the reals built before stage α. In fact, the domain of $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ is the set $\left\{y \mid y \leq_{h} x\right\}$ if and only if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [18]).

A sentence φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ is said to be Σ_{1}^{1} if it is ranked, or of the form $\exists x_{1}, \ldots, \exists x_{n} \psi$ for some formula ψ with no unranked set variables bounded by a quantifier.

We have the following result which is a model-theoretic version of the GandySpector Theorem.

Theorem 2.5 (Sacks [18]). The set $\left\{\left(n_{\varphi}, x\right) \mid \varphi \in \Sigma_{1}^{1} \wedge \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ is Π_{1}^{1}, where n_{φ} is the Gödel number of φ. Moreover, for each Π_{1}^{1} set $A \subseteq 2^{\omega}$, there is a formula $\varphi \in \Sigma_{1}^{1}$ so that
(1) $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Longrightarrow x \in A$;
(2) if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$.

Note that if φ is ranked, then both the sets $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ (the Gödel number of φ is omitted) and $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \neg \varphi\right\}$ are Π_{1}^{1} and so Δ_{1}^{1}. Moreover, if $A \subseteq 2^{\omega}$ is Δ_{1}^{1}, then there is a ranked formula φ so that $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ (see Sacks [18]).
Theorem 2.6 (Sacks [17]). The set $\left\{\left(n_{\varphi}, p\right) \mid \mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}\right)>p \wedge \varphi \in \Sigma_{1}^{1} \wedge\right.$ p is a rational number $\}$ is Π_{1}^{1} where n_{φ} is the Gödel number of φ.
Theorem 2.7 (Sacks [17]). There is a recursive function $f: \omega \times \mathbb{Q} \rightarrow \omega$ so that for all n which is Gödel number of a ranked formula
(1) $f(n, p)$ is Gödel number of a ranked formula;
(2) The set $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\} \supseteq\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}$ is open;
(3) $\mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\}-\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}\right)<p$.

Theorem 2.8 (Sacks [17] and Tanaka [21]). If A is a Π_{1}^{1} set of positive measure, then A contains a hyperarithmetical real.

3. Defining higher randomness notions

A sequence of open sets $\left\{U_{n}\right\}_{n \in \omega}$ is a Martin-Löf test (ML-test) if $\mu\left(U_{n}\right) \leq 2^{-n}$ for all n. Given a class of sets of reals $\boldsymbol{\Gamma}$ (e.g. Π_{1}^{1} or Δ_{1}^{1}), $\left\{U_{n}\right\}_{n \in \omega}$ is a $\boldsymbol{\Gamma}$-ML test if $\left\{(n, \sigma) \mid \sigma \in 2^{<\omega} \wedge[\sigma] \in U_{n}\right\} \in \boldsymbol{\Gamma}$.
Definition 3.1. Given a class $\boldsymbol{\Gamma}$ of sets of reals,
(1) A real x is $\boldsymbol{\Gamma}$-random if no $\boldsymbol{\Gamma}$ null set contains x.
(2) A real x is $\boldsymbol{\Gamma}$-ML-random if $x \notin \bigcap_{n \in \omega} U_{n}$ for any Γ ML-test $\left\{U_{n}\right\}_{n}$.

In this paper, we focus on Δ_{1}^{1}-ML, Δ_{1}^{1}-, Π_{1}^{1}-ML and Π_{1}^{1}-randomness. First we show that Δ_{1}^{1}-randomness and Δ_{1}^{1}-ML-randomness coincide. For this we need a lemma which will also be used later on. In effect it says that at the hyperarithmetical level, the analogs of computable randomness and Schnorr randomness are the same.
Lemma 3.2. Let \mathcal{A} be a null Δ_{1}^{1} set. Then $\mathcal{A} \subseteq \bigcap U_{n}$ for some Δ_{1}^{1}-ML test $\left\{U_{n}\right\}_{n \in \omega}$ such that, in addition, $\mu\left(U_{n}\right)=2^{-n}$ for each n.
Proof. If \mathcal{A} is a Δ_{1}^{1}-null set, then by Theorem 2.7 there is a recursive sequence of Δ_{1}^{1} open sets U_{n} for which $\mu\left(U_{n}\right)<2^{-n}$ and $\mathcal{A} \subseteq U_{n}$ for all n. So $\left\{U_{n}\right\}_{n \in \omega}$ is a Δ_{1}^{1}-ML-test.

It now suffices to show that the Δ_{1}^{1}-ML test $\left\{U_{n}\right\}_{n \in \omega}$ can be improved to a Δ_{1}^{1}-ML test $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ such that $U_{n} \subseteq \hat{U}_{n}$ and $\mu\left(\hat{U}_{n}\right)=2^{-n}$ for each n. For this, it clearly suffices to show that for each Δ_{1}^{1} open set $S \subseteq 2^{\omega}$ and each rational $q \geq \mu(S)$ one can effectively obtain a Δ_{1}^{1} open set \hat{S} such that $S \subseteq \hat{S} \subseteq 2^{\omega}$ and $\mu(\hat{S})=q$. Recall the
isometry F between the conull subset of Cantor space 2^{ω} consisting of the coinfinite sets and the interval $I=[0,1)_{\mathbb{R}}$: for a coinfinite set $z \subseteq \omega$, let

$$
F(z)=\sum_{i \in z} 2^{-i-1}
$$

Note that under F, the product measure μ turns into Lebesgue measure, and the lexicographical ordering $<_{L}$ becomes the usual ordering of real numbers. The function $f: I \rightarrow I$ given by $f(x)=\mu([0, x) \cup F(S))$ is continuous, non-decreasing and $f(0) \leq q$ while $f(x) \geq x$ for each $x \in I$. Thus there is a least r such that $f(r)=q$. Since $f \in \Delta_{1}^{1}$ and the left cut of r is $\{s \in \mathbb{Q} \mid f(s)<q\}$, the real number r is Δ_{1}^{1}, so $F(z)=r$ for some hyperarithmetical coinfinite $z \subseteq \omega$. Now the open set $\hat{S}=\left\{y \mid y<_{L} z\right\} \cup S$ is as desired.

Theorem 3.3. The following are equivalent for a real x.
(i) x is Δ_{1}^{1}-random
(ii) x is Δ_{1}^{1}-ML-random

Proof. (i) \Rightarrow (ii): If $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ is a Δ_{1}^{1}-ML-test, then $V=\bigcap_{n \in \omega} \hat{U}_{n}$ is a Δ_{1}^{1} null set. So $x \notin V$.
(ii) \Rightarrow (i): This is an immediate consequence of the previous lemma.

Hjorth and Nies [5] gave a direct proof of the result that the union of all Π_{1}^{1} null sets is Π_{1}^{1}, which may also be obtained as a special case of the more general result [7, Theorem 1A-2]. We give yet another proof via the ramified analytical hierarchy, in order to extract more information about the set.

Theorem 3.4 (Kechris [7]; Hjorth and Nies [5]). The largest null Π_{1}^{1} set exists.
Proof. Define
$\mathcal{P}=\{(n, x) \mid n$ is the Gödel number of a ranked formula

$$
\left.\left.\wedge \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \vDash \varphi_{n}(\dot{x}) \wedge \mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \vDash \neg \varphi_{n}(\dot{x})\right\}\right) \geq 1\right)\right\}
$$

and

$$
\mathcal{Q}_{n}=\{x \mid(n, x) \in \mathcal{P}\} .
$$

Define

$$
\mathcal{Q}=\bigcup_{n \in \omega} \mathcal{Q}_{n} \cup\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\} .
$$

We show that \mathcal{Q} is the largest null Π_{1}^{1} set. By Theorem 2.6, the sequence $\left\{\mathcal{Q}_{n}\right\}_{n \in \omega}$ is a Π_{1}^{1}-sequence of Δ_{1}^{1} sets. \mathcal{Q} is Π_{1}^{1}. Moreover, $\mu\left(\mathcal{Q}_{n}\right)=0$ for all $n \in \omega$. Since $\mu\left(\left\{x \mid \omega_{1}^{\mathrm{CK}}=\omega_{1}^{x}\right\}\right)=1, \mu(\mathcal{Q})=0$.

