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Abstract

We prove that every computably enumerable (c.e.) random real is provable in
Peano Arithmetic (PA) to be c.e. random, a statement communicated to one author
by B. Solovay. A major step in the proof is to show that the theorem stating that “a
real is c.e. and random iff it is the halting probability of a universal prefix-free Turing
machine” can be proven in PA. Our proof, which is simpler than the standard one, can
also be used for the original theorem.

The result that every c.e. random real is provably c.e. random is in contrast with
the case of computable functions, where not every computable function is provably
computable. It is even more interesting to compare this result with the fact that—in
general—random finite strings are not provably random.

The paper also includes a sharper form of the Kraft-Chaitin Theorem, as well as an
automatic proof of this theorem written with the interactive theorem prover Isabelle.

1 Introduction

A real α in the unit interval is computably enumerable (c.e.) if it is the limit of a computable,
increasing sequence of rationals. We will identify a real with its infinite binary expansion.
In contrast with the case of a computable real, whose bits are given by a computable
function, during the process of approximation of a c.e. real one may never know how close
one is to the limit. A real α is random if its binary expansion is a random (infinite) sequence
[7, 19, 8, 4, 10].

A prefix-free machine is a Turing machine from bit strings to bit strings whose domain
is a prefix-free set. A prefix-free machine is universal if it can simulate every prefix-free



machine. Chaitin [7] has introduced the halting probability ΩU of a universal prefix-free
machine U , Chaitin’s Omega number

ΩU =
∑

U(x) is defined
2−|x|,

and proved that ΩU is a c.e. and random real. As shown by Calude, Hertling,
Khoussainov, Wang [6] and Kučera, Slaman [14], (see also [3]) there are no other
c.e. random reals: the set of c.e. random reals coincides with the set of reals {ΩU |
U is a universal prefix-free machine}. C.e. random reals have been intensively studied in
recent years, with many results summarised in [4, 10, 15].

In [7] Chaitin proved the following theorem: Assume that ZFC (Zermelo set theory with
choice) is arithmetically sound (that is, any theorem of arithmetic proved by ZFC is true.)
Then, for every universal prefix-free machine U , ZFC can determine the value of only
finitely many bits of ΩU , and one can calculate a bound on the number of bits of ΩU which
ZFC can determine.

The real ΩU depends on U , and so by tuning this choice Solovay [18] proved the following
theorem: We can chose a universal prefix-free machine U so that ZFC (if arithmetically
sound) cannot determine any bit of ΩU . This result was generalised in [2] as follows:
Assume that ZFC is arithmetically sound. Let i ≥ 0 and consider the c.e. random real

α = 0.α0α1 . . . αi−1αiαi+1 . . . , where α0 = α1 = . . . = αi−1 = 1, αi = 0.

Then, we can effectively construct a universal prefix-free machine U (depending upon ZFC
and α) such that PA proves the universality of U , ZFC can determine at most i initial
bits of ΩU and α = ΩU .

The proof of the theorem starts by fixing a universal prefix-free machine V such that the
universality of V is provable in PA and ΩV = α. Solovay [17] observed that “it is by no
means evident that there is a universal prefix-free machine whose universality is provable
in PA and whose Omega is α”. Pointedly, let α ∈ (0, 1) be c.e. and random:

Is there some representation1 of α for which PA can prove that α has the above
stated properties?

We will give an affirmative answer to this question. A major step in the proof is to show
that the theorem stating that “a real is c.e. and random iff it is the halting probability of
a universal prefix-free machine” can be proved in PA. Our proof, which is simpler than the
standard one, can be used also for the original theorem.

1Choosing the right representation is important.
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The paper also includes a sharper form of the Kraft-Chaitin Theorem, as well as an auto-
matic proof of this theorem written with the interactive theorem prover Isabelle.

In what follows proofs will be written in Solovay’s style [18]. All necessary steps are
presented in sufficient detail to leave the remaining formalisation routine. The Kraft-
Chaitin Theorem is presented with full details, to the extent that an automatic proof in
Isabelle is also included.

The paper is organised as follows. Section 2 and 3 present all facts on formal provability
and Algorithmic Information Theory needed for this paper. The Kraft-Chaitin Theorem is
presented in section 4. Section 5 presents three ways to prove randomness, using Martin-
Löf tests, prefix-free complexity, and Solovay representation formula. In section 6 we revisit
Chaitin’s Theorem on the randomness of the halting probability of a provably universal
prefix-free machine. In section 7 we prove that a real α ∈ (0, 1) is provably Chaitin-
random iff it is provable that α = ΩU for some provably universal prefix-free machine U
(see Theorem 10). In section 8 we prove that every c.e. random real is provably random
and Theorem 15 which is another form of Theorem 10. Section 9 presents a formal proof
of the Kraft-Chaitin Theorem written with the interactive theorem prover Isabelle. The
final section 10 includes a few general remarks.

2 Provability

By LA we denote the first-order language of arithmetic whose non-logical symbols consist
of the following: the constant symbols 0 and 1, the binary relation symbol < and the two
binary function symbols + and ·. Peano Arithmetic (see [13], shortly, PA) is the first-order
theory given by a set of 15 axioms defining discretely ordered rings, together with induction
axioms for each formula ϕ(x, y1, . . . , yn) in LA:

∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y)→ ϕ(x+ 1, y))→ ∀x(ϕ(x, y)).

The structure N whose domain is the set of naturals N = {0, 1, 2, . . .}, where the symbols in
LA have the obvious interpretation, satisfies the axioms of PA; this is the standard model
for PA. There are non-standard models of all true first-order LA-formulae that are not
isomorphic to N. If M is a structure for LA and ϕ(x) is an LA-formula with free-variables
among x = (x1, . . . , xn) and a = (a1, . . . , an) ∈M then we write M � ϕ(a) to mean that “ϕ
is true in M when each variable xi is interpreted by ai”. We blur the distinction between
n and the closed term of LA, (· · · (((1 + 1) + 1) + 1) + · · · 1), (n times).

A formula θ(x) of LA is ∆0 if all its quantifiers are bounded. A formula ψ(x) of LA is Σ1

if it is of the form ψ(x) = ∃yθ(x, y) with θ(x, y) ∈ ∆0; ψ(x) of LA is Π1 if it is of the form
ψ(x) = ∀yθ(x, y) with θ(x, y) ∈ ∆0.
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By PA ` θ we mean “there is a proof in PA for θ”. It is useful to know that PA proves the
least number principle:

PA ` ∀y(∃xϕ(x, y)→ ∃z(ϕ(z, y) ∧ ∀w < z ¬ϕ(w, y))),

for each formula ϕ(x, y) of LA.

