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ABSTRACT 4 

A stochastic time-based deterioration model for use with New Zealand bridges is 5 

presented, comprising two parts and being based on the condition management process 6 

that is used to assess the extent and severity of a defect or defects.  The first part is an 7 

expert based severity deterioration model, which can be used to simulate the 8 

deterioration of timber, concrete, pre-tensioned and steel load bearing elements.  The 9 

second part is the data derived extent model, which uses a novel approach, not previously 10 

used, to simulate the growth of defects with time.  By creating these extent and severity 11 

models the general absence of deterioration models in the Australian and New Zealand 12 

region is addressed.  Furthermore, the development of both the extent and severity model 13 

was achieved in a data constrained environment, which led to validation and 14 

development challenges.  How these challenges were dealt with, and the novel methods 15 

that were used to solve them are also covered.   16 
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INTRODUCTION 19 

New Zealand bridges are designed to last for 100 years.  Nevertheless, for older bridges 20 

constructed in the post-war period between 1940 and 1950 a bridge’s design life was not 21 

explicitly considered (Rogers et al. 2013).  To provide insight into how best to manage 22 

these post war bridges, and to ensure that road users continue to be provided with the 23 

expected level of service, bridge performance models are created (Lake and Seskis 2013).  24 

By creating performance models, such as condition and strength models, the bridge asset 25 

manager is able to assess the remaining life of the asset and to investigate the future 26 

rehabilitation budgets required to maintain the expected service levels (Bu et al. 2012).  27 

In a more general context the creation of models can also lead to new insights into the 28 

system being simulated, can challenge old modelling paradigms and assumptions, can be 29 

used to demonstrate trade-offs between competing objectives, can illuminate 30 

uncertainties, and can lead to new questions being asked (Epstein 2008).   31 

Even though there are numerous benefits that can be derived from developing and using 32 

models, research shows that bridge deterioration models are not widely implemented in 33 

Australia and New Zealand (Lake and Seskis 2013).  Similarly, Bush et al. (2012) also 34 

identified that bridge asset management decision-making in New Zealand was less 35 

developed than that used in pavement decision-making.  Accordingly, a bridge 36 

deterioration model for use in improved bridge asset management decision-making is 37 

presented.   38 

The development of the bridge deterioration model, which includes a severity model and 39 

an extent model, is detailed in the following sections.  In these sections the impact of 40 

developing a deterioration model in a constrained data environment is first addressed.  A 41 

general overview of the different deterioration model types, and the details of which 42 
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model type was chosen is then provided.  Following on, a description of the severity 43 

model and its development, and a description of the extent model and its development is 44 

detailed.  Also described in these sections are the challenges of creating a bridge 45 

deterioration model in a data constrained environment, which arose as a result of New 46 

Zealand bridge managers only collecting extent and severity data between 2011 and 47 

2015 (NZTA 2011; NZTA 2015).  The final sections detail how the deterioration curves 48 

were validated, given the short history of condition data collection in New Zealand.   49 

SETTING MODELLING EXPECTATIONS 50 

Two data extremes exist when developing deterioration models.  In the first most 51 

favourable extreme a data rich environment exists.  Herein, a data rich environment is 52 

one that comprises sufficient condition data that comprehensively covers the different 53 

components of a bridge.  Such a situation often exists when there is a long history of data 54 

collection.  In the second extreme, limited data exists because of a limited history of data 55 

collection or because an organization is embarking on a new or altered data collection 56 

strategy.  Consequently, the limited history leads to a data constrained environment 57 

because there is perceived to be insufficient data to create a condition model.  In an 58 

organization with a long history of data collection predictive models can be developed 59 

and rigorously validated to ensure the future views they provide are accurate.  In a data 60 

constrained environment the limited availability of data presents a challenge, but the 61 

paucity of data does not preclude the development of a deterioration model.  Although 62 

predictive models are widely used, they are not the only developmental class of model.  63 

Three model development classes exist comprising generator, mediator and predictor 64 

(Heath et al. 2009).  Generator models are used to generate hypotheses, mediator models 65 

are used to compare competing strategies and predictor models are used to gain insights 66 

into the future state of the modelled system or system’s components, such as bridge or 67 



4 
 

bridge components.  As a result of the combined problem of a limited data history and the 68 

requirement to compare the effectiveness of different bridge management strategies, a 69 

mediator model was developed.  Thus, the deterioration model has to provide sufficient 70 

insight to be able to comprehend the relative benefits of competing strategies, rather than 71 

an accurate future prediction.  Accordingly, there has to exist sufficient confidence that 72 

each part of the model and the model’s results provide a sufficient level of accuracy.  The 73 

following sections detail how this was achieved. 74 

MODELLING METHODOLOGY 75 

A significant amount of research has been undertaken into the types of models that can 76 

be used to simulate bridge performance (Kotze et al. 2015; Lake and Seskis 2013).  For 77 

this reason the types of models that can be applied are only briefly reviewed here, 78 

primarily with the aim of justifying the choice of model used herein.  79 

Deterministic, stochastic and artificial intelligence are the three modelling approaches 80 

generally used to simulate bridge deterioration processes (Wang et al. 2012).  81 