If A is a Π_{1}^{1} null set, then, by Theorem 2.5, there is a ranked formula $\varphi \in \Sigma_{1}^{1}$ so that if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \exists y \varphi(\dot{x}, y)$. So if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \exists y^{\alpha} \varphi\left(\dot{x}, y^{\alpha}\right)$ for some $\alpha<\omega_{1}^{\mathrm{CK}}$. Since the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is null, it is easy to see that $A \subseteq \mathcal{Q}$.

Corollary 3.5. Suppose $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. Then x is Δ_{1}^{1}-random if and only if x is Π_{1}^{1} $M L$-random, and this is equivalent to x being Π_{1}^{1}-random.
Proof. Clearly Π_{1}^{1}-randomness implies Π_{1}^{1}-ML-randomness. By Theorem 3.3, it suffices to show that if x is Δ_{1}^{1}-random and $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then x is Π_{1}^{1}-random. Assume $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. If x is Δ_{1}^{1}-random, then $x \notin \mathcal{Q}_{n}$ for all n. So $x \notin \mathcal{Q}$. Hence x is Π_{1}^{1}-random.

In contrast to Theorem 3.4, we have the following.
Proposition 3.6. There is no largest null Σ_{1}^{1} set.
Proof. Suppose A is the largest null Σ_{1}^{1} set. Then by the Tanaka-Sacks Theorem 2.8, there is a Δ_{1}^{1} real $x \notin A . X=\{x\}$ is Δ_{1}^{1} and $X \cap A=\emptyset$, a contradiction.

By Theorem 2.4 and the proof of Theorem 3.4, we have the following result.
Proposition 3.7 (Hjorth and Nies [5]). If x is Π_{1}^{1}-random, then $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$.
Together with Corollary 3.5, the Π_{1}^{1}-random reals are precisely the Δ_{1}^{1}-random reals x that also satisfy $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$.

By the Gandy Basis Theorem 2.1, there is a Π_{1}^{1}-random real x with $\mathcal{O}^{x} \leq_{h} \mathcal{O}$.
Theorem 3.8 (Hjorth and Nies [5]). Given any real x, there is a $\Pi_{1}^{1}-M L$-random real $y \geq_{h} x$.

Combining Theorem 3.8 and Proposition 3.7, we have the following consequence.
Corollary 3.9 (Hjorth and Nies [5]). There is a Π_{1}^{1}-ML-random real that is not Π_{1}^{1}-random.

We now separate Δ_{1}^{1}-randomness from Π_{1}^{1}-ML-randomness, which is needed for the proof of Theorem 3.12 below. If one views the randomness notions as operators mapping oracles to classes, the separation can be obtained as a consequence of Theorem 5.4, Theorem 6.2, and the result of Hjorth and Nies [5] that every low for Π_{1}^{1}-ML-random real is hyperarithmetical. We now obtain the separation for the plain randomness notions. Recall that in [5] a Π_{1}^{1} version of prefix free Kolmogorov complexity was introduced, denoted by K. It was shown that a Theorem analogous to the one of Schnorr holds, namely: z is Π_{1}^{1}-ML-random if and only if there is a $b \in \omega$ such that for each $n, K(z \upharpoonright n) \geq n-b$. So the following result implies the separation:

Theorem 3.10. Let h be a nondecreasing Δ_{1}^{1} function such that $\lim _{n} h(n)=\infty$. Then there is a Δ_{1}^{1}-random real z such that $\forall^{\infty} n K(z \upharpoonright n \mid n) \leq h(n)$.

Here, $K(\sigma \mid n)$ is the complexity of σ given n. A number n is encoded in some effective way by a string (say the binary expansion). Then $K(\sigma) \leq K(\sigma \mid n)+2 \log n$ (up to constants), so if we let $h(n)=\log n$ then we obtain $K(z \upharpoonright n) \leq 3 \log n$.

First we need some preliminaries. A function $f: 2^{<\omega} \rightarrow \mathbb{R}^{+} \cup\{0\}$ is hyperarithmetical if there is a hyperarithmetical approximation function $g: 2^{<\omega} \times \omega \rightarrow \mathbb{Q}^{+} \cup\{0\}$ such that for each σ and n, we have $|f(\sigma)-g(\sigma, n)| \leq 2^{-n}$. A hyperarithmetical
martingale is a hyperarithmetical function $M: 2^{<\omega} \rightarrow \mathbb{R}^{+} \cup\{0\}$ that satisfies for every $\sigma \in 2^{<\omega}$ the martingale equality $M(\sigma 0)+M(\sigma 1)=2 M(\sigma)$. For a martingale M and a real z, let $M(z)=\sup _{n} M(z \upharpoonright n)$. We say that the martingale M succeeds on z if the capital it reaches along z is unbounded, that is, $M(z)=\infty$. Let $S(M)=\{z \mid M$ succeeds on $z\}$.

Of course, $S(M)$ is a Δ_{1}^{1} null set for any hyperarithmetical martingale M. Here is the converse. This equivalence is an effectivization of Ville's theorem.

Lemma 3.11. Let \mathcal{A} be a Δ_{1}^{1} null set. Then there is a hyperarithmetical martingale $M_{\mathcal{A}}$ such that $\mathcal{A} \subseteq S(M)$.
Proof. By Lemma 3.2 there is a Δ_{1}^{1} ML test $\left\{U_{n}\right\}_{n \in \omega}$ such that $\mu\left(U_{n}\right)=2^{-n}$ and $\mathcal{A} \subseteq U_{n}$ for all n. Let $M_{n}(\sigma)=\mu\left(U_{n} \cap[\sigma]\right) 2^{|\sigma|}$. Then M_{n} is a hyperarithmetical martingale, uniformly in n, and $M_{n}(z)=1$ if $z \in U_{n}$. Moreover, the start capital $M_{n}(\emptyset)$ is 2^{-n}. Now let $M(\sigma)=\sum_{n} M_{n}(\sigma)$, then M is as required.

The proof of Theorem 3.10 is a straightforward computably random reals, see for instance [14, Ch. 7]. We build a real z of slowly growing initial segment complexity (in the sense above) on which no \mathbb{Q}-valued hyperarithmetical martingale L succeeds. The martingale $M_{\mathcal{A}}$ is not necessarily \mathbb{Q}-valued, but by adaptation of a standard argument due to Schnorr (ibd.), for each hyperarithmetical martingale M there is a \mathbb{Q}-valued hyperarithmetical martingale \hat{M} such that $\hat{M}(\sigma) \geq M(\sigma)$ for each σ.

In the following theorem we summarize the implications between the various randomness notions.

