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ma decouverte de la théorie ergodique et pour les très agréables moments partagés. Je
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Abstract
The first of our two main goals is investigating the relation between the notions of algo-

rithmic randomness and dynamical typicalness. The former express the “algorithmic un-

predictability” of individual infinite sequences with respect to a given probability measure

and is modeled with the tools of computability theory. The latter, usually modeled in the

framework of ergodic theory/dynamical systems, express the “physical plausibility” of an

initial condition with respect to its evolution under some dynamics (a physically plausible

point should follow the “expected” or “typical” behaviour of the system). Roughly, the

motivation is the following: absolutely complete knowledge of the state of a physical system

is unattainable (for many reasons). Now, supposing we access the physical world by “algo-

rithmic means” (measurements are always finite approximations possibly elaborated later

in computers) then it makes sense to modelize a “physical” point as being “algorithmically

unknownable”. To study this, it is essential to develop algorithmic tools adapted to the

usual context in which ergodic theory takes place and this is what the entire first part of

this thesis is devoted to. Then we consider two notions of algorithmic randomness due to

Martin-Löf and Schnorr and prove three main results, thus establishing the relationship

with typicality. i) In any computable metric space with an arbitrary probability measure µ,

there always exists a universal uniform Martin-Löf-randomness test; ii) If µ is computable,

then the trajectory of a Martin-Löf random point under any computable ergodic dynamics

always follow the typical statistical behaviour of the system; iii) A point is Schnorr ran-

dom if and only if its trajectory follows the typical behaviour of any computable mixing

dynamics. As a second goal we study from a highly theoretical point of view the problem

of simulating randomness or typical statistical behaviours on a computer, with a particular

interest in the ergodic behaviour of dynamical systems. We prove that for several classes of

dynamical systems having a single “physically relevant” invariant measure, i) this measure

is computable and ii) there exist computable points (the only ones we have access in com-

puter simulations) following the typical behaviour of the system. As a direct application we

obtain the existence of computable reals which are Borel-normal with respect to any base.
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Introduction

This thesis is mainly concerned with the understanding of the relation between the

notions of algorithmic randomness and dynamical typicalness, as well as investigating the

problem of simulating randomness or typical statistical behaviours on a computer.

Algorithmic randomness and typicalness The theory of algorithmic randomness

makes use of computability tools to express what means for an object to be algorithmically

“random” or “unpredictable” or “inaccessible”, with respect to a probability distribution

µ. This algorithmic modelization of randomness have been formalized in different ways and

there exist several definitions, Martin-Löf’s one being the most celebrated. In all cases,

being random can be identified with a high degree of “non-computability”, expressed for

instance by means of Kolmogorov complexity which measures the minimal amount of infor-

mation from which an object can be computed. Then algorithmically random objects are

those being maximally complex.

Let us now explain what we mean by dynamical typicalness. In general, the premise for

the use of probabilistic methods is the assumption that the result x of the physical process

under investigation arises randomly with respect to some probability distribution µ which

can be discovered, hypothesized, inferred, measured... in several ways. Under this premise

(of the process governed by the probability law µ) those properties of x which are satisfied

with probability one are taken as probabilistic laws and subjecting x to such properties

is predicted. In the context of a physical process modeled by a dynamical system (X,T )

(X represents the set of all possible states of the system and T describes the dynamics), µ

corresponds to a distribution for which the probability of events does not change in time,

reflecting the fact that the system is in an equilibrium situation. Then, if the starting state

is x, the orbit {x, T (x), T 2(x), ...} represents the system evolving in time. In this case, there

exists a natural class of (asymptotic) properties allowing a definition of “random state” or

1
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“physically plausible state” with respect to the dynamic T and the equilibrium distribution

µ. It is the class associated to the ergodic Birkhoff theorem which states that for each

(integrable) function f : X → R (which represents a quantified observation), the time

average along the orbit O(x) = {x, T (x), T 2(x), ...} converges to the spatial mean
∫
fdµ

with probability one. Then, this typical statistical behaviour of the system is “expected”

to be followed by typical initial conditions. The set of points evolving in this expected

way under the action of the dynamics T are then called T-typical. The T -trajectories

starting from T -typical points are exactly those described by the statistics of µ. If this

distribution is “physical” in some sense, then what one expects to see in “reality” or in

a good computer simulation is one of these trajectories. Hence, a “physically plausible”

point is expected to show this typical behaviour under the evolution of any dynamics. Of

course, if we consider all possible dynamics, then there are no such points. We will then

consider only those dynamics that can be “computed” by algorithmic means and define the

set of typical points as those being T -typical with respect to every computable ergodic

dynamics.

But why shall we consider algorithmically random points as modelizing physically plau-

sible ones? It is known that absolutely complete knowledge of the state of a physical system

is unattainable (for many reasons). Consequently, an idealized, perfectly known number,

say for example 1
2 (if phase-space is modeled by [0, 1]), does not really have a physical sense.

As an elementary example, if we consider a system modeled by T (x) = 2x(mod 1) over [0, 1],

we expect orbits to be dense in [0, 1] (among others properties), but the orbit of 1
2 (and

actually of any dyadic number) is eventually constant and equal to 0 (this follows from the

particular relation between dyadic numbers and the definition of T ). These numbers posses

too many regularities, and this may produce “exceptional” behaviours1.

Now, supposing that our access to the physical world is “algorithmical” in the sense

that measurements are always finite approximations possibly elaborated later in computers,

then it make sense to modelize a “physical” point as being “algorithmically unknownable”,

that is, without any algorithmical regularities.

The role of algorithmic randomness in dynamical systems, especially in ergodic ones,

has already been the subject of previous research ([V’y97, V’y98, KST94, CHJW01]) but,

1Individually, each of these too regular points (a periodic point in a chaotic system for instance) does not
really represent a physical state. On the other hand, all together, they can describe typical properties very
well: they are a powerful tool to study the system.
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without a more general theory of randomness, all these works are restricted to symbolic

spaces.

The first part of this thesis is devoted to the transfer of some tools of computability

theory to more general spaces thus providing a robust framework more adapted to the

variety of physico-mathematical models and allowing a more systematic study of certain

questions, among which are those related to randomness and ergodic theory. Following

this direction, in Chapter 3 we study Martin-Löf algorithmic randomness in general metric

spaces and prove the existence of a universal uniform test, improving Gács’s result (see

[Gác05]). We have also considered a slightly weaker notion of algorithmic randomness, due

to C. Schnorr ([Sch71]). We generalize this notion to computable probability spaces and

give some properties. In Chapter 4, we show that every Martin-Löf-random point is typical

for every computable dynamics and that the asymptotic Kolmogorov complexity of every

random orbit equals the metric entropy of the system (these are generalizations of the re-

sults in [V’y98, Bru83]). Concerning Schnorr’s version of algorithmic randomness, we have

established the following characterization: a point x is Schnorr-random if and only if it is

typical for every computable “polynomially mixing” dynamics.

Pseudo-randomness. Computer simulations (the trajectory of some initial condition

drawn on the screen) has become a very important technique used to infer the equilibrium

distribution µ. As we have seen, the trajectory of any random initial condition would allow

to recover this distribution. The problem is that algorithmically random points are strongly

non-computable, and consequently it is impossible to observe the trajectory of such a point

in a computer simulation which is only able to show orbits starting from computable initial

conditions. Worst, the set of computable points has probability 0! From the simulation

point of view, the fact that a given property holds with probability one says nothing about

its observability with a computer–a typical example is normality in the sens of Borel: a

real number is absolutely normal2 with probability one, but constructing such points is

extremely complicate [BF02]. However, it is widely accepted that computable simulations

show the right ergodic behaviour. The evidence is mostly heuristic. Most arguments are

based on the various “shadowing” results (see e.g. [HK95] chapter 18). In this kind of

2That is, normal with respect to every base.
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approach (different from our), it is possible to prove that in a suitable system, any “pseudo”-

trajectory, as the ones which are obtained in simulations with some computation error is

near to a real trajectory of the system. So we know that what we see in a simulation is near

to some real trajectory, but we do not know if the trajectory is typical in some sense. The

main limitation/ of this approach is however that shadowing results hold only in particular

systems, having some uniform hyperbolicity, while many physically interesting systems are

not like this.

In our approach we consider real trajectories instead of “pseudo” ones and we ask:

are there computable points which are typical for a given dynamics?

In Chapter 5, we use the algorithmic tools developed so far to show a general method

allowing (under certain conditions) the construction of computable points satisfying a given

probabilistic law. In particular, we show that if T is a “polynomially mixing” dynamics

then there exist computable points which are typical for T . A direct application shows the

existence of computable real numbers which are absolutely normal.

All these statements require that the dynamics and the invariant measure are com-

putable. The first assumption can be easily checked on concrete systems if the dynamics is

given by a map which is effectively defined. The second is more delicate: it is well known

that given a map on a metric space, there can be a continuous (even infinite dimensional)

space of probability measures which are invariant for the map, and many of them will be

non computable. An important part of the theory of dynamical systems is devoted to the

selection of measures which are particularly meaningful. From this point of view, an impor-

tant class is given by SRB invariant measures, which are measures being in some sense the

“physically meaningful ones” (for a survey on this topic see [You02]). In the final part of

Chapter 5, we show that in several classes of dynamical systems where SRB measures are

proved to exist, these measures are also computable from our formal point of view, hence

providing several classes of nontrivial concrete examples where our results can be applied.



Part I

Computability and Mathematics
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Chapter 1

Computability on continuous

spaces

1.1 Basic Notation

As usual, N, Z, Q and R will denote the set of natural, integers, rational and reals

numbers. Let Σ denote a finite or countably infinite alphabet. The set of all finite strings

made up with elements of a set Σ, will be denoted by Σ∗. ΣN will denote the set of infinite

sequences of elements of Σ. The spaces {0, 1}N and NN, will be called Cantor space and

Baire space, respectively. Elements of Σ∗ ∪ ΣN will be denoted by ω = ω1, ω2, ... (or

σ = σ1, .. when Σ = N). We will write ω1:k to mean ω1, .., ωk. We shall write x v ω if x is

a prefix of ω, where x ∈ Σ∗ and ω ∈ Σ∗ ∪ΣN. Given a finite sequence x ∈ Σ∗ we denote by

[x] = {ω ∈ ΣN : x v ω} the associated cylinder . These sets generate the standard topology

(the product of the discrete topology) which can be metrized: d(ω, ω′) = 2−min{i:ωi 6=ω′i}.

1.2 Recursive functions

The theory of algorithms begins with the mathematical formulation of the intuitive

notions of mechanical (or effective or constructive) procedure on symbolic objects. Sev-

eral very different formalizations were independently proposed (by Turing, Church, Kleene,

Post, Markov. . . ) in the 30’s. Each constructed computation model defines a class of in-

teger functions which can be computed by some algorithmic (with respect to the model)

procedure. Later, all this models have proved to be equivalent: they define the same class

7
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of functions, which we shall call partial recursive functions (for formal definitions see

for example [HR87]). Besides, this fact supports a working hypothesis known as Church’s

Thesis, which states that every (intuitively formalizable) algorithm is a partial recursive

function. As algorithms are allowed to run forever on some inputs, the functions they

compute may be partial , that is, not defined everywhere. A recursive function defined

everywhere is called total . The domain of a partial recursive function ϕ : N → N, is the

set dom(ϕ) ⊂ N of inputs on which the algorithm computing ϕ eventually halts. A set

E ⊂ N is said to be semi-decidable if it is the domain of a partial recursive function. If

E = dom(ϕ), then the algorithm computing ϕ allows to “semi-decide” whether n ∈ E in the

sense that the algorithm halts on input n if and only if n ∈ E (it runs forever otherwise).

If E and N \ E are semi-decidable, then E is said to be decidable. It is easy to see that a

set E is decidable if and only if the indicator function of E, 1E : N→ {0, 1} defined by

1E(n) = 1 ⇔ n ∈ E, is a total recursive function. In this case there is an algorithm which

halts on every input n, and answer “yes” if n ∈ E or “no” if n /∈ E. The range of a partial

recursive function ϕ is the set range(ϕ) = {ϕ(n) : n ∈ dom(ϕ)}.
Strictly speaking, recursive functions only work on natural numbers, but this can be

easily extended to the objects (thought of as “finite” objects) of any countable set once a

bijection with integers has been chosen in a way that the “finite” objects can be algorith-

mically recovered, in some sense, from their numbers. For example, let {0, 1}∗ be the set

of finite binary words and denote by l(n) = s the n-th word in lexicographical order. This

correspondence defines a bijection l : N→ {0, 1}∗. Let 〈·〉 : {0, 1}∗ → N be its inverse. Note

that we can recover, in an effective way, l(n) from n and n = 〈l(n)〉 from l(n). Recursive

functions can then be defined over {0, 1}∗:

ϕ: {0, 1}∗ → {0, 1}∗ is recursive if so is 〈s〉 7→ 〈ϕ(s)〉.

In exactly the same way, there are effective bijections between N and finite tuples of

integers (n1, .., nk). Let us denote these bijections by 〈, , .., 〉: N× N · · · × N→ N. Then

ϕ: Nk → Nl is recursive if so is 〈n1, .., nk〉 7→ 〈ϕ(n1, .., nk)〉.

With this intuitive description it known that there exists an effective procedure to

enumerate the class of all partial recursive functions, associating to each of them its Gödel

number . Hence there exists a universal recursive function ϕu : N → N satisfying for all

e, n ∈ N, ϕu(〈e, n〉) = ϕe(n) where e is the Gödel number of ϕe. In classical recursion
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theory, a set of natural numbers is called recursively enumerable (r.e. for short) if it is

the range of some partial recursive function. That is, if there exists an algorithm listing (or

enumerating) the set. Given a partial recursive function ϕe one can always compute the

gödel number e′ of a total recursive ϕe′ such that range(ϕe) = range(ϕe′). Hence we can

suppose that r.e. sets are the range of total recursive functions. We shall denote by Ee the

r.e. set associated to ϕe, namely: Ee = range(ϕe) = {ϕu(〈e, n〉) : n ∈ N}. A basic result

in recursion theory says that a set E is recursively enumerable if and only if it is semi-

decidable. Moreover, this equivalence is effective in the sens that, if E = Ee = range(ϕe)

then one can compute the gödel number e′ of a partial recursive function ϕe′ such that

dom(ϕe′) = Ee and, conversely, if E = dom(ϕe) then one can compute the gödel number

e′ of a total recursive function ϕe′ such that E = range(ϕe′). We shall freely use this

equivalence. We say that σ ∈ NN is a recursive sequence if there exists a total recursive

ϕ such that σn = ϕ(n) for all n ∈ N.

Definition 1.2.0.1. A numbered set O is a countable set together with a surjection

νO : N→ O called the numbering . We write on for ν(n) and call n the name of on. y

Examples 1.2.0.1.

1. The set Q of rational numbers can be injectively numbered Q = {q0, q1, . . .} in an

effective way: the number i of a rational a/b can be computed from a and b, and vice

versa. We fix such a numbering.

2. The set of partial recursive functions R = {ϕe : e ∈ N} is a numbered set, the Gödel

numbers being the names.

3. The collection {Ee = range(ϕe) : e ∈ N} of all r.e. subsets of N is a numbered set.

y

We will sometimes use the word algorithm instead of recursive function when the inputs

or outputs are interpreted as finite objects. The operative power of an algorithm on the

objects of such a numbered set obviously depends on what can be effectively recovered from

their numbers.

1.2.1 Uniformity

All through this work, we will use recursive functions to define computability or con-

structivity notions on more general objects. Depending on the context, these objects will
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take particulars names (computable, recursively enumerable, constructively open, decidable,

etc...) but the definition will always follow the scheme:

object x is constructive if there exists a recursive ϕ: D → E satisfying property P(ϕ, x)

for example,

a set E ⊂ N is recursively enumerable if there exists a recursive ϕ: N→ N satisfying

E = range(ϕ).

Each time, a uniform version will be implicitly defined:

a sequence (xi)i is constructive uniformly in i if there exists ϕ: N×D → E such that

for all i ∈ N, ϕi := ϕ(i, ·) satisfy property P(ϕi, xi)

in our example,

a sequence (Ei)i is recursively enumerable uniformly in i if there exists ϕ: N× N→ N

such that for all i ∈ N, ϕi := ϕ(i, ·) satisfy Ei = range(ϕi).

Let us illustrate this in other context,

Definition 1.2.1.1. A real number x ∈ R is said to be computable if there exists a total

recursive ϕ : N→ Q satisfying |x− ϕ(n)| < 2−n for all n ∈ N. y

Hence by a sequence of reals (xi)i computable uniformly in i we mean that there

exists ϕ : N × N → Q such that for all i ∈ N, ϕi := ϕ(i, ·) satisfy |x − ϕi(n)| < 2−n for all

n ∈ N.

1.3 Computability on symbolic spaces

The first step is to extend the notion of recursive function to functions over the space of

infinite sequences on some alphabet Σ (finite or countably infinite). Intuitively, a function

F : D ⊂ ΣN → ΣN is computable on D if there exists an algorithm AF which computes the

image F (ω) of any ω ∈ D in the following sense: the user enters some precision n (interpreted

as accuracy 2−n) to the algorithm which, after asking finitely many times the user for finite

prefix of ω, halts outputting F (ω)1:n which corresponds to a finite approximation of F (ω)

up to 2−n. In other words, the algorithm computing F is able to output finite prefixes of
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F (ω), having access to finite prefixes of ω. Thus, if in some input x ∈ Σ∗ the algorithm

outputs y ∈ Σ∗ then for any extension of x, AF must output an extension of y. One can

see that what underlies the algorithm AF is a monotonic (with respect to the prefix order)

recursive function ϕ : Σ∗ → Σ∗. Formally we have:

Definition 1.3.0.2. [Computability on symbolic spaces] For each monotonic ϕ : Σ∗ → Σ∗

(that is x′ v x⇒ ϕ(x′) v ϕ(x)) we denote by ϕ : ΣN → Σ∗ ∪ ΣN the function defined by:

ϕ(x) = sup
x′vx

ϕ(x′)

and call dom(ϕ) the set of those x ∈ ΣN for which ϕ(x) ∈ ΣN. A function F : ΣN → ΣN

is said to be recursive on D ⊂ ΣN (and we call D, the domain of computability) if there

exists a recursive monotonic function ϕ : Σ∗ → Σ∗ such that D ⊂ dom(ϕ) and F = ϕ on

D. y

Example 1.3.0.1.

The shift transformation σ : ΣN → ΣN defined by σ(ω)i = ωi+1 is the most simple recursive

transformation. y

1.4 Representations and constructivity

Let us discuss somewhat about extending the notion of computability to more general

spaces. Often, given some space with a well defined structure S (a topological space for

example), it is rather natural to define an effective version and then to obtain computabil-

ity notions (of elements or functions for instance) based on recursive functions over finite

objects. This approach has the advantage of allowing a rather elegant framework, giving

more importance to structure than to the very way in which computations are performed.

However, when a given set X comes with a natural structure which is different from S,

there is in general no direct way to define computability over it. In this case, there are

two possibilities: (i) force the structure S to appear somehow over X or (ii) set up new

computability notions with respect to the new structure. In the first approach, the com-

putability notions induced over X might be not the interesting ones (see example 1.6.1.1, 2

and remark 1.6.1.1, 1) and the second may seem somewhat arbitrary in some situations.

Another way to proceed is to “represent” infinite objects via “codings” into infinite

sequences of integers, which allow to directly transfer all computability notions to any
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represented set.

Definition 1.4.0.3. A representation on a set X is a surjective (partial) function ρ :

NN → X. If ρ(σ) = x, we say that σ is a description of x. y

This approach has the advantage of allowing a single general definition of computability.

On the other hand, caring about the role of codes when doing computations needs a lot

of notation and may quickly become confuse, specially when many represented sets are

involved, each with its own code.

We shall use representations but, as all spaces we will consider, will come with its own

structure, each of them will have a canonical representation induced by its structure and

this will allow us to translate all the computability notions induced by the representation

in terms of the structure of the space. Thus, the way in which objects are coded will be

only implicitly present.

Let X and Y be sets with fixed representations ρX and ρY respectively. Computability

can then be extended to any represented set as follows:

Definition 1.4.0.4 (Constructivity notions).

1. An element x ∈ X is constructive if there is a recursive sequence σ such that

ρX(σ) = x.

2. A function f :⊆ X → Y is constructive on D ⊆ X if there exists a recursive function

F : NN → NN which realizes f on D, that is, the following diagram commutes on

ρ−1
X (D):

NN F //

ρX

��

NN

ρY (that is, f ◦ ρX = ρY ◦ F on ρ−1
X (D))

��
X

f // Y

y

Let f :⊆ X → Y be constructive on D. Then if x ∈ D, for every description σ of x,

F (σ) is a description of the same element y, in this case y = f(x). If a function F satisfy this

property for some x, we say that it is extensional on x and that y is x-constructive. If

x is constructive then x-constructivity and constructivity are equivalent. An x-constructive

element may induce a function f : X → Y which is constructive only on {x}. Note that

two sequences of natural numbers can be merged into a single one, so the product X×Y of
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two represented sets has a canonical representation. In particular, it makes sense to speak

about (x, y)-constructive elements.

One of the advantages of defining constructivity with the help of representations, is that

the constructivity of the composition of constructive functions follows directly and once for

all.

Proposition 1.4.0.1. Let X,Y and Z be represented spaces. If g : Y → Z and f :

X → dom(g) ⊂ Y are constructive then the composition g ◦ f : X → Z is constructive.

Proof. It follows from the fact that the composition of recursive functions is recursive.

In the following, we shall use representations to induce the notion of constructive or

computable function between more general spaces. In each case we will characterize this

functions in terms of structure and we shall use these characterizations later in order to

prove that a given function is computable (or constructive, or semi-computable, etc...).

Hence, computability could have been defined using the corresponding characterizations

and without the help of representations (of course in this case, the computability of the

composition would need to be proved case by case).

1.5 Enumerative Lattices

The existence of a universal recursive function ϕu is a remarkable fact. In many situ-

ations, it allows to uniformly enumerate the collection of constructive elements of a given

space. For example, in the space of subsets of integers, the constructive elements are the

semi-decidable (or r.e.) sets (which are only semi-computable) and, as we have already

seen, the universal function induces a recursive enumeration of all the r.e sets (Ee)e such

that Ee is r.e uniformly in e. On the contrary, for decidable sets (which are computable in a

stronger sense) there is no such enumeration. This is a common situation in computability

theory. In order to grasp semi-computability and express it in a general way we introduce

the notion of enumerative lattice.

1.5.1 Definitions

Let us recall some concepts:
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Definition 1.5.1.1. A complete lattice is a partial order (L,≤) in which every subset

has both a supremum and an infimum. y

If (L,≤) is a complete lattice, we will denote by ⊥ and > the least and the greatest

elements, that is, the supremum and the infimum of the empty set, respectively.

Examples 1.5.1.1.

1. The power set of a given set, ordered by inclusion. Supremum is given by the union

and the infimum by the intersection.

2. The real line with the standard ordering.

3. The topology of a given topological space, ordered by inclusion. Supremum is given

by the union and the infimum by the interior of the intersection.

y

We say that function f : L → L′ of complete lattices is monotone if it preserves the

order. If it preserves suprema and infima (hence the order), then we call it a morphism .