Deterministic models are the simplest approach and include model types such as average 82 

time to failure, and linear and regression models (Kotze et al. 2015).  Although simple to 83 

implement, deterministic models provide limited opportunity to investigate the effect 84 

that uncertainty has on asset management objectives.  In deterministic models the 85 

limitation arises because the same output will always be derived from the same set of 86 

inputs.  Consequently, two bridges with the same construction form and in the same 87 

environment will always degrade at the same rate.  If a deterministic approach is applied 88 

to a network of bridges, then the condition distribution can be easily calculated, provided 89 

that no maintenance is undertaken.  Given that the output from a condition model is often 90 

used to plan future maintenance interventions or is used in business case development 91 
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(Kotze et al. 2015), this type of determinable performance can infer a level of certainty 92 

not present in the real-world system.  To address the inherent randomness found in a 93 

real-world system, stochastic models are used.   94 

In a stochastic model the underlying assumption is that no two bridges, even with the 95 

same construction form and in the same environment, will deteriorate at the same rate.  96 

To take account of this variability a distribution function is used to describe the 97 

probability of a bridge of a given age being in a certain condition state.  A stochastic 98 

approach can also be used to incorporate environmental influences and material 99 

characteristics into the deterioration model (Kotze et al. 2015).  By acknowledging the 100 

uncertainty present within the asset management system, and by modelling this 101 

uncertainty, the full spectrum of decision options can be explored and more appropriate 102 

risk management strategies can be developed.   103 

A number of feasible methods can be used to model stochasticity including Markov, Semi-104 

Markov and Gamma deterioration processes (Agrawal et al. 2010; Golabi and Shepard 105 

1997; Kuhn and Madanat 2005; Wang et al. 2012), with the most common method being 106 

the Markov Chain (Kotze et al. 2015).  A Markov chain is a state-based model, as the 107 

annual likelihood of a bridge changing from one condition state to the next is simulated.  108 

In a Markov chain unless an outside intervention occurs there is no improvement in the 109 

condition state.  Thus, a bridge remains in the final condition state, known as the 110 

absorbing state, until rehabilitation is undertaken. 111 

Markov chain models are commonly used to model bridge deterioration, but as argued 112 

by Aboura et al. (2008), they do not accurately represent real-world deterioration 113 

processes.  The inaccuracy in Markov models arises because the period between each 114 

condition state is non-homogenous and as such cannot be modelled using the uniform or 115 
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geometric progressions assumed in Markov models.  Deterioration in real world systems 116 

is non-homogeneous, because the time spent in each state, referred to as the sojourn time, 117 

decreases with worsening condition (Black et al. 2005).  To account for the non-118 

homogeneity of bridge deterioration processes a time based approach such as a Semi-119 

Markov methodology is used (Black et al. 2005).  Time-based models have the potential 120 

to provide a more realistic representation of real-world deterioration processes, when 121 

compared to state-based models (Thomas and Sobanjo 2013), because of their ability to 122 

model the changing rate of deterioration as a bridge ages.   123 

Artificial intelligence is a third method which can be used to model deterioration.  To 124 

apply this method a large dataset in combination with machine learning is used to derive 125 

a relationship between the dependent and independent variables (Kotze et al. 2015).  126 

Once the relationships have been defined, the model is then used to assess the long-term 127 

performance of the bridge asset (Lee et al. 2011).  Given the limited availability of bridge 128 

condition data, an artificial intelligence approach was not used to develop the bridge 129 

deterioration model, leaving only deterministic and stochastic approaches as viable 130 

options.  Considering that a stochastic model is preferable to a deterministic model and a 131 

time-based model is preferable to a state-based model, a time-based stochastic 132 

methodology was chosen.   133 

THE TIME BASED MODEL 134 

In a Markov chain the probability of transitioning to the following state is estimated.  In 135 

accordance with Semi-Markov modelling assumptions the state that a bridge will 136 

deteriorate to is chosen first, then the sojourn time.  In this deterioration model a third 137 

transition was also added to the severity and sojourn selection process to represent the 138 

growth of a defect with time.  The time at which the deterioration will take place is a 139 
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function of the bridge’s existing severity state 𝑖𝑖 and the probability 𝑃𝑃𝑖𝑖𝑖𝑖  of a transition from 140 

the existing state to a new state  𝑗𝑗 occurring.  The sojourn time 𝐻𝐻𝑖𝑖𝑖𝑖 , given that the bridge 141 

has transitioned from severity level 𝑖𝑖 to severity level 𝑗𝑗 is also derived stochastically.  In 142 

the new deterioration model the growth of the defect 𝐷𝐷𝑖𝑖𝑖𝑖  occurs after the condition state 143 

and transition time has been selected.   The value of 𝐷𝐷𝑖𝑖𝑖𝑖   is also derived stochatically.  144 