Theorem 3.12.

$$
\begin{aligned}
\Delta_{1}^{1}(\mathcal{O}) \text {-randomness } & \Rightarrow \Pi_{1}^{1} \text {-randomness } \\
& \Rightarrow \Pi_{1}^{1}-M L \text {-randomness } \\
& \Rightarrow \Delta_{1}^{1} \text {-randomness } \\
& \Leftrightarrow \Delta_{1}^{1}-M L \text { - randomness },
\end{aligned}
$$

and none of the implications may be reversed.
Proof. $\Delta_{1}^{1}(\mathcal{O})$-randomness $\Rightarrow \Pi_{1}^{1}$-randomness: Fix an \mathcal{O}-recursive well ordering $<_{R}$ on ω of order type ω_{1}^{CK}. Then

$$
\left.\left.\begin{array}{rl}
\omega_{1}^{x}>\omega_{1}^{\mathrm{CK}} \Leftrightarrow \exists S \subseteq \omega & \times \omega \exists f \in \omega^{\omega} \\
& S \leq_{T} x
\end{array}\right) \forall n \exists m(f(m)=n) \wedge \forall n \forall m\left(S(n, m) \Longleftrightarrow f(n)<_{R} f(m)\right)\right) .
$$

So the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is $\Sigma_{1}^{1}(\mathcal{O})$. By Theorem 2.4, $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is $\Delta_{1}^{1}(\mathcal{O})$. Note that the sequence $\left\{\mathcal{Q}_{n}\right\}_{n \in \omega}$ is a Π_{1}^{1}-sequence, and so is an \mathcal{O}-recursive sequence of $\Delta_{1}^{1}(\mathcal{O})$ sets. So $\mathcal{Q}=\bigcup_{n \in \omega} \mathcal{Q}_{n} \cup\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is a null $\Delta_{1}^{1}(\mathcal{O})$ set. Hence $\Delta_{1}^{1}(\mathcal{O})$-randomness $\Rightarrow \Pi_{1}^{1}$-randomness. By the Gandy Basis Theorem 2.1, there is a Π_{1}^{1}-random real $x \leq_{h} \mathcal{O}$. Now x cannot be $\Delta_{1}^{1}(\mathcal{O})$-random. Thus the implication cannot be reversed.
Π_{1}^{1}-randomness $\Rightarrow \Pi_{1}^{1}$-ML-randomness: It is clear that Π_{1}^{1}-randomness $\subseteq \Pi_{1}^{1}$-MLrandomness. By Theorem 3.8, there exists a Π_{1}^{1}-ML-random real $x \geq_{h} \mathcal{O} . x$ cannot be Π_{1}^{1}-random.

Obviously Π_{1}^{1}-ML-randomness $\Rightarrow \Delta_{1}^{1}$-randomness. It follows from the Theorem 3.10 that the implication cannot be reversed.

Finally, Δ_{1}^{1}-randomness $\Leftrightarrow \Delta_{1}^{1}$-ML-randomness is Theorem 3.3.
The reader may wonder why we do not study Σ_{1}^{1}-randomness. In fact this is done implicitly - the following proposition says that Σ_{1}^{1}-randomness coincides with Δ_{1}^{1}-randomness.
Proposition 3.13. If A is Π_{1}^{1} and $\mu(A)=1$, then there is a conull Δ_{1}^{1} set $B \subseteq A$.
Proof. Suppose A is a Π_{1}^{1}-set for which $\mu(A)=1$. Then, by Theorem 2.5, there is a ranked formula $\varphi(\dot{x}, y)$ so that for all $n \in \mathcal{O}_{1}, A_{n} \subseteq A$, where $A_{n}=\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \vDash\right.$ $\left.\left.\exists y^{|n|} \varphi\left(\dot{x}, y^{|n|}\right)\right\}\right)$. Since the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is null and $A_{n} \subseteq A_{m}$ for all $n<_{o} m$ in \mathcal{O}_{1}, by Theorem 2.5, $\mu(A)=\mu\left(\bigcup_{n \in \mathcal{O}_{1}} A_{n}\right)$. Define $R(k, n)$ if and only if $\mu\left(A_{n}\right)>$ $1-2^{-k}$. By Theorem 2.6, R is a Π_{1}^{1} relation. By the Π_{1}^{1} Uniformitarian Theorem (see [13]), there is a Π_{1}^{1} function $f: \omega \rightarrow \omega$ uniformizing R. Since $\mu(A)=1, f$ is a total function. So f is Δ_{1}^{1}. Hence the range S of f is Δ_{1}^{1}. Then there must a recursive ordinal α so that $|n|<\alpha$ for all $n \in S$ (otherwise, \mathcal{O}_{1} would be Δ_{1}^{1}). Fix the notation $n \in \mathcal{O}_{1}$ so that $|n|=\alpha$. Define $B=A_{n}$. Then $\mu(B)=1$ and $B \subseteq A$.

4. Δ_{1}^{1}-DOMINATED REALS

A real x is of hyperimmune-free degree if every function Turing reducible to x is dominated by a recursive function. We study an analog of this notion in the setting of effective descriptive set theory:
Definition 4.1. A real x is Δ_{1}^{1}-dominated if for all functions $f: \omega \rightarrow \omega$ with $f \leq_{h} x$, there is a hyperarithmetic function g so that $g(n)>f(n)$ for all n (written as $g>f$).

The following contrasts with the result that the reals of hyperimmune-free degree have measure 0 ([10]; see [15] for a short proof).
Theorem 4.2. $\mu\left(\left\{x \mid x\right.\right.$ is Δ_{1}^{1}-dominated $\left.\}\right)=1$.
Proof. We prove that for any rational number p, the measure of

$$
\left\{x \mid x \text { is } \Delta_{1}^{1} \text {-dominated }\right\}
$$

is not less than p. We apply a fusion argument to achieve this.
Firstly we show that for any number e, rational r, notation $n \in \mathcal{O}$ and Δ_{1}^{1} set A for which $p+r<\mu(A)$, there is a hyperarithmetic function f so that

$$
\mu\left(\left\{x \mid x \in A \wedge \Phi_{e}^{H_{n}^{x}} \text { is total } \Longrightarrow \Phi_{e}^{H_{n}^{x}}<f\right\}\right)>p+\frac{r}{2} .
$$

Since the set $\left\{(x, i, m) \mid \Phi_{e}^{H_{n}^{x}}(i) \downarrow \Longrightarrow \Phi_{e}^{H_{n}^{x}}(i)<m\right\}$ is Δ_{1}^{1}, there is a ranked formula $\varphi(\dot{x}, i, m)$ so that $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(\dot{x}, i, m)$ if and only if $\Phi_{e^{H^{x}}}(i)<m$. Since A is Δ_{1}^{1}, by Theorem 2.6, the set

$$
C=\left\{(i, m, k) \left\lvert\, \wedge \mu\left(\left\{x \mid x \in A \wedge\left(\Phi_{e}^{H_{n}^{x}}(i) \downarrow \Longrightarrow \Phi_{e}^{H_{n}^{x}}(i)<m\right)\right\}\right)>\mu(A)-\frac{r}{2^{k+2}}\right.\right\}
$$

is Δ_{1}^{1}. Note that for each k, there is a number m so that $(k, m, k) \in C$. So there is a Δ_{1}^{1} total function f so that for all $k,(k, f(k), k) \in C$. Define

$$
B_{k}=\left\{x \mid x \in A \wedge\left(\Phi_{e}^{H_{n}^{x}}(k) \downarrow \Longrightarrow \Phi_{e}^{H_{n}^{x}}(k)<f(k)\right)\right\} .
$$

Then the set $\left\{(k, x) \mid x \in B_{k}\right\}$ is Δ_{1}^{1}. Moreover, for every $k, B_{k} \subseteq A$ and $\mu\left(B_{k}\right)>$ $\mu(A)-\frac{r}{2^{k+2}}$. So the set $B=\bigcap_{k} B_{k}$ is Δ_{1}^{1} and

$$
\mu(B) \geq \mu(A)-\sum_{k \geq 0} \mu\left(A-B_{k}\right) \geq p+r-\sum_{k \geq 0} \frac{r}{2^{k+2}}=p+\frac{r}{2} .
$$

Moreover, for every $x \in B$, if $\Phi_{e}^{H^{x}}$ is total, then $\Phi_{e}^{H^{x}}<f$. Thus we may construct an ω-sequence of Δ_{1}^{1} sets $\left\{B^{\langle e, n\rangle}\right\}_{e \in \omega \wedge n \in \mathcal{O}}$ so that for all $e \in \omega$ and $n \in \mathcal{O}$,
(1) If $\langle e, n\rangle>\left\langle e^{\prime}, n^{\prime}\right\rangle$, then $B^{\langle e, n\rangle} \subseteq B^{\left\langle e^{\prime}, n^{\prime}\right\rangle}$;
(2) $\mu\left(B^{\langle e, n\rangle}\right)>p$.