An important link between computability and provability is given by the following theorem:
A partial function from N to N is partially computable iff its graph is equivalent to a Σ1

LA-formula. As a corollary we get: A set A ⊂ Nk is computably enumerable (c.e.) if there
is a Σ1 LA-formula ϕ(x) such that for all x ∈ Nk, x ∈ A iff N � ϕ(x).

A total function f : Nk → N is represented in PA if there is an LA-formula θ(x) such that
for all n ∈ Nk:

1. PA ` ∃!yθ(n, y), and

2. if k = f(n) then PA ` θ(n, k).

(Here ∃! means “there exists a unique”.) One can show that every total computable
function is represented by a Σ1-formula of PA.

A function f : N → N is provably computable [11, 13] if there exists a Σ1-formula of PA
ϕ(x, y) such that:

1. {(n,m) | f(n) = m} = {(n,m) | N � ϕ(n,m)},

2. PA ` ∀x∃!yϕ(x, y).

In view of the above corollary (on c.e. sets), any provably computable function has a
c.e. graph, so it is total and computable. These functions can be viewed as computable
functions whose totality is proved by PA. Every primitive recursive function is provably
computable, but the converse is not true. There exist computable functions which are not
provably computable (see [13]). These functions provide natural examples of undecidable
statements: if f is computable but not provably computable, then the statement “f is
total” is true but unprovable in PA. In contrast with the case of computable functions, c.e.
sets are provably enumerable [11] (because every non-empty c.e. set can be enumerated by
a primitive recursive function, [1], p. 138).

All computations described in what follows will be implemented not only by provably
computable functions but also by primitive recursive functions. Hence, we will work with
a special type of Σ1 formulae. By abuse of language we will say that a formula of PA is Σ0

1

if it has the form ∃xP (x), for some primitive recursive predicate P (x). A formula of PA is
Π0

2 if it has the form ∀x∃yP (x, y), for some primitive recursive predicate P (x, y).
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Our metatheory is ZFC. We fix a (relative) interpretation of PA in ZFC. Each formula
of LA has a translation into a formula of ZFC determined by the interpretation of PA in
ZFC. By abuse of language we shall use the phrase “sentence of arithmetic” to mean a
formula with no free variables of ZFC that is the translation of some formula of PA. We
assume that ZFC is 1–consistent, that is, if it proves a Σ0

1 sentence then that sentence
is true (in the standard model of PA). Solovay [18] proved the following theorem: Every
Π0

2 sentence proved by ZFC is true. As a consequence, it follows that if U is a prefix-free
machine which PA can prove universal and ZFC can prove that sentence “the i-th digit of
ΩU is k”, then the sentence is true. Whenever we talk about the provability of a sentence
of arithmetic we mean that PA proves its corresponding translation formula of PA.

In what follows we will say that an assertion A is provable if it is provable at the meta-level.
If there is a proof for A in PA we will say that A provable in PA. We say that A is provably
P (where P is a property) if the statement that A has P is provable in PA.

3 Algorithmic Information Theory: Some Definitions and
Results

All reals will be in the unit interval. A c.e. real α will be represented by an increasing
computable sequence of rationals converging to α. We will blur the distinction between the
real α and the infinite base-two expansion of α, i.e. the infinite bit sequence α1α2 · · ·αn · · ·
(αn ∈ {0, 1}) such that α = 0.α1α2 · · ·αn · · · . By α(n) we denote the string of length n,
α1α2 · · ·αn.

The set of bit strings is denoted by Σ∗. If s is a bit string then |s| denotes the length of s.
We import the theory of computability from natural numbers to bit strings by fixing the
following canonical bijection between Σ∗ and N induced by the linear order s < t if |s| < |t|
or |s| = |t| and s lexicographically precedes t.

A prefix-free machine U is universal if for every prefix-free machine V there is a constant
c (depending upon U and V ) such that for all bit strings s, t, if V (s) = t, then U(s′) = t
for some bit string s′ of length |s′| ≤ |s| + c. The domain of U is the set {x ∈ Σ∗ |
U(x) is defined}. The Omega number ΩU =

∑
x∈domU 2−|x| is halting probability of U .

The prefix-free complexity of the string x ∈ Σ∗ (relatively to the prefix-free machine C)
is HC(x) = min{|y| | y ∈ Σ∗, C(y) = x}, where min ∅ = ∞. If U is a universal prefix-
free machine, then for every prefix-free machine we can effectively construct a constant c
(depending on U and C) such that HU (x) ≤ HC(x) + c.

A real α is Chaitin-random if there exists a universal prefix-free machine U and constant
c such that for all n ≥ 1, HU (α(n)) ≥ n− c.

A Martin-Löf test (shortly, ML test) A is a uniformly c.e. sequence of c.e. open sets A =
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(An) such that for all n ≥ 1, µ(An) ≤ 2−n. A c.e. open set is a c.e. union of intervals
with rationals endpoints [a, b) and µ is Lebesgue measure. If S is a prefix-free set, then
µ(S) denotes the Lebesgue measure of the cylinder denoted by S, i.e. all reals whose
infinite binary expansions have a prefix in S. To the bit string x we associate the interval
[0.x, 0.x+ 2−|x|) of measure 2−|x|. A real α is Martin-Löf-random (shortly, ML-random) if
for every ML test A there exists an i such that α 6∈ Ai. A classical theorem states that a
real is Chaitin-random iff it is ML-random. See more in [8, 4].

Note that Chaitin and Martin-Löf definitions apply to any real. In the special case of c.e.
reals the following Solovay representation formula [17] will be used: A real α is c.e. and
random if there exists a universal prefix-free machine U , an integer c > o and a c.e. real
γ > 0 such that α = 2−cΩU + γ (see Lemma 12).

4 Kraft-Chaitin Theorem Revisited

We start by showing that PA can prove the Kraft-Chaitin Theorem [8, 4].

Theorem 1 Suppose (ni, yi)i ∈ N × Σ∗ is a primitive recursive enumeration of requests
which provably satisfies

∑
i 2−ni ≤ 1. Then there exists a provably prefix-free machine M

and a primitive recursive enumeration (xi)i of dom(M) such that the following is provable
in PA:

1. µ(dom(M)) =
∑

i 2−ni,

2. |xi| = ni for all i ∈ N,

3. M(xi) = yi for all i ∈ N.

Proof. Algorithm 1 enumerates the graph of M . Intuitively, Si keeps track of the tree of
prefixes we haven’t allocated yet. To start with we have allocated nothing, so S0 = {ε}.
At each step we want a string (node) of a given length (depth) ni. The program selects
the deepest leaf it can, then creates the smallest number of new leaves to create the node
we need.

