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Abstract

Let
∑

n∈Nd fnxn be a multivariate generating function that converges in a
neighborhood of the origin of Cd. We present a general theorem for computing
the asymptotics of the diagonal coefficients fa1n,...,adn.

1 Introduction

This article presents some recent progress in the asymptotics of diagonal coefficients
of multivariate generating functions and can be seen as an extension of [RW]. Before
beginning, let us set some notation. Boldface letters denote row vectors, with the
symbols 0 and 1 denoting the vectors of all zeros and all ones, respectively. Com-
ponent i of a vector x is denoted by xi. We also use multi-index notation, so that
xn = xn1

1 · · ·xnd
d and ∂α = ∂α1

1 · · · ∂αd
d , where ∂i = ∂/∂xi.

Let F (x) =
∑

n∈Nd fnx
n be a complex power series that converges in a neigh-

borhood of the origin but not on all of Cd. We wish to compute asymptotics for
the diagonal coefficients fa1n,...,adn for fixed positive integers a1, . . . , ad, a task often
useful in enumerative combinatorics. To this end, we apply multivariate singularity
analysis (in the style of [PW02], [PW04], [BP]) directly to F (x) to compute the
asymptotics. For simplicity of presentation, we suppose that fn ≥ 0 and that F is
rational, although much greater generality is possible.

2 Results

Let D ⊂ Cd be the open domain of convergence of F and write F (x) = I(x)/J(x)p

for some I and J holomorphic on an open domain D′ containing the closure of D
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and relatively prime in the ring of holomorphic functions on D′ and for some positive
integer p. Let V be the complex variety {x ∈ Cd : Jp(x) = 0} = {x ∈ Cd : J(x) =
0}.

A critical point of F for n ∈ (N+)d is a solution of

J(x) = 0

ndxi∂iJ(x) = nixd∂dJ(x) (i < d).

Let Crit(n) denote the set of all critical points of F for n. For generic directions
n, this set is finite, being a zero-dimensional complex variety. The main situation in
which Crit(n) is infinite occurs when J defines a binomial variety {x | xa−xb}, in
which case Crit(n) is empty for all but one direction and uncountable otherwise.
Such examples can be analysed by a variant of the methods shown here.

A contributing point of F for n is a critical point that influences the asymp-
totics of the coefficients of F in the direction of n. Let Contrib(n) denote the
set of all such points. While Contrib(n) is ill-defined here, its functional role will
become clear from the next two theorems.

Theorem 2.1 ([PW]). If Crit(n) is finite, then

• Crit(n) contains exactly one point, call it c, that lies in the positive orthant
of Rd, and c ∈ Contrib(n);

• all other members of Contrib(n) lie on T (c);

• all members p of Contrib(n) satisfy V ∩D(p) ⊆ T (p);

• in the case where J = 1−P for some aperiodic power series with nonnegative
coefficients P , Contrib(n) = {c}.

Here T (p) and D(p) denote respectively the polytorus and the polydisk of a
point p ∈ Cd, that is, respectively the sets {x ∈ Cd : ∀i ≤ d |xi| = |ci|} and and
{x ∈ Cd : ∀i ≤ d |xi| ≤ |ci|}, and a power series is aperiodic if the Z-span of its
monomial vectors is all of Zd.

A point c ∈ V is a smooth point if V is a smooth complex manifold in a
neighborhood of c, or equivalently, if ∂iJ(c) 6= 0 for some i (see [BK86, page 363]
for instance). For simplicity of presentation, we deal only with smooth points in
this article. This is the generic case, although interesting examples are not always
generic. For more on the case of non-smooth points, see [PW04].

Since J is holomorphic, given a smooth point c of V with ∂dJ(c) 6= 0, say, there
exist, by the implicit function theorem, a holomorphic function g and an open ball
around c such that J(x̂, g(x̂)) = 0. We will refer to this function g throughout.

We now state a technical lemma on the asymptotics of oscillatory integrals, a
simplification of [Hör83, Theorem 7.7.5]. Because this lemma gives an explicit, albeit
complicated, formula for the coefficients of the asymptotic series, it allows one to
calculate straightforwardly coefficients beyond the leading term. In contrast, the
more common, nonconstructive-Morse-lemma approximations found in the literature
do not provide this.
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Lemma 2.2. Let K ⊂ Rd−1 be a compact set, X an open neighborhood of K,
and N a positive integer. If ψ : K → C is 2N -continuously differentiable with
compact support, h : X → C is (3N + 1)-continuously differentiable, <h ≥ 0 in X,
<h(θ0) = 0, h′(θ0) = 0, and h′ 6= 0 in K \ θ0, then∫

ψ(θ)e−ωh(θ)dθ = e−ωh(θ0) [det(ωh′′(θ0)/2π)]
−1/2

∑
0≤k<N

ω−kLkψ +O(ω−N),

as ω →∞. With

h(θ) = h(θ)− h(θ0)− 〈(θ − θ0)h
′′(θ0),θ − θ0〉/2,

which vanishes to order three at θ0, we have

Lkψ = (−1)k
∑

0≤m≤2k

〈∂h′′(θ0)
−1,∂〉m+k(hmψ)(θ0)

2m+k(m+ k)!m!
.