Definition 1.5.1.2. An enumerative lattice is a triple (L,≤,P) where (L,≤) is a com-

plete lattice and P ⊆ L (called simple elements) is a numbered set such that every

element x ∈ L is the supremum of some subset of P. y

Definition 1.5.1.3. Given an enumerative lattice (L,≤,P), the canonical representa-

tion is defined by ρL(σ) = supn pσn . y

From here and beyond, when dealing with enumerative lattices the canonical represen-

tation will be implicitly used. Hence, canonical constructivity notions derives directly from

definition 1.4.0.4.

1.5.2 Constructive elements

Let (L,≤,P) be an enumerative lattice. From definition 1.4.0.4, it follows that

Definition 1.5.2.1. [Constructive elements] An element x ∈ L is constructive if there is

a recursive function ϕ: N→ N such that x = sup{pϕ(n) : n ∈ N}. y

Examples 1.5.2.1.
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1. ({⊥,>},≤, {>}) with ⊥ < > is the most simple example.

2. (2N,⊆, {finite sets}) is an enumerative lattice. The constructive elements are the r.e

sets from classical recursion theory.

3. (R,≤,Q) with R = R∪{−∞,+∞} is an enumerative lattice: the constructive elements

are the so-called lower semi-computable real numbers.

y

The following result is one of the main reasons to introduce enumerative lattices:

Proposition 1.5.2.1. Let (X,≤,P) be an enumerative lattice. There is an enumeration

(xi)i∈N of all the constructive elements of X such that xi is constructive uniformly in i.

Proof. The universal recursive function ϕu induce a recursive enumeration of all construc-

tive elements of X. Indeed, if e is the gödel number of the recursive function making x

constructive, then x = supn∈N pϕu(〈e,n〉).

The following easy lemma may also be usefull.

Lemma 1.5.2.1. The supremum of a uniform sequence of constructive elements is again

constructive.

Definition 1.5.2.2. Two sets of simple elements P and P ′ are said to be equivalent if

any pi ∈ P is constructive in (X,≤,P ′) uniformly in i and vice-versa. y

1.5.3 Constructive functions

The following characterization of (total) constructive functions between enumerative

lattices will be useful in proving constructivity. Let (L,≤,P) and (L′,≤,P ′) be two enu-

merative lattices and let (xi)i the collection of constructive elements of L.

Lemma 1.5.3.1. A function of enumerative lattices f : L → L′ is constructive iff the

following conditions hold:

1. f is monotone and commutes with suprema of infinite increasing sequences.

2. f(xi) ∈ L′ is constructive uniformly in i.
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Proof. Let f be constructive. Let F be the function realizing f . Let x ≤ y in L. Let σ, σ′

be descriptions of x and y respectively. We note that for any n, σ1:nσ
′ is another description

of y. Hence, since there exists n such that F [σ1:n] ⊂ [F (σ)1], we conclude f(x) ≤ f(y) and

condition 1 now follows from the fact that F realizes f . Let xi be constructive (in i) and

let σ be a recursive description of it. Then F (σ) is a recursive description of f(xi) which

is then constructive, uniformly in i. Condition 2 follows. For the converse, let σ ∈ NN.

We define F (σ) as follows. For sake of clarity, denote n(σ) the name of the constructive

element supi≤n pσi (that is, supi≤n pσi = xn(σ)) and by ϕ : N2 → N the function making

f(xi) uniformly constructive (that is f(xi) = supn pϕ(i,n)) which exists by condition 2. Then

we define F (σ) as (F (σ))〈i,j〉 := ϕ(i(σ), j). Clearly, F is recursive and by condition 1 it

realizes f .

Remarks 1.5.3.1.

1. The proof of the above lemma even shows condition 2 can be replaced by: there exists

ϕ : N → N such that f(supj≤k pij ) = yϕ〈i1,..,ik〉 for all 〈i1, .., ik〉 ∈ N. That is, the

image of suprema of finitely many simple elements is uniformly constructive.

2. In domain theory, conditions 1 and 2 are known as Scott-continuity. For more on

the relations between the enumerative-lattice approach and domain theory we refer

to [Hoy08].

y

For morphism, constructivity takes a much simpler form:

Proposition 1.5.3.1. A morphism f : L→ L′ is constructive if and only if the images of

simple points are uniformly constructive.

Proof. It follows directly from the property f(sup{pi1 , .., pik}) = sup{f(pi1), .., f(pik)}.

Definition 1.5.3.1. An isomorphism of enumerative lattices is a bijective constructive

morphism, with constructive inverse. y

1.6 Computable Metric Spaces

A computable metric space is a separable metric space with a “distinguished” countable

set (whose elements are called ideal points) satisfying a computability condition: the
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distances between ideal points can be computed by an algorithm with arbitrary (but finite)

precision. With this structure, the computable elements, sets or functions are naturally

defined. Following [Wei00] we define:

Definition 1.6.0.2. A computable metric space (CMS) is a triple X = (X, d,S), where

• (X, d) is a separable complete metric space.

• S = (si)i∈N is a numbered dense subset of X (called ideal points).

• The real numbers (d(si, sj))i,j are all computable, uniformly in i, j.

y

The third condition in the above definition determines the effectivity of the numbering

of S: from the names (i and j) of si and sj , we can uniformly recover their mutual distance.

Examples 1.6.0.1.

1. Symbolic spaces (ΣN, d, S) with Σ a finite alphabet. Let us fix some element of Σ

denoting it by 0. The dense set S is the set of ultimately 0-stationary sequences.

2. (Rn, dRn ,Qn) with the Euclidean metric and the standard numbering of Qn.

3. If (X1, d1, S1) and (X2, d2, S2) are two computable metric spaces, then the product

space (X1×X2, d, S1×S1) is a computable metric space where the distance d is given

by d((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)).

y

The numbered set of ideal points (si)i induces the numbered set of ideal balls B :=

{B(si, qj) : si ∈ S, qj ∈ Q>0}. We denote by Bi,j the ideal ball B(si, qj). From the name

of an ideal ball, we can recover the names of its center and radius, and vice-versa. We

identify each point x ∈ X to the collection of all ideal balls to which x belongs. We call

this collection a complete description of x.

Definition 1.6.0.3. In a computable metric space (X, d,S) the canonical representation

ρX : NN → X is defined by ρX(σ) = x if (Bσn)n is a complete description of x. y

Again, when working with computable metric spaces, we will implicitly use the canon-

ical representation. Hence, constructivity notions derive directly from definition 1.4.0.4.

Usually, when dealing with computable metric spaces, constructive functions or points are

called computable. We shall do likewise.
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1.6.1 Computable sets

Any open set is the union of some collection of ideal balls. Then we directly have:

Proposition 1.6.1.1. Let τX ⊂ 2X be the topology of X. Then the triple (τX ,⊂,B) is an

enumerative lattice.

Proof. Straightforward.

Definition 1.6.1.1. A set U ⊂ X is called constructively open if it is a constructive

element of the enumerative lattice (τX ,⊂,B). That is, if there exists a recursive ϕ : N→ N

such that U =
⋃
i∈NBϕ(i). y

If D is an arbitrary subset of X, a set U is constructively open in D is there exists

a constructively open U ′ such that U = U ′ ∩D, equivalently, if U is a constructive element

of the enumerative lattice (τX ∩D,⊂,B) where τX ∩D := {O ∩D : O ∈ τX} is the trace

topology on D.

Examples 1.6.1.1.

1. In NN (or {0, 1}N), ideal balls are cylinders. Then a set U ⊂ NN is constructively open

if there exists ϕ : N→ N∗ such that U = ∪n[ϕ(n)].

2. Given a constructively open set A and an ideal ball Bi, the relation Bi ⊂ A is in

general not semi-decidable. Consider for example [0, 1] with the euclidean distance

and the rationals as ideal points. Define E = {〈i, n〉 ∈ N such that n ≥ i + 1 and

ϕi(i) does not stop in less than n steps}. This is a r.e subset of N. Then the following

set is constructively open:

A =
⋃

〈i,n〉∈E

(
2−(i+1)(1 + 2−n), 2−i

)
and it is easy to see that (2−(i+1), 2−i) ⊆ A if and only if ϕi(i) does not stop.

y

Remarks 1.6.1.1.

1. Any enumerative lattice (L,≤,P) can be turned into a constructive topological space1

by defining for each p ∈ P the subbasis element Vp := {x ∈ L : p < x}. In particular,

1That is, a topological space with a countable subbase ν effectively given, and such that every point is
uniquely determined by the collection of elements of ν containing it. A point is then called computable if
this collection is recursively enumerable.
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this can be done for the enumerative lattice (τX ,⊂,B). If an element A of τX is com-

putable in the corresponding constructive topological space then it is constructively

open. The example 2 above shows that the converse is false. Then the two notions

are not equivalent.

2. The computability of the distance implies that the relations d(si, sj) < qn and d(si, sj) >

qn are semi-decidable, uniformly in i, j, n. Equivalently, one can semi-decide whether

si ∈ B(sj , qn), and whether si /∈ B(sj , qn) = {x : d(sj , x) ≤ qn} (uniformly in i, j, n).

3. In the case of NN or {0, 1}N (see example 1 above) cylinders are even decidable since,

being clopen sets, they have no boundary. In connected spaces, the only decidable

sets are X and ∅.

y

Definition 1.6.1.2. If B(s, q) and B(s′, q′) are ideal balls, we write B(s, q) < B(s′, q′) (it

reads manifestly included) to mean d(s′, s) + q < q′. y

A basic topological characterization says that a set U is open if and only if for any

point x ∈ U there exists ε > 0 for which B(x, ε) ⊂ U . Here is the effective version: for each

ideal point s ∈ S one can semi-decide whether s ∈ U and, if s ∈ U then one can also find

some rational q such that B(s, q) ⊂ U .

Proposition 1.6.1.2. U is constructively open if and only if there exists a partial recursive

ϕ: S → Q such that:

(i) ϕ(s) halts iff s ∈ U and

(ii) B(s, ϕ(s)) ⊂ U holds.

Proof. The if part follows from the equality U =
⋃
s∈U B(s, ϕ(s)). The only if part follows

from remark 2: for each ideal point s and ideal ball Bi,j , semi-decide whether s ∈ Bi,j and

compute some 0 < ε ∈ Q satisfying ε < rj − d(s, si) (or equivalently B(s, ε) < Bi,j).

Let (X,SX , dX) and (Y, SY , dY ) be computable metric spaces. Denote by UX and UY

the corresponding collections of recursively open sets. By proposition 1.5.2.1, there exists

an enumeration of UX = (UXe )e∈N such that UXe is constructively open, uniformly in e. And

the same holds for UY .

The following is an important property.
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Proposition 1.6.1.3. The union ∪i≤kUei is constructively open uniformly in 〈e1, .., ek〉.
The same holds for the intersection.

Proof. We use proposition 1.6.1.2. Let Ui and Uj be constructively open. Then, given an

ideal point s, we can semi-decide whether s ∈ Ui or s ∈ Uj and compute some ε such that

B(s, ε) ⊂ Ui or B(s, ε) ⊂ Uj . Hence we can semi-decide whether s ∈ Ui ∪ Uj and compute

ε such that B(s, ε) ⊂ Ui ∪ Uj . In the same way, we can semi-decide whether s ∈ Ui and

s ∈ Uj , and compute ε and ε′ such that B(s, ε) ⊂ Ui and B(s, ε′) ⊂ Uj . Hence we can

semi-decide whether s ∈ Ui ∩ Uj and compute δ = min{ε, ε′} such that B(s, δ) ⊂ Ui ∩ Uj .

1.6.2 Computable functions

Let F : {0, 1}N → {0, 1}N be a recursive function and let ϕ : {0, 1}∗ → {0, 1}∗ be the

monotonic recursive function allowing to compute F (see definition 1.3.0.2). We note that

for any w, x ∈ {0, 1}∗, one can semi-decide whether w v ϕ(x) and then the set F−1[w] =

{x : w v ϕ(x)} is constructively open, uniformly in w. In words: the preimage of cylinders

are uniformly constructively open sets. This can be thought as the recursive version of

continuity. Moreover, this recursive continuity is actually equivalent to recursivity:

Proposition 1.6.2.1. Let F : NN → NN be such that for each y ∈ N∗ the set F−1[y] is

constructively open, uniformly in y. Then F is recursive.

Proof. For x ∈ N∗, we define ϕ(x) by induction in |x|. If Λ is the empty word, let ϕ(Λ) = Λ.

Suppose ϕ has been defined over Nn = {x ∈ N∗ : |x| = n} and let ϕ(x) = y for some x ∈ N∗.

We have to define ϕ(xi) for some i ∈ N to be an extension of y. The idea is to decide

whether the additional bit i (in xi) suffices to give an additional bit j2 in which case case

we will put ϕ(xi) = yj and ϕ(xi) = y otherwise3.

As for symbolic spaces, the computability of a function between computable metric

spaces is equivalent to a sort of recursive continuity :

2That is whether there exists j such that [xi] ⊂ F−1[yj] which, as F−1[yj] is constructively open, can be
semi-decided.

3That is, when there exists k and k′ such that k 6= k′ and [xi] ∩ F−1[yk] 6= ∅ and [xi] ∩ F−1[yk′] 6= ∅,
which can be semi-decided too.
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Proposition 1.6.2.2 (Computable Functions). A function T : X → Y is computable iff

T̂ : τY → τX defined by T̂ (U) := T−1(U), is a constructive function of enumerative lattices.

Proof. By lemma 1.5.3.1, (since T̂ is a morphism) T̂ is a constructive function of enumerative

lattices if and only if the preimage T−1(Ue) of a recursively open set Ue ⊂ Y is constructively

open, uniformly in e (recursive continuity). The result now follows from the following claim:

Claim 1.6.2.1. Let X be a computable metric space. A set U ⊂ X is constructively open

iff ρ−1
X (U) is constructively open in ρ−1

X (X) ⊂ NN.

Proof. Let U ⊂ X be constructively open. To show that so is ρ−1
X (U) it is enough to show

that ρ−1
X (Bi) is constructively open uniformly in i. Let Bi be an ideal ball. If ρX(σ) ∈

Bi, then there exists some n such that Bσn < Bi (which can be semi-decided) and then,

[σ1:n] ⊂ ρ−1
X (Bi). Thus, it suffice to enumerate all finite words s ∈ N∗ and to keep those

for which the test Bs|s| < Bi stops. Let us call S ⊂ N∗ the set so obtained. Clearly,

ρ−1
X (Bi) = ∪s∈S [s] ∩ ρ−1

X (X). For the converse observe that for any finite word s, the set

∩i≤|s|Bsi is recursively open, uniformly in s. Then U is the union of a uniform collection of

constructively open sets and thus it is constructively open itself.

It follows that computable functions are continuous. Since T̂ is a morphism, T is

computable iff T−1(Bn) is constructively open uniformly in n, or equivalently, the preimages

of ideal balls are uniformly constructively open. Proposition 1.6.1.2 directly implies the

following usefull characterization.

Corollary 1.6.2.1. A function T : X → Y is computable if and only if there is a partial

recursive ϕ: S × N→ Q such that:

(i) ϕ(s, e) halts iff T (s) ∈ UYe and

(ii) B(s, ϕ(s, e)) ⊂ T−1(UYe ) holds.

As an elementary application, let us show that:

Proposition 1.6.2.3. For any ideal point sn ∈ S, the distance function d : X → R defined

by d(x) = d(sn, x) is computable, uniformly in n.
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Proof. Let Ii,j = (qi, qj) be a rational interval. As d(sn, sk) is computable, given an ideal

point sk we can semidecide whether d(sn, sk) ∈ Ii,j and compute some ε for which (d(sn, sk)−
ε, d(sn, sk) + ε) ⊂ Ii,j ⇔ B(sk, ε) ⊂ d−1Ii,j . The results follows from corollary 1.6.2.1.

Partially computable functions Since we will work with functions which are not nec-

essarily continuous everywhere, we shall consider functions which are computable on some

subsetD ⊂ X. We obtain such a notion by just replacing τX with τX∩D = {U∩D : U ∈ τX}
in Proposition 1.6.2.2. In other words, a function T is computable on D (D ⊂ X) if

T−1(UYe ) ∩D = UXe′ ∩D where UXe′ is constructively open uniformly in e.

1.6.3 Computable points

From definition 1.4.0.4 follows that a point x is computable if the collection of ideal

balls containing x is recursively enumerable. There is another way in which computable

points are usually described. The density of the set of ideal points allows to “reach” the

whole space by means of finite approximations. Let us say that the sequence of points (xi)i

is fast if d(xi, xi+1) < 2−i for all i ∈ N. As the space is complete, every fast sequence has

a limit. The following proposition may be helpful.

Definition 1.6.3.1. A sequence of points xn is said to converge effectively to a limit x

if for all n ≥ 0, d(xn, x) ≤ f(n) where f : N→ R is computable and decreases to zero. y

Proposition 1.6.3.1. The following are equivalent:

1. x is computable

2. there is a recursive fast sequence of ideal points converging x

3. There is a sequence of uniformly computable points xn which converges effectively to

x.

Proof. Let x be computable. Hence, one can find ideal balls containing x with radius as

small as we want. Taking their centers, one can enumerate a fast sequence of ideal points

converging to x. A recursive fast sequence of ideal points converging to x, does it effectively.

If xn converges effectively to x, the we can extract a subsequence which is fast. Call it xi.

Now, by what has been proved before, one can construct a fast sequence of ideal points

converging to x. Let it be si. We have d(si, x) < 2−i+1 for all i. Then, given an ideal ball
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B(s, q) containing x, there exists some i such that B(si, 2−i+1) < B(s, q), which we can

effectively find.

Remarks 1.6.3.1.

1. If T is computable then the images of ideal points can be uniformly computed, that

is: T (sXi ) is computable, uniformly in i.

2. More generally, if T is computable then there exists an algorithm which computes the

image T (x) of any x in the following sense: the user enters some rational ε to the

algorithm which, after asking finitely many times the user for finite approximations

of x, halts outputting a finite approximation of T (x) up to ε.

y

1.7 Computability on some functions spaces

1.7.1 The enumerative lattice C(X, L)

Let (X, d,S) be a computable metric space and (L,≤,P) an enumerative lattice. The

partial order ≤ on L induce the pointwise partial order � over functions from X to L,

defined by f � g ⇔ f(x) ≤ g(x) ∀x ∈ X. The relation � makes this space of functions a

complete lattice. We shall be interested in some functions from this space. Let us consider

the numbered set F of open step functions from X to L:

f
pj
Bi

(x) =

 pj if x ∈ Bi
⊥ otherwise

We then define C(X,L) as the closure of F under pointwise suprema, with the pointwise

ordering. By definition, we have:

Proposition 1.7.1.1. (C(X,Y ),�,F) is an enumerative lattice.

Now we prove that (partial) constructive functions from X to L can always be extended

to be total and that these are exactly the constructive elements of C(X,L).

We remark that a recursive function F : NN → NN realizes some function f̂ : X → L

computable on the set D := {x ∈ X : F is extensional on x}. The following lemma shows

that F also defines a constructive element f ∈ C(X,L) which coincides with f̂ on D.
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Lemma 1.7.1.1. Any recursive function F : NN → NN defines a constructive element

f ∈ C(X,L) such that for every x ∈ X on which F is extensional, if σ describes x then

F (σ) describes f(x).

Proof. Let F : NN → NN be recursive. Then there exists ϕ such that F−1[w] = ∪n[ϕ(w, n))].

We define a constructive element fϕ ∈ C(X,L) by enumerating a uniform sequence of

constructive elements. Let w ∈ N∗ and denote by xw = supi≤|w| pwi . Denote by Bn(w) ⊂ X
the constructively open set represented by [ϕ(w, n)]. Then define fϕ = sup{fxwBn(w)

: w ∈
N∗, n ∈ N}. Suppose that F is extensional on x. Let σ be a description of x. Then by

construction we have: fϕ(x) = supi xF (σ)1:i .

Lemma 1.7.1.2. Any constructive element of C(X,L) is a (total) constructive function.

Proof. Let f = sup{fpjBi : 〈i, j〉 ∈ E} with E r.e. From a description of x, we can semidecide

wether x ∈ Bi for any ideal Bi. Then dovetail 〈i, j〉 and output j if x ∈ Bi. The sequence

so obtained is independent of the given description of x, up to permutations. Then all them

describe the same element of L, namely supn F (σ)n = f(x).

Corollary 1.7.1.1. For any f : X → L constructive on D there exists a total constructive

f̂ which coincides with f on D.

Proof. Let F be the function realizing f . F is extensional on D. By lemma 1.7.1.1, F defines

a constructive element f̂ ∈ C(X,L) which coincides with f on D. By lemma 1.7.1.2, f̂ is a

total constructive function.

The proof even shows that the equivalence is constructive: the evaluation of any f :

X → L on any x ∈ X can be achieved by an algorithm having access to any description of

f ∈ C(X,L), and any recursive F realizing f can be converted into an algorithm describing

f ∈ C(X,L). More precisely:

Proposition 1.7.1.2. Let X be a computable metric space, L be an enumerative lattice

and Y be any represented space. Let g : Y ×X → L and h : Y → C(X,L) be constructive

functions, then the following functions are constructive:

Eval : C(X,L)×X −→ L (1.1)

(f, x) 7−→ f(x)
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Curry(g) : Y −→ C(X,L) (1.2)

y 7−→ g(y, ·)

Decurry(h) : Y ×X −→ L (1.3)

(y, x) 7−→ h(y)(x)

1.7.2 Lower semi-computability

Let X be a computable metric space. The following is a standard definition.

Definition 1.7.2.1. A real valued function f : X → R is said to be lower semi-

computable if f−1(qi,∞) is constructively open uniformly in i. f is upper semi-computable

if −f is lower semi-computable. y

Proposition 1.7.2.1. A function f : X → R is computable iff it is upper and lower semi-

computable.

Proof. By proposition 1.6.2.2, f is computable iff f−1(qi, qj) is constructively open uniformly

in i, j. The result follows from the relation f−1(qi, qj) = f−1(qi,+∞) ∩ f−1(−∞, qj).

In the same way that corollary 1.6.2.1, one can easily prove:

Proposition 1.7.2.2. A function f : X → R is lower semi-computable if and only if there

is a partial recursive ϕ: S × N→ Q such that:

(i) ϕ(s, i) halts iff f(s) ∈ (qi,∞) and

(ii) B(s, ϕ(s, i)) ⊂ T−1(qi,∞) holds.

Now we analyze real valued functions from the point of view of enumerative lattices.

Let us consider the real line as an enumerative lattice (R,≤,Q), and the space of functions

C(X,R) introduced above, which is also an enumerative lattice. In this case, the set F of

step functions takes the form:

f
qj
Bi

(x) =

 qj if x ∈ Bi
⊥ otherwise
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Proposition 1.7.2.3. C(X,R) is the set of lower semi-continuous functions. A lower

semi-continuous function is constructive iff it is lower semi-computable.

Proof. Let f ∈ C(X,R). Then there exists E ⊂ N such that f = sup{qj1Bi : 〈i, j〉 ∈ E}.
To see that f is lower semi-continuous, observe that f−1(qk,∞) = ∪i∈E′Bi where E′ =

{i ∈ N : qj ≥ qk, 〈i, j〉 ∈ E}. Moreover, if E is r.e then so is E′; constructive functions are

then lower semi-computable. Conversely, if for any k ∈ N, f−1(qk,∞) is open, then there

is Ek ⊂ N such that f−1(qk,∞) = ∪i∈EkBi. Hence f = sup{qk1Bi : (i, k) ∈ N2, i ∈ Ek}.
Again, if f is lower semi-computable then Ek is r.e uniformly in k. f is then constructive.