Examining Algorithm 1, it is clear the sequence xi = si0ni−|si| is a primitive recursive
enumeration of dom(M), and that whenever xi is defined we have M(xi) = yi and |xi| = ni.
It remains to show that xi is defined for all i ∈ N (i.e. the program never terminates), that
dom(M) is prefix-free, and µ(dom(M)) =

∑
i 2−ni .

It suffices to establish, for all i, the following invariants:

1. Si ∪ Ti is prefix-free (which implies that Si and Ti individually are),
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Algorithm 1
1: S0 = {ε}, T0 = ∅, r0 = 0, i← 0.
2: loop
3: Let si be the longest element of S of length at most ni. If no such string exists,

terminate.
4: if |si| = ni then
5: Si+1 = (Si \ {si}).
6: else
7: Si+1 = (Si \ {si}) ∪ {si1, si01, si021, . . . , si0ni−|si|−11}.
8: end if
9: Define M(si0ni−|si|) = yi.

10: Ti+1 = Ti ∪ {si0ni−|si|}.
11: ri+1 = ri + 2−ni .
12: i← i+ 1.
13: end loop

2. µ(Si ∪ Ti) = 1,

3. µ(Ti) = ri,

4.
∑

j≥i 2−nj ≤ µ(Si),

5. If 2−n ≤ µ(Si), then Si contains a string of length at most n (equivalently, that Si
contains strings of distinct length).

The base case is trivial. For the inductive step, first observe that line 3 of Algorithm 1
doesn’t terminate since 2−ni ≤ µ(Si) by invariant 5. We see that

Si+1 ∪ Ti+1 = ((Si ∪ Ti) \ {si}) ∪ {si1, si01, si021, . . . , si0ni−|si|−11, si0ni−|si|}

which is prefix-free establishing invariant 1. From this we can see invariant 2 holds µ(Si+1∪
Ti+1) = µ(Si ∪ Ti) = 1. Next observe invariant 3 µ(Ti+1) = µ(Ti) + 2−ni = ri+1, which
implies that µ(Si+1) = µ(Si)− 2−ni . From this follows invariant 4

∑
j≥i+1 2−nj ≤ µ(Si+1).

Finally, since si is the longest string of length at most ni in Si, and we add strings of
distinct length between si+1 and ni to Si to form Si+1, we see that Si+1 consists of strings
of distinct lengths. This establishes invariant 5. 2

5 Randomness and Provability

In this section we discuss three forms of provability for randomness.
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For PA there are two ways to represent a c.e. real number α ∈ (0, 1): 1) by giving an
increasing 1-1 primitive recursive function that enumerates c.e. prefix-free set of strings
{si} such that α =

∑
i 2−|si|, 2) by giving an increasing primitive recursive sequence (ai)i

of rationals whose limit is α. It is clear that given the representation (1) one can effectively
get the representation (2). The converse is also true.

Lemma 2 Let α be a c.e. real defined by the increasing primitive recursive sequence (ai)i
of rationals. Then there is a primitive recursive sequence (ni)i of natural numbers such
that PA proves

∑
i 2−ni = α.

Proof. Without loss of generality assume a1 > 0. Define the primitive recursive sequences
(ri)i ∈ Q and (ni)i ∈ N by r0 = 0 and for i ≥ 1 by

ni = d− log2(ai − ri−1)e , ri = ri−1 + 2−ni .

Since (ri)i is strictly increasing we can establish by induction ri−1 < ai for all i, making
the logarithm well-defined. By construction we have

∑
i 2−ni = limi→∞ ri. Define β =

limi→∞ ri. Since − log2(ai − ri−1) ≤ ni ≤ − log2(ai − ri−1) + 1 we have (ai + ri−1)/2 ≤
ri ≤ ai. Taking the limit we see that (α+ β)/2 ≤ β ≤ α establishing our result. 2

Corollary 3 Let α be a c.e. real defined by the increasing primitive recursive sequence
(ai)i of rationals. Then there is a prefix-free machine M such that PA proves that α =
µ(dom(M)).

In what follows a c.e. real is given by one of the above representations.

A c.e. real α is provably Chaitin-random if there exists a provably universal machine U and
constant c such PA can prove that for all n ≥ 1, HU (α(n)) ≥ n−c. A c.e. real α is provably
ML-random if for every set A which PA can prove to be a ML test PA proves that there
exists an i such that α 6∈ Ai.

The classical theorem states that a real is Chaitin-random iff it is ML-random is provable
in PA. However, for the goal of this paper only one implication is needed:

Theorem 4 Every c.e. provably Chaitin-random real is provably ML-random.

Proof. Take a c.e. real α, prefix-free machine U which is provably universal and natural
c > 0 such that PA proves that for all n ≥ 1, HU (α(n)) ≥ n− c.

We wish to prove that for every A = (An) which PA proves to be a ML test there exists
i such that PA proves that α 6∈ Ai. We can assume (see Proposition 6.3.4 in [4]) that
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A is given by a c.e. set S ⊂ Σ∗ × N such that Si = {x | (x, i) ∈ S} is prefix-free,
Ai = {β | β(m) ∈ Si, for some m ≥ 1}, µ(Ai) =

∑
s∈Si

2−|s|.

Let g : N → Σ∗ × Σ∗ be a 1-1 primitive recursive enumeration of the graph of U . Denote
by πi : Σ∗ × Σ∗ → Σ∗ for i = 1, 2 the projection functions and f(i) = π1(g(i)) is a 1-
1 primitive recursive enumeration of dom(U). Note that HU (x) is representable in PA:
HU (x) = mini{|v| : U(v) = x} = mini{|π1(g(i))| | π2(g(i)) = x},

We have: ∑
n≥2

∑
s∈Sn2

2−b|s|−nc =
∑
n≥2

2nµ(Sn2) ≤
∑
n≥2

2n2−n
2 ≤ 1.

We can now use Theorem 1: There exists a provably prefix-free machine M such that:
µ(dom(M)) =

∑
n≥2

∑
s∈Sn2

2−b|s|−nc, dom(M) = {rn,s | n ≥ 2, s ∈ Sn2 , |rn,s| = |s| −
n},M(rn,s) = s. Since U is provably universal there is a constant d ≥ 1 such that for all
strings x,HU (x) ≤ HM (x) + d, so in particular, PA proves that for all n ≥ 2, if s ∈ Sn2 ,
then HU (s) ≤ HM (s) + d ≤ |s| − n+ d < |s| − n+ d+ 1.