Figure 1 details the generalized form of the model.    145 

In the generalized form of a Semi-Markov model there are clearly a number of potential 146 

deterioration paths, as illustrated in Figure 1.  For example, a bridge with a severity level 147 

of 1 can potentially transition to severity level 2 (𝑃𝑃12) or to severity level 3 (𝑃𝑃13).  To 148 

simplify the severity model the deterioration process can be assumed to move 149 

sequentially through all states (Noortwijk and Kallen 2014).  By assuming a simplified 150 

deterioration process the generalized model is reduced to the central path 151 

comprising 𝑃𝑃12, 𝑃𝑃23 and 𝑃𝑃34.  In the simplified Semi-Markov model the next state is known 152 

and so the probability of selecting State 2, if State 1 is the current state, is 1.0.  Thus, the 153 

deterioration characteristic of a bridge is defined by the sojourn time 𝐻𝐻𝑖𝑖𝑖𝑖 and the size of 154 

the defect 𝐷𝐷𝑖𝑖𝑖𝑖 .  155 

THE SOJOURN MODEL 156 

The following section details the expert based methodology used to develop the sojourn 157 

model, which comprised the aggregation of expert opinion using a statistical method 158 

known as linear pool analysis.  Linear pool analysis was used to develop a set of pert-beta 159 

distributions that define the sojourn times for each of the state-time transitions. 160 

Prior to creating the model the number of deterioration states had to be defined.  The 161 

number of states being influenced by the condition data collection standards that were 162 

employed by bridge management agencies.  In New Zealand two severity rating systems 163 
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were identified.  The first was the four state system detailed in the Bridge Manual (NZTA 164 

2014) and the second New Zealand system that was identified was based on a more 165 

recent five state system state that was used in the UK (UKHA 2007).  An example of the 166 

five state data that was collected in New Zealand is detailed in Figure 2.  For brevity only 167 

the super structure element is shown.  The remaining elements comprise substructure, 168 

durability elements, safety elements, waterway elements, retaining elements and other 169 

elements.   170 

As the reason for creating the bridge deterioration model was to understand how the 171 

performance of the road network changed with deteriorating strength, the four state 172 

system detailed in the bridge manual was used.  Furthermore, by using the four state 173 

system the data collection process was simplified, as the bridge asset managers only had 174 

to define the transition times between good, fair, deteriorated and seriously deteriorated.  175 

Given the use of the four state system, the five state data that was collected and which 176 

was used in the validation process was converted so that it could be compared to the 177 

selected four state system.  Based on a comparison of the four state system and the five 178 

state system, the first two states of the five state system were combined (Refer Table 1).  179 

The same modification was also used in the development of the extent model, as the 180 

extent data was also based on a five state system.  As a result of combing the first two 181 

states the dwell time in severity state one is increased before the bridge transitions to 182 

severity state two.  The combining of the two states was considered to be inconsequential, 183 

because bridges with such minor defects generally have no rehabilitation actions applied 184 

to them.   185 

When the availability of data is limited, the development of a severity model can be 186 

addressed through the application of industry guidance or by employing pre-existing 187 
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models from similar networks and updating these models over time.  Alternatively, 188 

expert judgment can be used to generate the required data.  Due to the difficulty of 189 

obtaining comprehensive historical data for similar networks and because of the limited 190 

availability of existing New Zealand bridge deterioration models, an expert based 191 

approach was chosen.  192 

When developing an expert based model the size of the expert panel can vary from three 193 

to in excess of one hundred participants (Skulmoski et al. 2007), but expert panels 194 

typically range between six and ten participants (Goossens and Cooke 2005).  In the study 195 

used to develop the deterioration model, sixteen New Zealand bridge asset managers 196 

were contacted and seven replied.  Thus, the size of the expert panel was within the 197 

typical range highlighted in the literature.   198 

To obtain the data required to model bridge deterioration a three part questionnaire was 199 

provided to each bridge manager.  The first section of the questionnaire was used to 200 

obtain data on deterioration rates and the second part covered management details 201 

including the typical percentage of the asset in a given condition state, and the cost of 202 

repairing and strengthening bridges.  The final part was open and provided space for 203 

additional comments, should those being surveyed wish to add any.  In the first section, 204 

the bridge managers were asked how long they believed steel, in-situ concrete, pre-205 

tensioned (pre-stressed and post-tensioned) and timber load bearing elements would 206 

take to transition from one severity state to the next.  The aim of this question was to 207 

provide insight in to the differing lengths of time taken by each material type to transition 208 

between each of the four severity states.  In the questionnaire no attempt was made to 209 