As a corollary we have:

Corollary 1.7.2.1. A function f : X → R is computable iff there exists two recursive

monotone sequences f↑n and f↓n of step functions such that for all x ∈ X, f↑n(x)↗ f(x) and

−f↓n(x)↘ f(x) (equivalently f↓n(x)↗ −f(x)) holds.

Proof. Direct from propositions 1.7.2.1 and 1.7.2.3

1.7.3 Computable simple functions

Following Gács, let us introduce a certain fixed, enumerated sequence of Lipschitz

functions. Let H0 be the set of functions of the form:

gs,r,ε = |1− |d(x, s)− r|+/ε|+ (1.4)

where s ∈ S, r, ε ∈ Q and |a|+ = max{a, 0}. These are uniformly computable (com-

position of computable functions) Lipschitz functions equal to 1 in the ball B(s, r), to 0

outside B(s, r + ε) and with intermediate values in between.

Let

H = {g1, g2, . . . , } (1.5)

be the smallest set of functions containing H0 and the constant 1, and closed under max,

min and finite rational linear combinations. We fix some enumeration νH of H and we write

gn for νH(n) ∈ H. Clearly, these is also a uniform family of computable functions.
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Remark 1.7.3.1. These function are of the form gn = cn + fn where cn is a constant (com-

putable from n) and fn has bounded support (and from n one can compute a bound for its

diameter). y

In particular, for any f ∈ H, we have that f and −f are constructive elements of

C(X,R).

When working with positive real valued functions, the set H+ (H restricted to positive

functions) can be seen as an alternative to step functions. Let us consider the enumerative

lattice C(X,R+) of positive functions. Here, R+ denotes the enumerative lattice (R+ ∪
{+∞},≤,Q+). In this space, functions in the set F (of step functions) are defined by:

f
qj
Bi

(x) =

 qj if x ∈ Bi
0 otherwise

Proposition 1.7.3.1. The enumerative lattices (C(X,R+),≤,F) and (C(X,R+),≤,H+)

are isomorphic.

Proof. The sets F and H+ are equivalent simple sets. Indeed, for εn = 1
n we have that

f qB(s,r) = sup{q · gs,r−εn,εn : n ∈ N} and that gs,r,δ = sup{f εnB(s,r,δ(1−εn)) : n ≥ 1}. The

identity is then an isomorphism between (C(X,R+),≤,F) and (C(X,R+),≤,H+).

Hence, any positive lower semi-computable function, is the supremum of a computable

sequence of functions from H+. The relation between computability and constructivity can

only be stated for bounded functions.

Corollary 1.7.3.1. Let fi : X → R be bounded by Mi (|fi| ≤ Mi). If Mi is computable

uniformly in i, then fi is uniformly computable iff fi + Mi and −fi + Mi are uniformly

constructive elements of (C(X,R+),≤,H+).

Proof. First, we prove the result for positive functions. Let Mi ≥ fi ∈ C(X,R+), where

Mi is uniformly computable. The only if part follows directly from the above proposition.

To prove the if part observe that, since −fi + Mi is constructive, (−fi + Mi)−1(qn,∞) =

f−1(0,Mi − qn) is uniformly constructively open. Then fi is upper semi-computable. It is

also lower semi-computable since fi + Mi is. To prove the result for bounded functions fi

which are not necessarily positive just apply this to f̂ = fi +Mi ≤ 2Mi.
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Constructive Measure Theory

2.1 Introduction

Let X be a computable metric space. In this chapter, we investigate the notion of

“computability” of probability measures over X (very simply defined in Cantor space).

The computable structure of X induce a computable structure over the metric space of

probability measures over X, M(X). The computable elements of this space being the

computable measures. We study the computability properties of the measure of opens sets

as well as the integral of functions, obtaining that these quantities can be only partially

computed. In order to properly state these results, we use the notion of enumerative lattice

(1.5.1.2) which is more suited to express semi-computability in a general way. Then we

give several characterizations of computable measure in terms of these last computability

properties, and show the following result:

Theorem Let µ ∈M(X) be a computable probability measure. Then there exists a collection

of Borel sets A = {A1, A2, ...} with the following properties:

• A is a generating algebra.

• the union, intersection and complementation are constructive operations,

• the map i 7→ µ(Ai) is computable.

This theorem will proof very useful since it is the main tool in many constructions. The

notion of computable probability space (a computable metric space with a computable

29
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probability measure) is then introduced as well as the corresponding notion of isomor-

phism between these objects, namely, a measure preserving bijection which is moreover

computable on a constructive Gδ set of measure one. We obtain a first classification, given

by:

Theorem Let (X,µ) be a computable probability space. Then:

• there exists a computable measure ν over the space {0, 1}N such that (X,µ) and

({0, 1}N, ν) are isomorphic.

• if µ is non-atomic, then (X,µ) is isomorphic to ([0, 1], λ) where λ is the Lebesgue

measure.

In particular, this result allows to directly transfer many tools developed in Cantor

space to any computable probability space.

2.2 Computability on the space M(X) of probability mea-

sures

2.2.1 M(X) as a computable metric space

Given a metric space (X, d), the set M(X) of Borel probability measures over X can

be endowed with the weak topology, which is the finest topology for which

µn −→ µ if and only if
∫
fdµn −→

∫
fdµ

for all continuous bounded functions f : X → R.

This is a metrizable topology and, when X is separable and complete, M(X) is also

separable and complete (see [Bil68]). Moreover, a computable metric structure on X induces

in a canonical way a computable metric structure on M(X).

Let D ⊂M(X) be the set of those probability measures that are concentrated in finitely

many points of S and assign rational values to them. It can be shown that this is a dense

subset ([Bil68]). The numberings νS of ideal points of X and νQ of the rationals numbers

induce a numbering νD of ideal measures: µ〈〈n1,..,nk〉,〈m1,..,mk〉〉 is the measure concentrated

over the finite set {sn1 , .., snk} where qmi is the weight of sni .
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The Prokhorov metric

Let us consider the particular metric on M(X):

Definition 2.2.1.1. The Prokhorov metric ρ on M(X) is defined by:

ρ(µ, ν) := inf{ε ∈ R+ : µ(A) ≤ ν(Aε) + ε for every Borel set A}. (2.1)

where Aε = {x : d(x,A) < ε}. y

It is known that it is indeed a metric, which induces the weak topology on M(X) (see

[Bil68]). The following theorem will prove useful later:

Theorem 2.2.1.1. Let g: X → R be a β-Lipschitz function with support included in

B = B(x, r). If µ and ν in M(X) are such that ρ(µ, ν) < δ then |µg − νg| ≤ δβ(r + 1)

Proof. By the coupling theorem A.1.0.3, there exist a measure P over the product space

X ×X with marginals µ and ν such that P [d(x, y) > δ] ≤ δ. Then we have that:

|
∫
X

g(x)dµ−
∫
X

g(y)dν | ≤
∫

B×B

| g(x)− g(y) | dP (x, y)

≤ β

∫
B×B

d(x, y)dP (x, y).

putting D = {d(x, y) > δ} we have that this quantity is equal to

β(
∫

B×B∩D

d(x, y)dP (x, y) +
∫

B×B∩Dc

d(x, y)dP (x, y))

≤ βrδ + βδ = δ(β(r + 1)).

Moreover, we have that:

Proposition 2.2.1.1. (M(X),D, ρ) is a computable metric space.

Proof. We have to show that the real numbers ρ(µi, µj) are all computable, uniformly in

〈i, j〉. First observe that if U is a constructively open subset of X, µi(U) is lower semi-

computable uniformly in i and U . Indeed, if (sn1 , qm1), . . . , (snk , qmk) are the mass points
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of µi together with their weights (computable from i) then µi(U) =
∑

snj∈U
qmj . As the snj

which belong to U can be enumerated from any description of U , this sum is lower-semi-

computable. In particular, µi(Bi1∪. . .∪Bik) is lower semi-computable and µi(Bi1∪. . .∪Bik)

is upper semi-computable, both of them uniformly in 〈i, i1, . . . , ik〉. Now we prove that

ρ(µi, µj) is computable uniformly in 〈i, j〉.
Observe that if µi is an ideal measure concentrated over Si, then (2.1) becomes ρ(µi, µj) =

inf{ε ∈ Q : ∀A ⊂ Si, µi(A) < µj(Aε) + ε}. Since µj is also an ideal measure and Aε is a fi-

nite union of open ideal balls, the number µj(Aε) is lower semi-computable (uniformly) and

then ρ(µi, µj) is upper semi-computable, uniformly in 〈i, j〉. To see that ρ(µi, µj) is lower-

semicomputable, uniformly in 〈i, j〉, observe that ρ(µi, µj) = sup{ε ∈ Q : ∃A ⊂ Si, µi(A) >

µj(Aε) + ε}, where Aε = {x : d(x,A) ≤ ε} (a finite union of closed ideal balls when A ⊂ Si)
and use the upper semi-computability of µj(Aε).

Definition 2.2.1.2. A measure µ is computable if it is a constructive point of (M(X),D, ρ).

y

The effectivization of the space of Borel probability measures M(X) is of theoretical

interest, and opens the question: what kind of information can be (algorithmically) recov-

ered from a description of a measure as a point of the computable metric space M(X)?

Which we shall study in the next section.

The Wasserstein metric

In the particular case when the metric space X is bounded, an alternative metric can

be defined on M(X). When f is a real-valued function, µf denotes
∫
fdµ.

Definition 2.2.1.3. The Wasserstein metric on M(X) is defined by:

W (µ, ν) = sup
f∈1−Lip(X)

(|µf − νf |) (2.2)

where 1− Lip(X) is the space of 1-Lipschitz functions from X to R. y

We recall (see [AGS05]) that W has the following properties:

Proposition 2.2.1.2.

1. W is a distance and if X is separable and complete then M(X) with this distance is

a separable and complete metric space.
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2. The topology induced by W is the weak topology and thus W is equivalent to the

Prokhorov metric.

Moreover, if (X,S, d) is a computable metric space, then:

Proposition 2.2.1.3. (M(X),D,W ) is a computable metric space.

Proof. We have to show that the distance W (µi, µj) between ideal measures is uniformly

computable. From 〈i, j〉 we can compute the set Si,j = supp(µi) ∪ supp(µj). Let s0 ∈ Si,j ,
then we can suppose that the supremum in (2.2) is taken over 1 − Lip0

s0(X) := {f ∈
1−Lip(X) : 1−Lip0

s0(X)f(s) = 0}. Given some precision ε we construct a finite set Nε ⊂
1−Lip0

s0(X) made of uniformly computable functions such that for each f ∈ 1−Lip0
s0(X)

there is some l ∈ Nε satisfying sup{|f(x) − l(x)| : x ∈ Si,j} < ε: compute an integer m

such that Si,j ⊂ B(s,m); then |f | < m for every f ∈ 1 − Lip0
s(X). Let n be such that

m/n < 2ε. For each s ∈ Si,j and a ∈ { lmn }
m
l=−m let us consider the functions defined by

φ+
s,l(x) := a+d(s, x) and φ−s,l(x) := a−d(s, x). Then it is not difficult to see that Nε defined

as the set of all possible combinations of max and min made with the φ+−
s,l (x) satisfy the

required condition.

Therefore, since sup(|f − g|) < ε implies |µ(f − g)| < ε we have that:

W (µi, µj) ∈ [ sup
g∈Nε

(|µig − µjg|), sup
g∈Nε

(|µig − µjg|) + 2ε]

where the µig are computable, uniformly in i. The result follows.

When X is bounded, the effectivization using the Prokhorov or the Wasserstein metrics

turn out to be equivalent.

Theorem 2.2.1.2. The Prokhorov and the Wasserstein metrics are computably equiva-

lent. That is, the identity function id : (M(X),D, ρ) → (M(X),D,W ) is a computable

isomorphism, as well as its inverse.

Proof. Let M be an integer such that supx,y∈X d(x, y) < M . Suppose ρ(µ, ν) < ε/(M +

1). Then, by theorem 2.2.1.1, for every f ∈ 1 − Lip(X) it holds |µf − νf | ≤ ε, then

W (µ, ν) < ε. Conversely, suppose W (µ, ν) < ε2 < 1. Let A be a Borel set and define

gAε := |1−d(x,A)/ε|+. Then εgAε ∈ 1−Lip(X). W (µ, ν) < ε2 implies µεgAε < νεgAε + ε2 and

since µ(A) ≤ µgAε and νgAε ≤ ν(Aε), we conclude µ(A) ≤ ν(Aε) + ε and then ρ(µ, ν) < ε.
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Therefore, given a fast sequence of ideal measures converging to µ in the Prokhorov metric,

we can construct a fast sequence of ideal measures converging to µ in the W metric and

vice-versa.

2.2.2 Computing with probability measures

The purpose of this section is to study the computability of the integral of functions

or the measure of sets, given a description of the measure. These quantities are in general

not computable. The classical example is to consider the sequence of measures δ1/n which

converges to the computable measure δ0. Let 1(0,1) be the indicator function of the open

interval. For all n, we have that
∫

1(0,1)(x)dδ1/n = 1 and
∫

1(0,1)dδ0 = 0. So the function

µ 7→
∫

1(0,1)dµ is in general not computable since it is not even continuous. Instead, we will

show that it is lower-semicomputable.

Given an integrable function f ∈ L1, we denote by Lf : M(X) → R the function

mapping µ into µf . Let gi denotes the functions from the simple set H introduced in

section 1.7.3. The regularity of these functions allows to show:

Theorem 2.2.2.1. The functions Lgi: M(X)→ R are computable uniformly in i.

Proof. We use corollary 1.6.2.1. Let gi ∈ H. From i we can compute a Lipschitz constant

β and a bound r for the diameter of its support (we suppose c = 0 in remark 1.7.3.1).

Let Ik,j = (qk, qj) be an enumeration of the rational intervals. For each ideal measure

µn we can semi-decide µng ∈ Ik,j (since µngi is computable). Now compute some ε such

that (µngi − ε, µngi + ε) ⊂ Ik,j and take δ = ε(β(r + 1))−1. By theorem 2.2.1.1 we get

B(µn, δ) ⊂ L−1
gi (Ik,j).

To be able to talk about integrals of more general functions, as the indicator func-

tions of open sets, we will consider the functions spaces C(X,R+), C(M(X),R+) and

C(M(X), [0, 1]) (with its enumerative lattice structure) and the following two operators:

(i) the integral operator,

L : C(X,R+)→ C(M(X),R+)

f 7→ Lf
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and, (ii) the valuation operator,

v : τX → C(M(X), [0, 1])

U 7→ L1U

We can now state:

Theorem 2.2.2.2. The integral and the valuation operators are constructive.

Proof. It is obvious that the integral operator is monotone. The fact that it commutes with

suprema of increasing sequences follows from the monotone convergence theorem (A.1.0.4).

Its constructivity is immediate from theorem 2.2.2.1 since the set H+ of simple functions is

closed under suprema of finite collections. To see that the valuation operator is constructive,

observe that given a finite union of ideal balls Bk = ∪j≤kBij we have that 1Bk ∈ C(X,R+)

is constructive uniformly in 〈i1, .., ik〉, and as the integral operator is constructive, so is

L1kB
.

So, we know how to (lower) semi-compute the integral of constructive functions. It

is natural to ask whether one can also semi-compute the integral of functions which are

constructive only on some subset D ⊂ X. The following proposition shows that this is the

case at least when the domain of computability has full measure.

Proposition 2.2.2.1. Let D ⊂ X be a Borel set. If fi : X → R+ is a uniform sequence

of functions which are lower semi-computable on D, then Lfi is lower semi-computable on

M(D) := {µ : µ(X \D) = 0}, uniformly in i.

Proof. By Thm. 1.7.1.1, from each i one can construct a lower semi-computable function

f̂i satisfying f̂i = fi on D. Since the function µ 7→
∫
X f̂idµ is lower semi-computable,

uniformly in i and µ(X \ D) = 0, we have that on M(D) it coincides with µ 7→
∫
fidµ,

which is then lower semi-computable on M(D), uniformly in i.

For computable functions we have:

Corollary 2.2.2.1. Let D ⊂ X be measurable. Let fi : X → R be such that |fi| ≤Mi with

Mi computable from i. If the fi are computable on D uniformly in i, then Lfi :M(X)→ R

is computable on M(D) := {µ : µ(X \D) = 0}, uniformly in i.
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Proof. Lfi+Mi
= Lfi +Mi is bounded by 2Mi. Since fi +Mi ∈ C(X,R+) is constructive on

D uniformly in i, proposition 2.2.2.1 implies that on M(D), so is Lfi+Mi
. The same applies

to −fi+Mi. We obtain that L−fi+Mi
is constructive on M(D). Since −Lfi+Mi = L−fi+Mi

,

the result follows from corollary 1.7.3.1.

The above results can be stated in a more general fashion (we only state the version

for total functions):

Corollary 2.2.2.2. Let Y be a represented space and fi : Y ×X → R+ be a constructive

function, uniformly in i. Then Lfi : Y → C(M(X),R+) mapping y 7→ Lfi(y,·) is construc-

tive, uniformly in i.

Proof. It is a composition of constructive functions: Lfi = L ◦ [Curry(fi)].

Corollary 2.2.2.3. Let fi : M(X) × X → R be such that |fi| ≤ Mi. If fi and Mi are

computable uniformly in i, then Lfi : M(X) → R mapping µ 7→ Lfi(µ,·)(µ) is computable

uniformly in i.

Proof. Apply corollary 2.2.2.2 with Y = M(X) to fi +Mi and to −fi +Mi as in the proof

of corollary 2.2.2.1.

Now we characterize computable measures:

Theorem 2.2.2.3. The following are equivalent:

(i) Measure µ is computable.

(ii) µgi is computable uniformly in i.

(iii) The measure µ(B = ∪kj=1Bij ) of finite unions of ideal open balls is lower semi-

computable uniformly in 〈i1, . . . , ik〉.

Proof. [(i)⇒ (ii)] It follows from theorem 2.2.2.1.

[(ii)⇒ (iii)] It follows from theorem 2.2.2.2.

[(iii) ⇒ (i)] Given an ideal ball B(µn, ε), since ρ(µn, µ) < ε iff µn(A) < µ(Aε) + ε for all

A ⊂ Sn (where Sn is the finite support of µn) and µ(Aε) is lower semi-computable (Aε is a

finite union of open ideal balls) we can semi-decide µ ∈ B(µn, ε).
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Of course, we also have that µ ∈M(X) is computable iff µ(Ue) is lower semi-computable,

uniformly in e (where (Ue) is a recursive enumeration of the constructively open sets). This

directly gives a criteria to check the computability of an operator L : M(X)→M(X).

Corollary 2.2.2.4. Let X be a computable metric space and D be a subset of M(X). A

transformation L : M(X) → M(X) is computable on D iff the function µ 7→ L(µ)(Ue) is

lower semi-computable on D, uniformly in e.

Symbolic spaces and the unit interval as special cases

Examples 2.2.2.1.

1. On a symbolic space ΣN (where Σ is a finite alphabet) with its natural computable

metric space structure, the ideal balls are the cylinders. Any finite union of cylin-

ders can always be expressed as a disjoint (and finite) union of cylinders, and the

complement of a cylinder is a finite union of cylinders. Thus we have:

Proposition 2.2.2.2. A measure µ ∈ M(ΣN) is computable iff so is the function µ :

Σ∗ → R+ mapping w to µ([w]).

2. On the unit real interval, ideals balls are open rational intervals. Again, a finite union

of such intervals can always be expressed as a disjoint (and finite) union of open

rational intervals. Then:

Proposition 2.2.2.3. A measure µ ∈ M([0, 1]) is computable iff the measures of the

rational open intervals are uniformly lower semi-computable.

If µ has no atoms, a rational open interval is the complement of at most two disjoint

open rational intervals, up to a null set. In this case, the measure µ is computable iff

the measures of the rational intervals are uniformly computable.

y

2.3 Computable probability spaces

In this section we adopt a measure theoretical view to study in more detail computable

metric spaces equipped with a fixed computable measure. Let us then introduce:
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Definition 2.3.0.1. A computable probability space (CPS) is a pair (X , µ) where X
is a computable metric space and µ is a computable Borel probability measure on X. y

As already said, a computable function defined on the whole space is necessarily con-

tinuous. But a transformation or an observable need not be continuous at every point,

as many interesting examples prove (piecewise-defined transformations, characteristic func-

tions of measurable sets,. . . ), so the requirement of being computable everywhere is too

strong. In the (computable) measure-theoretical setting, a natural weaker condition is to

require the function to be computable almost everywhere, but this seems to be too weak

for our purposes. An intermediate definition which makes things work is the following:

Definition 2.3.0.2. A set D ⊂ X is called a constructive Gδ-set if it is the intersection

of uniformly constructively open sets. y

Definition 2.3.0.3. Let (X , µ) and Y be a computable probability space and a computable

metric space respectively. A function f : (X , µ) → Y is µ-almost computable if it is

computable on a constructive Gδ-set (denoted as domf or Df ) of measure one. y

Remark 2.3.0.1. Given a uniform sequence of µ-almost computable functions (fi)i, any

computable operation �ni=0fi (addition, multiplication, composition, etc...) is µ-almost

computable, uniformly in n. y

We recall that F : (X , µ) → (Y, ν) is measure-preserving if µ(F−1(A)) = ν(A) for all

Borel sets A. To classify computable probability spaces, we need to define their morphisms

and isomorphisms.

Definition 2.3.0.4. A morphism of computable probability spaces F : (X , µ) →
(Y, ν), is a µ-almost computable measure-preserving function F : DF ⊆ X → Y .

An isomorphism (F,G) : (X , µ)� (Y, ν) is a pair (F,G) of morphisms such that G◦F =

id on F−1(DG) and F ◦G = id on G−1(DF ). y

Remark 2.3.0.2. To every isomorphism (F,G) one can associate the canonical invertible mor-

phism ϕ = F |Dϕ with ϕ−1 = G|Dϕ−1 , where Dϕ = F−1(G−1(DF )) and Dϕ−1 = G−1(DF ).

Of course, (ϕ,ϕ−1) is an isomorphism. y

Computable probability structures can be easily transferred:

Proposition 2.3.0.4. Let (X , µ) be a computable probability space, Y be a computable

metric space and F : X → Y a function which is computable on a constructive Gδ-set of



Chapter 2: Constructive Measure Theory 39

µ-measure one. Then the induced measure µF on Y defined by µF (A) = µ(F−1(A)) is

computable and F is a morphism of computable probability spaces.

2.3.1 Borel sets of computable measure.

The measure of most sets is not computable. The measure of constructively open sets

for example, is in general only lower semi-computable. Nevertheless, sets whose measure is

computable play an important role. In order to handle these sets we will use a collection of

more elementary sets (of computable measure) which have interesting algebraic properties.

They are given by the following theorem:

Theorem 2.3.1.1. Let (X,µ) be a computable probability space. Then there exists a col-

lection of constructive Borel sets A = {A1, A2, ...} with the following properties:

• A is a generating algebra.

• the union, intersection and complementation are constructive operations,

• the map i 7→ µ(Ai) is computable.

This theorem will be our main tool in many later constructions. To prove it, we need

some preparation.

Definition 2.3.1.1. A measurable set A is said to be a µ-continuity set if µ(∂A) = 0

where ∂A = A ∩X \A is the boundary of A. y

Definition 2.3.1.2. A set A is said to be almost decidable if there is a constructive Gδ

set D of measure one and two constructively open sets U and V such that:

U ∩D ⊂ A, V ∩D ⊆ AC , µ(U) + µ(V ) = 1

y

Remarks 2.3.1.1.