We are now in a position to find a natural n ≥ 2 such that PA proves that α /∈ An2 showing
that α is provably ML-random.

Note that for n ≥ 2, PA proves α /∈ An2 iff for all m ≥ 1, PA proves that α(m) /∈ Sn2 .
For all m ≥ 1, PA proves that α(m) ∈ Sn2 implies HU (α(m)) < m− n+ d+ 1. Hence, for
2 ≤ n < c+ d+ 1, PA proves that HU (α(m)) ≥ m− c implies α(m) /∈ Sn2 , so because α is
provably Chaitin-random PA proves that α /∈ An2 . 2

Comment. The above proof shows that that TUm = {β | HU (β(n)) < n−m, for some n ≥
1}, where U is a provably universal prefix-free machine is a provably ML test such that
for all n ≥ 2 and provably ML test A there exists d > 0 such that PA proves the inclusion
An2 ⊂ TUn−d−1, i.e. (TUm) is a provably universal ML test.

To be able to complete our program we need to chose a specific representation for a c.e.
and random real which can be “understood” by PA and, even more importantly, PA can
extract from it a proof for the randomness of the real (the property of being c.e. is obvious).
First we will work with Solovay representation formula discussed at the end of section 3.

A real α is c.e. and provably random if there exists a representation of α in the form

α = 2−cΩV + γ, (1)

where V is a provably universal prefix-free machine, c > 0 is an integer and γ is a provably
c.e. real. Theorem 12 will show that all c.e. random reals have a representation of this
form.

In detail, PA receives an algorithm for a machine V , a proof that V is prefix-free and
universal, a positive integer c and a computable increasing sequence of rational converging
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to a real γ. The goal is to prove that PA can use this information to prove that α =
2−cΩV + γ is c.e. and random.

6 Chaitin’s Theorem Revisited

Chaitin [7] proved that the halting probability of a universal prefix-free machine is Chaitin-
random. This theorem is provable in PA:

Theorem 5 Suppose U is provably universal. Then ΩU =
∑

p∈dom(U) 2−|p| is provably
Chaitin-random.

Proof. Let g : N → Σ∗ × Σ∗ be a 1-1 primitive recursive enumeration of the graph of U .
Denote by πi : Σ∗ × Σ∗ → Σ for i = 1, 2 the projection functions and f(i) = π1(g(i)) is a
1-1 primitive recursive enumeration of dom(U). Recall that HU (x) is representable in PA.
Define the prefix-free machine M by M(0|x|1x) = x. Since U is provably universal, there
is a c such that for all x, HU (x) ≤ HM (x) + c = 2|x| + c + 1. This shows that HU (x) is
provably total, and that U is provably onto.

Define the primitive recursive sequence of rationals ωk =
∑

i 2−|π1(g(i))|, and notice that
this is provably strictly increasing. ΩU is, by definition, the limit of this sequence.

Define C(x) = v to hold if there exist t,j such that

1. π1(g(j)) = x (i.e. x ∈ dom(U)),

2. t is the least such that 0.π2(g(j)) ≤ ωt (i.e. 0.U(x) ≤ ωt),

3. v is the lexicographically least string such that v 6= π2(g(s)) for all 1 ≤ s ≤ t.

This defines a provably prefix-free machine. Observe that if C(x) is defined and U(x) =
U(x′) then C(x) = C(x′). From this we can establish that whenever C(x) is defined we
have HC(C(x)) ≤ HU (U(x)). As U is provably universal, there exists an a such that for
all y HU (y) ≤ HC(y) + a is provable in PA.

Denote by Ωi the ith bit of ΩU . Since U is provable onto, for each n there exists xn such
that U(xn) = Ω1 · · ·Ωn. Since 0.Ω1 · · ·Ωn < ΩU we know that C(xn) is defined. Let t be the
least (found when evaluating C(xn)) such that 0.U(xn) ≤ ωt < ΩU < 0.U(xn) + 2−n. An
easy consequence is

∑
i≥t+1 2−π1(g(i)) ≤ 2−n and so for all i ≥ t+ 1 we have |π2(g(i))| ≥ n.

Since C(xn) equals g(i) for some i ≥ t+ 1 by construction, we have that for all n

n ≤ HU (C(xn)) ≤ HU (U(xn)) + a = HU (Ω1 · · ·Ωn) + a

is provable in PA. That is, Ω is provably Chaitin-random. 2
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From Theorem 5 we deduce that PA can prove the implication: “if U is a provably universal
prefix-free machine, then ΩU is Chaitin-random.” We know that every c.e. and random
real is the halting probability of a universal prefix-free machine, but we need more: Can
any c.e. and random real be represented as the halting probability of a provably universal
prefix-free machine? First we have to check whether every universal prefix-free machine is
provably universal.

Theorem 6 There exist a provably universal prefix-free machine and a universal prefix-free
machine that is not provably universal.

Proof. The set of all provably prefix-free machines is c.e., so if (Mi)i∈N is a computably
enumeration of provably prefix-free machines, then the machine U defined by U(0i1x) =
Mi(x) is a provably universal prefix-free machine.

Let (fi) be a c.e. enumeration of all primitive recursive functions fi : N → Σ∗ and (Ti)
a c.e. enumeration of all prefix-free machines. Fix a universal prefix-free machine U and
consider the computable function g : N→ N such that:

Tg(i)(x) =
{
U(x), if for some j > 0,#{fi(1), fi(2), . . . , fi(j)} > |x|,
∞, otherwise .

For every i, Tg(i) is a prefix-free universal machine iff fi(N) is infinite (if fi(N) is finite,
then so is Tg(i)). Since the set of all indices of primitive recursive functions with infinite
range is not c.e. it follows that PA cannot prove that for some i, Tg(i) is a universal. 2

Theorem 6 does not imply a negative answer to the previous question; in fact, Corollary 17
will show that the answer is affirmative.

7 Provably C.E. Random Reals

In this section we sharpen the theorem that “a real is c.e. and random iff it is the halting
probability of a universal prefix-free machine” by proving that “a real is provably c.e.
and Chaitin-random iff it is provable that the real is the halting probability of a provably
universal prefix-free machine.”

According to Solovay [19] a c.e. real α Solovay dominates a c.e. real β (write β ≤S α) if
there are two computable, increasing sequences (ai)i and (bi)i of rationals and a constant
c with limn→∞ an = α, limn→∞ bn = β, and c(α− an) ≥ β − bn, for all n.