identify the effect that the different coastal, inland and volcanic environments would have 210 

on the rate of bridge deterioration.  Environmental effects were omitted from the 211 
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questionnaire because even though bridge engineers had an appreciation that the 212 

location of a bridge affected its service life, quantifying the general deterioration 213 

processes was found to be difficult enough.  Given the aim of the model was to compare 214 

high level strategies, the omission of environmental effects was considered to be an 215 

appropriate simplification.  The incorporation of environmental effects into a bridge 216 

model constitutes a future improvement, which can be developed should the required 217 

data become available.  Adding the environmental effects is one way of transitioning to a 218 

predictor model. 219 

To address the uncertainty in the sojourn times each bridge engineer was asked to 220 

provide an assessment of the most pessimistic, the expected and the most optimistic 221 

length of time each material would take to transition from one severity state to the next.  222 

Using these estimates a three point Beta-Pert Distribution (Davis 2008) was developed.  223 

The Beta-Pert distribution was chosen because of its use in modelling systems with 224 

minimal information and because of its use in modelling expert opinion.  The following 225 

definition of a Beta distribution was used:  226 

 𝑃𝑃(𝑥𝑥) =
1

𝐵𝐵(𝛼𝛼,𝛽𝛽) 𝑥𝑥
𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1 (1) 

Where 𝑃𝑃(𝑥𝑥) is the probability of an event 𝑥𝑥 occurring, B  is the normalizing Beta function, 227 

α and β  are shape factors, , 0α β > and 0 1x≤ ≤ (Abramowitz and Stegun 1972).  The 228 

Beta function is itself a function of two Gamma Distributions, which are described by a 229 

factorial series.  To derive the Beta distribution shape factors from the pessimistic (𝑎𝑎), 230 

expected (𝑚𝑚) and optimistic (𝑏𝑏) time estimates provided by the bridge engineers, the 231 

following equations were used (Davis 2008): 232 
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 𝛼𝛼 = �
2(𝑏𝑏 + 4𝑚𝑚 − 5𝑎𝑎

3(𝑏𝑏 − 𝑎𝑎)
� �1 + 4 �

(𝑚𝑚− 𝑎𝑎)(𝑏𝑏 − 𝑚𝑚)
(𝑏𝑏 − 𝑎𝑎)2

�� (2) 

 𝛽𝛽 = �
2(5𝑏𝑏 − 4𝑚𝑚 − 𝑎𝑎

3(𝑏𝑏 − 𝑎𝑎)
� �1 + 4 �

(𝑚𝑚− 𝑎𝑎)(𝑏𝑏 − 𝑚𝑚)
(𝑏𝑏 − 𝑎𝑎)2

�� (3) 

Where 𝛼𝛼 and 𝛽𝛽 illustrated in Equations 2 and 3 are the shape functions used in Equation 233 

1. 234 

To simulate the bridge deterioration process a single distribution is required to model 235 

the transition between each severity state.  Given that no two bridge engineers provided 236 

the same range of bridge sojourn times these results had to be aggregated.  As detailed 237 

by Clemen and Winkler. (2007), the aggregation of expert data can be dichotomized into 238 

behavioral and mathematical approaches.  The Delphi approach is one behavioral method 239 

that can be used, whereby each round of the process is used to elicit information from a 240 

group of experts or stakeholders.  Over a number of rounds, usually between three and 241 

five, a common consensus between those involved is arrived at (Skulmoski et al. 2007).  242 

Delphi has been successfully employed in a number of studies, but its main weakness is 243 

that a mutually agreeable consensus may not be forthcoming, which was a foreseeable 244 

outcome given that those being surveyed would be attempting to rationalize their initial 245 

opinion based on limited information.  Mathematical methods provide an alternative to 246 

Delphi and use recognized techniques such as Axiomatic and Bayesian methods to 247 

provide the desired single distribution.  To combine the estimates provided by those 248 

being surveyed an axiomatic approach known as linear pool analysis was used.  Linear 249 

pool analysis is expressed by the following equation (Clemen and Winkler. 2007): 250 
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𝑝𝑝(𝜃𝜃) = �𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖(𝜃𝜃)

𝑛𝑛

𝑖𝑖=1

 
(4) 

where 𝑛𝑛 is the number of experts, 𝑝𝑝𝑖𝑖(𝜃𝜃) represents the probability distribution function 251 

used to model the reported sojourn times of expert 𝑖𝑖 and 𝑤𝑤𝑖𝑖 is the weighting applied to 252 

each expert’s data, which sums to one.  By providing the opportunity to adjust 𝑤𝑤𝑖𝑖 the 253 

confidence in those being surveyed and their data can be adjusted.  In this case all 254 

weightings were assumed to be equal, as all experts were assumed to provide an equally 255 

valid viewpoint. 256 

To derive the sojourn distributions for each severity state a Monte-Carlo model was used.  257 