Define $D=\bigcap_{e \in \omega \wedge n \in \mathcal{O}} B^{\langle e, n\rangle}$. Then $D \subseteq\left\{x \mid x\right.$ is Δ_{1}^{1}-dominated $\}$ and $\mu(D) \geq p$. Moreover, each real in D is Δ_{1}^{1}-dominated.

Corollary 4.3. Each Π_{1}^{1}-random real is Δ_{1}^{1}-dominated.
Proof. By the proof of Theorem 4.2, for each $e \in \omega$ and $n \in \mathcal{O}$, the set $A_{e, n}=$ $\left\{x \mid \exists f \in \Delta_{1}^{1}\left(\Phi_{e}^{H_{n}^{x}}\right.\right.$ is total $\left.\left.\Longrightarrow \Phi_{e}^{H_{n}^{x}}<f\right)\right\}$ has measure 1. Note that $A_{e, n}$ is Π_{1}^{1}. So, by Proposition 3.13, if x is Δ_{1}^{1}-random, then $x \notin A_{e, n}$. Now if x is Π_{1}^{1}-random, then, by Proposition 3.7, $\omega_{1}^{\mathrm{CK}}=\omega_{1}^{x}$. So if $g \leq_{h} x$, then $g=\Phi_{e}^{H^{x}}$ for some $e, n \in \mathcal{O}$. Thus each Π_{1}^{1}-random is Δ_{1}^{1}-dominated.

Note that Π_{1}^{1}-randomness cannot be improved to Δ_{1}^{1}-randomness in Corollary 4.3 since there exists a Δ_{1}^{1}-random real $x \geq_{h} \mathcal{O}$ (see [5]), and by the following proposition.
Proposition 4.4. $\left\{x \mid x\right.$ is Δ_{1}^{1}-dominated $\} \subset\left\{x \mid \omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}\right\}$.
Proof. If $\omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}$, then $x \geq_{h} \mathcal{O}$. Since there is an \mathcal{O}-arithmetical enumeration of Δ_{1}^{1} functions $\left\{f_{n}\right\}_{n \in \omega}$, there is a $\Delta_{1}^{1}(x)$ enumeration. Define $g(n)=f_{n}(n)+1$. Then $g \leq_{h} x$. So x is not Δ_{1}^{1}-dominated. Thus $\left\{x \mid x\right.$ is Δ_{1}^{1}-dominated $\} \subseteq\left\{x \mid \omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}\right\}$.

To see that the relation is proper, we apply Cohen forcing developed in [18]. The forcing conditions are elements of $2^{<\omega}$. A real is said to be generic if each Σ_{1}^{1} sentence or its negation is forced by a finite initial segment of x. So generic reals form a comeager set. Feferman (see [2] or [18]) proved that $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ satisfies Δ_{1}^{1} comprehension for any generic real x. So $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [18]). We claim that no generic real can be Δ_{1}^{1}-dominated.

Given a real x, define $g_{x}(n)=m_{n}$ if m_{n} is the n-th bit of x so that $x\left(m_{n}\right)=1$. So there is a recursive functional Φ such that $\Phi^{x}=g_{x}$ for all x. Hence there is a ranked (and so Σ_{1}^{1}) formula φ defining g_{x}, i.e. $g_{x}(n)=m \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(\dot{x}, n, m)$. For any Δ_{1}^{1} function f, there is a ranked formula ψ_{f} defining f, i.e. $f(n)=m \Leftrightarrow$ $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \psi_{f}(n, m)$. So if $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \forall n\left(f(n)>g_{\dot{x}}(n)\right)$, then there is a finite string $p \prec x$ so that $p \Vdash \forall n\left(f(n)>g_{\dot{x}}(n)\right)$. This is impossible since one can easily find a condition q stronger than p so that $q \Vdash \exists n\left(f(n)<g_{\dot{x}}(n)\right)$.

Thus $\left\{x \mid x\right.$ is Δ_{1}^{1}-dominated $\} \subset\left\{x \mid \omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}\right\}$.

One might conjecture that, by analogy to the effective case, the Δ_{1}^{1}-dominated reals form a basis for Σ_{1}^{1} sets. This is, however, false.
Proposition 4.5. There is a nonempty Σ_{1}^{1} set $A \subseteq 2^{\omega}$ which does not contain any Δ_{1}^{1}-dominated real.
Proof. As in the proof of Proposition 4.4, there is a recursive functional Φ so that the set $A=\left\{x \mid \forall f \in \Delta_{1}^{1}\left(f \nsupseteq \Phi^{x}\right)\right\}$ is non-empty. By Theorem 2.2 (the Spector-Gandy Theorem), A is a nonempty Σ_{1}^{1} set.

5. Δ_{1}^{1}-TRACEABLE REALS

Next we consider the notions analogous to being r.e. traceable and recursively traceable in first order randomness theory, both of which are studied in [22, 9] (see for instance [9 , Section 2.2] for the formal definition). The corresponding notions are called Π_{1}^{1}-traceability and Δ_{1}^{1}-traceability, respectively. We shall show that they are in fact equivalent.

Definition 5.1. (i) Let $h: \omega \rightarrow \omega$ be a nondecreasing unbounded function that is hyperarithmetical. $A \Pi_{1}^{1}$-trace/ Δ_{1}^{1}-trace with bound h is a uniformly Π_{1}^{1} /uniformly Δ_{1}^{1} sequence $\left(T_{e}\right)_{e \in \omega}$ such that $\left|T_{e}\right| \leq h(e)$ for each e.
(ii) $A \subseteq \omega$ is Π_{1}^{1}-traceable $/ \Delta_{1}^{1}$-traceable if there is $h \in \Delta_{1}^{1}$ such that, for each $f \leq_{h} A$, there is a Π_{1}^{1}-trace $/ \Delta_{1}^{1}$-trace with bound h such that, for each e, $f(e) \in T_{e}$.

Note that, if $\left(T_{e}\right)_{e \in \omega}$ is a uniformly Δ_{1}^{1} sequence of finite sets, then there is $g \in \Delta_{1}^{1}$ such that for each $e, D_{g(e)}=T_{e}$ (where D_{n} is the nth finite set according to some recursive ordering). Thus

$$
g(e)=\mu n \forall u\left[u \in D_{n} \leftrightarrow u \in T_{e}\right] .
$$

In this formulation, the definition of Δ_{1}^{1} traceability is very close to that of recursive traceability. It is not difficult to see that every Δ_{1}^{1}-traceable real is Δ_{1}^{1}-dominated.