For c.e. reals α, β, PA proves β ≤S α if there are two primitive recursive, increasing
sequences (ai)i and (bi)i of rationals and a constant c such that PA proves limn→∞ an = α,
limn→∞ bn = β, and c(α− an) ≥ β − bn, for all n.

11



Theorem 7 If α is c.e. and provably ML-random, and β is c.e., then β ≤S α is provable
in PA.

Proof. Let (ai)i and (bi)i be primitive recursive sequences of rationals with limits α and
β respectively. Let a0 = b0 = 0.

For each n, for i ≥ 1 if ai /∈
⋃i−1
j=1 Tn[j] then define Tn[i] = [ai, ai + 2−n(bi − bsn)), where

sn = maxj<i{j : Tn[j] 6= ∅} is the most recent non-empty stage, or sn = 0 if this is the first
non-empty stage. Otherwise define Tn[i] = ∅.

Let snj denote the jth non-empty stage, wherever that is well-defined, and let sn0 = 0.
Observe that

Tn =
⋃
i

Tn[i] =
⋃
j≥1

[asn
j
, asn

j
+ 2−n(bsn

j
− bsn

j−1
))

and that all the sets in the above union are disjoint by construction. As a result

µ(Tn) =
∑
j≥1

2−n(bsn
j
− bsn

j−1
) ≤ 2−n

so PA proves that (Tn)n is a ML-test.

Because α is provably ML-random, PA proves that there exists an m such that α /∈ Tm,
so for all j ≥ 1 we know that smj is well-defined. By construction we have the inequality
asm

j+1
/∈ [asm

j
, asm

j
+ 2−m(bsm

j
− bsm

j−1
)) which implies that bsm

j
− bsm

j−1
≤ 2m(asm

j+1
− asm

j
).

Defining a′j = asm
j

and b′j = bsm
j−1

, we have for all j ≥ 1 that b′j+1 − b′j ≤ 2m(a′j+1 − a′j),
where (a′j)j and (b′j)j are primitive recursive sequences of rationals which provably converge
to α and β respectively. So PA proves β ≤S α. 2

Corollary 8 If α is c.e. and provably Chaitin-random and β is c.e., then β ≤S α is
provable in PA.

Proof. See Theorems 4 and 7. 2

Theorem 9 Suppose V is a provably universal prefix-free machine, α is c.e., and ΩV ≤S α
is provable in PA. Then there exists a provably universal prefix-free machine U such that
ΩU = α is provable in PA.

Proof. Since ΩV ≤S α, there exists a primitive recursive increasing sequences (ai)i and
(bi)i of rationals, with limits α and ΩV respectively, and a constant c ≥ 0 such that for all
n

bn+1 − bn < 2c(an+1 − an). (2)

12



Define a0 = b0 = 0. Form the real

γ = α− 2−c ΩV =
∑
n

(an+1 − an)− 2−c(bn+1 − bn).

By equation 2 the terms of the sum are positive, so γ is c.e. and lies within (0, 1).

Applying Lemma 2 to γ, we have a primitive recursive sequence (mi)i of natural numbers
such that

∑
i 2−mi = γ.

Let (vi)i be a 1-1 primitive recursive enumeration of dom(V ), and define a request sequence
by

y2i = vi, n2i = |vi|+ c, y2i+1 = v, n2i+1 = mi,

where v is an arbitrarily fixed element in dom(V ).

By Theorem 1 we get a provably prefix-free machine M and a primitive recursive enumer-
ation (xi)i of dom(M) such that the following is provable: 1. µ(dom(M)) =

∑
i 2−ni , 2.

|xi| = ni for all i, 3. M(xi) = yi for all i.

Consider the machine U = V ◦M . The machine U is provably universal. Indeed, U(x2i) =
V (M(x2i)) = V (y2i) = V (vi) and |x2i| = n2i = |vi|+ c, by construction of M .

Finally, its domain provably has the required measure:

ΩU =
∑

p∈ dom(U)

2−p =
∑
i

2−n2i +
∑
i

2−n2i+1 = 2−c ΩV + γ = α.

2

Using all results above we obtain:

Theorem 10 A c.e. real α is provably Chaitin-random iff it is provable that α = ΩU for
some provably universal prefix-free machine U .

Proof. Suppose α is provably c.e. and Chaitin-random. By Theorem 4, α it is provably
ML-random. Take a provably universal prefix-free machine V . From Theorem 7 we see
that ΩV ≤S α is provable in PA. By Theorem 9 we effectively get a U which is provably
universal and prefix-free such that α = ΩU is provable in PA.

The converse is exactly Theorem 5. 2

Corollary 11 A provably c.e. and Chaitin-random is provably random.

Proof. If α is provably Chaitin-random and c.e. then by Theorem 10, α = ΩU for some
provably universal prefix-free machine U , so α satisfies Solovay’s formula (1) with c =
1, γ = 1/2 · ΩU .

2
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8 Every Random C.E. Real Is Provably C.E. Random

This section proves its title. We start with the following result by Solovay [17]:

Lemma 12 Let V be a universal prefix-free machine. If α is c.e. and ML-random, then
there exists an integer c > 0 and a c.e. real γ > 0 such that

α = 2−cΩV + γ. (3)

Proof. Using the proof of Theorem 7, we deduce that ΩV ≤S α (because α is c.e. and
ML-random). Consequently, we can consider the primitive recursive increasing sequences
(ai)i and (bi)i of rationals, with a0 = b0 = 0 and limits α and ΩV respectively, and a
constant c ≥ 0 such that for all n, bn+1 − bn < 2c(an+1 − an). The c.e. real

γ = α− 2−c ΩV =
∑
n

(an+1 − an)− 2−c(bn+1 − bn)

is positive and α = 2−cΩV + γ. 2

It is not difficult to see that the converse implication in Lemma 12 is also true. In fact, a
sharper result can be proved:

Theorem 13 Let V be provably universal prefix-free, c be a positive integer, γ a positive
c.e. real. Then α = 2−cΩV + γ is provably Chaitin-random (ML-random).

Proof. Let (un) be a primitive recursive enumeration of the domain of V and (bn) be
a primitive recursive increasing sequence with limit γ. The sequence of integers αn =
2−c

∑n
i=1 2−|ui| + bn is primitive recursive increasing and converges to α.

Take an =
∑n

i=1 2−|ui| and observe that for all n, an+1 − an < 2c(αm+1 − αm), hence PA
proves that ΩV ≤S α.