Here 〈a,b〉 is the inner product abT , and ∂ is the vector of partial differential
operators ∂j = ∂j.

Lk is a differential operator of order 2k acting on ψ at x0 (considering the order
3m zero of hm). The coefficients are rational homogeneous functions of degree −k
in h′′(θ0), . . . ,h

(2k+2) with denominator (deth′′(θ0))
3k (which comes from the ob-

servation that 〈∂h′′(θ0)
−1,∂〉 = 〈∂,∂ adjh′′(θ0)

deth′′(θ0)
〉). In every term the total number of

derivatives of ψ and of h′′ is at most 2k.

Remark 2.3. In Lemma 2.2, since ψ and h are sufficiently continuously differen-
tiable, the order of partial differentiation is inessential when taking their derivatives.
Also, 〈∂h′′(θ0)

−1,∂〉 =
∑

1≤j,k<d h
′′(θ0)

−1
jk ∂j∂k, a weighted sum of all possible second

partial derivatives. More generally, 〈∂h′′(θ0)
−1,∂〉j is a weighted sum of all possible

(2j)th partial derivatives, the weight of a partial derivative being the product of the
weights of the second partial derivatives (read from left to right, say) that compose
it. For example, ∂(3,2,7,7,1,5) has weight h′′(θ0)

−1
3,2h

′′(θ0)
−1
7,7h

′′(θ0)
−1
1,5. Thus calculating

Lkψ requires calculating for each j ∈ {0, . . . , 3k} the weights of the (2j)th par-

tial derivatives involved. For each j there are at most
(
d
2

)j
/j! such weights since

each (2j)th partial derivative has j pairs of second partial derivatives and since or-
der of differentiation within and among pairs is inessential for calculating weights.
Thus calculating Lkψ, having already calculated Lk−1ψ, requires calculating at most∑

0≤j≤3k

(
d
2

)j
/j = d6k

(3k)!
+O(d3k) weights.

In the special case where ψ and h are symmetric and θ0 is a multiple of 1, it
is easy to see that all (2j)th partial derivatives of hmψ within the same partition
class are equal when evaluated at θ0. Here the partition class [p1, . . . , pl] of a (2j)th
partial derivative ∂α is defined by p1 equals the number of occurrences of the greatest
entry of α, p2 equals the number of occurrences of the second greatest entry of α,
etc.; thus (p1, . . . , pl) is a partition of (2j). Moreover, by symmetry h′′(θ0) has its
diagonal entries all equal and its off-diagonal entries all equal, so that there are
only two different weights for second partial derivatives, one for repeated derivatives

and one for mixed derivatives. Since there are O((2j)−1/4eπ
√

2(2j)/3 partitions of 2j
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(see [FS] for instance) and at most j + 1 possible weightings for each partition, the
number of binary (repeated vs. mixed partials pairs) words of length j disregarding
order, calculating Lkψ, having already calculated Lk−1ψ, requires calculating at most∑

3k−1≤j≤3k O(j3/4e2π
√
j/3) = O(k3/4e2π

√
k) weights.

We come now to our main theorem on diagonal asymptotics. This is a general-
ization of [PW02, Theorem 3.5] (please note the typo therein: the zdHd should be a
−zdHd) in that we employ the constructive Lemma 2.2 and address the case p > 1,
which arises often when computing statistics, such as expectation and variance, with
generating functions. See Section 3 for such an example.

Theorem 2.4. Let n = (a1n, . . . , adn) for some a1, . . . , ad ∈ N+. If Contrib(n)
consists of a single smooth point c such that cd∂dJ(c) 6= 0 and cd is a zero of order
one of xd 7→ J(c1, . . . , cd−1, xd), then

fn = c−n

( ∑
0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!

[
(2πnd)

d−1 det h̃′′(0)
]−1/2 ∑

0≤k<N

n−kd Lkψ̃j +O
(
np−1−N
d

))

as n→∞. Here

ψj(x̂) = lim
xd→g(bx)

(−xd)−p+j∂jd[(xd − g(x̂))pF (x̂, xd)],

h(x) = log g(x̂) + i
∑
j<d

nj
nd
xj − log g(c),

E(θ̂) = (c1e
iθ1 , . . . , cd−1e

iθd−1),

ψ̃j = ψ ◦ E,

h̃ = h ◦ E,

and Lkψ̃ is as in Lemma 2.2 (but with tildes). In particular,

ψ0(x̂) =
I(x̂, g(x̂))

(−g(x̂)∂dJ(x̂, g(x̂)))p
,

which is often useful in calculations.