Also notice that the choice of a bound as a witness for traceability is immaterial:
Proposition 5.2 (Terwijn and Zambella [22]). Let A be a real that is Δ_{1}^{1} traceable with bound h. Then for any monotone and unbounded Δ_{1}^{1} function h^{\prime}, A is Δ_{1}^{1} traceable with bound h^{\prime}. The same holds for Π_{1}^{1} traceability.

The class of r.e. traceable sets is strictly larger than the class of recursively traceable sets, since the former contains nonrecursive r.e. sets [9]. In contrast, we have the following equivalence:

Proposition 5.3. If x is Π_{1}^{1}-traceable, then x is Δ_{1}^{1}-traceable.
Proof. We first claim that $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. Otherwise $x \geq_{h} \mathcal{O}$. So it is sufficient to show that \mathcal{O} is not Π_{1}^{1}-traceable. Since each Π_{1}^{1} set is many-one reducible to $\mathcal{O}[16,5.4 \mathrm{I}]$, there is a uniformly \mathcal{O}-recursive list $\left(T^{e}\right)_{e \in \omega}$ of all Π_{1}^{1}-traces for the bound $h(e)=e$. Define $f \leq_{h} \mathcal{O}$ by

$$
f(e)=\mu n\left[n \notin T_{e}^{e}\right],
$$

then f does not have a Π_{1}^{1} trace.
To complete the proof, given $f \leq_{h} x$, there is a Π_{1}^{1} trace $\left(T_{e}\right)_{e \in \omega}$ such that $f(e) \in T_{e}$ for each e. Then there is a recursive function $h: \omega^{2} \rightarrow \omega$ so that $k \in T_{e}$ if and only if $h(k, e) \in \mathcal{O}$. Define a $\Pi_{1}^{1}(x)$-relation $R \subseteq \omega \times \mathcal{O}$ by

$$
(e, n) \in R \Leftrightarrow h(e, f(e)) \in \mathcal{O}_{n},
$$

where $\mathcal{O}_{n}=\left\{m \in \mathcal{O}| | m|<|n|\}\right.$, a Δ_{1}^{1} set. Note that for each e, there is a notation $n \in \mathcal{O}$ so that $(e, n) \in R$. By the Kreisel Uniformization Theorem, there is a total $\Pi_{1}^{1}(x)$ (and so $\left.\Delta_{1}^{1}(x)\right)$ function g uniformizing R. Hence the range $S=\{n \mid \exists e[g(e)=$ $n]\}$ of g is a $\Delta_{1}^{1}(x)$ set. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, there exists a notation $n_{0} \in \mathcal{O}$ so that $S \subseteq \mathcal{O}_{n_{0}}$ (otherwise the well-founded relation " $i<_{o} j$ " would be $\Delta_{1}^{1}(x)$). Define a set $\hat{T}_{e} \subseteq T_{e}$ as follows:

$$
k \in \hat{T}_{e} \Leftrightarrow h(k, e) \in \mathcal{O}_{n_{0}}
$$

By the definition of $n_{0}, f(e) \in \hat{T}_{e}$ for all $e \in \omega$. Note that the relation $n \in \hat{T}_{e}$ is Δ_{1}^{1}. Hence $\left(\hat{T}_{e}\right)_{e \in \omega}$ is a Δ_{1}^{1}-trace for f. So f is Δ_{1}^{1}-traceable.
Theorem 5.4. There are $2^{\aleph_{0}}$-many Δ_{1}^{1}-traceable reals.
Proof. We apply Sacks forcing to show this (see [18]). The forcing conditions are perfect trees coded by Δ_{1}^{1} reals. A real x is Sacks generic if for each Σ_{1}^{1} sentence φ, there is a condition T so that $x \in T$ and $T \Vdash \varphi$ or $T \Vdash \neg \varphi$. Sacks proved that the set $\left\{\left(T, n_{\varphi}\right) \mid \varphi \in \Sigma_{1}^{1} \wedge T \Vdash \varphi\right\}$ is Π_{1}^{1}. We claim that each Sacks generic real is Δ_{1}^{1}-traceable. Thus there are $2^{\aleph_{0}}$-many Δ_{1}^{1}-traceable reals.

Suppose x is a Sacks generic real. Since x has minimal hyperdegree (see [18]), $\omega_{1}^{\mathrm{CK}}=\omega_{1}^{x}$. So if $f \leq_{h} x$, then there is a number e and a notation $n \in \mathcal{O}$ so that $\Phi_{e}^{H_{n}^{x}}=f$. Since the set $A=\left\{(y, n, i, j) \mid \Phi_{e}^{H_{n}^{y}}(i)=j\right\}$ is Δ_{1}^{1}, there exists a ranked formula defining A. Since $\Phi_{e^{H_{n}^{x}}}$ is total, by the definition of Sacks genericity, there is a condition $T \Vdash$ " $\Phi_{e}^{H_{n}^{x}}$ is total". We show that for each condition $S \subseteq T$, there is a condition $Q \subseteq S$ so that $Q \Vdash " \exists f\left(f \in \Delta_{1}^{1} \wedge \forall i\left(\Phi_{e}^{H^{\dot{x}}}(i) \in D_{f(i)} \wedge\left|D_{f(i)}\right| \leq 2^{i+1}\right)\right)$ ". Then, by the definition of forcing, there is a Δ_{1}^{1} function f so that for all $i, \Phi_{e}^{H_{n}^{x}}(i) \in$ $D_{f(i)} \wedge\left|D_{f(i)}\right| \leq 2^{i+1}$.

Since $T \Vdash$ " $\Phi_{e}^{H^{\dot{x}}}$ is total", $S \Vdash$ " $\Phi_{e}^{H_{n}^{\dot{x}}}$ is total".
Case (1). There is a condition $R \subseteq S$ so that for all i, j_{0}, j_{1}, for all conditions $P_{0}, P_{1} \subseteq R, P_{0} \Vdash \Phi_{e}^{H_{n}^{x}}(i)=j_{0}$ and $P_{1} \Vdash \Phi_{e}^{H_{n}^{x}}(i)=j_{1}$ implies $j_{0}=j_{1}$. Then we define $f(i)=j$ if and only if there exists a condition $P \subseteq R$ so that $P \Vdash \Phi_{e}^{H^{\dot{x}}}(i)=j$. Then f is a total Π_{1}^{1}-function and hence Δ_{1}^{1}. This implies that $R \Vdash f=\Phi_{e}^{H^{\dot{x}}}$.

Case (2). Otherwise. Define a relation $\mathcal{R}\left(P, \sigma, i, j_{0}, j_{1}, Q_{0}, Q_{1}\right)$ if and only if $i \geq|\sigma|$, $j_{0} \neq j_{1}, Q_{0} \cap Q_{1}=\emptyset$ and $Q_{k} \subseteq P \wedge Q_{k} \Vdash \Phi_{e}^{H_{n}^{x}}(i)=j_{k}$ for $k \leq 1$. Obviously \mathcal{R} is a Π_{1}^{1} relation. By Kreisel's Uniformization Theorem, there is a partial Π_{1}^{1} function $F: 2^{\omega} \times 2^{<\omega} \rightarrow(\omega)^{3} \times\left(2^{\omega}\right)^{2}$ so that $\mathcal{R}\left(P, \sigma, i, j_{0}, j_{1}, Q_{0}, Q_{1}\right)$ for some $i, j_{0}, j_{1}, Q_{0}, Q_{1}$ if and only if $\mathcal{R}(P, \sigma, F(P, \sigma))$. Without loss of generality, we assume that if $P \Vdash$ $\Phi_{e}^{H^{\dot{x}}}(i)=j_{i}$ then for all $k \leq i, P \Vdash \Phi_{e}^{H^{x}}(k)=j_{k}$ for some j_{k}. We do an induction on ω. During the construction, we will define a Π_{1}^{1} sequence of conditions $\left\{P_{\sigma}\right\}_{\sigma \in 2}<\omega$.