Using Theorem 9 we can find a provably universal prefix-free machine U such that ΩU = α
is provable in PA. By Theorem 5, α is provably Chaitin-random and by Theorem 4, α is
provably ML-random. 2

We can now state our main result:

Theorem 14 Every c.e. and random real is provably c.e. and Chaitin-random (ML-
random), hence provably c.e. and random.

14



Proof. Start with a provably universal prefix-free machine V , see Theorem 6. By
Lemma 12 we know there exists c and γ defining the representation (3) for α: α =
2−cΩV +γ. Since V is provably universal prefix-free, Theorem 13 shows that that 2−cΩV +γ
is provably Chaitin-random (ML-random). Therefore α is provably Chaitin-random (ML-
random). Finally use Corollary 11 to deduce that α is provably random. 2

Theorem 10 can now be stated in the form:

Theorem 15 A real α is provably c.e. and random iff it is provable that α = ΩU for some
provably universal prefix-free machine U .

Proof. Use Theorem 14 and Corollary 11. 2

Corollary 16 For every universal prefix-free machine U there exists a provably universal
prefix-free machine U ′ such that ΩU = ΩU ′.

Proof. Since ΩU is c.e. and random, by Theorem 14 we deduce that ΩU is provably
Chaitin-random, so by Theorem 10 we get a provably universal prefix-free machine U ′ such
that ΩU = ΩU ′ . 2

Corollary 17 Every c.e. and random real can be written as the halting probability of a
provably universal prefix-free machine.

Proof. Every c.e. and random real can be written as the halting probability of a universal
prefix-free machine, so by Corollary 16, the halting probability of a provably universal
prefix-free machine. 2

9 Formal Proof of the Kraft-Chaitin Theorem

Isabelle is an interactive theorem prover. Within it, one can formalise mathematical results
and formally prove them correct. It is interactive, because to prove the theorem you interact
with the system: you state a result, then it tries to prove it and tells you where it gets stuck
if it can’t. See [16] for a tutorial introduction to the system, and below for an example
session with Isabelle.

9.1 Formalising Results in Isabelle

Formalising mathematics in Isabelle is best illustrated by example. Suppose we want to
formalise:
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Lemma 18 Given strings x, y, z ∈ Σ∗, if x extends y then xz extends y.

Strings are naturally represented by the Isabelle list data-type. Here [] represents the
empty list, and y#ys represents the list formed by concatenating the element y with the list
ys. For example, the string 001 is represented by 0 # 0 # 1 # [] (or [0,0,1] for short).
The following code inductively defines whether the list A extends B, denoted extends A B:

fun extends :: "’A list => ’A list => bool"
where
"extends [] [] = True"

| "extends [] (y#ys) = False"
| "extends x [] = True"
| "extends (x#xs) (y#ys) = ((x=y) & (extends xs ys))"

When faced with the above definition, Isabelle automatically proves termination (in this
case, by observing that the first argument always decreases in length with each recursive
call).

Let us prove that any list extends the empty list. We enter into Isabelle:

lemma extends1: "extends A []"

It responds with the propositions we need to prove:

goal (1 subgoal):
1. extends A []

It is natural to prove this by induction:

apply(induct A)

which gives us two propositions to prove:

goal (2 subgoals):
1. extends [] []
2. !!a A. extends A [] ==> extends (a # A) []

The first proposition is one of the cases in our definition of extend. In the second !!
denotes universal quantification and this similarly follows from one of our definition cases.
We tell Isabelle to simplify these expressions:
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apply(simp_all)

Isabelle manages to simplify all these expressions down to True, using rewrite rules for
simplifying conjunctions, variable identity, and expanding the definition of extends. As a
result we get:

goal:
No subgoals!

Having completed the proof, we compactly store it in the following format:

lemma extends1: "extends A []"
apply(induct A) apply(simp_all)

done

We can now attempt our original goal:

lemma extends2: "extends (A@B) A"

goal (1 subgoal):
1. extends (A @ B) A

The concatenation of lists A and B is denoted A @ B. We again induct:

apply(induct A)

goal (2 subgoals):
1. extends ([] @ B) []
2. !!a A. extends (A @ B) A ==> extends ((a # A) @ B) (a # A)

The first thing to try, in general, is simplification:

apply(simp_all)

goal (1 subgoal):
1. extends B []

We could prove this by induction on B then simplification, but we have already proved this
result! We simply ask Isabelle to apply lemma extends1:
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apply(simp only: extends1)

goal:
No subgoals!

which completes the proof. In sum:

lemma extends2: "extends (A@B) A"
apply(induct A) apply(simp_all) apply(simp only: extends1)

done

9.2 Formalising the Kraft-Chaitin Theorem

The proof of the Kraft-Chaitin Theorem is algorithmic: it describes a particular algorithm
(Algorithm 1 of Theorem 1) for selecting strings of the required lengths, and proves that
the algorithm is correct. In what follows we will implement this algorithm in Isabelle and
will prove its correctness.

The following Isabelle code implements Algorithm 1. We will give the definition of each
function, then explain what it does.

fun extend :: "nat list => nat => nat list list"
where
"extend l 0 = [l]"

| "extend l (Suc n) = (hd (extend l n) @ [0]) # (hd (extend l n) @ [1])
# tl (extend l n)"

For l a binary list representing a binary string, and n a natural number, extend l n
computes the list

[l0n−|l|, l0n−|l|−11, . . . , l01, l1].

For example, in Isabelle the expression extend [0,0,1] 5 will evaluate to

[[0,0,1,0,0], [0,0,1,0,1], [0,0,1,1]]

This corresponds to the set {00100, 00101, 0011} of binary strings.

The set of unallocated prefixes Si and the set of allocated strings Ti are represented by
lists of strings. The free prefixes are ordered by decreasing length, the allocated strings by
the order of allocation.
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Consider one iteration of the main loop. Let A be the list of previously allocated strings,
F the list of free prefixes, and n the length of the string we want to allocate at this step.
(These are denoted Ti, Si, and ni in the original algorithm.) kcstep A F n returns the
updated pair of allocated strings and free prefixes (Si+1 and Ti+1).

consts kcstep :: "nat list list => nat list list => nat
=> (nat list list * nat list list)"

primrec
"kcstep A [] n = (A, [])" (* fail case *)
"kcstep A (f # F) n = (if length f <= n

then ((hd (extend f (n - length f))) # A,
(tl (extend f (n - length f))) @ F)

else (fst (kcstep A F n), f # snd (kcstep A F n)))"

kcstep searches through the list F of free prefixes for the longest string of length at most
n. One it finds it, it calls extend, which returns a list of extended prefixes. It takes the
first string in the list, guaranteed to have exactly length n, and adds it to the allocated
strings list. The rest of the strings are placed on the free prefixes list.