Proof. From the proof of [PW02, Lemma 1.4], for all ε > 0 there exists a neighbor-
hood N ⊆ T (ĉ) ∩ V ∩ Cd−1 of ĉ such that

fn = c−n

(
(2πi)1−d

∫
N

x̂−bn−1R(x̂)dx̂ +O((1 + ε)nd)

)
,

as nd →∞, where R(x̂) = −Res(F (x̂, xd)x
−nd−1
d ;xd = g(x̂)).

For easy reading, let x = xd. Since g(x̂) is a a simple zero of J(x̂, ·), it is a pole
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of order p of F (x̂, ·). Therefore we can compute the above residue:

R(x̂) =− lim
x→g(bx)

1

(p− 1)!
∂p−1
d

[
(x− g(x̂))pF (x̂, x)x−nd−1

]
=− 1

(p− 1)!
lim

x→g(bx)

∑
0≤j<p

(
p− 1

j

)
∂jd [(x− g(x̂))pF (x̂, x)] ∂p−1−j

d x−nd−1

(by the Leibniz rule)

=
1

(p− 1)!
lim

x→g(bx)

∑
0≤j<p

(
p− 1

j

)
∂jd [(x− g(x̂))pF (x̂, x)] (−1)p−j ·

(nd + 1)p−1−j x−nd−p+j

=
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!
g(x̂)−nd lim

x→g(bx)
(−x)−p+j∂jd [(x− g(x̂))pF (x̂, x)]︸ ︷︷ ︸

ψj(bx):=

.

Here ma denotes m(m−1) · · · (m−a+1), the ath falling factorial power of m (with
the convention that m0 = 1).

Proceeding as in the proof of [PW02, Lemma 4.1], we have

(2πi)1−d
∫
N

x̂−bn−1R(x̂)dx̂

=(2πi)1−d
∫
N

x̂−bn−1
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!
g(x̂)−ndψj(x̂)dx̂

=c−n(2πi)1−d
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!

∫
N

x̂−bn
ĉ−n

ψj(x̂)

(
g(x̂)

g(ĉ)

)−nd dx̂∏
1≤k<d xk

=c−n(2π)1−d
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!

∫
eN
∏

1≤k<d

e−inkθkψ̃j(θ̂)

(
g(x̂)

g(ĉ)

)−nd

dθ̂

(via the change of variables x̂ = E(θ̂))

=c−n(2π)1−d
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!

∫
eN e−nd

eh(bθ)ψ̃j(θ̂)dθ̂︸ ︷︷ ︸
Ij :=

.

Now <h̃ ≥ 0 on Ñ iff log
∣∣∣g(E(bθ))

g(bc)

∣∣∣ ≥ 0 on Ñ iff |g(x̂)| ≥ |g(ĉ)| on N . The last

inequality does indeed hold, for if |g(x̂)| < |g(ĉ)| with x ∈ N ⊆ T (ĉ)∩V∩Cd−1, then
(x̂, g(x̂)) ∈ V∩D(c) ⊆ T (c) by Theorem 2.1, so that |g(x̂)| = |g(ĉ)|, a contradiction.

So by Lemma 2.2, for each j ∈ {0, . . . , p− 1} we have

Ij = e−nd
eh(0)

[
det(ndh̃

′′(0)/2π)
]−1/2 ∑

k<N

n−kd Lkψ̃j +O(n−Nd )

= e−nd
eh(0)

[
(
nd
2π

)d−1 det h̃′′(0)
]−1/2 ∑

k<N

n−kd Lkψ̃j +O(n−Nd ).
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Therefore

fn = c−n(2π)1−d
∑

0≤j<p

(nd + 1)p−1−j

(p− 1− j)!j!
Ij +O((1 + ε)nd)

= c−n

(∑
j<p

(nd + 1)p−1−j

(p− 1− j)!j!

[
(2πnd)

d−1 det h̃′′(0)
]−1/2 ∑

k<N

n−kd Lkψ̃j +O
(
np−1−N
d

))
,

as desired.
Lastly,

ψ0(x̂) = lim
x→g(bx)

(−x)−p(x− g(x̂))pF (x̂, x)

= lim
x→g(bx)

I(x̂, x)(
−xJ(bx,x)−0

x−g(bx)

)p
=

I(x̂, g(x̂))

(−g(x̂)∂dJ(x̂, g(x̂)))p
.