The process that was used is detailed in Figure 3.  In the Monte-Carlo model, for each 258 

individual state transition the estimated length of the transition is drawn from each 259 

expert’s distribution.  Each individuals estimate is then combined to provide an overall 260 

estimate.  To obtain the desired data the sojourn model was run 10000 times and the 0th, 261 

50th and 100th percentiles noted.  The 0th percentile was used was considered to be the 262 

most pessimistic and the 100th percentile was used as it was considered the most 263 

optimistic.   264 

The outcome of the linear pool analysis is detailed in Table 2.  Using the data in Table 2 265 

in combination with equations (2) and (3) the shape factors for the material specific Beta 266 

distribution (1) can be derived and inputted into a stochastic time model.  To use the 267 

sojourn model, as a bridge transitions from one state to the next the length of time to the 268 

next state change is calculated.  The length of time being drawn from the beta distribution.   269 

If the sojourn time for 𝑎𝑎, 𝑚𝑚 and 𝑏𝑏 are summed for each severity state an overall lifetime 270 

estimate can be made for each material type (Refer Table 2).  Using the lifetime 271 
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summation methodology, pre-tensioned and in-situ concrete bridges have similar overall 272 

total life ranges, with in-situ concrete bridges surviving between 53.3 and 103.4 years 273 

and pre-tensioned bridges surviving between 53.7 and 98.3 years.  The surprise was that 274 

steel bridges only survive without maintenance for between 42.2 and 75.9 years, which 275 

is a similar length of time to that identified for timber bridges, which survive between 276 

30.6 and 68.4 years.  While the assessment of bridge lives is not the focus of the paper, 277 

this initial result implies that concrete bridges perform better than steel bridges in the 278 

environmental conditions found in New Zealand.  In reality other factors such as initial 279 

capital costs, cost and ease of maintenance, and the time taken to reach functional 280 

obsolescence all have to be taken into account in order to assess whether the lifecycle 281 

management costs of one material is lower than another.  One reason for the comparable 282 

ages of steel and timber bridges, is that timber bridges present on the state highway 283 

network represent a set of older bridges that have happened to deteriorate at a much 284 

slower rate.  Finally, based on the estimated life for each material type, there is an 285 

apparent shortfall between the expected design life and the estimated life.  The reason 286 

for the difference is that the design life of a bridge does not necessarily infer a life without 287 

maintenance, but the time taken for a bridge to deteriorate to point where major 288 

maintenance is required (NZTA 2014).  Accordingly, the estimated life for each material 289 

can be considered a time to major maintenance.    290 

THE DEFECT EXTENT MODEL 291 

In the pavement asset management sector roads are divided into treatment areas, which 292 

are based on the defined treatment length and the lane or pavement width.  In cases 293 

where bridge renewals, component replacements such as joint replacements, or 294 

maintenance actions such as resurfacing or waterproofing are being undertaken this 295 

wholesale intervention approach can also be applied, as the whole component or 296 
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component set is being replaced.  Nevertheless, interventions such as concrete repairs or 297 

painting are often applied to localized areas.  In a pavement management context this is 298 

similar to simulating the growth of potholes with time or other defects such as cracking.  299 

To account for this type of localized maintenance management, a method of estimating 300 

the growth of a defect is required, which requires knowledge how a defect’s extent 301 

increases with time.  The development of the growth model is covered below.     302 

During the inspection process the inspector records not only the severity of the defect, 303 

but the extent of the defect as well.  As highlighted previously, to align with the New 304 

Zealand Bridge Manual, the first two states of the five state extent and severity system 305 

were combined to create a four state system.  The extent ranges that were used in the 306 

model are illustrated in Table 3.  The ranges were adapted from those used by the UK 307 

Highways Agency (Bevc et al. 1999; UKHA 2007) and those used in the inspection policy 308 

trail that was undertaken in New Zealand (NZTA 2011).   309 

To identify the proportion of the asset in a given extent state, bridge inspection records 310 

were drawn from the Opus Bridge Information System (Reynolds and Rooke 2009).  311 

Using these records the percentage of the asset in a given condition state was calculated.  312 

The percentages where then used as an input into a genetic algorithm, which was used to 313 

search for potential solutions for ij D .  In total 1628 bridges were included in the dataset, 314 

which equates to 37 % of the New Zealand bridge stock.  To minimize the number of 315 

transition matrices and to provide a larger dataset, the data for all material types was 316 

aggregated.  As more data becomes available individual material type distributions can 317 

be modelled.  The dataset was used to calculate the general percentages of the asset found 318 

in a given extent state.  Table 4 details the proportion of the bridge stock in a given extent 319 

range for each of the severity states.  It is acknowledged that using the data directly 320 
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without filtering out bridges that have received maintenance results in improvements 321 

being unaccounted for, but this methodology had to be used given the limited time period 322 

the data covered.   323 

To define the defect growth ij D  a Markov Transition Matrix is required for each severity 324 

state.  Thus, the probability of a defect growing is dependent on the severity state the 325 

bridge is in and the existing defect state.  In the extent growth model a defect can 326 

potentially miss an intermediate state and so transition from extent state A to extent state 327 