For example, kcstep [] [[]] 2 evaluates to

([[0,0]], [[0,1], [1]])

which corresponds to the list 00 of allocated strings and the set {1, 01} of free prefixes.

consts kcloop :: "nat list => (nat list list * nat list list)
=> (nat list list * nat list list)"

primrec
"kcloop [] X = X"
"kcloop (l#ls) X = (kcstep (fst (kcloop ls X)) (snd (kcloop ls X)) l)"

For a list of lengths l and a pair (A,F) of allocated strings and free prefixes, kcloop l
(A,F) runs kcstep to allocate strings for every length in l. For example, kcloop [3,4,2]
([], [[]]) will allocate a string of length 2, then one of length 4, then one of length 3,
starting from the initial state where no strings are yet allocated ([]) and the empty string
is our free prefix ([[]]).

For example, kcloop [3,4,2] ([], [[]]) evaluates to

([[0,1,0], [0,0]], [[0,1,1], [1]])
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which corresponds to the list 00, 010 of allocated strings (note that we reverse the list),
and the set {1, 011} of free prefixes.

fun kc :: "nat list => nat list list"
where
"kc ls = (fst (kcloop ls ([],[[]])))"

For a list of lengths l, kc l returns the list of strings allocated by running kcloop on the
list starting from the initial state where no strings have been allocated. For example, kc
[4,3,2] evaluates to

[[0,1,1,0], [0,1,0], [0,0]]

which corresponds to the sequence 00, 010, 0110 of allocated strings.

This implements Kraft-Chaitin’s algorithm, for we will prove that:

1. If our list of lengths obeys Kraft’s inequality,
∑

i 2−ni ≤ 1, then kc ls is a list of
strings, and the ithe element of kc ls has length equal to the ith element of ls.

2. kc ls is always a prefix-free list (no two distinct elements of the list are prefixes of
each other).

3. If we add new lengths to the start of ls, then this adds new strings to the end of kc
ls without changing the old ones. That is, once a string of a given length is allocated
it is not changed.

To prove the above we need to define what a prefix-free list is, a function to evaluate Kraft’s
inequality, a function which checks whether the lengths of one list match the lengths in
another, and a tool to check whether one list extends another.

fun prefixes :: "nat list => nat list => bool"
where
"prefixes [] x = True"

| "prefixes x [] = True"
| "prefixes (x#xs) (y#ys) = ((x=y) & (prefixes xs ys))"

consts incomparable :: "nat list => nat list list => bool"
primrec
"incomparable x [] = True"
"incomparable x (y # ys) = (~(prefixes x y) & (incomparable x ys))"
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consts prefixfree :: "nat list list => bool"
primrec
"prefixfree [] = True"
"prefixfree (x # xs) = ((incomparable x xs) & (prefixfree xs))"

If x is a prefix of y, or vice versa, then prefixes x y. For example prefixes [0,0,1]
[0,0] is true. incomparable x A holds if x is not a prefix of any string in A, for instance
incomparable [0,0] [[1,0], [1,1,1]] holds. prefixfree L holds if the list L is prefix-
free, for instance prefixfree [[0,0], [1,0], [1,1,1]] holds.

consts expn2 :: "nat => rat"
primrec
"expn2 0 = 1"
"expn2 (Suc n) = (1/2) * expn2 n"

consts meas_nat :: "nat list => rat"
primrec
"meas_nat [] = 0"
"meas_nat (f#F) = (expn2 f + meas_nat F)"

We define expn2 n equal to 2−n. meas nat F computes the “measure” of a sequence of
natural numbers F, for example meas nat [4,3,2] equals 7/16.

fun lengthsmatch :: "nat list list => nat list => bool"
where
"lengthsmatch [] [] = True"

| "lengthsmatch [] (l#ls) = False"
| "lengthsmatch (x#xs) [] = False"
| "lengthsmatch (x#xs) (l#ls) = ((length x = l) & (lengthsmatch xs ls))"

The expression lengthsmatch X Y holds if the lengths of each string in X matches the cor-
responding number in Y. For example, we have lengthsmatch [[0,0], [1,0], [1,1,1]]
[2,2,3] is True.

fun extends :: "’A list => ’A list => bool"
where
"extends [] [] = True"

| "extends [] (y#ys) = False"
| "extends x [] = True"
| "extends (x#xs) (y#ys) = ((x=y) & (extends xs ys))"
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Finally, extends A B holds if the list A extends the list B, so extends [0,1] [0] holds.

With the above definitions we can state the three results which establish correctness:

theorem kc_correct1: "meas_nat ls <= 1 ==> lengthsmatch (kc ls) ls"

theorem kc_correct2: "prefixfree (kc ls)"

theorem kc_extend: "extends (rev (kc (L2 @ L1))) (rev (kc L1))"

The first says that if ls is a list of natural numbers ni which satisfies Kraft’s inequality∑
i 2−ni ≤ 1, then the strings kc ls allocated by running Algorithm 1 on this list have

exactly the lengths ls we asked for.

The second says the strings allocated are prefix-free.

The last says that when Algorithm 1 allocates additional strings it does not change strings
it has previously allocated. To see this, note that when we run kc L the algorithm allocates
strings starting from the end of the list L. This means, the first element of kc L is the last
string allocated. kc (L2 @ L1) is the list of strings allocated if we allocate strings with
lengths in L1 then strings with lengths in L2.

Together, establishing these would show that the kc algorithm constructively establishes
the Kraft-Chaitin Theorem.

9.3 Proof Outline

All the above merely formalised the algorithm and stated the theorem we wish Isabelle
to prove. This gets the order mixed slightly, since formalising this theorem unearthed a
mistake in the algorithm, so the process was mutual. In some sense this formalisation of
the theorem is the major creative work, the rest is just technical detail. As one might
guess, however, most of the work is in these details. To prove the above theorems we must
guide Isabelle to them by establishing numerous intermediate lemmas, and telling Isabelle
which proof techniques to use to establish each. Often we just advise Isabelle to induct on
a variable then simplify, but sometimes we must give more detailed guidance.

The Isabelle proof follows the proof given for Theorem 1: we establish that the inner loop
preserves some invariants, and use these invariants to establish correctness.