Proposition 2.5 ([RW]).

h̃′′(0)lm =
clcm

c2d(∂dJ)2

(
∂mJ∂lJ + cd(∂dJ∂m∂lJ − ∂mJ∂d∂lJ − ∂lJ∂m∂dJ +

∂lJ∂mJ

∂dJ
∂2
dJ)

) ∣∣∣
x=c

;

h̃′′(0)ll =
cl∂lJ

cd∂dJ
+

c2l
c2d(∂dJ)2

(
(∂lJ)2 + cd(∂dJ∂

2
l J − 2∂lJ∂d∂lJ +

(∂lJ)2

∂dJ
∂2
dJ)

) ∣∣∣
x=c

,

where l,m < d and l 6= m.

In the often-encountered case of symmetric functions, Proposition 2.5 simplifies
greatly.

Proposition 2.6 ([RW]). If Crit(n) is finite, n = (n, . . . , n), J(x) is symmetric
in x, and ∂dJ(c) 6= 0, where c is the contributing point that lies in the positive
orthant of Rd, then c = (c, . . . , c) for some positive real c,

h̃′′(0)lm = a,

h̃′′(0)ll = 2a, and

det h̃′′(0) = dad−1,

where a = 1 + c
∂dJ

(∂2
dJ − ∂1∂dJ)

∣∣∣
x=c

, l,m < d, and l 6= m.

3 Example

Example 3.1. Consider the (d+ 1)-variate function

W (x1, . . . , xd, y) =
N(x)

1− yE(x)
.
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Using the symbolic method (as presented in [FS]) it is not very difficult to see that
W counts words over a d-ary alphabet A, where xi marks occurrences of letter i of
A and y marks occurrences of snaps, nonoverlapping pairs of duplicate letters; here
N(x) = 1/[1−

∑d
i=1 xi/(xi + 1)], which counts snapless words over A (the so-called

Smirnov words), E(x) = 1− (1− e1(x))N(x), and e1(x) =
∑d

i=1 xi.
The diagonal coefficient [xn1 . . . x

n
d , y

s]W (x, y) is then the number of words with
n occurrences of each letter and s snaps. Let us compute the expected number of
snaps as n tends to infinity.

E(χ) =
[xn]∂W

∂y
(x, 1)

[xn]W (x, 1)
=

[xn]N(x)−1E(x)(1− e1(x))−2

[xn](1− e1(x))−1
,

where χ is the random variable counting snaps and n = (n, . . . , n). Applying The-
orem 2.4 and Proposition 2.6 with J(x) := 1 − e1(x) to W (x, 1) (with p = 1) and
∂W/∂y(x, 1) (with p = 2) and noting that Contrib(n) consists of a single smooth
point c := (1/d, . . . , 1/d), we get that

E(χ) ∼ c−nn[(2πn)d−1d]−1/2d2(d+ 1)−1

c−n[(2πn)d−1d]−1/2d
=

d

d+ 1
n,

as n→∞.
To compute the variance V(χ) = E(χ2)− E(χ)2, we need

E(χ2) =
[xn]

(
∂2W
∂y2

(x, 1) + ∂W
∂y

(x, 1)
)

[xn]W (x, 1)

=
[xn]N(x)−2E(x)(E(x) + 1)(1− e1(x))−3

[xn](1− e1(x))−1

∼ c−nn22−1[(2πn)d−1d]−1/22d3(d+ 1)−2

c−n[(2πn)d−1d]−1/2d

=

(
d

d+ 1
n

)2

,

as n → ∞. Thus the variance has no n2 term, and we need to recalculate our
asymptotics to at least two terms. Actually, computer simulation suggests that the
variance is linear in n and so has no n3/2 term either, so that we need to recalculate
our asymptotics to at least three terms. This is no bare-hands task, as calculating
L2ψ̃ by taking advantage of the symmetry as described in Remark 2.3 requires
calculating

∑
1≤j≤6(#partitions of 2j) ·

(#weights for each partition) ≤ 2(3)+5(5)+11(7)+22(9)+42(11)+77(13) = 1769
weights. We are currently trying to employ Maple to carry out this calculation.
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Verlag, Basel, 1986, Translated from the German by John Stillwell. MR
MR886476 (88a:14001)

7



[BP] Yuliy Baryshnikov and Robin Pemantle, Convolutions of inverse linear
functions via multivariate residues, preprint available at http://www.math.
upenn.edu/~pemantle/papers/Preprints/hyperplanes.pdf.

[FS] Phillipe Flajolet and Robert Sedgewick, Analytic combinatorics, in
preparation, preprint available at http://algo.inria.fr/flajolet/

Publications/book061023.pdf.

[GR92] Zhicheng Gao and L. Bruce Richmond, Central and local limit theorems
applied to asymptotic enumeration. IV. Multivariate generating functions,
J. Comput. Appl. Math. 41 (1992), no. 1-2, 177–186, Asymptotic methods
in analysis and combinatorics. MR MR1181718 (94b:05017)
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