Step 0. Define $P_{\emptyset}=S$.
Step $n+1$. For each $\sigma \in 2^{n}$, define $P_{\sigma \wedge 0}=Q_{0}, P_{\sigma \wedge 1}=Q_{1}$ if $F\left(P_{\sigma}, \sigma\right)=$ $\left(i, j_{0}, j_{1}, Q_{0}, Q_{1}\right)$.

Define $G(\sigma)=P_{\sigma}$. Then G is a total Π_{1}^{1} and so Δ_{1}^{1} function.
Note that for each $\sigma, G\left(\sigma^{\wedge} 0\right) \cap G\left(\sigma^{\wedge} 1\right)=\emptyset$ and if $\sigma \preceq \tau$ then $G(\sigma) \supseteq G(\tau)$. Define

$$
Q=\bigcap_{n} \bigcup_{\sigma \in 2^{n}} G(\sigma) .
$$

Then Q is a Δ_{1}^{1} perfect set.
Define a function $g: \bigcup_{i \in \omega} i \times 2^{i+1} \rightarrow \omega$ so that $g(i, \sigma)=k$ if $\sigma \in 2^{i+1}$ and $G(\sigma) \Vdash \Phi_{e}^{H^{\dot{x}}}(i)=k$. Hence g is a total Π_{1}^{1} and therefore Δ_{1}^{1} function. Define $f(i)=j$ if j is the least number such that $D_{j}=\left\{g(i, \sigma) \mid \sigma \in 2^{i+1}\right\}$. Then f is a Δ_{1}^{1} function and $\left|D_{f(i)}\right| \leq 2^{i+1}$ for all i. Since for all $i, Q \subseteq \bigcup_{\sigma \in 2^{n}} G(\sigma)$, it is easy to see that $Q \Vdash \Phi_{e}^{H_{n}^{\dot{x}}}(i) \in D_{f(i)}$.

So x is Δ_{1}^{1}-traceable.

6. Lowness for Δ_{1}^{1}-RANDOMNESS

Definition 6.1. Given a relativizable class of reals \mathcal{C} (for instance, \mathcal{C} is the class of random reals), a real x is low for \mathcal{C} if $\mathcal{C}=\mathcal{C}^{x}$.

For a randomness notion \mathcal{C}, we have $\mathcal{C}^{x} \subseteq \mathcal{C}$, and usually one would expect \mathcal{C}^{x} to be a proper subset of \mathcal{C}. Thus being low for \mathcal{C} means to be computationally weak, in the sense that the extra computational power of x does not help to recognize more reals as nonrandom.

It is shown in [5] that x is low for Π_{1}^{1}-ML-randomness if and only if x is hyperarithmetical. The main result of this section is that a real is low for Δ_{1}^{1}-randomness if and only if it is Δ_{1}^{1}-traceable. This corresponds to the main result in [9] that a real A is low for Schnorr randomness if and only if it is recursively traceable. That result was an extension of the theorem in [22] that A is low for Schnorr tests if and only if it is recursively traceable. The equivalence of (i) and (ii) in the theorem below reveals this parallel phenomenon in the realm of effective descriptive set theory.

For $D \subset 2^{<\omega}$ we let $[D]^{\preceq}$ denote the open set $\bigcup\{[\sigma] \mid \sigma \in D\}$. We often identify an open set with the corresponding set of strings closed under extension. We let S_{e} be the e th finite subset of $2^{<\omega}$ under a suitable effective enumeration. Thus S_{e} is a finite set of strings, and $\left[S_{e}\right]^{\preceq}=\bigcup_{\sigma \in S_{e}}[\sigma]$ is then the clopen set coded by $e \in \omega$.

Theorem 6.2. The following are equivalent for a real x.
(i) x is Δ_{1}^{1}-traceable (or equivalently, Π_{1}^{1} traceable).
(ii) Each $\Delta_{1}^{1}(x)$ null set is contained in a Δ_{1}^{1} null set.
(iii) x is low for Δ_{1}^{1}-randomness.
(iv) Each Π_{1}^{1}-ML-random set is $\Delta_{1}^{1}(x)$-random.

Proof. (i) \rightarrow (ii): Assume that x is Δ_{1}^{1}-traceable. Let \mathcal{S} be a $\Delta_{1}^{1}(x)$ null set. By Lemma 3.2 relativized to $x, \mathcal{S} \subseteq \bigcap U_{n}$ for a $\Delta_{1}^{1}(x)$-ML test $\left\{U_{n}\right\}_{n \in \omega}$ such that $\mu\left(U_{n}\right)=$ 2^{-n} for each n. There is a function $f \leq_{h} x$ such that $\left[S_{f(\langle n, s\rangle)]}\right]^{\preceq}=: U_{n, s}$ satisfies $U_{n, s} \subseteq U_{n, s+1}, U_{n}=\bigcup_{s \in \omega} U_{n, s}$, and, moreover, $\mu\left(U_{n, s}\right)>2^{-n}\left(1-2^{-s}\right)$.

Let $T=\left(T_{e}\right)_{e \in \omega}$ be a Δ_{1}^{1} trace of f. By Proposition 5.2, we may choose T such that in addition $\left|T_{e}\right| \leq e$ for each $e>0$.

We now define a subtrace \hat{T} of T, i.e., $\hat{T}_{\langle n, s\rangle} \subseteq T_{\langle n, s\rangle}$ for each n, s. The objective is to define open sets V_{n} via \hat{T} (in a way to be specified) small enough to give us a Δ_{1}^{1} - null set $\mathcal{V}=\bigcap_{n} V_{n}$, yet large enough as to keep all "relevant" reals out of $T_{\langle n, s\rangle}-\hat{T}_{\langle n, s\rangle}$, so that $\bigcap_{n \in \omega} U_{n} \subseteq \mathcal{V}$.

Let $\hat{T}_{\langle n, s\rangle}$ be the set of $e \in T_{\langle n, s\rangle}$ such that $2^{-n}\left(1-2^{-s}\right) \leq \mu\left(\left[S_{e}\right]^{\boxed{ }}\right) \leq 2^{-n}$ and $\left[S_{e}\right]^{\preceq} \supseteq\left[S_{d}\right]^{\preceq}$ for some $d \in \hat{T}_{\langle n, s-1\rangle}\left(\right.$ where $\left.\hat{T}_{\langle n,-1\rangle}=\omega\right)$. Note that $f(\langle n, s\rangle) \in \hat{T}_{\langle n, s\rangle}$. Let

$$
V_{n}=\bigcup\left\{\left[S_{e}\right]^{\nwarrow} \mid e \in \hat{T}_{\langle n, s\rangle}, s \in \omega\right\} .
$$