C.  To address this state skipping process and to identify potential solutions for the 328 

transition model, a three stage process was used.   As an example, in Table 4 the row 329 

relating to severity level two constitutes the pre-transition distribution of the asset in 330 

each extent range, and the row relating to severity level three constitutes the distribution 331 

of the asset post-transition.  Thus, the mapping between the pre- and post-transition 332 

states is defined by the extent growth model.  Three potential solutions to the severity 333 

state 1 to severity state 2 transitions are depicted in Figure 4.  In Figure 4, the arcs 334 

represent the proportion of asset moving between the defined extent states.    335 

To identify potential solutions for the defect growth matrices ij D  the genetic algorithm 336 

BehaviorSearch (Stonedahl 2010) was used.  BehaviorSearch was used because the 337 

deterioration model was originally written as part of a larger model already coded in 338 

Netlogo (Wilensky 1999) and BehaviorSearch was specifically written to work with 339 

Netlogo.  BehaviorSearch comprises three main components including the variables in 340 

the Netlogo model controlled by the genetic-algorithm, the objective function and the 341 

genetic algorithm search engine.  Behavior Search works by controlling the variables in 342 

the model until a minimum or maximum solution to the objective function is obtained.  In 343 

the extent derivation model the variables comprised the percentage of the bridge stock 344 
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transitioning from one extent state to the next.  The objective function compared the 345 

modelled extent distribution of the asset with the required extent distribution, once the 346 

transition had occurred.  Accordingly, the aim was to minimize the difference between 347 

the known and calculated post transition extent distributions.   348 

The search method used to identify potential solutions for ijD was inspired by the 349 

Bayesian search model developed by Welton and Ades (2005).  In their model limited 350 

medical data was used to derive a rate of change matrix used in a continuous time Markov 351 

model.  Once they had developed the rate of change matrix it was converted to a discrete 352 

time Markov matrix.  Their methodology employed this conversion because they wanted 353 

to calculate how long a patient may take to transition to a more severe state, given that 354 

the patient had already spent a length of time in an existing state.  To identify potential 355 

solutions for ijD an adapted methodology was used.  An adapted methodology was used, 356 

because the desired outcome for the extent model differed to that being sought by Welton 357 

and Ades (2005).  In the defect extent only knowledge of how much the defect had grown 358 

was required, given that the bridge had already transitioned from one severity state to 359 

the next.  Consequently, only a single discrete time Markov transition matrix was 360 

required, and this could be calculated directly without first calculating a rate of change 361 

matrix.  To search for solutions to ijD the objective function used by BehaviorSearch was 362 

based on a goodness of fit test, which further modified the method used by Welton and 363 

Ades (2005).   364 

To simulate the pre-transition state a set of 1000 bridges was created and the extents 365 

distributed according to those detailed in Table 4.  Given that there are three transitions 366 

(i.e. 1-2, 2-3 and 3-4), three matrices are required to fully model the growth of a defect.  367 
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Thus, the genetic algorithm must be run in order to simulate each severity state 368 

transition.  The defect transition matrix for each of these state changes being defined by 369 

the following: 370 

 
𝐷𝐷𝑖𝑖𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛾𝛾11 𝛾𝛾12 𝛾𝛾13 𝛾𝛾14

− 𝛾𝛾22 𝛾𝛾23 𝛾𝛾24

− − 𝛾𝛾33 𝛾𝛾34

− − − 𝛾𝛾44⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(5) 

where 𝐷𝐷𝑖𝑖𝑖𝑖  is the extent transition matrix detailing how a defect grows as a bridge 371 

transitions from severity state 𝑖𝑖 to 𝑗𝑗. A ‘-‘ in the matrix indicates that the extent of a defect 372 

cannot improve without an external intervention.  The value of 𝛾𝛾𝑘𝑘𝑘𝑘 is the probability of 373 

transitioning from extent state 𝑘𝑘 to extent state 𝑙𝑙 as the bridge transitions from severity 374 

state 𝑖𝑖 to 𝑗𝑗.  In the matrix each row sums to one.  375 

In the genetic algorithm the proportion of the asset in each extent state 𝛾𝛾𝑘𝑘𝑘𝑘 was initially 376 

selected using a uniform distribution ranging between zero and one.  Clearly, this method 377 

of selecting transition probabilities can result in cases where the rows of the matrix total 378 

to more than one.  To address this problem each row was normalized, such that it 379 

summed to one.  Once the matrix rows were normalized the defect extent for each bridge 380 

in the model was transitioned according to the selected probabilities.  Once transitioned 381 

according to the identified values for 𝛾𝛾𝑘𝑘𝑘𝑘 the percentage of bridges found in each defect 382 

extents state was noted.  The percentages of bridges in each extent state was then 383 

compared to the actual distribution and the square of the difference calculated 𝛿𝛿.  The 384 

square of the difference was calculated as follows: 385 
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𝛿𝛿 = �(𝑂𝑂 − 𝐸𝐸)2
𝑛𝑛