1. The collection of almost decidable sets is an algebra.

2. An almost decidable set is always a continuity set.

3. A µ-continuity ideal ball is always almost decidable (with D = X).
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4. Unless the space is disconnected (i.e. has non-trivial clopen subsets), no set can be

decidable, i.e. semi-decidable (constructively open) and with a semi-decidable comple-

ment (such a set must be clopen1). Instead, a set can be decidable with probability

1: there is an algorithm which decides if a point belongs to the set or not, for almost

every point. This is why we call it almost decidable.

y

Ignoring computability, the existence of open µ-continuity sets directly follows from

the fact that the collection of open sets is uncountable and µ is finite. The problem in the

computable setting is that there are only countable many constructively open sets.

The following will be an important tool.

Theorem 2.3.1.2. Let (X , µ) be a CPS and (fi)i be a sequence of uniformly computable

real valued functions on X. Then there is a sequence of uniformly computable reals (xn)n

which is dense in R and such that µ({f−1
i (xn)}) = 0 for all i, n.

The proof uses the following lemma:

Lemma 2.3.1.1. Let X be R or R+ or [0, 1]. Let µ be a computable probability measure

on X. Then there is a sequence of uniformly computable reals (xn)n which is dense in X

and such that µ({xn}) = 0 for all n.

Proof. Let I be a closed rational interval. We construct x ∈ I such that µ({x}) = 0.

To do this, we construct inductively a nested sequence of closed intervals Jk of measure

< 2−k+1, with J0 = I. Suppose Jk = [a, b] has been constructed, with µ(Jk) < 2−k+1. Let

m = (b− a)/3: one of the intervals [a, a+m] and [b−m, b] must have measure < 2−k, and

we can find it effectively—let it be Jk+1. From a constructive enumeration (In)n of all the

dyadic intervals, we can construct xn ∈ In uniformly.

Proof of theorem 2.3.1.2. Consider the uniformly computable measures µi = µ◦f−1
i and de-

fine ν =
∑

i 2−iµi. By theorem 2.2.2.3, ν is a computable measure and then, by Lemma 2.3.1.1,

there is a sequence of uniformly computable reals (xn)n which is dense in R and such that

ν({xn}) = 0 for all n. Since ν(A) = 0 iff µi(A) = 0 for all i, we get µ({f−1
i (xn)}) = 0 for

all i, n.

1In the Cantor space for example (which is totally disconnected), every cylinder (ball) is a decidable set.
Indeed, to decide if some infinite sequence belongs to some cylinder it suffices to compare the finite word
defining the cylinder to the corresponding finite prefix of the infinite sequence.
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The following result will be used many times in the sequel.

Corollary 2.3.1.1. There is a sequence of uniformly computable reals (rn)n∈N such that

(B(si, rn))i,n is a basis of almost decidable balls.

Proof. Apply Theorem 2.3.1.2 to (fi)i defined by fi(x) = d(si, x).

Note that different algorithmic descriptions of the same µ may yield different sequences

(rn)n∈N. It is understood that some algorithmic description of µ has been chosen and

fixed. This can be done only because the measure µ is computable, which is then a crucial

hypothesis. Moreover, it can be shown that there exists (non-computable) measures for

which there is no almost decidable set. For a counterexample we refer to [Hoy08]. We

remark that every ideal ball can be expressed as a recursively enumerable union of almost

decidable balls, and vice-versa. So the two bases are constructively equivalent.

We are able to prove theorem 2.3.1.1.

Proof of theorem 2.3.1.1. Define A to be the algebra generated by the collection of almost

decidable balls constructed above. As almost decidable balls are a basis, they generate B.

Then, so does A . It is easy to see that elements of A are almost decidable. Moreover, the

numbering of the collection of almost decidable balls induce a numbering of A such that An

is almost decidable uniformly in n. To prove that µ(An) is computable uniformly in n, let

Un and Vn be the sets making An almost decidable. We have µ(An) = µ(Un) = µ(Vn). As

both, Un and Vn are constructively open, their measures are lower semi-computable. Since

µ(Un) +µ(Vn) = 1, their measures are also upper semi-computable. The result follows.

Constructive open sets with computable measure

Let us now introduce a class of sets with computable measure, which are not necessarily

almost decidable,

Definition 2.3.1.3. A set A is called computably open if it is constructively open and

µ(A) is computable. y

Lemma 2.3.1.2. If V is computably open, then there is a recursives equence (An) in A

satisfying An ↗ V and µ(V 4An) ≤ 2−n.
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Proof. As V is constructively open, there is a recursive sequence of almost decidable balls

(Bi) such that V = ∪iBi. Let Bk = ∪i≤kBi. As µ(V ) is computable, given any ε > 0, a k

can be computed such that µ(V 4Bk) = µ(V )− µ(Bk) < ε.

Corollary 2.3.1.2. Let Vi and Vj be computably open. Then Vi ∪ Vj and Vi ∩ Vj are also

computably open, uniformly in i, j.

Proof. Let Ain ↗ Vi and Ajn ↗ Vj be as in the above lemma. It is easy to see that

µ(Vi ∪ Vj)− µ(Ain+1 ∪A
j
n+1) ≤ 2−n and that µ(Vi ∩ Vj)− µ(Ain+1 ∩A

j
n+1) ≤ 2−n.

Given a subset A, it is usual to consider the normalized measure µA, defined by

µA(B) = µ(B∩A)
µ(A) for any Borel set B. The computability of this measure is an important

question. The following proposition gives a positive answer when the set A is good enough.

Proposition 2.3.1.1. Let µ be a computable measure. Let A be an almost decidable subset

of X or a computably open set. Then the induced measures µA and µAC are computable.

Proof. let W = Bn1∪. . .∪Bnk be a finite union of ideal balls. Suppose A is almost decidable.

Then there exists a constructively open set U = A(mod 0) (hence µ(A) = µ(U)). If A is

computably open, then put U = A and the same holds. We have that

µA(W ) =
µ(W ∩A)
µ(A)

=
µ(W ∩ U)
µ(A)

and that

µAC(W ) =
µ(W ∩AC)
µ(AC)

=
µ(W ∩ UC)
µ(AC)

.

W ∩ U and W ∪ U are constructively open sets, so their measure is lower semi-

computable. µ(W ∩ UC) = µ(W ∪ U) − µ(U), so µ(W ∩ UC) is lower semi-computable

too. As µ(A) and µ(AC) = 1 − µ(A) are computable, µA(W ) and µAC(W ) are lower

semi-computable. Note that everything is uniform in 〈n1, . . . , nk〉. The result follows from

theorem 2.2.2.3.

Recursively measurable functions

Let (X,µ) and (Y, ν) be computable probability spaces. The following is a natural

definition:

Definition 2.3.1.4. A function f : X → Y is said to be recursively measurable provided

that f−1(An) is almost decidable uniformly in n for every almost decidable set An ∈ AY . y
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The following facts are proved exactly as in the classical setting.

Proposition 2.3.1.2. Let f : X → Y be a function.

• If f−1(Bi) is (uniformly) almost decidable for every almost decidable ball Bi ⊂ Y ,

then f is recursively measurable.

• If Y = R and there is a dense sequence (rn) of uniformly computable reals such that

ν({rn}) = 0 and f−1((rn,∞]) is (uniformly) almost decidable, then f is recursively

measurable.

Recursive measurability is a stronger property that µ-almost computability, as the

following proposition shows. We recall that a measurable function f : X → Y is said to

be non singular if for every set A ⊂ Y of measure zero, the preimage of A, f−1(A) has

measure zero too.

Proposition 2.3.1.3. Any recursively measurable function f : X → Y is in particular

µ-almost computable. If f is non singular and µ-almost computable then it is recursively

measurable.

Proof. Suppose f is recursively measurable. Let (BY
i ) the class of almost decidable balls over

Y . Then f−1(BY
i ) is almost decidable. Denote by Ui and Vi the associated constructively

open sets. We have Ui ⊂ f−1(BY
i ) and Vi ⊂ f−1(BY

i
C) = (f−1BY

i )C . Define the constructive

Gδ set Df = ∩i(Vi ∪ Ui). Clearly, f−1(BY
i ) ∩Df = Ui ∩Df . f is then computable on Df .

Conversely, suppose f is computable on the constructive Gδ set Df and non singular. Then

f−1BY
i = Ui ∩ Df with Ui uniformly constructively open and f−1(BY

i )
C

= Vi ∩ Df with

Vi uniformly constructively open. Since f is non singular, f−1BY
i is (uniformly) almost

decidable.

Another characterization of the computability of measures

The existence of a basis of almost decidable sets also leads to another characterization

of the computability of measures, which is reminiscent of what happens on the Cantor

space (see corollary 2.2.2.2). Let us say that two bases (Ui)i and (Vi)i of the topology τ are

constructively equivalent if both idτ : (τ,⊆,U)→ (τ,⊆,V) and its inverse are constructive

functions between enumerative lattices.



Chapter 2: Constructive Measure Theory 44

Corollary 2.3.1.3. A measure µ ∈ M(X) is computable if and only if there is a basis

U = (Ui)i∈N of uniformly almost decidable open sets which is constructively equivalent to B
and such that all µ(Ui1 ∪ . . . ∪ Uik) are computable uniformly in 〈i1, . . . , ik〉.

Proof. If µ is computable, the almost decidable balls U〈i,n〉 = B(si, rn) are a basis which

is constructively equivalent to B: indeed, B(si, rn) =
⋃
qj<rn

B(si, qj) and B(si, qj) =⋃
rn<qj

B(si, rn), and rn is computable uniformly in n. For the converse note that a fi-

nite union of ideal balls, being a constructively open set relative to the basis U , have a

lower semi-computable measure. The result follows from theorem 2.2.2.3.

Generalized binary representations

The Cantor space {0, 1}N is a privileged place for computability. This can be understood

by the fact that it is the countable product (with the product topology) of a finite space

(with the discrete topology). A consequence of this is that membership of a basic open set

(cylinder) boils down to a pattern-matching and is then decidable. As decidable sets must

be clopen, this property cannot hold in connected spaces. As a result, a computable metric

space is not in general constructively homeomorphic to the Cantor space.

Nevertheless, the real unit interval [0, 1] is not so far away from the Cantor space.

The binary numeral system provides a correspondence between real numbers and binary

sequences, which is certainly not homeomorphic, unless we remove the small set of dyadic

numbers. In particular, the remaining set is totally disconnected, and the dyadic intervals

form a basis of clopen sets.

Actually, this correspondence makes the computable probability space [0, 1] with the

Lebesgue measure isomorphic to the Cantor space with the uniform measure. This fact has

been implicitly used, for instance, to extend algorithmic randomness from the Cantor space

with the uniform measure to the unit interval with the Lebesgue measure.

We extend this to any computable probability space defining the notion of binary rep-

resentation, and show that every computable probability space has a binary representation,

which implies in particular that every computable probability space is isomorphic to the

Cantor space with a computable measure. To carry out this generalization, let us briefly

scrutinize the binary numeral system on the unit interval:

δ : {0, 1}N → [0, 1] is a total surjective morphism. Every non-dyadic real has a unique

expansion, and the inverse of δ, defined on the set D of non-dyadic numbers, is computable.
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Moreover, D is large both in a topological and measure-theoretical sense: it is a residual

(a countable intersection of dense open sets) and has measure one. (δ, δ−1) is then an

isomorphism.

In our generalization, we do not require every binary sequence to be the expansion of

a point, which would force X to be compact.

Definition 2.3.1.5. A binary representation of a computable probability space (X , µ) is

a pair (δ, µδ) where µδ is a computable probability measure on {0, 1}N and δ : ({0, 1}N, µδ)→
(X , µ) is a surjective morphism such that, calling δ−1(x) the set of expansions of x ∈ X:

(i) there is a constructive dense full-measureGδ-setD of points having a unique expansion

and,

(ii) δ−1 : D → δ−1(D) is computable.

y

We remark that when the support of the measure (the smallest closed set of full measure)

is the whole space X, like the Lebesgue measure on the interval, a full-measure Gδ-set is

always dense but, in general, it is only dense on the support of the measure: this is why we

explicitly require D to be dense. Also remark that a binary representation δ always induces

an isomorphism (δ, δ−1) between the Cantor space and the computable probability space.

The sequel of this section is devoted to the proof of the following result:

Theorem 2.3.1.3. Every computable probability space (X , µ) has a binary representation.

The space, restricted to the domain D of the isomorphism, is then totally disconnected:

the preimages of the cylinders form a basis of clopen and even decidable sets. In the whole

space, they are not decidable any more. Instead, they are almost decidable.

In order to prove this theorem, we need the existence of a class of almost decidable

balls B(s, r) with an additional property.

Definition 2.3.1.6. An almost decidable set A is said to be exact if U ∪V is dense, where

U and V are the constructively open sets making A almost decidable. y

Let B(s, r) be a µ-continuous ball with computable radius: in general it is not exact

(for instance, isolated points may be at distance exactly r from s). But if there is no ideal

point at distance r from s, then B(s, r) is exact: take U = B(s, r) and V = X \B(s, r).
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Lemma 2.3.1.3. There is a sequence (rn)n∈N of uniformly computable reals such that

(B(si, rn))〈i,n〉 is a basis of uniformly almost decidable balls which are furthermore exact.

Proof. define U〈i,k〉 = {r ∈ R+ : µ(B(si, r)) < µ(B(si, r)) + 1/k}: by computability of µ,

this is a constructively open subset of R+, uniformly in 〈i, k〉. It is furthermore dense in R+:

the spheres Sr = B(si, r)\B(si, r) form a partition of the space when r varies in R+ and µ is

finite, so the set of r for which µ(Sr) ≥ 1/k is finite. Define V〈i,j〉 = R+\{d(si, sj)}: this is a

dense constructively open set, uniformly in 〈i, j〉. Then by the computable Baire Category

Theorem (see [YMT99], [Bra01]), the dense constructive Gδ-set
⋂
〈i,k〉 U〈i,k〉 ∩

⋂
〈i,j〉 V〈i,j〉

contains a sequence (rn)n∈N of uniformly computable real numbers which is dense in R+.

In other words, all rn are computable, uniformly in n. By construction, for any si and rn,

B(si, rn) is exact.

We denote by (Bµ
i )i the class of exact balls and by Cµi the set X \Bµ

i and define:

Definition 2.3.1.7. For w ∈ {0, 1}∗, the cell Γ(w) is defined by induction on |w|:

Γ(ε) = X, Γ(w0) = Γ(w) ∩ Cµi and Γ(w1) = Γ(w) ∩Bµ
i

where ε is the empty word and i = |w|. y

Cells are exact sets, uniformly in w.

Proof. (of theorem 2.3.1.3). We construct an encoding function b : D → 2ω, a decoding

function δ : Dδ → X, and show that δ is a binary representation, with b = δ−1.

Encoding. Let D =
⋂
iB

µ
i ∪ C

µ
i : this is a dense full-measure constructive Gδ-set. Define

the computable function b : D → 2ω by:

b(x)i =

 1 if x ∈ Bµ
i

0 if x ∈ Cµi

Let x ∈ D: ω = b(x) is also characterized by {x} =
⋂
i Γ(ω0..i−1). Let µδ be the image

measure of µ by b: µδ = µ ◦ b−1. b is then a morphism from (X,µ) to (2ω, µδ).
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Decoding. Let Dδ be the set of binary sequences ω such that
⋂
i Γ(ω0..i−1) is a singleton.

We define the decoding function δ : Dδ → X by:

δ(ω) = x if
⋂
i

Γ(ω0..i−1) = {x}

ω is called an expansion of x. Remark that x ∈ Bµ
i ⇒ ωi = 1 and x ∈ Cµi ⇒ ωi = 0,

which implies in particular that if x ∈ D, x has a unique expansion, which is b(x). Hence,

b = δ−1 : δ−1(D)→ D and µδ(Dδ) = µ(D) = 1. We now show that δ : Dδ → X is a surjec-

tive morphism. For seek of clarity, the center and the radius of the ball Bµ
i will be denoted

si and ri respectively. Let us call i an n-witness for ω if ri < 2−(n+1), ωi = 1 and Γ(ω0..i) 6= ∅.

• Dδ is a constructive Gδ-set: we show that Dδ =
⋂
n{ω ∈ 2ω : ω has a n-witness}. Let

ω ∈ Dδ and x = δ(ω). For each n, x ∈ B(si, ri) for some i with ri < 2−(n+1). Since

x ∈ Γ(ω0..i), we have that Γ(ω0..i) 6= ∅ and ωi = 1 (otherwise Γ(ω0..i) is disjoint of Bµ
i ).

In other words, i is an n-witness for ω. Conversely, if ω has a n-witness in for all n, since

Γ(ω0..in) ⊆ Bµ
in

whose radius tends to zero, the nested sequence (Γ(ω0..in))n of closed cells

has, by completeness of the space, a non-empty intersection, which is a singleton.

• δ : Dδ → X is computable. For each n, find some n-witness in of ω: the sequence (sin)n

is a fast sequence converging to δ(ω).

• δ is surjective: we show that each point x ∈ X has at least one expansion. To do this,

we construct by induction a sequence ω = ω0ω1 . . . such that for all i, x ∈ Γ(ω0 . . . ωi).

Let i ≥ 0 and suppose that ω0 . . . ωi−1 (empty when i = 0) has been constructed. As

Bµ
i ∪ C

µ
i is open dense and Γ(ω0..i−1) is open, Γ(ω0..i−1) = Γ(ω0..i−1) ∩ (Bµ

i ∪ C
µ
i ) which

equals Γ(ω0..i−10) ∪ Γ(ω0..i−11). Hence, one choice for ωi ∈ {0, 1} gives x ∈ Γ(ω0..i). By

construction, x ∈
⋂
i Γ(ω0..i−1). As (Bµ

i )i is a basis and ωi = 1 whenever x ∈ Bµ
i , ω is an

expansion of x.

Computable Lebesgue spaces

In the theory of algorithmic randomness, most result and constructions are done in the

Cantor space with the uniform measure or, equivalently, in the unit interval with Lebesgue
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measure λ. In this section we present a tool to transfer some of these result to more general

computable probability spaces .

Definition 2.3.1.8. A computable probability space is a computable Lebesgue space

if it is isomorphic to the computable probability space ([0, 1], λ) where λ is the Lebesgue

measure. y

Theorem 2.3.1.4. Every computable probability space with no atoms is a computable

Lebesgue space.

We first prove the result for I = ([0, 1], µ).

Lemma 2.3.1.4. The interval endowed with a non-atomic computable probability measure

is a computable Lebesgue space.

Proof. We define F : [0, 1]→ [0, 1] by F (x) = µ([0, x]). As µ has no atom and is computable,

F is computable and surjective. As F is surjective, it has right inverses. Two of them are

G<(y) = sup{x : F (x) < y} and G>(y) = inf{x : F (x) > y}, and satisfy F−1({y}) =

[G<(y), G>(y)]. They are increasing and respectively left- and right-continuous. As F is

computable, they are even lower- and upper semi-computable respectively. Let us define

D = {y : G<(y) = G>(y)}: every y ∈ D has a unique pre-image by F , which is then

injective on F−1(D). The restriction of F on F−1(D) has a left-inverse, which is given

by the restriction of G< and G> on D. Let us call it G : D → I. By lower and upper

semi-computability of G< and G>, G is computable. Now, D is a constructive Gδ-set:

D =
⋂
n{y : G>(y) − G<(y) < 1/n}. We show that I \ D is a countable set. The family

{[G<(y), G>(y)] : y ∈ I} indexed by I is a family of disjoint closed intervals, included in

[0, 1]. Hence, only countably many of them have positive length. Those intervals correspond

to points y belonging to I \ D, which is then countable. It follows that D has Lebesgue

measure one (it is even dense). (F,G) is then an isomorphism between (I, µ) and (I, λ).

Proof of the Theorem 2.3.1.4. We know from Theorem 2.3.1.3 that every CPS (X , µ) has a

binary representation, which is in particular an isomorphism with the Cantor space (C, µC).

The latter is isomorphic to (I, µI) where µI is the induced measure µI . If µ is non-atomic,

so is µI . By the previous lemma, (I, µI) is isomorphic to (I, λ).

We also note that:
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Corollary 2.3.1.4. Every computable probability space with no atoms is isomorphic to

Cantor space with the uniform measure.

2.3.2 Borel sets as a computable metric space

When one identify sets up to measure zero, the space of Borel sets can be metrized.

Let [B] denote the class of Borel sets quotiented by the equivalence relation A ∼ B ⇔ A =

B(mod 0). Let us consider over [B] the metric dµ(A,B) = µ(A4B)2.

Theorem 2.3.2.1. The triple ([B], dµ,A ) is a computable metric space.

Proof. By theorem 2.3.1.1, A generates B. The density of A in [B] follows then from

theorem A.1.0.2. Let us show that for any Ai and Aj in A , dµ(A,B) is computable,

uniformly in i, j. Since A is an algebra, Ai4Aj ∈ A . Say Ai4Aj = Ak and the number

k can be computed from i, j. The result now follows from theorem 2.3.1.1.

It follows that a computable element of [B] has a computable measure. Moreover,

Theorem 2.3.2.2. The collection of computable elements of [B] is an algebra.

Proof. If U is a computable Borel set, then U c is also computable since A4 U = Ac4 U c.

Let U and V be computable Borel sets. Let us show that U ∪ V is computable. To

compute Cn ∈ A such that dµ(Cn, U ∪ V ) < 2−n, just take An and Bn in A such that

dµ(An, U) < 2−n−1 and dµ(Bn, V ) < 2−n−1 holds. This can be done since U and V are

computable elements of [B]. Then put Cn = An ∪Bn. The result follows from the relation

(A ∪ B)4 (U ∪ V ) ⊂ (A4 U) ∪ (B 4 V ). As U ∩ V = U c ∪ V c, the intersection is also a

computable Borel set.

Proposition 2.3.2.1. If (ϕ,ϕ−1) is an isomorphism, then the function F : [BX ] → [BY ]

mapping E into ϕ(E) is an isometry.

Proof. Since ϕ is an isomorphism, ϕ(A4B) = ϕ(A)4ϕ(B) and the same holds for ϕ−1.

Remark 2.3.2.1. Let us say that f is a recursively simple function from X to R if it is

of the form:

f =
∑
i≤k

qi1Ai

2The triangular inequality follows from the relation A4B = (A4 C)4 (C 4B) ⊂ (A4 C) ∪ (C 4B)
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where the Ai are almost decidable sets and qi ∈ Q. Recursively simple functions can be

made a numbered set in a way that the qi and the Ai can be recovered from the number,

and vice-versa. Let us denote this set by S. Among recursively simple functions are the

nonnegative ones, whose range is a subset of [0,∞). With the help of Theorem 2.3.1.2 one

can prove, exactly as in the classical setting, that every measurable function f : X → [0,∞]

is a supremum of recursively simple functions. The integral of recursively simple functions

is computable and the integral of any measurable function can be defined using recursively

simple functions just as in the classical setting. Identifying functions which are equal almost

everywhere gives rise to the computable metric space (L1, ‖·‖1,S), whose computable points

have a computable integral. y
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Chapter 3

Algorithmic randomness over

general metric spaces

3.1 Introduction

The roots of algorithmic randomness go back to the work of Von Mises in the early

20th century. He suggested a notion of individual infinite random sequence based on limit-

frequency properties invariant under the action of selection functions from some “accept-

able” set. The problem was then to properly define what an “acceptable” selection function

could be. Some years later, the concept of computable function was formalized, providing a

natural class of functions to be considered as acceptable. This gave rise to Church’s notion

of computable randomness ([Chu40]). Nevertheless, substantial understanding was achieved

only with the works of Kolmogorov [Kol65], Martin-Löf [ML66, ML71], Levin [ZL70, Lev84],

Schnorr [Sch71, Sch72] and Chaitin [Cha75], since then, many efforts have contributed to the

development of this theory (see for example [Asa88, Cha87, Cha90, Vov01, Dav01, Dav04])

which is now well established and intensively studied. Standard reference books are [Cal94,

Cal02] and [LV93].