Then $\mu\left(V_{n}\right) \leq 2^{-n}\left|\hat{T}_{\langle n, 0\rangle}\right|+\sum_{s \in \omega} 2^{-s} 2^{-n}\left|\hat{T}_{\langle n, s\rangle}\right|$. Since $\left|\hat{T}_{\langle n, s\rangle}\right| \leq\left|T_{\langle n, s\rangle}\right| \leq\langle n, s\rangle$ for $\langle n, s\rangle \neq 0$, and $\langle n, s\rangle$ has only polynomial growth in n and s, it is clear that $\lim _{n} \sum_{s \in \omega} 2^{-s} 2^{-n}\left|\hat{T}_{\langle n, s\rangle}\right|=0$, and hence $\lim _{n} \mu\left(V_{n}\right)=0$. Then $\mathcal{V}=\bigcap_{n} V_{n}$ is a Δ_{1}^{1}-null set and $\bigcap U_{n} \subseteq \mathcal{V}$.
(ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are immediate.
(iv) \Rightarrow (i): In [9, Lemma 4.7], it is shown that, if each ML-random set is Schnorr random relative to x, then x is r.e. traceable. With merely notational changes, the proof works in the present situation. First some preliminaries. Recall that $K(\sigma)$ denotes the Π_{1}^{1} version of prefix free Kolmogorov complexity. For $b \in \omega-\{0\}$, let $R_{b}=\left[\left\{\sigma \in 2^{<\omega}|K(\sigma) \leq|\sigma|-b\}\right]\right.$. In [5, Theorem 3.9] it is shown that $\left(R_{b}\right)_{b \in \omega}$ is a universal test for Π_{1}^{1}-ML-randomness. Thus, by our hypothesis in (iv), we have $\mathcal{C} \subseteq \bigcap_{b} R_{b}$ for each $\Delta_{1}^{1}(x)$ null set \mathcal{C}.

For $k, l \in \omega$ define the clopen set

$$
B_{k, l}=\bigcup\left\{\left[\tau 1^{k}\right]\left|\tau \in 2^{<\omega},|\tau|=l\right\}\right.
$$

where 1^{k} is a string of 1 's of length k. Note that $\mu\left(B_{k, l}\right)=2^{-k}$ for all l.
Given $\sigma \in 2^{<\omega}$ and a measurable set $C \subseteq 2^{\omega}$, let $\mu_{\sigma}(C)=\frac{\mu(C \cap[\sigma])}{\mu[\sigma]}$. For an open set W let

$$
W \mid \sigma=\bigcup\left\{[\tau] \mid \tau \in 2^{<\omega},[\sigma \tau] \subseteq W\right\}
$$

Now to find a trace for a given function $g \leq_{h} x$, define the $\Delta_{1}^{1}(x)$-ML test U^{g} by stipulating that

$$
U_{n}^{g}=\bigcup_{k>n} B_{k, g(k)}
$$

Hence by assumption $\bigcap_{n} U_{n}^{g} \subseteq \bigcap_{b \in \omega} R_{b}$. Thus $V=R_{3}$ contains $\bigcap_{n} U_{n}^{g}$ and $\mu(V)<\frac{1}{4}$. We may assume throughout that $g(k) \geq k$ for every k because from a trace for $g(k)+k$ one can obtain a trace for g with the same bound. By [9, Lemma 4.4], there exist σ and n such that $\mu_{\sigma}\left(U_{n}^{g}-V\right)=0$ and $\mu_{\sigma}(V)<1 / 4$. As $U_{0}^{g} \supseteq U_{1}^{g} \supseteq \cdots$, we can
choose σ and n with the additional property $n \geq|\sigma|$. Hence for each $k>n$, we have $g(k) \geq k>n \geq|\sigma|$ and hence $g(k) \geq|\sigma|$.

Let $\tilde{V}=V \mid \sigma$, let $\tilde{g}(k)=\max \{0, g(k)-|\sigma|\}$, and

$$
T_{k}=\left\{l \mid \mu\left(B_{k, l}-\tilde{V}\right)<2^{-(l+3)}\right\} .
$$

Note that for each $l \in \omega$, if $l \geq|\sigma|$ then $B_{k, l} \mid \sigma=B_{k, l-|\sigma|}$. So since $g(k) \geq|\sigma|$,

$$
U_{n}^{g}\left|\sigma=\bigcup_{k>n} B_{k, g(k)}\right| \sigma=\bigcup_{k>n} B_{k, g(k)-|\sigma|}=U_{n}^{\tilde{g}},
$$

and we obtain $\mu\left(U_{n}^{\tilde{g}}-\tilde{V}\right)=\mu_{\sigma}\left(U_{n}^{g}-V\right)=0$. Hence $\tilde{g}(k) \in T_{k}$ for all $k>n$.
Since \tilde{V} is a Π_{1}^{1} open set, it is evident that T is a Π_{1}^{1} set of integers. A trace for g is obtained as follows:

$$
G_{k}= \begin{cases}\left\{l+|\sigma| \mid l \in T_{k}\right\} & \text { if } k>n \\ \{g(k)\} & \text { if } k \leq n\end{cases}
$$

We now show that G is a trace for g, i.e. for all $k \in \omega, g(k) \in G_{k}$. If $k \leq n$ then this holds by definition of G_{k}. Thus assume $k>n$. Then $g(k)>k>n>|\sigma|$, so $\tilde{g}(k)=g(k)-|\sigma|$ so $g(k)=\tilde{g}(k)+|\sigma|$. As $k>n, \tilde{g}(k) \in T_{k}$ and hence $g(k) \in G_{k}$.

Clearly G is Π_{1}^{1}; so it remains to show that $\left|G_{k}\right|$ is hyperarithmetically bounded, independently of g. As $\left|G_{k}\right|=\left|T_{k}\right|$ for $k>n$ and $\left|G_{k}\right|=1$ for $k \leq n$, this is a consequence of Lemma 4.8 of [9], reproduced below:
Lemma 6.3 ([9]). If \tilde{V} is a measurable set with $\mu(\tilde{V})<\frac{1}{4}$, and $T_{k}=\left\{l \mid \mu\left(B_{k, l}-\tilde{V}\right)<\right.$ $\left.2^{-(l+3)}\right\}$, then for $k \geq 1,\left|T_{k}\right|<2^{k} k$.

Corollary 6.4. There exists a Δ_{1}^{1}-dominated real which is not Δ_{1}^{1}-traceable.
Proof. By Theorem 4.2, Δ_{1}^{1}-dominated reals form a measure 1 set but, by Theorem 6.2 , the set of Δ_{1}^{1}-traceable reals form a null set, being disjoint from the set of Δ_{1}^{1} random reals.

7. Concluding Remarks

A real x is said to be Π_{1}^{1}-random cuppable, or random cuppable for short, if $x \oplus y \geq_{h}$ \mathcal{O} for all Π_{1}^{1}-random reals y. It is known [5] that if x is low for Π_{1}^{1}-randomness then $\omega_{1}^{\mathrm{CK}}=\omega_{1}^{x}$. Harrington, Nies and Slaman have obtained a further result on lowness for Π_{1}^{1}-randomness. We include a proof of this result here.
Theorem 7.1 (with Harrington and Slaman). A real x is low for Π_{1}^{1}-randomness if and only if x is low for Δ_{1}^{1}-randomness and not random cuppable.
Proof. For the direction from left to right, suppose x is low for Π_{1}^{1}-randomness, that is, each Π_{1}^{1}-random real is $\Pi_{1}^{1}(x)$-random. Since $x \not{ }_{h} \mathcal{O}$, the $\Pi_{1}^{1}(x)$ set $\left\{y \mid y \oplus x \geq_{h} \mathcal{O}\right\}$ is null, by relativizing Theorems 2.3 and 2.4. Thus x is not random cuppable. To see that x is low for Δ_{1}^{1}-randomness, suppose for a contradiction that y is a Δ_{1}^{1}-random real that is not $\Delta_{1}^{1}(x)$-random. Thus there is a $\Delta_{1}^{1}(x)$-null set A containing y. By the
main result in Martin-Löf [11], the null set $B=\bigcup\left\{C \subset 2^{\omega} \mid \mu(C)=0 \wedge C\right.$ is $\left.\Delta_{1}^{1}\right\}$ is Π_{1}^{1}. Since $y \in A-B, A-B$ is a nonempty $\Sigma_{1}^{1}(x)$ set. By the Gandy Basis Theorem 2.1 relative to x, there is a real $z \in A-B$ so that $\omega_{1}^{z \oplus x}=\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. Then z is Δ_{1}^{1}-random but not $\Delta_{1}^{1}(x)$-random, so by Corollary 3.5 and its relativization to x, z is Π_{1}^{1}-random but not $\Pi_{1}^{1}(x)$-random, a contradiction.