𝑖𝑖=1

 
(6) 

where 𝑂𝑂 is the proportion of the bridges found in each extent state, 𝐸𝐸 is distribution of 386 

bridges, as identified from the bridge inspection records, and n is the number of extent 387 

ranges.  Thus, the aim of the genetic algorithm was to identify a set of solutions that 388 

minimized the difference between 𝑂𝑂 and 𝐸𝐸.  The algorithm is able to identify increasingly 389 

improved solutions by adjusting the percentage of the bridge stock that transitions from 390 

one defect extent state to the next.  Using the identified approach clearly results in a 391 

number of potential solutions, but when linked with expert input the solution set can be 392 

reduced to a credible set.  Thus, by using the identified search method the potential 393 

solution space does not have to be explored manually.   394 

A set of solutions for ijD is detailed in Equations 7, 8 and 9.  To note, in Equation 7, rows 395 

2, 3, and 4 all have 𝛾𝛾𝑘𝑘𝑘𝑘 set to 1.00.  The value of 𝛾𝛾𝑘𝑘𝑘𝑘 was set to 1.00 , because  all of the 396 

bridges in the 0-5% extent range where in good condition and so rows 𝛾𝛾2𝑙𝑙 and 𝛾𝛾3𝑙𝑙 were 397 

not used in this case.  The modification to the matrix was carried out manually and was 398 

done to highlight that the model does not have to account for these transitions. 399 

 
𝐷𝐷12 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.90 0.10 0.00 0.00

− 1.00 0.00 0.00

− − 1.00 0.00

− − − 1.00⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(7) 

 
𝐷𝐷23 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.33 0.56 0.11 0.00

− 0.95 0.05 0.00

− − 0.25 0.75

− − − 1.00⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(8) 
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𝐷𝐷34 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.66 0.03 0.23 0.08

− 0.32 0.37 0.31

− − 0.12 0.88

− − − 1.00⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(9) 

 
 

 

MODEL VALIDATION 400 

As highlighted by Landry et al. (1983) a model can be used either to predict the future or 401 

to better comprehend what an appropriate strategy might be.  Similarly, Heath et al. 402 

(2009) also noted that models have a developmental cycle with them starting as 403 

generators used to test hypotheses, then becoming mediator models that are used to 404 

inform the decision making process, and finally developing into models that are used to 405 

predict the future state of the system.  Each of these developmental stages requires a 406 

different approach to model validation and may include an assessment of whether the 407 

concepts and logic used in the model are appropriate, whether the data the model is 408 

based on is accurate and whether the model provides appropriately accurate outputs 409 

(Landry et al. 1983).  Thus, if the purpose of a model is to predict the future, then 410 

recognized data and output validation techniques must be employed.  In these situations 411 

part of the data is used for training the model and the remainder of the data is used to 412 

assess the models accuracy.  In cases where limited data is available no training data 413 

exists and simply asking more experts what their opinion is will result in one collection 414 

of opinions being compared to another collection of opinions.   415 

As only five years of severity data existed there was insufficient information that could 416 

be used to validate the severity model using recognized techniques.  Nevertheless, even 417 

in a limited data environment there still has to be a level of confidence that the severity 418 

deterioration model will provide credible results.  To undertake the validation of the 419 
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mediator model the construction sequence of 889 bridges constructed over the last 70 420 

years was recreated and the severity and extent states were noted.  The modelled bridges 421 

comprised 262 concrete, 383 pre-tensioned concrete, 243 steel and 1 timber. 422 

If the annualized level of rehabilitation, after 70 years, approximated to the low level of 423 

rehabilitation discussed by the planning agency (NZTA 2011), the results would be 424 

considered adequate to mediate between different bridge management strategies.  A time 425 

period of 70 Years was selected, as it provided a useful planning horizon and also 426 

provided the model sufficient time for asset deterioration to occur, given the length of 427 

time taken for a bridge to require rehabilitation.   428 

The process used to model the development and deterioration of the identified bridges is 429 

detailed in Figure 5.  In Figure 5 the required bridges are first created and the state 430 

transition times and extent of defects are calculated.  Each individual bridge is then aged 431 

and the time to the next transition updated.  If a new decade is reached the creation of the 432 

next group of bridges is triggered and the sojourn times and extent of defects for these 433 

bridges is calculated.  Each year the requirement to change severity states is assessed and 434 

for bridges that have reached their sojourn time limit the sojourn time for the next state 435 