There are several different possible definitions, but it is Martin-Löf’s one which has

received most attention. This notion can be defined, at least, from three different points of

view:

1. measure theoretic. This was the original presentation by Martin-Löf ([ML66]). Roughly,

an infinite sequence is random if it satisfies all “effective” probabilistic laws (see defi-

54



Chapter 3: Algorithmic randomness over general metric spaces 55

nition 3.3.1.1).

2. compressibility. This characterization of random sequences, due to Schnorr and Levin

(see [ZL70, Sch71, Cha75]), uses the prefix-free Kolmogorov complexity: random se-

quences are those which are maximally complex.

3. predictability. In this approach (started by Ville [Vil39] and reintroduced to the mod-

ern theory by Schnorr [Sch72]) a sequence is random if, in a fair betting game, no

“effective” strategy (“martingale”) can win an unbounded amount of money against

it.

In [Sch71], a somewhat broader notion of algorithmic randomness (narrower notion of

probabilistic law) was proposed: Schnorr randomness. This notion received less attention

over the years: Martin-Löf’s definition is simpler, leads to universal tests, and many equiv-

alent characterizations (besides, Schnorr’s book is not in English. . . ). Recently, Schnorr

randomness has begun to receive more attention. The work [DG02] for instance, character-

izes it in terms of Kolmogorov complexity (with respect to computable machines).

In the measure theoretic presentation of the theory of algorithmic randomness, an infi-

nite binary sequence is said to be random with respect to a given measure (not necessarily

computable) if it passes all the effective statistical tests. An effective test can be defined

in many ways, for now let us say that an effective test is a lower semi-computable inte-

grable function T : X → R+, and that x passes the test T if T (x) < ∞. The success

of this theory lies in some outstanding results among which the existence of a universal

test1 is a fundamental one. The problem of the extension of algorithmic randomness (in

the Martin-Löf version) to a more general setting has been studied by different authors

([HW98, HW03, Gác05]), the question of existence of such universal test, being of particu-

lar interest. The strongest result (established by Gács in [Gác05]) guarantee the existence

of a universal test under an additional computability condition on the space considered.

With the tools developed in the first part of the thesis we show that the existence of a

universal test is guaranteed in any computable metric space (without any further condition).

Then we study algorithmic randomness in the particular case of computable probability

spaces. We give some basic properties of Martin-Löf random points as well as (the gen-

1That is, a test tu such that for every test t, there exists c ∈ N for which t ≤ ctu. Hence x is random ⇔
x pass tu.
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eralization of) Schnorr-random points, a slightly weaker notion, introduced by C. Schnorr

([Sch71]).

3.2 Martin-Löf randomness for arbitrary probability mea-

sures

On the Cantor space with a computable measure µ, Martin-Löf originally defined the

notion of an individual random sequence as a sequence passing all µ-randomness tests. A

µ-randomness test à la Martin-Löf is a sequence of uniformly constructively open sets (Un)n

satisfying µ(Un) ≤ 2−n. The set
⋂
n Un has null measure, in an effective way: it is then

called an effective null set. Equivalently, a µ-randomness test can be defined as a positive

lower semi-computable function t : 2ω → R satisfying
∫
tdµ ≤ 1 (see [VV93] for instance).

The associated effective null set is {x : t(x) = +∞} =
⋂
n{x : t(x) > 2n}. Actually, every

effective null set can be put in this form for some t. A point is then called µ-random if

it lies in no effective null set. We begin by studying Martin-Löf randomness with respect

to arbitrary measures. Following Gács, we will use the second presentation of randomness

tests and prove that over any computable metric space, a universal uniform randomness

test always exists.

Definition 3.2.0.1. Given a measure µ ∈M(X), a µ-randomness test is a µ-constructive

element t of C(X,R+), such that
∫
tdµ ≤ 1. Any subset of {x ∈ X : t(x) = +∞} is called

a µ-effective null set.

A uniform randomness test is a constructive function T from M(X) to C(X,R+) such

that for all µ ∈M(X),
∫
Tµdµ ≤ 1 where Tµ denotes T (µ). y

Note that T can be also seen as a lower-semi-computable function from M(X)×X to

R+ (see section 1.7).

A presentation à la Martin-Löf can be directly obtained using the functions below:

F : C(X,R+) → τN

t 7→ (t−1(2n,+∞))n

G : τN → C(X,R+)

(Un)n 7→ (x 7→ sup{n : x ∈
⋂
i≤n Ui})

which are constructive, satisfy F ◦G = id : τN → τN and preserve the corresponding effective

null sets.
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A uniform randomness test T induces a µ-randomness test Tµ for all µ. We show two

important results which hold on any computable metric space:

• the two notions are actually equivalent (theorem 3.2.0.3),

• there is a universal uniform randomness test (theorem 3.2.0.4).

The second result was already obtained by Gács, but only on spaces which have rec-

ognizable Boolean inclusions, which is an additional computability property on the basis of

ideal balls.

By lemma 1.7.1.1, constructive functions from M(X) to C(X,R+) can be identified to

constructive elements of the enumerative lattice C(M(X), C(X,R+)). Let (Hi)i∈N be an

enumeration of all its constructive elements (proposition 1.5.2.1).

Lemma 3.2.0.1. There is a constructive function T : N×M(X)→ C(X,R+) satisfying:

• for all i, Ti = T (i, ·) is a uniform randomness test,

• if
∫
Hi(µ)dµ < 1 for some µ, then Ti(µ) = Hi(µ).

Proof. By proposition 1.7.1.2, the constructive functions Hi : M(X) → C(X,R+) can be

seen as constructive functions Ĥi = Decurry(Hi) from M(X)×X to R+ which, by lemma

1.7.1.1, can be identified to constructive elements of the enumerative lattice C(M(X) ×
X,R+). Over this lattice, let us consider the set H+ = {h1, h2, ...} of simple functions

introduced in section 1.7.3. By proposition 1.7.3.1 the constructive elements of C(M(X)×
X,R+), Ĥi, are the supremum of recursive sequences of these simple functions, say: Ĥi =

supn hϕ(i,n) for some recursive ϕ. Let Ĥk
i = supn≤k hϕ(i,n) and Hk

i = Curry(Ĥk
i ).

We are now able to define T : T (i, µ) = sup{Hk
i (µ) :

∫
Hk
i (µ)dµ < 1}. By corollary

2.2.2.3, L
Ĥk
i

: M(X) → R+ mapping µ into
∫
Ĥk
i (µ, ·)dµ =

∫
Hk
i (µ)dµ is computable

uniformly in i, k. Hence T is a constructive function from N×M(X) to C(X,R+).

As a consequence, every randomness test for a particular measure can be extended to

a uniform test:

Theorem 3.2.0.3 (Uniformity vs non-uniformity). Let µ0 be a measure. For every µ0-

randomness test t there is a uniform randomness test T :M(X)→ C(X,R+) with T (µ0) =
1
2 t.

Proof. let µ0 be a measure and t a µ0-randomness test: 1
2 t is then a µ0-constructive element

of the enumerative lattice C(X,R+), so by corollary 1.7.1.1 there is a constructive element
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H of C(M(X), C(X,R+)) such that H(µ0) = 1
2 t and hence, H = Hi for some i. Since∫

Hi(µ0)dµ0 = 1
2

∫
tdµ0 < 1, the uniform test Ti constructed in lemma 3.2.0.1 satisfy

Ti(µ0) = 1
2 t.

Theorem 3.2.0.4 (Universal uniform test). There is a universal uniform randomness test,

that is a uniform test Tu such that for every uniform test T there is a constant cT with

Tu ≥ cTT .

Proof. it is defined by Tu :=
∑

i 2−i−1Ti: as every Ti is a uniform randomness test, Tu is also

a uniform randomness test, and if T is a uniform randomness test, then in particular 1
2T

is a constructive element of C(M(X), C(X,R+)), so 1
2T = Hi for some i. As

∫
Hi(µ)dµ =

1
2

∫
T (µ)dµ < 1 for all µ, Ti(µ) = Hi(µ) = 1

2T (µ) for all µ, that is Ti = 1
2T . So Tu ≥ 2−i−2T .

Definition 3.2.0.2. Given a measure µ, a point x ∈ X is called µ-random if Tµu (x) <∞.

Equivalently, x is µ-random if it lies in no µ-effective null set. y

The set of µ-random points is denoted by Rµ. This is the complement of the maximal

µ-effective null set {x ∈ X : Tµu (x) = +∞}.

3.3 Algorithmic randomness on computable probability spaces

We study the particular case of a computable measure. Let (X , µ) be then a computable

probability space.

3.3.1 Martin-Löf randomness

In this section we will rather use the à la Martin-Löf presentation of randomness:

Definition 3.3.1.1. A Martin-Löf test (ML-test) is a sequence of uniformly constructively

open sets (An)n such that µ(An) ≤ 2−n. We say that x fails the ML-test if x ∈ An for all

n. Any subset of ∩nAn is called an effective null set. x is called ML-random if it fails no

ML-test. y

Remarks 3.3.1.1.
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1. In the previous section, a ML-random point was called µ-random. This was to em-

phasize the fact that µ was a parameter, and that we dealt with a uniform notion.

This will be no more the case, and then we do not need to mention µ explicitly.

2. As the intersection of two (or any finite number of) constructively open sets is again

constructively open, we will suppose that a ML-test (An)n always satisfy An+1 ⊂ An.

y

The following definition corresponds to the effective version of the well known Borel-

Cantelli lemma.

Definition 3.3.1.2. A Borel-Cantrell test (BC-test) is a uniform sequence (Cn)n of

constructively open sets such that
∑

n µ(Cn) < ∞. We say that x fails the BC-test if

x ∈ Cn infinitely often (i.o.). y

The following proposition was proved in Cantor setting by Solovay. The same proof

works in our general setting.

Proposition 3.3.1.1. x fails a ML-test iff x fails a BC-test.

Proof. Let (An)n be a ML-test.
∑

n µ(An) ≤
∑

n 2−n < ∞. Then it is a BC-test. Con-

versely, let (Cn)n be a BC-test. Let c be such that
∑

n µ(Cn) < 2c. Define the constructively

open set Ak := {x : |{n : x ∈ Cn}| ≥ 2k+c}. Observe that µ(Ak) ≤ 2c

2k+c
= 2−k since there

are at least 2k+c repetitions. Since x ∈ Cn i.o. if and only if x ∈ Ak for all k, the result

follows.

Now we generalize and study a somewhat broader notion of algorithmic randomness,

due to C. Schnorr.

3.3.2 Schnorr randomness

Definition 3.3.2.1. A Schnorr test (Sch-test) is a ML-test (An)n such that the sequence

of reals (µ(An))n is uniformly computable. We say that x fails the Sch-test if x ∈ An for

all n. Any subset of ∩nAn is called a strong effective null set. A point x is called

Sch-random if it fails no Sch-test. y

Of course, a Sch-random point is in particular ML-random and hence, all results which

hold for Sch-random points also hold for ML-random points.
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Remark 3.3.2.1. From corollary 2.3.1.2 follows that the intersection of two (or any finite

number of) constructively open sets with computable measure is again constructively open

with computable measure. We will suppose that a Sch-test (An)n always satisfy An+1 ⊂ An.

y

An important difference between Sch-tests and ML-tests is the fact that there is no

recursive enumeration of all Sch-tests and hence, there is no maximal strong effective

null set. Nevertheless, if (Tk)k is a uniform sequence of Sch-tests, put Λ := {x : ∃
k such that x fails Tk}. Then:

Proposition 3.3.2.1. Λ is a strong effective null set.

Proof. Let Tk = (Ckn)n. We define the Sch-test Tmax = (Ai)i where Ai := ∪k≤iCki . The

measure of Ai is computable and satisfy µ(Ai) ≤ 2−ii, which converges effectively to 0.

We can then extract a subsequence Ain such that µ(Ain) ≤ 2−n which is then a Sch-test

satisfying ∩iAi = ∩nAin . Suppose x fails Tk = (Ckn)n for some k. That is x ∈ ∩nCkn. By

remark 3.3.2.1 this is the same as x ∈ ∩n≥kCkn which is included in ∩i≥kAi. Hence x fails

Tmax too.

Hence even if there is no universal test, we can still have a single test which detects all

the regularities we need, in a given problem. This is since, usually, all objects concerned

with a given problem are uniformly computable. This will be an important tool in chapter

5.

The following is the strong version of Borel-Cantelli tests.

Definition 3.3.2.2. A strong BC-test is a BC-test (Cn)n such that
∑

n µ(Cn) is com-

putable. y

Which also characterize (Schnorr) randomness.

Proposition 3.3.2.2. An element x fails a Sch-test if and only if x fails a strong BC-test.

Proof. Let (Cn)n be a strong BC-test. Let c be such that 2c >
∑

n µ(Cn). Define the

constructively open set Ak := {x : |{n : x ∈ Cn}| ≥ 2k+c}. Then µ(Ak) < 2−k. Observe

that Ak is the union of all the (2k+c)-intersections of Cn’s. Since µ(Ck) =
∑

n µ(Cn) −∑
n6=k µ(Cn) and the Cn’s are constructively open, we have that µ(Cn) is computable

(uniformly in n). We choose a basis (Bi)i of almost decidable balls to work with. Recall
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that finite unions or intersections of almost decidable sets are almost decidable too and

that the measure of an almost decidable set is computable. Now we show that µ(Ak) is

computable uniformly in k. Let ε > 0 be rational. Let n0 be such that
∑

n≥n0
µ(Cn) < ε

2 .

Then µ(
⋃
n≥n0

Cn) < ε
2 . For each Cn with n < n0 we construct an almost decidable set

Cεn ⊂ Cn (a finite union of almost decidable balls) such that µ(Cn) − µ(Cεn) < 1
n0

ε
2 . Then∑

n<n0
[µ(Cn)−µ(Cεn] < ε

2 . Define Aεk to be the union of the (2k+c)-intersections of the Cεn’s

for n < n0. Then Aεk is almost decidable and then has a computable measure. Moreover

Ak ⊂ Aεk ∪ (
⋃
n≥n0

Cn) ∪ (
⋃
n<n0

Cn \ Cεn), hence µ(Ak)− µ(Aεk) < ε.

3.3.3 Some properties of random points

Let (X,µ) be a computable probability space . In the following we state some properties

which hold for both notions of randomness. Let us then denote just by Rµ the set of random

points (Martin-Löf or Schnorr).

Theorem 3.3.3.1. Let A be an almost decidable set or a computably open set. Then

1. If µ(A) = 1 then Rµ ⊂ A.

2. RµA = Rµ ∩A, where µA is the normalized measure.

Proof. We prove 1: fix a basis of almost decidable balls to work with and show that the

complement of a constructively open set of measure one is a strong effective null set. Let

U = ∪iBi be a constructively open set of measure one and define Uk := ∪i≤kBi and

Uk := (∪i≤kBi)
C . Both are constructively open almost decidable sets. Since UC ⊂ Uk for

all k, from (Uk)k we can extract the Sch-test we are looking for. We prove 2: By proposition

2.3.1.1 µA is a computable measure. If A is almost decidable and U and V are the associated

constructively open sets, by 1 we have Rµ ⊂ U ∪ V and RµA ⊂ U ⊂ A. So we can suppose

A = U , where U is constructively open with a computable measure. We can then compute

n0 such that 2−n0 ≤ µ(U). Hence, if Vn is a uniform sequence of constructively open sets

satisfying µ(V ) ≤ 2−n, then V̂n = Vn+n0 satisfy µA(V̂n) ≤ 2−n. Moreover, if the Vn are

computably open for µ, since µA(Vn) = µ(Vn ∩ A)µ(A)−1, Vn is also computably open for

µA. Then, any test T (Martin-Löf or Schnorr) for µ can be converted in a test (of the same

kind) for µA. This proves RµA ⊂ Rµ ∩ A. Conversely, if Vn is a test for µA then it is easy

to see that V̂n = Vn ∩A is a test (of the same kind) for µ. The result follows.
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Morphisms of computable probability spaces behave well with respect to algorithmic

randomness:

Proposition 3.3.3.1. Morphisms of computable probability spaces are defined on Sch-

random points and preserve randomness.

Proof. To prove it, we shall use the following lemma:

Lemma 3.3.3.1. The complement of a constructive Gδ set of measure one, is a strong

effective null set.

Proof. As the sets involved in the constructive Gδ-set of measure one are in particular

computably open, the result follows from theorem 3.3.3.1 and proposition 3.3.2.1.

As a consequence, morphisms are defined on random points. To see that a morphism

φ : X → Y preserves randomness, observe that if (Cn)n is a test in Y , then (φ−1(Cn))n is

a test (of the same kind) in X intersected with dom(φ).

The following corollaries are straightforward.

Corollary 3.3.3.1. Let (F,G) : (X , µ) � (Y, ν) be an isomorphism of computable proba-

bility spaces. Then there are two single strong effective null sets NX and NY such that

F|X\NX
and G|X\NY

are total computable bijections between X \ NX and X \ NY , and

(F|X\NX )−1 = G|X\NY
. In particular, the same holds for Rµ and Rν instead of X \ NX

and X \NY .

In particular:

Corollary 3.3.3.2. Let δ be a binary representation on a computable probability space

(X , µ). Each point having a Schnorr random expansion, is Schnorr random, and each

Schnorr random point has a unique expansion, which is Schnorr random. The same holds

for Martin-Löf random points.

This proves that algorithmic randomness over a computable probability space could

have been defined encoding points into binary sequences using a binary representation:

this would have led to the same notion of randomness. Using this principle, a notion of

Kolmogorov complexity characterizing randomness comes for free. For x ∈ D, define:

Hn(x) = H(ω0..n−1) and Γn(x) = δ([ω0..n−1])
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where ω is the expansion of x and H is the prefix Kolmogorov complexity.

Corollary 3.3.3.3. Let δ be a binary representation on a computable probability space

(X , µ). Then x is ML-random if and only if x ∈ dom(δ) and:

(∃c)(∀n)Hn(x) ≥ − logµ(Γn(x))− c

For Schnorr random points, it seems that a machine characterization is only available

when the measure is uniform. Theorem A.3.0.10 directly implies:

Corollary 3.3.3.4. Let ϕ be an isomorphism between (X,µ) and ({0, 1}N, λ) where λ is

the uniform measure. Then x is Schnorr random if and only if x ∈ dom(ϕ) and for every

computable machine M (see definition A.3.0.2),

(∃c)(∀n)KM (ϕ(x)1:n) ≥ n− c

All this allows to treat algorithmic randomness within probability theory over general

metric spaces. In the next chapter it is applied, for instance, to easily show that in ergodic

systems over metric spaces, ML-random points are well-behaved: they are typical with

respect to any computable measure preserving transformation, generalizing what has been

proved in [V’y97] for the Cantor space.

Let us make some comments on the definition of complexity used here to characterize

randomness. For an infinite binary sequence ω, the knowledge of the prefix of length n can

be understood in two ways:

• As the knowledge of a set of small measure to which ω belongs.

• As the knowledge of ω itself at finite precision 2−n. This precision is actually relative

to the standard metric of the symbolic space.

In the first, how small is the set we know ω belongs to, depends on the underlying

measure. Instead, the finite precision 2−n corresponds to a finite approximation of ω, given

by the n-prefix, and which depends only on n.

Over a computable metric space, if complexity is defined using a coding into sequences

as we did, the second interpretation is lost: the knowledge of x at finite precision 2−n,

Hn(x), says a priori nothing about how far (in distance) we are from x. To get such a

definition, the complexity of a point x at precision n should be defined as the complexity
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of some finite approximation (that is, an ideal point) lying in B(x, 2−n) or something like

that.

In the next chapter, in order to study the relations between random points and entropy,

we shall be interested in both notions of complexity: via coding into sequences, and via finite

approximations. There will be, however, a new ingredient under consideration: dynamics.

It will be shown that, for our purposes, the two notions lead to the same results.

3.3.4 Random points and convergence of random variables

Let (X,µ) be a computable probability space . We will denote by MLR and SR the

set of random points according to Martin-Löf and Schnorr respectively. We recall that a

Stochastic process Xn is a sequence of random variables on (X,µ). Many statements of

probability theory are about the convergence of some quantity f(Xn) associated to a given

stochastic process. For example, the law of large numbers is about the convergence of the

time average 1
n

∑n−1
i=0 Xi. In its strong form this law asserts that for i.i.d. processes, the

sequence Sn : X → R defined by Sn(x) = 1
n

∑n−1
i=0 Xi(x) converge to E(X0) =

∫
X0dµ for

almost every x.

More generally, consider a sequence (fn) of random variables whose limit exists almost

surely. That is, µ{x ∈ X : limn fn(x) exists} = 1. This is often understood as

“if we pick some x at random” then limn fn(x) exists,

and we would like to replace “pick some x at random” with “pick a random x”. In

the following we give conditions to do this. Let us introduce some notation. Given a

sequence of measurable sets (An), let {An i.o.} := ∩k≥0 ∪n≥k An be the set of those x

belonging to infinitely many An’s. If (fn) is a sequence of random variables, for any δ > 0

let Di,j(δ) = {x : |fi(x)− fj(x)| > δ}. Let An(δ) := {x : ∃ i, j ≥ n, x ∈ Di,j(δ)} be the set

of points with at least one deviation of δ after n. Note that for these sets we have {An(ε)

i.o.} = ∩nAn(ε).

Proposition 3.3.4.1. Let fn be a sequence of (arbitrary) random variables. Let δk → 0.

Then the following statements are equivalent.

i) limn fn(x) exists for each x ∈MLR (or x ∈ SR).

ii) For all k ≥ 1,
⋂
nAn(δk) ⊂MLRC (or ⊂ SRC respectively).
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Proof. i) implies that the set N = {x : fn(x) does not converge} ⊂ MLRC (SRC). Thus,

N = ∪k≥1 ∩n An. Then ∩nAn ⊂ MLC (SRC) for all k ≥ 0. Conversely, as for each k,⋂
nAn(δk) ⊂MLRC (SRC), their union too. Then fn converge for each random x.

When the random variables fn are almost computable, the sets An(δk) are construc-

tively open sets (intersected with some constructive Gδ set where the whole sequence is

computable). As µ(∩nAn(δk)) = 0 is equivalent to µ(An(δk)) → 0, we will say that the

sequence of random variables fn converges effectively if µ(An(δk)) converges effectively

to 0, for all k.

Proposition 3.3.4.2. Let fn be a sequence of almost computable random variables. If the

sets µ(An(δk)) converges effectively to 0, then limn fn(x) exists for each Schnorr-random

point x.