Recall the algorithm has two variables: the list of allocated strings and the list of free
strings. Each pass through the loop will (potentially) add one new allocated string, and
modify the free strings. We then show that these two lists combined remain prefix-free,
their joint measure never decreases, and that there are never two free strings of the same
length.

22



For reasons of space we give only the definitions required to state the above intermediate
results and show how they are formalised in Isabelle. The proof in its entirety is available
online [12].

fun strictlysorted :: "nat list list => bool"
where
"strictlysorted [] = True"

| "strictlysorted [x] = True"
| "strictlysorted (x1 # x2 # xs) = ((length x1 > length x2)

& (strictlysorted (x2 # xs)))"

strictlysorted L holds if the strings in L are ordered by (strictly) decreasing length. In
particular, this means there can be no two strings of the same length in L.

fun inv1 :: "nat list list * nat list list => bool"
where
"inv1 X = strictlysorted (snd X)"

fun inv2 :: "nat list list * nat list list => bool"
where
"inv2 X = prefixfree ((fst X) @ (snd X))"

The first invariant is that the list of free strings is strictly sorted. This is needed to show
both that there is at most one string of any given length and to show that the algorithm
will always select the longest string it is able to.

fun inv :: "nat list list * nat list list => bool"
where
"inv X = ((inv1 X) & (inv2 X))"

theorem kcstep_inv: "inv (A,F) ==> inv (kcstep A F n)"

This says simply that if the invariants held of the variables before running through the
loop once, then they hold afterwards.

consts meas :: "nat list list => rat" (* The measure of a prefix free set *)
primrec
"meas [] = 0"
"meas (x # xs) = expn2 (length x) + meas xs"
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This defines the measure of a list of strings: the usual
∑

x∈X 2−|x|.

lemma kcstep_meas: "meas ((fst (kcstep A F n)) @ (snd (kcstep A F n)))
= meas (A@F)"

This says that measure is preserved at each step of the loop. This measure will be 1 for all
the intermediate states of the kc algorithm, but we need this more general result for the
inductive proofs to work.

A number of further intermediate results are required both to establish the above invariants
and to apply them to the main theorems. Below are three of the most important, which
one may recall from the proof of Theorem 1 (in total, there are 102 theorems and lemmas
proved).

theorem meas_alloc: "[| expn2 n <= meas F; strictlysorted F |]
==> length (last F) <= n"

lemma kcstep_correct1: "[|inv (A,F); expn2 n <= meas F|]
==> (tl (fst (kcstep A F n)) = A)

& (length (hd (fst (kcstep A F n))) = n)"

lemma kcstep_correct2: "[|inv (A,F); expn2 n <= meas F|]
==> meas (fst (kcstep A F n)) = meas A + expn2 n"

Theorem meas alloc formalises the result that if 2−n is smaller than the measure of a set
F , and that set has no two strings of the same length, then there is a string of length at most
n in F . Lemma kcstep correct1 says that if the invariants are satisfied by the current
variables A and F, and the measure of F is at least 2−n, then kcstep succeeds. This means
that we add allocate one new string of length exactly n, leaving the old strings untouched.
Lemma kcstep correct2 expresses an implied result: if the algorithm succeeds, then the
measure of the list of allocated strings increases by exactly 2−n (Isabelle will often not
notice conclusions that seem obvious to the prover; they must be spelt out).

10 Final Remarks

If PA receives an algorithm for a machine V , a proof that V is universal and prefix-free, a
positive integer c, and a computable increasing sequence of rationals converging to a real
γ > 0, then PA can prove that α = 2−cΩV + γ is c.e. and random. Similarly, if PA receives
an algorithm for a machine U , a proof that U is universal and prefix-free, then it can prove

24



that ΩU is c.e. and random. This implies that every c.e. random real is provably c.e. and
random—as stated in Solovay’s email [17].

We have offered two representations for c.e. and random reals from which PA can prove
that the real is c.e. and random. In the first we fix a provably universal prefix-free machine
V and we vary the integer c > 0 and the c.e. real γ > 0 to get via the formula 2−cΩV + γ
all c.e. and random reals. In the second we vary all provably universal prefix-free machines
U to get via ΩU all c.e. and random reals.

A key result was to show that the theorem that “a real is c.e. and random iff it is the
halting probability of a universal prefix-free machine” [6, 14, 4] can be proved in PA. Our
proof, which is simpler than the standard one, can be used also for the original theorem.

Chaitin [9] explicitly computed a constant c such that if N is larger than the size in bits
of the program for enumerating the theorems of PA plus c, then PA cannot prove that a
specific string x has complexity greater than N , HU (x) > N . Consequently, PA cannot
prove randomness of almost all random (finite) strings. Our result shows an interesting
difference between that the finite and the infinite cases of (algorithmic) randomness.

Does our positive result contradict Chaitin and Solovay negative results discussed in the
Introduction? The answer is negative because the digits of the binary expansion of a
random c.e. real are not computable.

Our positive result about provability of randomness in PA will not be satisfactory without
demonstrating our proofs with an automatic theorem prover. We have chosen Isabelle [16]
to obtain an automatic proof of our version of the Kraft-Chaitin Theorem, one of the key
results of this paper. The paper contains a description of the formalisation (for Isabelle) of
the Kraft-Chaitin Theorem and the description of the main steps of the automatic proof;
the full proof is available at [12].

Finally we speculate about the role of the automatic prover. How can an automatic the-
orem prover help understanding/proving a mathematical statement?2 There are at least
three possibilities. a) Use the prover to verify the theorem by discovering a proof, call it
“Solovay mode” (because this corresponds to the result reported in this paper: Bob Solovay
communicated to one of us the statement to be proved and we found a proof). It is worth
observing that the Kraft-Chaitin Theorem has two “roles”: one to be executed, the other
to be analysed and validated. Previous formalisation efforts focused only on the first part3;
our present work was directed towards the second. One could imagine that mathematical
journals might use such systems in the process of refereeing [5]. b) The second possibility
is to use the prover to verify a human-made proof—a full Isabelle proof for all results in

2The reader may note that we don’t question the fact that an automatic theorem prover helps under-
standing mathematics, [5].

3The use of Lisp and Mathematica in Algorithmic Information Theory were pioneered by Chaitin—see
[9].
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this paper is under construction. c) The third possibility is to use the prover as some kind
of “assistant” in an interactive process of discovery/proving. During the work to automate
the proof of the Kraft-Chaitin Theorem a mistake in our human-made argument was un-
earthed and corrected. We also used the experience with Isabelle to test the adequacy of
the representation of a c.e. random real in meeting the goal: to obtain the PA proof of
randomness.
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