For the other direction, suppose x is low for Δ_{1}^{1}-randomness and not random cuppable. Then $x \not ¥_{h} \mathcal{O}$. Suppose z is a Π_{1}^{1}-random real. By the proof of Theorem 3.4 relative to x, the largest $\Pi_{1}^{1}(x)$ null set $\mathcal{Q}(x)$ is a union of countably many $\Delta_{1}^{1}(x)$ null sets $\mathcal{Q}_{n}(x)$ and the $\Pi_{1}^{1}(x)$ null set $\left\{y \mid y \oplus x \geq_{h} \mathcal{O}\right\}$. Since x is low for Δ_{1}^{1} randomness, $z \notin \bigcup_{n} \mathcal{Q}_{n}(x)$. Since x is non- Π_{1}^{1}-random cuppable, $z \oplus x \not{ }_{h} \mathcal{O}$. So z is $\Pi_{1}^{1}(x)$-random.

The following question remains open:
Question 7.2. Is there a real x that is low for Π_{1}^{1}-randomness but not hyperarithmetical?

Reimann and Slaman have shown that if x is not 1-random relative to any continuous measure, then x is hyperarithmetical. In an analogy, one can ask:

Question 7.3. Is there a characterization of the reals x that are not $\Pi_{1}^{1}-M L$-random, or the ones that are not Δ_{1}^{1}-random relative to any continuous measure?

One may also study higher genericity theory as has been done for classical genericity theory ([23] and [20]). The third author has proved that lowness for Π_{1}^{1}-genericity is the same as being hyperarithmetical and there exists a non-hyperarithmetical real that is low for Δ_{1}^{1}-genericity.

The results of the previous sections show that several of the key notions of randomness, demonstrably different in first order theory, coalesce into equivalent ones in effective descriptive set theory. Thus finer distinctions are revealed only at the arithmetic level. It is tempting to venture beyond Π_{1}^{1} and Δ_{1}^{1} and explore the landscape of definable randomness in the analytical hierarchy. However, this will lead us very quickly to statements undecidable in $Z F C$. Assuming projective determinacy $(P D)$, Kechris [6] has proved several measure and category-theoretic results in the analytical hierarchy in parallel with results for the Π_{1}^{1} case in [17]. ${ }^{1}$ We believe that most of the results proved in the previous sections remain valid upon replacing Π_{1}^{1} with $\Pi_{2 n+1}^{1}$ or $\Sigma_{2 n}^{1}$ under $P D$. However it seems that $P D$ is not a correct tool to use for analyzing the analytical sets since it provides limited recursion-theoretic information. For example, $P D$ does not give a ramified analytical hierarchy with properties similar to what one has for Π_{1}^{1} sets. Instead, some deep results in inner model theory are necessary for this. Inner model theory (say Q-theory [8]) has been applied by some to study descriptive set theory in order to obtain powerful characterizations

[^1]of analytical sets (under large cardinal assumptions, see [8]) ${ }^{2}$. The results are of recursion-theoretic interest, and this area is worth further investigation.

References

[1] Paul J. Cohen. Set theory and the continuum hypothesis. W. A. Benjamin, Inc., New YorkAmsterdam, 1966.
[2] S. Feferman. Some applications of the notions of forcing and generic sets. Fund. Math., 56:325345, 1964/1965.
[3] S. Feferman and C. Spector. Incompleteness along paths in progressions of theories. J. Symbolic Logic, 27:383-390, 1962.
[4] R. O. Gandy. Proof of Mostowski's conjecture. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8:571-575, 1960.
[5] G Hjorth and A Nies. Randomness in effective descriptive set theory. London. Math. Soc., to appear.
[6] Alexander S. Kechris. Measure and category in effective descriptive set theory. Ann. Math. Logic, 5:337-384, 1972/73.
[7] Alexander S. Kechris. The theory of countable analytical sets. Trans. Amer. Math. Soc., 202:259-297, 1975.
[8] Alexander S. Kechris, Donald A. Martin, and Robert M. Solovay. Introduction to Q-theory. In Cabal seminar 79-81, volume 1019 of Lecture Notes in Math., pages 199-282. Springer, Berlin, 1983.
[9] B. Kjos-Hanssen, A. Nies, and F. Stephan. Lowness for the class of Schnorr random sets. Notre Dame Journal of Formal Logic, 35(3):647-657, 2005.
[10] S. Kurtz. Randomness and genericity in the degrees of unsolvability. Ph.D. Dissertation, University of Illinois, Urbana, 1981.
[11] Per Martin-Löf. On the notion of randomness. In Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pages 73-78. North-Holland, Amsterdam, 1970.
[12] Yiannis N. Moschovakis. Uniformization in a playful universe. Bull. Amer. Math. Soc., 77:731736, 1971.
[13] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.
[14] A. Nies. Computability and Randomness. Oxford University Press. To appear in the series Oxford Logic Guides, draft available on Nies' home page.
[15] André Nies, Frank Stephan, and Sebastiaan A. Terwijn. Randomness, relativization and Turing degrees. J. Symbolic Logic, 70(2):515-535, 2005.
[16] Gerald E. Sacks. Degrees of unsolvability. Princeton University Press, Princeton, N.J., 1963.
[17] Gerald E. Sacks. Measure-theoretic uniformity in recursion theory and set theory. Trans. Amer. Math. Soc., 142:381-420, 1969.
[18] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.
[19] C. Spector. Hyperarithmetical quantifiers. Fund. Math., 48:313-320, 1959/1960.
[20] Frank Stephan and Liang Yu. Lowness for weakly 1-generic and kurtz-random. to appear.
[21] Hisao Tanaka. A basis result for $\Pi_{1}{ }^{1}$-sets of postive measure. Comment. Math. Univ. St. Paul., 16:115-127, 1967/1968.
[22] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. J. Symbolic Logic, 66(3):1199-1205, 2001.
[23] Liang Yu. Lowness for genericity. Arch. Math. Logic, 45(2):233-238, 2006.

[^2]Department of Mathematics, Faculty of Science, National University of Singapore, Lower Kent Ridge Road, Singapore 117543

E-mail address: chongct@math.nus.eud.sg
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, NZ

E-mail address: andrenies@gmail.com
Institute of Mathematical Science, Nanjing University, P.R. of China 210093
E-mail address: yuliang.nju@gmail.com

[^0]: 2000 Mathematics Subject Classification. 03D30,03D28,03E15,03E35,68Q30.
 The work of the first author was partially supported by NUS grant WBS 146-000-054-123. The second author was partially supported by the Marsden Fund of New Zealand, grant No. 03-UOA130. The third author was supported by NUS Grant No. R-146-000-078-112 (Singapore) and NSF of China No. 10471060 and No. 10420130638.

[^1]: ${ }^{1}$ Since one may apply $P D$ to obtain some dynamic properties of $\Pi_{2 n+1}^{1}$ and $\Sigma_{2 n}^{1}$-sets, such as scales (see [12]).

[^2]: ${ }^{2}$ We thank W. Hugh Woodin for pointing this out to us.