Proof. Let δk → 0. For any subsequence ni we have that⋂
n≥0

An(δk) ⊂
⋂
i≥0

Ani(δk)

As µ(An(δk)) converges effectively to 0, we can choose ni such that µ(Ani) ≤ 2−i. Then

Âi = Ani is an effective null set. Let us show that is it a strong effective null set. In order to

compute µ(Âi) up to ε, find l such that µ(Al) ≤ ε. Hence, µ(Âi)− ε ≤ µ(
⋃

0≤i,j≤lDi,j(δk))

and by Theorem 2.3.1.2, we can choose δk such that µ(Di,j(δk)) is computable.

Let fn be a sequence of random variables which converges almost everywhere to a

function f . Suppose that fn satisfy the conditions of Proposition 3.3.4.2. Then if x is

random, we know that limn fn(x) exists but... what about its value? can we assure it is

equal to f(x)?. If f is almost computable, we can.

Proposition 3.3.4.3. Let fn be a sequence of almost computable functions which converge

to f almost everywhere. If f is almost computable, then for each x ∈ SR,

lim sup
n

fn(x) ≥ f(x) ≥ lim inf
n

fn(x) (3.1)

holds.

Proof. We only show lim infn fn(x) ≤ f(x) for each x ∈ SR. The other inequality can be

proved in a similar way. We prove that the set {x : lim infn fn(x) > f(x)} is a strong effective
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null-set. Let δk be a sequence of uniformly real numbers converging to 0. Theorem 2.3.1.2

applied to the sequence f̂n := fn − f allows to choose δk such that µ(f−1
n {f(x) + δk)}) = 0

for all n, k. Hence the sets An(k) := {x : fn(x) > f(x) + δk} are almost decidable uniformly

in n, k. On the other hand, the set {x : lim infn fn(x) > f(x)} is equal to

{x : ∃k ≥ 0 and N ≥ 0,∀n ≥ N, fn(x) > f(x) + δk} =
⋃
k

⋃
N

⋂
n≥0

An+N (k)

Let Ân(k) =
⋂
i≤nAi(k). Then

⋂
nAn(k) =

⋂
n Ân(k).. Since µ(An+N (k)) is computable

uniformly in n (and k), so is µ(Ân(k)). As fn → f almost everywhere, µ(
⋂
n≥0An+N (k)) = 0

for each N and then we can extract a subsequence ni such that µ(Ani+N (k)) ≤ 2−i. Hence

CN,ki := Âni+N (k) is a Schnorr test for each N, k and satisfy
⋂
n≥N{x : fn(x) > f(x)+δk} =⋂

iC
N,k
i . The result follows.





Chapter 4

Random points and ergodic

theorems

4.1 Introduction

The randomness of a particular outcome is always relative to some statistical test. The

notion of algorithmic randomness, defined by Martin-Löf in 1966, is an attempt to have an

“absolute” notion of randomness. This absoluteness is actually relative to all “effective”

statistical tests, and lies on the hypothesis that this class of tests is sufficiently wide.

Martin-Löf’s original definition was given for infinite symbolic sequences. With this

notion each single random sequence behave as a generic sequence of the probability space

for each effective statistical test. In this way many probabilistic theorems having almost ev-

erywhere statements can be translated to statements which hold for each random sequence.

As an example we cite the fact that in each infinite string of 0’s and 1’s which is random for

the uniform measure, all the digits appear with the same limit frequency. This can be seen

as corollary of the V’yugin ergodic theorem for individual random sequences ( see [V’y97]

and lemma 4.3.2.2 below).

A particularly interesting class of stationary stochastic processes is constituted by those

generated by a measure preserving map on a metric space (these are the objects studied by

ergodic theory).

Let (X , µ) be a computable probability space and let MLR and SR be the set of

random points according to Martin-Löf and Schnorr respectively. The aim of this chapter

68
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is to study the set of random points from a dynamical point of view. That is, we will put a

dynamic T on (X , µ) (an endomorphism of computable probability spaces), and look at the

abilities of random points (which are a priori independent of T ) to describe the statistical

properties of T . We recall that a Borel set A is called T -invariant if T−1(A) = A(mod 0)

and that the transformation T is said to be ergodic if every T -invariant set has measure 0

or 1.

In the classical ergodic theory, a powerful technique (symbolic dynamics) allows to

associate to a general system as above (X,T, µ) a shift on a space of infinite strings having

similar statistical properties. In section 4.2 we use the algorithmic features of computable

metric spaces and its random points to define and construct effective symbolic model for

the dynamics. In this models random points are associated to random infinite strings, and

we will use this tool to generalize theorems which are proved in the symbolic setting to the

more general setting.

We will first consider two main results of ergodic theory, namely the Poincaré recurrence

theorem and the Birkhoff ergodic theorem.

In section 4.3 we prove that each random point is recurrent (a sort of Poincaré re-

currence theorem for random points) and the generalization (thm. 4.3.2.1) of the above

mentioned V’yugin ergodic theorem for random points to computable measure preserving

transformations on computable metric spaces. Concerning Schnorr’s concept of random-

ness, we prove that Schnorr random points are exactly those following simultaneously the

statistical behaviour of a certain class of mixing systems. This will also be used in the

last sections of the chapter to investigate the orbit complexity of random points in such

dynamical systems.

In section 4.4 and following, we consider the orbit complexity of random points and its

relations with the entropy of the system.

The well known notion of measure theoretic entropy (see section 4.4) of a dynamical

system (also called Kolmogorov-Sinai entropy) was inspired by Shannon theory of infor-

mation. The entropy of a system is a measure of the rate of Shannon information which

is necessary to describe the dynamics. We remark that Shannon information is a global

average notion, which depends on the probability measure which is considered on the space.

In 1965, Kolmogorov defined an algorithmic notion of information content of a single

string. This information does not depend on the measure and was actually intended to

provide an absolute notion of information and individual randomness. In this setting a
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sequence will be called random if it contains maximal information. But Martin-Löf proved

that no sequence could be random in this sense, which lead him to propose his definition.

Later, the original idea of Kolmogorov was refined, and was proved to give the notion of

Martin-Löf randomness (see theorem A.3.0.9).

The orbit complexity of a point x is a measure of the information rate which is necessary

to describe the behavior of the orbit of x. In this pointwise definition the information is

measured by the Kolmogorov information content. In [Bru83] orbit complexity is defined

for dynamical systems acting on metric spaces and it is proved that if the system is ergodic,

the orbit complexity of almost each point equals the entropy of the system. In section

4.4 we introduce a definition of orbit complexity using effective symbolic dynamics, we

compare this notion with the classical one obtaining (thm. 4.4.2.1) that they coincide at

each random point (and hence on a total measure set). By this we prove (thm. 4.4.3.3) that

in an ergodic computable measure preserving system, the orbit complexity of each random

point coincides with the entropy of the system.

All these statements require that the dynamics and the invariant measure are com-

putable.

The first assumption can be easily checked on concrete systems if the dynamics is given

by a map which is effectively defined.

The second is more delicate: it is well known that given a map on a metric space, there

can be a continuous (even infinite dimensional) space of probability measures which are

invariant for the map, and many of them will be non computable. An important part of the

theory of dynamical systems is devoted to select measures which are particularly meaningful.

From this point of view, an important class of these measures is the class of SRB invariant

measures, which are measures being in some sense the “physically meaningful ones”(for

a survey on this topic see [You02]). In the next chapter we shall prove that in several

classes of dynamical systems where SRB measures are proved to exist, these measures are

also computable from our formal point of view, hence providing several classes of nontrivial

concrete examples where our results can be applied.

4.2 Symbolic dynamics: the Computable Viewpoint

Let T be an endomorphism of the (Borel) probability space (X,µ). In the classical

construction, one considers access to the system given by a finite measurable partition, that
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is a finite collection of pairwise disjoint Borel sets P = {p1, . . . , pk} such that µ(∪ipi) =

1. Then, to (X,µ, T ) a symbolic dynamical system (XP , σ) is associated (called the

symbolic model of (X,T,P)). The set XP is a subset of {1, 2, . . . , k}N. To a point x ∈ X
corresponds an infinite sequence ω = (ωi)i∈N = φP(x) defined as

φP(x) = ω ⇔ ∀j ∈ N, T j(x) ∈ pωj .

The transformation σ : XP → XP is the shift defined by σ((ωi)i∈N) = (ωi+1)i∈N.

As P is a measurable partition, the map φP is measurable and then the measure µ

induces the measure µP (on the associated symbolic model) defined by µP(B) = µ(φ−1
P (B))

for all measurable B ⊂ XP .

The requirement of φP being measurable makes the symbolic model appropriate from

the measure-theoretic view point, but is not enough to have a symbolic model compatible

with the computational approach:

Definition 4.2.0.1. Let T be an endomorphism of the computable probability space

(X , µ) and P = {p1 . . . , pk} a finite measurable partition. The associated symbolic model

(XP , µP , σ) is said to be an effective symbolic model if the map φP : X → {1, . . . , k}N

is a morphism of CPS (here the space {1, . . . , k}N is endowed with the standard computable

structure). y

The sets pi are called the atoms of P and we denote by P(x) the atom containing

x (if there is one). Observe that φP is computable on its domain only if the atoms are

constructively open sets (in the domain):

Definition 4.2.0.2 (computable partitions). A measurable partition P is said to be a

computable partition if its atoms are constructively open sets. y

Conversely:

Proposition 4.2.0.4. Let T be an endomorphism of the CPS (X,µ) and P = {p1 . . . , pk}
a finite computable partition. Then the associated symbolic model is effective.

Proof. Define the full-measure constructive Gδ-set:

XP =
⋂
n∈N

T−n(p1 ∪ . . . ∪ pk)
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Since the sets pi ∈ P are constructively open, for all x ∈ XP we can decide which of

pi, x belongs to. This proves that φP is computable over XP . Proposition 2.3.0.4 allows to

conclude.

After the definition an important question is: are there computable partitions?

Corollary 4.2.0.1. On every computable probability space, there exists a family of uni-

formly computable partitions which generates the Borel σ-algebra.

Proof. Take Pk = {Bk, X \Bk}: as the almost decidable balls form a basis of the topology,

the σ-algebra generated by the Pk is the Borel σ-field.

4.3 The statistics of random points

With the tools developed so far, it is possible to translate many results of the form

µ{x : P (x)} = 1,

with P some predicate, into an “individual” result of the form:

“If x is µ-random, then P (x)”.

We start by a result holding for both notions of randomness. It is the pointwise version

of the Poincaré recurrence theorem.

4.3.1 Random points are recurrent

One property that is enjoyed by all measure preserving systems is recurrence:

Definition 4.3.1.1. Let X be a metric space. A point x ∈ X is said to be recurrent for

a Borel-measurable transformation T : X → X, if lim infn d(x, Tnx) = 0. y

Poincaré recurrence theorem asserts that in a separable metric space, almost every point

is recurrent. Here is the pointwise version.

Proposition 4.3.1.1 (Random points are recurrent). Let (X,µ) be a computable probability

space. If x is random, then it is recurrent with respect to every endomorphism T on (X,µ).
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Proof. Let x be (Schnorr-)random. We prove that for each almost decidable neighborhood

B of x, x returns infinitely often to B under positive iterations by T . We note that for

each such a neighborhood B, µ(B) > 0 holds (since x is random). For each N ≥ 0 let

UN =
⋃
n≥N T

−nB. Then
⋂
N≥0 UN is the set of all points of X which enter B infinitely

often under positive iterations by T . Hence the set B0 = B∩
⋂
N≥0 UN consists of all points

of B that enter B infinitely often. Then, by the classical Poincaré’s recurrence theorem,

µ(B0) = µ(B). Now, the set B0 ∩ D where D is the domain of computability of T is

a constructive Gδ-set. Moreover, it is a full measure set for the normalized measure µB.

Hence by Theorem 3.3.3.1, Rµ ∩B = RµB ⊂ B0 ∩D. Thus, x ∈ B0.

4.3.2 Algorithmic randomness v/s typicalness

We now compare our two randomness notions to a property stronger than recurrence:

typicality. Let us then introduce this concept. Let (X,µ) be a probability space and T an

ergodic continuous transformation on X. Let Cb(X) be the space of bounded real-valued

continuous functions on X. In such systems the famous Birkhoff ergodic theorem says

that the time average computed along the orbit {x, T (x), T 2(x), ..} coincide with the space

average with respect to µ, for almost every orbit. More precisely, for any f ∈ L1(X) it

holds

lim
n→∞

Sfn(x)
n

=
∫
fdµ, (4.1)

for µ-almost each x, where Sfn = f + f ◦ T + . . .+ f ◦ Tn−1.

Given the transformation T , if a point x satisfies equation (4.1) for a certain observable

f , then we say that x is (T, f)-typical.

Definition 4.3.2.1. If x is (T, f)-typical w.r. to every bounded continuous function f :

X → R, then we call it a T -typical point. y

First of all, let us prove a useful lemma. We say that a collection O = {f1, f2, ..} of

integrable functions is an essential family of observables if for every open set U there

is a sequence (fi)i in O such that fi ≤ 1U (where 1U denotes its indicator function) for all i

and limi

∫
fi = µ(U). We remark that any essential family of events (see definition A.1.0.1)

induce an essential family of observables taking their indicator functions.

Lemma 4.3.2.1. Let O be an essential family of observables. If x is typical w.r. to every

f ∈ O, then x is a T -typical point.
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Proof. We have to show that equation (4.1) holds for any bounded continuous observable

f . First, we extend equation (4.1) to every continuity open set C. Let (fk)k be a sequence

of elements of O such that fk ≤ 1Int(C) for all k and limk

∫
fk = µ(C). Then for all k:

lim inf
n

1
n

n−1∑
i=0

1C ◦ T i(x) ≥ lim
n

1
n

n−1∑
i=0

fk ◦ T i(x) =
∫
fk

so

lim inf
n

1
n

n−1∑
i=0

1C ◦ T i(x) ≥ µ(C).

Applying the same argument to X\C gives the result. Now we extend the result to bounded

continuous functions. Let f be continuous and bounded (|f | < M) and let ε > 0 be a real

number. Then, since the measure µ is finite, there exist real numbers r1, . . . , rk ∈ [−M,M ]

(with r1 = −M and rk = M) such that |ri+1 − ri| < ε for all i = 1, . . . , k − 1 and

µ(f−1({ri})) = 0 for all i = 1, . . . , k. It follows that for i = 1, . . . , k − 1 the sets Ci =

f−1(]ri, ri+1[) are all continuity open sets. Hence the function fε =
∑k−1

i=1 ri1Ci satisfies

‖f − fε‖∞ ≤ ε and then the result follows by density.

Mathematically, T -typical points are those whose orbits under T reproduce the main

statistical features of µ. Actually, from the orbit (under T ) of any T -typical point (which

form a total measure set) one can (weakly) recover the measure. In a more philosophical

sense, under the hypothesis that the evolution of the observed physical system is actually

given by T , these points represent “physically plausible” initial conditions: they follow the

“expected” behaviour of the system. Still, these points may be “non physical” with respect

to others systems having similar statistical properties. Let us explain this by the following

simple example.

Example 4.3.2.1. We restrict ourself to one dimension. Suppose that “space” is modeled

by the unit interval [0, 1], and consider the Lebesgue measure λ on it. Is a dyadic number

“physically plausible”?. Imagine we are observing a rather “rigid” process, modeled by

T (x) = x + α(mod 1), with irrational α. Lebesgue is the only measure that T preserves,

and it is then ergodic. This implies that every point x ∈ [0, 1] (in particular any dyadic

number) is typical (and hence physically plausible) for this system. On the other hand,

consider a rather “random” process for which Lebesgue measure is also ergodic, modeled

for instance by D(x) = 2x(mod 1). For this system one expect orbits to be dense (and
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even equally distributed) in the space whereas the orbit of any dyadic number is eventually

constant (equal to 0). Hence, dyadic numbers do not really represent “physical” points. y

Following this idea, one could call a point physical provided it is T -typical with respect

to all dynamics but, if we consider all possible dynamics, then there are no such points.

Hence, we should restrict our attention to a smaller set of transformations. Of course, here

we will choose “computable” ones.

Definition 4.3.2.2. Let (X,µ) be a computable probability space. We say that a point

x ∈ X is µ-typical1 (or just typical) if it is T -typical for every ergodic endomorphism T . y

In the rest of this section we study the relations between “physicalness” and algorithmic

randomness.

...for Martin-Löf random points

For Martin-Löf random points, this problem has already been studied by V’yugin

([V’y97]) in the particular case of the Cantor space and for computable observables. We

prove a general version which applies to computable dynamics on any CPS, for any observ-

able. The strategy is simple: we use computable partitions to construct effective symbolic

models and then apply the following particular case of V’yugin’s main theorem.

Lemma 4.3.2.2. Let µ be a computable shift-invariant ergodic measure on the Cantor space

{0, 1}ω. Then for each µ-random sequence ω:

lim
n

1
n

n∑
i=0

ωi = µ([1]) (4.2)

We are now able to prove:

Theorem 4.3.2.1. Let (X,µ) be a computable probability space. Then each ML-random

point x is typical.

Proof. First, let us show that if A is an almost decidable set then for all ML-random point

x:

1These points represent “physical” points, in a sense. We use the word typical for two reasons: i) it
seems to be the standard terminology in ergodic theory (although in the classical theory there is no natural
way to define typicalness with respect to a whole class of dynamics) and ii) the word “physical” may be too
controversial and then it must be used with prudence.
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lim
n

1
n

n∑
i=0

fA ◦ T i(x) = µ(A) (4.3)

Indeed, consider the computable partition defined by α := {A,X \A} and the associated

symbolic model (Xα, σ, µα). By proposition 4.2.0.4, φα(x) is a well defined µα-random

infinite sequence, so lemma 4.3.2.2 applies and gives the result. As almost decidable sets

form an essential family of events, lemma 4.3.2.1 allows to conclude.

Remark 4.3.2.1. We remark that V’yugin’s proof do not really use the particular features

of the Cantor space, nor the computability of the measure, so it can be easily adapted to

hold on any computable metric space, with an arbitrary measure. y

After this, a natural question is:

are typical points ML-random ?

This remains an open problem. Instead, we are able to prove that if a point is typical,

then it is Schnorr random.

...for Schnorr randomness

In [V’y97], to prove that ML-random points are typical w.r. to some f , a BC-test is

constructed such that if a point fails the Birkhoof theorem then it fails the test. To have

the result for Sch-random points, we should be able to compute the measure of the sets

involved in the BC-test. This problem can be overcome if the system has certain “mixing”

or “loss of memory”. This is naturally expressed by means of the correlation functions.

For integrable functions f, g let

C(f, g) = µ(f · g)− µf · µg,

Cn(f, g) = C(f ◦ Tn, g).

which measures the dependence between the observables f and g (possibly with f = g)

at times n � 1 and 0 respectively. Note that Cn(f, g) = 0 corresponds, in probabilistic

terms, to f ◦Tn and g being uncorrelated random variables. We will be interested in systems

for which observables become more and more independent in time. More precisely, we say

that T has polynomial decay of correlations w.r. to the observables f and g if there

are computable constants cf,g > 0 and α > 0 such that:

|Cn(f, g)| ≤
cf,g
nα

for all n ≥ 1.
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Definition 4.3.2.3. We say that a system (X,T, µ) is (polynomially) mixing if there is

α > 0 and an essential family O = {f1, f2, ...} of uniformly µ-almost computable observables

such that for each i, j there is ci,j > 0 computable in i, j such that

|Cn(fi, fj)| ≤
ci,j
nα

for all n ≥ 1.

We say that the system is independent if all correlation functions Cn(fi, fj) are 0 for

sufficiently large n. y

Examples of non-mixing but still ergodic systems are given for instance by irrational

circle rotations with the Lebesgue measure2. Examples of mixing but not independent

systems are given by piecewise expanding maps or uniformly hyperbolic systems which have

a distinguished ergodic measure (called SRB measure and which is “physical” in some sense)

with respect to which the correlations decay exponentially (see [Via97]). An example of a

mixing system for which the decrease of correlations is only polynomial and not exponential,

is given by the class of Manneville-Pomeau type maps (non uniformly expanding with an

indifferent fixed point, see [Iso03]). For a survey see [You02]. All these examples will be

treated in some detail in the last chapter. In particular, we shall prove that in each case,

the physical invariant ergodic measure is computable.

Now we prove:

Theorem A. Let (X , µ) be a computable probability space which no atoms. The following

properties of a point x ∈ X are equivalent.

1. x is Schnorr random.

2. x is T -typical for every mixing endomorphism T .

3. x is T -typical for every independent endomorphism T .

Remark 4.3.2.2. If the measure µ is atomic, it is easy to see that:

1. (X,µ) admits a mixing endomorphism if and only if µ = δx for some x. In this case

the theorem still holds, the only random point being x.

2. (X,µ) admits an ergodic endomorphism if and only if µ = 1
n(δx1 + ... + δxn) (where

xi 6= xj , for all i 6= j). In this case, a point x is Schnorr random if and only if it is

typical for every ergodic endomorphism if and only if it is an atom.

2These systems are uniquely ergodic, so that every point is typical, which from our point of view is a less
interesting situation.
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y

Proof of (1) ⇒ (2) We shall use the following theorem:

Theorem 4.3.2.2. If T has polynomial decay of correlations w.r. to a µ-almost computable

observable φ, then the set of points which are not typical w.r to φ is contained in a strong

effective null set.

Proof. For δn > 0, define the deviation sets:

Aφn(δn) =

{
x ∈ X :

∣∣∣∣∣Sφn(x)
n
−
∫
φdµ

∣∣∣∣∣ > δn

}
.

By Theorem 2.3.1.2 we can choose δn such that Aφn(δn) is almost decidable. Then their

measures are computable, uniformly in n.

By the Tchebytchev inequality,

µ(Aφn(δn)) ≤ 1
δ2
n

∥∥∥∥∥Sφn(x)
n
−
∫
φdµ

∥∥∥∥∥
2

L2

.

Let us change φ by adding a constant to have
∫
φdµ = 0. This does not change the above

quantity. Then∥∥∥∥∥Sφn(x)
n
−
∫
φdµ

∥∥∥∥∥
2

L2

=
∫ (

Sφn(x)
n

)2

dµ =
∫ (

φ+ φ ◦ T + ...+ φ ◦ Tn−1

n

)2

dµ.

By invariance of µ this is equal to

1
n2

∫
nφ2dµ+

2
n2

∫ ( ∑
i<j<n

φ ◦ T j−iφdµ
)
dµ

hence

δ2
nµ(Aφn(δn)) ≤

‖φ‖2L2

n
+

2
n

∑
k<n

|Ck(φ, φ)|

≤
‖φ‖2L2

n
+

2cφ,φ
(1− α)nα

.

(Observe that α can be replaced by any smaller positive number, so we assume α < 1.) Let

us chose δ2
n ∼ nγ , with 0 < γ < α. Hence, µ(Aφn(δn)) ≤ Cn−α

′
for some constants C and

0 < α′ = α − γ < 1. Now, it is easy to find a sequence (ni)i∈N such that the subsequence
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(n−α
′

i )i is effectively summable and ni
ni+1
→ 1 (take for instance ni = iβ with α′β > 1). This

shows that the sequence Aφni(δni) is a strong BC-test. Therefore, if x is not in the associated

strong null set, the subsequence Sφni (x)

ni
converges to

∫
φdµ.