transition is calculated.  At the same time the defect extent size is also reassessed.  The 436 

creation of new bridge group and the deterioration of the asset continues until the model 437 

reaches the defined 70-year duration, which equates to present day. 438 

The model of the construction and deterioration process was run 10 times and the 439 

average number of bridges found in each condition state was noted.  An average was 440 

taken because of the stochastic process used to select sojourn times and the extent of 441 

defects.  The mean number of bridges found in each condition state at the end of the 442 

modelling process is presented in Table 5.  The modelled results are also presented 443 
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alongside the actual distribution of condition states, which were based on bridge 444 

inspection records.  It was assumed that the difference between the modelled results and 445 

the expected results occurred because of the maintenance that was undertaken over the 446 

last 70 years.  The rehabilitation required to closely approximate the actual distribution 447 

is thus the difference between the modelled and actual condition state distributions.  448 

Based on the assumption that bridges in condition states 2A to condition state 4D will 449 

require rehabilitation, 663 bridges were identified, which equates to 74.6 % of all bridges 450 

requiring rehabilitation after 70 years or 1.1 % of the bridge stock per year.  Given that 451 

the low rate of rehabilitation that was identified is similar to the reported low rate of 452 

rehabilitation, both the severity and extent models are considered accurate enough to be 453 

used as mediator models. 454 

CONCLUSIONS 455 

It was identified that a limited numbers of bridges managers were using or were 456 

considering the use of bridge deterioration models in New Zealand.  Nevertheless, such 457 

models are required to provide insight into how best to manage the risks surrounding 458 

ageing bridge stocks.  To support the development of bridge deterioration models in New 459 

Zealand, a bridge model that can be used with the four main bridge materials was 460 

presented.  The new deterioration model was based on the extent and severity 461 

methodology used for a short time in New Zealand.  To develop this model a combination 462 

of expert input and data mined from the Opus bridge management system was used.  In 463 

developing the model a number of developmental and verification challenges where 464 

encountered, which occurred as a result of the limited availability of data, but these 465 

challenges were met using a range of techniques, including a genetic algorithm to search 466 

for extent growth matrices.  It is hoped that by presenting the novel verification methods 467 

and by showing that data does not have to be in great abundance to develop a condition 468 
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model, a path has been created for those in the early stages of developing their own bridge 469 

deterioration models. 470 
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Table 1. The Severity Ratings Used in the Deterioration Model 561 

Severity States noted in the bridge manual States noted in recent inspection standards 

1 Good As new, and early signs of defects 

2 Fair Moderate defects 

3 Deteriorated Severe Defects 

4 Seriously deteriorated Element failed 

   

 562 

  563 
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Table 2. The Sojourn Times for Concrete, Pre-tensioned, Steel and Timber Bridges 564 

Material 
State 

transition 

Sojourn Time (Years) 

a m b 

In-situ 

concrete 

1 - 2 28.65 39.25 50.01 

2 - 3 17.33 26.50 35.07 

3 - 4 7.34 11.45 18.29 

Life estimate 53.32 77.20 103.37 

Pre-tensioned 

concrete 

1 - 2 30.56 39.73 47.59 

2 - 3 15.88 27.01 34.37 

3 - 4 7.22 11.33 16.38 

Life estimate 53.66 78.07 98.34 

Steel 1 - 2 22.89 31.60 41.91 

2 - 3 12.88 15.68 19.68 

3 - 4 6.41 9.97 14.30 

Life estimate 42.18 57.25 75.89 

Timber 1 - 2 16.24 20.39 25.74 

2 - 3 9.38 20.04 28.46 

3 - 4 5.02 7.53 14.16 

Life estimate 30.64 47.96 68.36 

     

 565 
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Table 3. The Extent Ratings Used in the Deterioration Model 567 
Extent Description 

A Slight, not more than 5 % of the surface area/length/number 

B Moderate, 5 % - 20 % of the surface area/length/number 

C Wide, 20 % - 50 % of the surface area/length/number 

D Extensive, more than 50 % of the surface area/length/number 

  

 568 

  569 
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Table 4. The Percentage of Load Bearing Elements in a Given Extent Range 570 

Severity 
Defect Extent Range (State: %) 

A: 0 - 5 B: 5 – 20  C: 20 - 50 D: 50 – 100 

1 100.0    

2 93.4 3.5 3.1  

3 28.4 63.2 7.3 1.1 

4 28.6 14.3 42.8 14.3 

     

 571 

  572 
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Table 5. Comparing the Modelled and Actual Condition Distributions after 70 years 573 
Condition 

state 

Modelled condition 

distribution 

Actual condition 

distribution 

Rehabilitation 

required 

1A 833 185  

1B 9 0  

1C 2 0  

2A 8 597 589 

2B 29 72 43 

2C 3 0  

3A 0 13 13 

3B 1 19 18 

3C 2 3 1 

    

 574 
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