To show that for such points the whole sequence Sφn(x)
n converges to

∫
φ = µ(E), observe

that if ni ≤ n < ni+1 and βi := ni
ni+1

then we have:

Sφni
ni
− 2(1− βi)M ≤

Sφn
n
≤
Sφni+1

ni+1
+ 2(1− βi)M,

where M is a bound of φ. To see this, for any k, l, β with β ≤ k/l ≤ 1:

Sφk
k
−
Sφl
l

=
(

1− k

l

)
Sφk
k
−
Sφl−k ◦ T

l−k

l

≤ (1− β)M +
(l − k)M

l
= 2(1− β)M,

Taking β = βi and k = ni, l = n first and then k = n, l = ni+1 gives the result.

Corollary 4.3.2.1 ((1) ⇒ (2)). Let (X , µ) be a CPS. If a point x is Schnorr-random then

it is T -typical for any mixing endomorphism T .

Proof. If x is Schnorr random (it is outside any strong effective null set), by theorem 4.3.2.2

it is typical w.r. to each φ ∈ O. The result then follows from lemma 4.3.2.1

Proof of (2) ⇒ (3) Any independent dynamic is in particular mixing.

Proof of (3) ⇒ (1) The following proposition is a modification of a Schnorr’s result [Sch71].

The proof we include here is taken from [GHR08a].

Proposition 4.3.2.1. If the infinite binary string ω ∈ ({0, 1}N, λ) is not Schnorr ran-

dom (w.r. to the uniform measure), then there exists an isomorphism Φ : ({0, 1}N, λ) →
({0, 1}N, λ) such that Φ(ω) is not typical for the shift transformation σ.

Proof. In order to prove this statement, we recall an equivalent definition of Schnorr-

randomness.

Definition 4.3.2.4 (Martingale). Let (ΣN, µ) be a Symbolic space with a probability dis-

tribution µ over it, as in section 2.2.2. A martingale for µ is a function V : Σ∗ → R+ with

the property ∑
z∈Σ

µ(xz)V (xz) = µ(x)V (x).
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It is a supermartingale if we have ≤ here. y

The following inequality is well-known and easy to prove.

Proposition 4.3.2.2 (Martingale inequality). For any α > 0 and any supermartingale V

we have

{ω : ∃nV (ω[n]) ≥ αV (Λ)} ≤ α. (4.4)

From now on we restrict our attention to the Cantor space {0, 1}N with the uniform

measure λ. Then a martingale for λ is a function V : 2∗ → R+ with the property

1
2

(V (x0) + V (x1)) = V (x).

For a string x = x1x2 · · · ∈ Σ∗ ∪ ΣN let us denote x1:n just by x[n].

Definition 4.3.2.5. Let V be a computable supermartingale, and f : N→ N an unbounded

monotonic computable function. Define the set NV,f as the set of all sequences x with

lim supn V (x[n])/f(n) > 0. y

It is easy to see that each set of the form NV,f has measure 0. Moreover, the following

theorem is proved in [Sch71].

Proposition 4.3.2.3. A set has the form NV,f for a martingale V if and only if there is a

Schnorr test T such that the infinite strings failing T are exactly the elements of NV,f .

Proof. See the appendix.

Let NV,f be given, and let f ′ = b
√
fc. Then x ∈ NV,f implies V (x[n]) > f ′(n) for

infinitely many n. Because of this, we will give yet another definition of (Schnorr-) con-

structive null set.

Let V be a computable martingale for λ and f : N → N an unbounded monotonic

computable function with f > 4. We define the set N′V,f as the set of all sequences x with

V (x[n]) > f(n) infinitely often.

It is obvious that the sets N′V,f are also just the null sets found by Schnorr tests.

Theorem 12.1 of Schnorr’s book [Sch71] says that for each such set there is a measure

preserving computable function Φ : {0, 1}N → {0, 1}N such that for all z ∈ NV,f the value

Φ(z) is non-typical. By definition, such Φ is given by Φ = ϕ where ϕ : 2∗ → 2∗ is a

monotonic computable function. In what follows we modify Schnorr’s construction in such
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a way that ϕ has a computable inverse ϕ−1. In this case ϕ becomes an isomorphism between

computable measureable spaces.

To prepare the construction of ϕ, we need some more definitions. First, we define a

series of tests using V, f , having more and more special properties.

Given our unbounded computable function f : N→ R+, there is an unbounded strictly

increasing recursive function g : N→ N such that for all n we have

f(g(n)) > 22n logn. (4.5)

Let

Un = {x ∈ {0, 1}g(n) : max
i≤g(n)

V (x[i]) > 2n},

U ′n =
n logn⋂
j=n

Uj{0, 1}N,

then of course we have

U ′n ⊇ {y ∈ {0, 1}N : max
i≤g(n)

V (y[i]) > 2n logn}. (4.6)

By the martingale inequality 4.4 we have

λ(Un{0, 1}N) ≤ 2−n. (4.7)

Claim 4.3.2.1. If y ∈ N′V,f , then there are infinitely many n with y ∈ U ′n.

Proof. We have V (y[i]) > f(i) for infinitely many i. For such an i let n be such that

g(n− 1) < i ≤ g(n), then noting 2(n− 1) log(n− 1) ≥ 2(n− 1)(log n− 1) ≥ n log n we have

V (y[i]) > f(i) > f(g(n− 1)) > 22(n−1) log(n−1) by (4.5)

> 2n logn

if n is sufficiently large (independently of y). From here we conclude by the inequality (4.6).

In what follows we break up the sets U ′n into parts W ′i belonging to different prefixes.

For each n let us define the following sets of integers:

Ln = {i : n ≤ 3i < 3i+1 ≤ n log n}.
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Claim 4.3.2.2. There is a computable function s : N → {0, 1}∗ with the following proper-

ties.

1. The integers |si| ≤ i form a monotonically increasing sequence with limi|si| =∞.

2. For each n the set of strings {si : i ∈ Ln} is a covering set.

The proof is easy. Now we modify our test sets further. Assume that a function

s : N → {0, 1}∗ is given satisfying the requirement in the claim. For every positive integer

m let i = blog3mc, and

Wm = si{0, 1}∗ ∩ Um = {x ∈ Um : x w si},

W ′i =
3i+1−1⋂
m=3i

Wm{0, 1}N = si{0, 1}N ∩
3i+1−1⋂
m=3i

Um{0, 1}N.

Claim 4.3.2.3. We have U ′n =
⋃
i∈LnW

′
i . Therefore ω ∈ NV,f implies that there are

infinitely many i with ω ∈W ′i .

Proof. Since {si : i ∈ Ln} is covering, for each y ∈ U ′n there is a i ∈ Ln with y ∈ si{0, 1}N ∩
U ′n. On the other hand i ∈ Ln implies n ≤ 3i < 3i+1 − 1 < n log n, hence by its definition

U ′n ⊆
⋂3i+1−1
m=3i Um{0, 1}N.

We define a measure-preserving invertible map ϕ via a monotonic measure-preserving

computable function ϕ : {0, 1}∗ → {0, 1}∗ with ϕ({0, 1}g(n)) = {0, 1}n. Suppose that ϕ has

been defined up to {0, 1}g(n), we define it for {0, 1}g(n+1). Let y ∈ {0, 1}n, D = ϕ−1(y).

Let W = D{0, 1}N ∩Wn+1{0, 1}N, then (4.7) implies λ(W ) ≤ 2−n−1. If W 6= ∅ then let

ϕ(W ) = y1.

Let i = blog3(n+ 1)c, then as we know, all elements of W share the prefix si. If all

elements of D also share the prefix si then extend ϕ further on D{0, 1}g(n+1)−g(n) to y0 or

y1 in an arbitrary measure-preserving way. Otherwise let r be the first index ≤ |si| such

that there are strings x′, x′′ ∈ D with x′r 6= x′′r . For j ∈ {0, 1} let

Dj = {x ∈ D : xr = j}.

By definition one of these sets contains W , without loss of generality assume W ⊆ D1. For

j ∈ {0, 1} we will define the sets D′j = ϕ−1(yj). Of course we need λ(D′j) = 2−n−1, and

we have already set D′1 ⊇ W . Now, if λ(D1) ≥ 2−n−1 then let D′1 ⊆ D1, otherwise let

D′0 ⊆ D0. The further details of the choice of D′j are arbitrary.
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This completes the definition of ϕ. The measure preserving property is immediate from

the definition. Let us observe another important property. The numbers λ(Dj)/λ(D) have

the form p/2q for some integers p, q with odd p < 2q and 1 ≤ q ≤ g(n). Denote q(y) = q.

The definition of the extension gives

q(yj) = q(y)− 1. (4.8)

Now we show that the image of a nonrandom string is not typical.

Claim 4.3.2.4. If ω ∈ NV,f then ϕ(ω) is not typical.

Proof. Suppose ω ∈ NV,f , and let η = ϕ(ω), then there are infinitely many indices i with

ω ∈ W ′i . Let i be such, this implies ω ∈ Wm{0, 1}N for 3i ≤ m < 3i+1. The construction

gives ηm = 1 for 3i ≤ m < 3i+1. Since this is true for infinitely many i, the sequence η is

not typical.

To show that ϕ is invertible, we will find for each k a value n = n(k) such that x′k 6= x′′k

implies ϕ(x′[g(n)]) 6= ϕ(x′′[g(n)]). We define n(k) recursively via

n(0) = 1,

n(k + 1) = n(k) + g(n(k)).

Claim 4.3.2.5. Let x′, x′′ ∈ {0, 1}N be two different sequences. For all k ≥ 1 with n = n(k),

the relation x′k 6= x′′k implies ϕ(x′[g(n)]) 6= ϕ(x′′[g(n)]).

Proof. Let y = ϕ(x′), and let k ≥ 1 be the first place where x′k 6= x′′k. For m = n(k − 1)

consider the map ϕ on {0, 1}g(m). If y[m] = ϕ(x′[g(m)]) 6= ϕ(x′′[g(m)]) then we are done,

suppose this is not the case. Let D = ϕ−1(y[m]). By the choice of m, all elements of

D share the prefix x′[k−1]. The definition above extends ϕ to {0, 1}g(m+1). If y[m+1] =

ϕ(x′[g(m+1)]) 6= ϕ(x′′[g(m+1)]) then we are done. Otherwise relation (4.8) implies q(y[m+1]) <

q(y[m]). Therefore by repeating the extension we must get ϕ(x′[g(i)]) 6= ϕ(x′′[g(i)]) for some

i < m+ g(m) before getting to q(y[i]) = 0.

This completes the proof of Proposition 4.3.2.1.

Now we are able to finish the proof of our main result:

Theorem 4.3.2.3 ((3) ⇒ (1)). Let (X , µ) be a CPS whith no atoms. If a point x is T -

typical for any independent endomorphism T then x is Schnorr random.
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Proof. Suppose that x is not Schnorr random. We construct a dynamic T for which x is not

T -typical. From Corollary 2.3.1.4 we know that there is an isomorphism φ : (X , µ)→ (C, λ).

If x /∈ dom(φ) then we can take any independent dynamic and modify it in order to be the

identity on x. It is clearly still an independent dynamic (maybe with a smaller domain of

computability) and x, being a fixed point, can’t be T -typical. So let x ∈ dom(φ). Then φ(x)

is not Schnorr random in (C, λ), since φ as well as its inverse preserve Schnorr randomness.

Then, by Proposition 4.3.2.1, ϕ(φ(x)) is not σ-typical, where σ is the shift which is clearly

independent (cylinders being the essential events). Put ψ = ϕ ◦ φ. Define the dynamic T

on X by T = ψ−1 ◦ σ ◦ ψ. It is easy to see that T is independent for events of the form

E = ψ−1[w]. Since {ψ−1[w] : w ∈ {0, 1}∗} form an essential family of almost decidable

events, T is independent. As ψ(x) is not σ-typical, x is not T -typical either.

4.4 Entropy and orbit complexity

Let (X,T, µ) be an ergodic dynamical system and ξ = {C1, . . . , CN} be a finite mea-

surable partition of X. Let T−1ξ be the partition given by the pre-images T−1Ci. Then

let

ξn = ξ ∨ T−1ξ ∨ T−2ξ ∨ . . . ∨ T−nξ

be the partition given by the sets of the form

Ci0 ∩ T−1Ci1 ∩ . . . ∩ T−n+1Cin−1 ,

varying Cij among all the sets of ξ. Knowing to which atom ξn a point x belongs to (that

is to perform an observation) corresponds to knowing the atoms of the partition ξ that the

orbit of x visits up to time n− 1.

4.4.1 Measure-theoretical entropy

The notion of measure-theoretical entropy was introduced by Kolmogorov as an indica-

tor of “how random a dynamical system is”. It can be thought as the rate (per unit time) of

gained information (or removed uncertainty) when observations of the type “Tn(x) ∈ Ci”
are performed.

The notion of information used in the original definition was Shannon information but

others notions of information, as Kolmogorov’s one, could also be used in principle.
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We now recall the classical definition and some basic tools. Then we present the defi-

nition obtained using Kolmogorov’s notion: algorithmic information.

Entropy with Shannon information

Let us consider the Shannon information function relative to the partition ξn (the

information which is gained by observing that x ∈ ξn(x)):

Iµ(x|ξn) := − logµξn(x)

and its mean, the entropy of the partition ξn:

Hµ(ξn) :=
∫
X
Iµ(.|ξn)dµ =

∑
C∈ξn

−µ(C) logµ(C)

The measure theoretic or Kolmogorov-Sinäı entropy of T relative to the partition ξ is

defined as:

hµ(T, ξ) = lim
n→∞

1
n
Hµ(ξn)

(which exists and is an infimum, since the sequence (Hµ(ξn))n is sub-additive). Now we

take the supremum over all finite partitions in order to suppress the partition-dependency :

the Kolmogorov-Sinäı entropy of (X,T, µ) is defined as:

hµ(T ) = sup{hµ(T, ξ) : ξ finite measurable partition}.

With the Shannon information function, it is possible to define a kind of pointwise

notion of entropy with respect to a partition ξ:

lim sup
n

1
n
Iµ(x|ξn).

This notion, by the celebrated Shannon-MacMillan-Breiman theorem equals hµ(T, ξ) for µ-

almost every point (moreover, the limit exists almost every where). We recall the following

two results that we will need later. The first proposition follows directly from the definitions.

Proposition 4.4.1.1. If (Xξ, σ, µξ) is the symbolic model associated to (X,T, µ, ξ) then

hµ(T, ξ) = hµξ(σ).

The next proposition is taken from [Pet83]:

Proposition 4.4.1.2. If (ξi)i∈N is a family of finite partitions which generates the Borel

σ-algebra up to sets of measure 0, then hµ(T ) = supi hµ(T, ξ1∨, ...,∨ξi).
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Entropy with Kolmogorov information

Now we show in a simple way how with the Kolmogorov information content it is

possible to give a definition equivalent to the above one when the measure is computable.

An atom C of the partition ξn can be seen as a word of length n on the alphabet ξ, which

allows one to consider its Kolmogorov complexity K(C).

We then define the Kolmogorov information function (which is independent of µ)

relative to the partition ξn:

I(x|ξn) := K(ξn(x))

and its mean, which can be called the algorithmic entropy of the partition ξn:

Hµ(ξn) :=
∫
X
I(.|ξn)dµ =

∑
C∈ξn

µ(C)K(C)

When µ is computable and ξ is a computable partition, by propositions 4.2.0.4 and

3.3.3.1 every µ-random point x is mapped to a random sequence φξ(x). By theorem A.3.0.9,

there is a constant c such that for every µ-random point x and every n it holds:

Iµ(x|ξn)− dµ(φξ(x)) < I(x|ξn) < Iµ(x|ξn) +K(n) + c (4.9)

(where dµ is the deficiency of randomness, see theorem A.3.0.9), and since random points

have measure one, one also has:

Hµ(ξn)− 1 ≤ Hµ(ξn) ≤ Hµ(ξn) +K(n) + c

so we obtain an easy proof that the measure theoretic entropy with respect to a computable

partition can be obtained also using Kolmogorov information:

hµ(T |ξ) = lim
n

Hµ(ξn)
n

= lim
n

Hµ(ξn)
n

which in turns, since computable partitions contains a generating family (corollary 4.2.0.1),

offers an equivalent definition of Kolmogorov-Sinai entropy:

hµ(T ) = sup{lim
n

Hµ(ξn)
n

: ξ finite computable partition}.

With the Kolmogorov information function, it is also possible to define a pointwise

notion of algorithmic entropy with respect to a partition ξ:



Chapter 4: Random points and ergodic theorems 87

Ksym(x, T |ξ) := lim sup
n

1
n
I(x|ξn).

In [Bru83], Brudno has shown:

Proposition 4.4.1.3. Ksym(x, T |ξ) = hµ(T, ξ) for µ-almost every point.

Actually, one of his goals was to define (using Kolmogorov complexity) a notion of

entropy for a single orbit. A natural choice was to use Ksym(x, T |ξ) and take supremum

over all partitions to have an absolute notion, but Brudno showed that this supremum could

be infinite for a “large” set of points. So, he proposed a somewhat different definition: orbit

complexity.

4.4.2 Orbit complexity

Since Kolmogorov complexity is defined and meaningfull for a single symbolic sequence

it seems that with this notion it is possible to define entropy of a single orbit. This problem

was firstly considered by Brudno in [Bru83].

Brudno showed that if orbits are coded using finite partitions, its complexity may be-

come infinite when we take supremum over all partitions (this is true for every non eventually

periodic orbit), so we can’t easily suppress the partition-dependency in the definition.

To solve the problem, Brudno coded orbits using finite open covers, which yields to a

proper definition in the compact case. He proved that if the space is compact, the orbit

complexity so defined equals the metric entropy of the system almost everywhere. If the

space is non compact, the definition of Brudno gives infinite complexity to any orbit which

has “many” isolated points (translations on the real line for instance). In [Gal00] another

solution is proposed: on effective metric spaces, orbit complexity is defined using shadowing

sequences of ideal points, which can be seen as words in a canonical way. This definition

make sense in the non compact case (but no relation with entropy is proved) and, when X

is compact, it coincide with Brudno’s definition for each point. Let us hence introduce the

classical notion of orbit complexity by this equivalent definition:

Shadowing orbit complexity

Let T be an endomorphism of the CPS (X , µ). For each point x we define the shadowing

orbit complexity of x under T , denoted Kshad(x, T ), which quantifies in some sense the
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algorithmic information needed to describe the orbit of x with finite but arbitrarily accurate

precision.

Given ε > 0 and n ∈ N, the algorithmic information needed to describe the n first

iterates of x up to ε is:

Kshad
n (x, T, ε) := min{K(i) : d(T jsi, T jx) < ε ∀j < n}

where K(i) is the self-delimiting complexity of i (actually, of its binary expansion).

We then define the maximal growth-rate of this information:

Kshad(x, T, ε) := lim sup
n→∞

1
n
Kshad
n (x, T, ε)

As ε tends to 0, this quantity increases, hence it has a limit (which can be infinite).

Definition 4.4.2.1. The shadowing orbit complexity of x under T is defined by:

Kshad(x, T ) := lim
ε→0+

Kshad(x, T, ε)

y

We remark that the n first iterates of x could be ε-shadowed by a pseudo-orbit of n

ideal points instead of the orbit of a single ideal point. Actually it is easy to see that it

gives the same quantity3:

Kshad
n (x, T, 2ε)

+
≤ min{K(〈i0, . . . , in−1〉) : d(sij , T

jx) < ε ∀j < n}
+
≤ Kshad

n (x, T, ε/2) +K(n) (4.10)

Indeed, from 〈i0, . . . , in−1〉 some ideal point can be algorithmically found in B(si0 , ε) ∩
. . .∩T−(n−1)B(sin−1 , ε) which is a r.e open set, uniformly in 〈i0, . . . , in−1〉. Its n first iterates

2ε-shadow the orbit of x, which proves the first inequality. For the second inequality, some

〈i0, . . . , in−1〉 can be algorithmically constructed from n and a point si corresponding to

Kshad
n (x, T, ε/2), taking any sij ∈ B(T jsi, ε).

Symbolic orbit complexity

We now show that in the computable framework, finite partitions does lead to a proper

definition of orbit complexity in a very simple way (moreover, in this approach compactness

3In the following,
+

≤ stands for inequality up to a constant which depends only on T
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is not important). We will see that this definition is equivalent to the above one at each

random point. This will allow us to prove in the next subsection that for each random point

of the space the orbit complexity equals the entropy.

Let T be an endomorphism of the computable probability space (X,µ).

Definition 4.4.2.2. The symbolic orbit complexity of x under T is:

Ksym(x, T ) := sup
ξ computable partition

Ksym(x, T |ξ)

y

Since computable partitions are a countable collection which, in addition, contains a

generating family (see corollary 4.2.0.1), we can apply propositions 4.4.1.3 and 4.4.1.2 to

obtain:

Proposition 4.4.2.1. Ksym(x, T ) = hµ(T ) for µ-almost every point

which can be seen as an extension of Brudno’s main result to the non compact case.

Equivalence of the two orbit complexities for random points

Now we prove that the notions of Kshad(x, T ) and Ksym(x, T ) coincide at every random

point.

Theorem 4.4.2.1. Let (X , µ) be a compact computable probability space. Then for every

µ-random point x:

Kshad(x, T ) = Ksym(x, T ),

for any ergodic endomorphism T .

The difficult inequality is Ksym(x, T ) ≤ Kshad(x, T ). To prove it, we need the following

lemma.

First remind that for all natural number k ≥ 1, the self-delimiting complexity of its

binary expansion k satisfies:

K(k)
+
≤ J(k)

where J(x) = log x + 1 + 2 log(log x + 1) for all x ∈ R, x ≥ 1. Notice that J is a concave

increasing function and that x 7→ xJ(1/x) is an increasing function on ]0, 1] and tends to 0

as x→ 0.
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Also remind that for all finite sequence of strings (x1, . . . , xn), one has

K(x1, . . . , xn)
+
≤ K(x1) + . . .+K(xn)

(this is one reason to use the self-delimiting complexity instead of the plain complexity).

Lemma 4.4.2.1. Let Σ be a finite alphabet and n ∈ N. Let u, v ∈ Σn and 0 < α < 1/2

such that the density of the set of positions where u and v differ is less than α, that is:

1
n

#{i < n : ui 6= vi} < α < 1/2

Then
∣∣ 1
nK(u)− 1

nK(v)
∣∣ < αJ(1/α) + c

n where c is a constant independent of u, v and

n.

Proof. let (i1, . . . , ip) be the ordered sequence of indices where u and v differ. By hypothesis,

p/n < α. Put i0 = 0 and kj = ij − ij−1 for 1 ≤ j ≤ p.
We now show that u can be recovered from v and roughly αJ(1/α)n bits more. Indeed

u can be computed from (v, k1, . . . , kp), constructing the string which coincides with v

everywhere but at positions k1, k1 + k2, . . . , k1 + . . . kp. Then K(u)
+
≤ K(v) +K(k1) + . . .+

K(kp)
+
≤ K(v) + J(k1) + . . .+ J(kp).

Now, as J is a concave increasing function, one has:

1
p

∑
j≤p

J(kj) ≤ J

1
p

∑
j≤p

kj

 = J

(
ip
p

)
≤ J

(
n

p

)

As a result,
1
n
K(u) ≤ 1

n
K(v) +

p

n
J

(
n

p

)
+
c

n

where c is some constant independent of u, v, n, p.

As x 7→ xJ(1/x) is increasing for x ≤ 1/2 and p/n < α < 1/2, one has:

1
n
K(u) ≤ 1

n
K(v) + αJ(1/α) +

c

n

Switching u and v gives the result (c may be changed).

We are now able to prove the theorem.
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Proof. (of thm. 4.4.2.1) Kshad(x, T ) ≤ Ksym(x, T ): let ε > 0. Choose a computable

partition P of diameter < ε (this is why we require X to be compact). To every cell of

P, associate an ideal point which is inside. This finite dictionary can be encoded into a

finite string (which could also be algorithmically generated from P which consists of open

r.e. cells, but we do not need that). Then the translation through this finite dictionary is

computable, and transforms the symbolic orbit of x into a sequence of ideal points ε-close

to the orbit of x. So Kshad(x, T ) ≤ Ksym(x, T ).

For the other inequality, fix some computable partition P. We show that for any β > 0

there is some ε > 0 such that for every µ-random point x, Ksym(x, T |P) ≤ Kshad(x, T, ε)+β.

As Kshad(x, T, ε) increases as ε→ 0+ and β is arbitrary, the inequality follows.

First take α < 1/2 such that αJ(1/α) < β, and remark that

lim
ε→0+

µ
(

(∂P)ε
)

= µ(∂P) = 0

Hence there is some ε such that µ
(

(∂P)ε
)
< α. From a sequence of ideal points we

will reconstruct the symbolic orbit of a µ-random point with a density of errors less than

α. Lemma 4.4.2.1 will then allow to conclude.

We define an algorithm A(ε, n, i) with ε ∈ Q>0 and n, i ∈ N which outputs a word

a0 . . . an−1 on the alphabet P. To compute aj , A semi-decides in a dovetail picture:

• T jsi ∈ C for every C ∈ P,

• s ∈ C for every s ∈ B(T jsi, ε/2) and every C ∈ P.

The first test which stops provides some C ∈ P: put aj = C.

Let x be a µ-random point and si an ideal point whose orbit ε/2-shadows the first n

iterates of x. We claim that A will halt. Indeed, if T jsi is in no C ∈ P, as T jx is a random

point it belongs to some C ∈ P, so T jx ∈ C ∩ B(T jsi, ε/2) which is an open set and then

contains at least an ideal point s, which will be eventually dealt with.

We now compare the symbolic orbit of x with the symbolic sequence computed by

A. A discrepancy at rank j can appear only if T jx ∈ (∂P)ε. Indeed, if this is not the

case then B(T jx, ε) ⊆ C where C is the cell T jx belongs to. As d(T jsi, T jx) < ε/2,

B(T jsi, ε/2) ⊆ B(x, ε) ⊆ C, so the algorithm gives the right cell.

Now, using the Birkhoff ergodic theorem for random points (theorem 4.3.2.1), the fol-
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lowing holds for any µ-random point x:

lim sup
n→∞

1
n

#{j < n : T jx ∈ (∂P)ε} ≤ µ((∂P)ε) < α

so there is some n0 such that for all n ≥ n0, 1
n#{j < n : T jx ∈ (∂P)ε} < α. This implies

that for all n ≥ n0, taking si an ideal point whose orbit ε-shadows the first n iterates of x

and with minimal complexity, the algorithm A(ε, n, i) produces a symbolic string u which

differs from the symbolic orbit v of x of length n with a density of errors < α. Applying

lemma 4.4.2.1 gives:

1
n
K(ϕP(x)<n) =

1
n
K(v) ≤ 1

n
K(u) + αJ(1/α) +

c

n

≤ 1
n

(
Kshad
n (x, T, ε) +K(ε) +K(n) + c′

)
+ β +

c

n

where c′ depends on ε.

Taking the lim sup as n→∞ gives:

Ksym(x, T |P) ≤ Kshad(x, T, ε) + β

4.4.3 Orbit complexity of random points equals the entropy of the mea-

sure

In [V’y97], the following result is proved:

Theorem 4.4.3.1 (V’yugin). Let µ be a computable shift-invariant ergodic measure on ΣN.

Then, for any Martin-Löf µ-random sequence ω,

lim sup
n→∞

− 1
n

logµ([ω1:n]) = hµ(σ).

Which corresponds to the Shannon-McMillan-Breiman theorem for individual random

sequences on the space of symbolic sequences. Using the tools developed in section 4.2, we

easily prove the general version, on any computable probability space.

Theorem 4.4.3.2. Let ξ be a computable partition on the computable probability space

(X,µ). If x is µ-random then for every ergodic endomorphism T :

lim sup
n→∞

Iµ(x|ξn) = hµ(T, ξ)

where Iµ(x|ξn) is the Shannon function information (see section 4.4.1).
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Proof. Since ξ is computable, by proposition 4.2.0.4, the symbolic model (Xξ, σ, µξ) is ef-

fective. Hence, proposition 3.3.3.1 implies that ϕ(x) is µξ-random in Xξ. By definition,

Iµ(x|ξn) = − 1
n logµξ([ϕ(x)1:n]). Then the result follows from theorem 4.4.3.1 and proposi-

tion 4.4.1.1.

We finish by showing how this theorem allows to easily strengthen proposition 4.4.2.1,

proving that it holds for each µ-random point:

Theorem 4.4.3.3. Let (X , µ) be a (not necessarily compact) computable probability space.

Then for each random point x ∈ X:

Ksym(x, T ) = hµ(T ),

for every ergodic endomorphism T .

Proof. Let ξ be a computable partition. By the Levin-Chaitin theorem, for each µ-random

point x, there is a constant c such that for all n:

Iµ(x|ξn)− c < I(x|ξn) < Iµ(x|ξn) +K(n) + c

so

lim sup
n→∞

I(x|ξn)
n

= lim sup
n→∞

Iµ(x|ξn)
n

Hence, by theorem 4.4.3.2, Ksym(x, T |ξ) = hµ(T, ξ). Since the collection of all com-

putable partitions generates the Borel σ-algebra (see corollary 4.2.0.1), proposition 4.4.1.2

proves the theorem.

Remark 4.4.3.1. In ergodic theory, the variational principle is an important result stating

that the supremum of the metric entropy over all invariant measures equals the topological

entropy of the system. It is a very interesting fact that the supremum of the shadowing

orbit complexity over all x ∈ X equals the topological entropy too. And this can be proved

without the help of the variational principle. The interested reader can find all the details

of this in [Hoy08]. y



Chapter 5

Computable “pseudo-random”

points

In this chapter we develop a general probabilistic method allowing to construct com-

putable points verifying a given statistical law. More precisely, it applies to those proba-

bilistic laws that can be put into a Schnorr’s test form. The existence of computable points

verifying this law will be a consequence of the following result (Thm. 5.1.0.4):

Theorem Let (Tn)n be a uniform sequence of Sch-test. Then the set of points passing all

these tests contains a dense set of computable points.

We then apply this to construct computable reals which are absolutely normal, and

to computable initial conditions which follow the statistical behaviour of uniform families

of dynamical systems. Finally we study the problem of the computability of the invariant

measure for some particular classes of transformations.

5.1 Computable points passing schnorr tests

In this section, Comp(X) will denote the set of computable points of X. We remark

that this is an invariant set for any computable transformation T .

Definition 5.1.0.1. A set A ⊂ X is said to be recursively closed if, denoting Bi the ideal

ball of number i, the set {i ∈ N : Bi ∩A 6= ∅} is r.e. y

94
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Proposition 5.1.0.1. Let A be a recursively closed subset of X. Then Comp(X) ∩ A is

dense in A. That is, Comp(X) ∩A = A.

Proof. Since {i ∈ N : Bi = (B(sni , qni) ∩ A 6= ∅} is r.e, given some ideal ball B = B(s, q)

intersecting A, the set {k ∈ N : Bk ⊂ B, qnk ≤ 2−k, Bi ∩ A 6= ∅} is also r.e. Then we

can effectively construct an exponentially decreasing sequence of ideal balls intersecting A.

Hence {x} = ∩kBk is a computable point lying in A.

The following theorem will be our main tool:

Theorem 5.1.0.4. Let (Tn)n be a uniform sequence of Sch-test. Then the set of points

passing all these tests contains a dense set of computable points.

Proof. We shall use the following lemma:

Lemma 5.1.0.1. Let (X,µ) be a computable probability space. Suppose the measure of a

constructively open set A satisfies:

1. µ(A) < 1 and,

2. µ(A) is computable.

Then there is a computable point x /∈ A.

Proof. Since µ(A) is computable, so are µA and µX\A (proposition 2.3.1.1). Observe that

in general, given an ideal ball B and a computable measure ν, the relation ν(B) > 0 is semi-

decidable. Hence, the support of the measure is a recursively closed set. By proposition

5.1.0.1, the set of computable points is dense in this support, in particular in supp(µX\A).

Let T = (Cn)n be a Sch-test. Given an almost decidable ball B of positive measure,

we can effectively find n such that µ(Cn) < µ(B). By lemma 5.1.0.1, there is a computable

point in B \ Cn. The result then follows from proposition 3.3.2.1.
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5.2 Computable typical points

Before to enter in the main theme of typical statistical behaviors let us see an easier

topological result in this line. One of the features of undecomposable (topologically tran-

sitive) chaotic systems is that there are many dense orbits, the following shows that if the

system is computable then there are computable dense orbits.

We remark that this result can also be obtained as a corollary of the effective Baire

theorem [Bra01].

Theorem 5.2.0.5. Let X be a computable complete metric space and T : X → X a

transformation which is computable on a dense r.e open set. If T has a dense orbit, then it

has a computable one which is dense.

In other words, there is a computable point x ∈ X whose orbit is dense in X. Actually,

the proof is an algorithm which takes an ideal ball as input and computes a transitive point

lying in this ball.

Proof. (Bi)i∈N being an enumeration of all ideal balls, define Ui = dom(f)∩
⋃
n T
−nBi which

is r.e uniformly in i. By hypothesis, Ui is also dense.
⋂
i Ui is the set of transitive points.

From any ideal ball B(s0, r0) we effectively construct a computable point in B(s0, r0)∩
⋂
i Ui.

If B(si, ri) has been constructed, as Ui is dense B(si, ri) ∩ Ui is a non-empty construc-

tively open set, so an ideal ball B(s, r) ⊆ B(si, ri)∩Ui can be effectively found (any of them

can be chosen, for instance the first coming in the enumeration of the r.e. set). We then

set B(si+1, ri+1) := B(s, r/2).

The sequence of balls computed satisfies:

B(si+1, ri+1) ⊆ B(si, ri) ∩ U0 ∩ . . . ∩ Ui

As (ri)i∈N is a decreasing computable sequence converging to 0 and the space is com-

plete, (si)i∈N converges effectively to a computable point x. Then {x} =
⋂
iB(si, ri) ⊆⋂

i Ui.

We will use the results from the previous section to prove that computable typical

points exist for a large class of dynamical systems.

Theorem 5.2.0.6. If T has polynomial decay of correlations w.r. to a µ-almost computable

observable φ, then the set of points which are typical w.r to φ contains a dense set of

computable points.
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Proof. First observe that, by lemma 3.3.3.1 and proposition 3.3.2.1 there is a strong effective

null-set outside of which everything is well defined. Then apply theorem 5.1.0.4 to the above

test coupled with the test given by theorem 4.3.2.2

Remark 5.2.0.2. In the proof we see that the Sch-test depends in an effective way on T , φ

and cφ,φ. This gives the possibility to operate in a way to apply proposition 3.3.2.1 to find

computable points contained in the set of points typical with respect to uniform families

φi, Ti. From now and beyond, we will assume that all test to be constructed are coupled

with the test outside of which everything is well defined. y

5.2.1 Application: computable absolutely normal numbers

An absolutely normal (or just normal) number is, roughly speaking, a real number

whose digits (in every base) show a uniform distribution, with all digits being equally likely,

all pairs of digits equally likely, all triplets of digits equally likely, etc.

While a general, probabilistic proof can be given that almost all numbers are normal,

this proof is not constructive and only very few concrete numbers have been shown to be

normal. It is for instance widely believed that the numbers
√

2, π and e are normal, but

a proof remains elusive. The first example of an absolutely normal number was given by

Sierpinski in 1916, twenty years before the concept of computability was formalized. Its

construction is quite complicate and is a priori unclear whether his number is computable

or not. In [BF02] a recursive reformulation of Sierpinski’s construction (equally complicate)

was given, furnishing a computable absolutely normal number.

As an application of theorem 5.2.0.6 we give a simple proof that computable absolutely

normal numbers are dense in [0, 1].

Let b be an integer ≥ 2, and Xb the space of infinite sequences on the alphabet Σb =

{0, . . . , b−1}. Let T = σ be the shift transformation on Xb, and λ be the uniform measure.

A real number r ∈ [0, 1] is said to be absolutely normal if for all b ≥ 2, its b-ary expansion

rb ∈ Xb satisfies:

lim
n→∞

1
n

n−1∑
i=0

1[w] ◦ σi(rb) =
1
b|w|

for all w ∈ Σ∗b . (5.1)

Theorem 5.2.1.1. The set of computable reals which are absolutely normal is dense in

[0, 1].
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Proof. for each base b ≥ 2, consider the transformation Tb : [0, 1] → [0, 1] defined by

Tb(x) = bx(mod 1). The Lebesgue measure λ is Tb-invariant and ergodic. The intervals

[k/b, (k+1)/b[ (k = 0, 1, ...b−1) induces the symbolic model (ΣN
b , σ, λ), which is isomorphic

to ([0, 1], Tb, λ): the interval [k/b, (k + 1)/b[ is represented by k ∈ Σb. For any word w ∈
Σb define I(w) = [0.w, 0.w + b−|w|] ⊂ [0, 1] to be the corresponding interval. Defining

dom(Tb) := [0, 1] \ {kb : 0 ≤ k ≤ b} (the interior of the partition) makes Tb a λ-almost

computable transformation. The observable fw := 1I(w) is also λ-almost computable, with

dom fw = [0, 1] \ ∂I(w). Note that given r ∈ [0, 1], equation 5.1 is equivalent to

lim
n→∞

1
n

n−1∑
i=0

fw ◦ T ib (r) =
1
b|w|

for all w ∈ Σ∗b .

Since 1[w] ◦σn and 1[w] are independent for n > |w|, so are fw ◦Tnb and fw. Hence Theorem

5.2.0.6 applies to ([0, 1], Tb, λ) and fw. Therefore, the set of points (for the system (Tb, λ))

which are not typical w.r.t the observable fw fail a Sch-test Sb,w. Furthermore, Sb,w is

effective uniformly in b, w ∈ Σb. Hence, by proposition 3.3.2.1 and corollary 5.1.0.4, the set

of absolutely normal numbers, contains a dense set of computable points.

5.3 Computing some ergodic “physical” measures

We will see that in a large class of dynamical systems which have a single physically

relevant invariant measure, the computability of this measure and related cgi , for observables

in H can be proved, hence we can apply Thm. 5.2.0.6 to find pseudorandom points in such

systems.

5.3.1 Physical measures

In general, given (X,T ) there could be infinitely many invariant measures (this is true

even if we restrict to probability measures). Among this class of measures, some of them are

particularly important. Suppose that we observe the behavior of the system (X,T ) trough

a class of continuous functions fi : X → R. We are interested in the statistical behavior of

fi along typical orbits of the system. Let us suppose that the time average along the orbit

of x exists

Ax(fi) = lim
n→∞

1
n

∑
fi(Tn(x))
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this is a real number for each fi. Moreover Ax(fi) is linear and continuous with respect

to small changes of fi in the sup norm. Then the orbit of x acts as a measure µx and

Ax(fi) =
∫
fidµx (moreover this measure is also invariant for T ). This measure is physically

interesting if it is given by a “large” set of initial conditions. This set will be called the

basin of the measure. If X is a manifold, it is said that an invariant measure is physical (or

SRB from the names of Sinai, Ruelle and Bowen) if its basin has positive Lebesgue measure

(see [You02] for a survey and more precise definitions).

In what follows we will consider SRB measures in the classes of systems listed below,

1. The class of uniformly hyperbolic system on submanifolds of Rn.

2. The class of piecewise expanding maps on the interval.

3. The class of Manneville-Pomeau type maps (non uniformly expanding with an indif-

ferent fixed point).

All these systems, which are rather well understood, have a unique physical measure

with respect to which correlations decay is at least polynomial. Furthermore, in each case,

the corresponding constants can be estimated for functions in F . The computability of the

physical measures is proved case by case, but it is always a consequence of the fact that,

in one way or another, the physical measure is “approached” by iterates of the Lebesgue

measure at a known speed.

5.3.2 Uniformly hyperbolic systems

To talk about SRB measures on a system whose phase space is a manifold, we have to

introduce the Lebesgue measure on a manifold and check that it is computable.

Computable manifolds and the Lebesgue measure

For simplicity we will not consider general manifolds but submanifolds of Rn.

Definition 5.3.2.1. Let M be a computable metric subspace of Rn. We say that M is

a m dimensional computable Ck submanifold of Rn if there exists a computable function

f : M × B(0, 1) → M (where B(0, 1) is the unit ball of Rmand M × B(0, 1) with the

euclidean distance is a CMS in a natural way) such that for each x ∈ M , fx = f(x, .) is a

Ck diffeomorphism (satisfying f(x, 0) = x) with all k derivatives being computable in the
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sense that the functions Dkf associating to (x, z) ∈ M × B(0, 1) the derivative of fx at z,

denoted by Dfx,z are computable. y

For each x, the above fx is a map whose differential at any z ∈ B(0, 1) is a linear,

rank m function Dfx,z : Rm → Rn. This can be seen as a composition of two functions

Dfx,z = Df2
x,z ◦Df1

x,z such that Df1
x,z : Rm → Rm is invertible and Df2

x,z : Rm → Rn is an

isometry.

Let us denote Bx the image of B(0, 1) by fx. Then the Lebesgue measure of D ⊂ Bx

is defined as

m(D) =
∫
f−1
x (D)

det(Df1
x,z)dz.

This does not depend on the choice of Bx and fx, and it give rise to a finite measure

(Lebesgue measure) on M (see [GMS98] page 74). This measure is indeed the m dimensional

Hausdorff measure on M. Moreover, as the following lemma shows, the Lebesgue measure

m is computable.

Lemma 5.3.2.1. The Lebesgue measure on a computable Ck submanifold of Rn is com-

putable.

Proof. Suppose that A is a constructively open subset of some Bs, where s is an ideal

point of M . Since the function det(Df1
x,z) is computable and the function 1f−1(A)(z) is

lower semi-computable, we can lower semi-compute the value m(A). In particular, there

is a base of ideal balls whose measures are lower semi-computable. Let B and B′ be such

balls. Since these balls have zero measure boundaries, we can compute the measure of their

intersection (which is an r.e open included in B). Hence any constructively open set can be

decomposed into a (same measure) disjoint union of r.e open sets whose measures can be

lower semi-computed. By Theorem 2.2.2.3, m is computable.

The SRB measure of uniformly hyperbolic systems

Let us consider a connected C2 computable manifold M and a dynamical system (M,T )

where T is a C2 computable diffeomorphism on M. Let Q ⊂ M be a constructively open

forward invariant set (i.e. T (Q) ⊂ Q) and consider the (attracting) set

Λ = ∩
n≥0

Tn(Q).
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Suppose that Λ contains a dense orbit and that it is an hyperbolic set for T , which means

that the following conditions are satisfied: there is a splitting of the tangent bundle of M

on Λ: TΛM = EsΛ ⊕ EuΛ (at each point x of Λ the tangent space at x can be splitted in a

direct sum of two spaces, the stable directions and the unstable ones) and a λ0 < 1 such

that

• the splitting is compatible with T, that is: DTx(Esx) = EsT (x) and DT−1
x (Eux) =

EuT−1(x).

• The dynamics expand exponentially fast in the unstable directions and contracts ex-

ponentially fast in the stable directions in an uniform way, that is: for each x ∈ Λ and

for each v ∈ Esx and w ∈ Eux , |DTx(v)| ≤ |λ0v| and |DT−1
x (w)| ≤ |λ0w|.

Under these assumptions it is known that

Theorem 5.3.2.1. (see [Via97] e.g.)There is a unique invariant SRB measure µ supported

on Λ. Moreover the measure is ergodic and its basin has full Lebesgue measure on Q.

This measure has many good properties: it has exponential decay of correlations and it

is stable under perturbations of T (see [Via97] e.g.). Another good property of this measure

is that it is computable.

Theorem 5.3.2.2. If M and T are C2, computable and uniformly hyperbolic as above, then

the SRB measure µ is computable.

Proof. Let m be the Lebesgue measure on Q normalized by m(Q) = 1, clearly it is a

computable measure. From [Via97] (Prop. 4.9, Remark 4.2) follows that there is λ < 1

such that for each ν-Hölder (ν ∈ (0, 1]) continuous observable ψ, it holds

|
∫
X
ψ ◦ Tndm−

∫
ψdµ| ≤ λn cψ (5.2)

where cψ = C
∫
|ψ|dm+‖ψ‖ν , where C is independent from ψ. Then cψi can be computed for

each uniform sequence ψi ∈ H uniformly in i. Since
∫
X ψi ◦ T

ndm is computable uniformly

in n (by Corollary 2.2.2.1), equation 5.2 implies that this sequence converges effectively to∫
ψidµ, which is then computable. By theorem 2.2.2.3, µ is computable.

Corollary 5.3.2.1. In an unif. hyp. computable system (M,T ) equipped with its SRB

measure as above, the set of computable T-typical points is dense in the support of µ..
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Proof. µ is computable by the previous theorem, and the correlations decay is given by

proposition 4.9 in [Via97] from which follows that there is λ < 1 such that for each (gi, gj) ∈
H2 the relation

|
∫
X
gi ◦ Tngjdm−

∫
gidµ

∫
gjdµ| ≤ λn cgi,gj

holds, where cgi,gj = C(
∫
|gi|dm + ‖gi‖1)(

∫
|gj |dm + ‖gj‖1) (C is a constant independent

of gi ∈ F , ‖ ∗ ‖1 is the Lipschitz norm, since functions in H are Lipschitz) are computable

uniformly in i, j. Then the result follows from theorem 5.2.0.6 and remark 5.2.0.2.

5.3.3 Piecewise expanding maps

We introduce a class of discontinuous maps on the interval having an absolutely con-

tinuous SRB invariant measure. The density of this measure has also bounded variation.

We will show that this invariant measure is computable.

Let I be the unit interval. Let T : I → I we say that T is piecewise expanding if there

is a finite partition P = {I1, ..., Ik} of I, such that Ii are disjoint intervals and:

1. the restriction of T to each interval Ii can be extended to a C1 monotonic map defined

on Ii and the function h : I → R defined by h(x) = |DT (x)|−1 has bounded variation.

2. there are constants C > 0 and σ > 1 such that |DTn(x)| > Cσn for every n ≥ 1 and

every x ∈ I for which the derivative is defined.

3. For each interval J ⊂ I there is n ≥ 1 such that fn(J) = I.

We remark that by point 1), in each interval Ii the map is Lipschitz. A classical result

say that this kind of map has an absolutely continuous invariant measure (see [Via97],

chapter 3 e.g.).

Theorem 5.3.3.1. If T a piecewise expanding map as above, then it has a unique ergodic

absolutely continuous invariant measure µ. The basin of this SRB measure has full Lebesgue

measure. Moreover µ can be written as µ = φm where φ has bounded variation and m is

the Lebesgue measure.

Moreover as before, the SRB measure is also computable

Proposition 5.3.3.1. If T is a m-almost computable piecewise expanding map satisfying

points 1),...,3) above then its SRB measure is computable.
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Proof. Let us consider ψ ∈ H and
∫
X ψ ◦ T

ndm. Since T is m-almost computable, the

ends of the intervals I1, ..., Ik are computable, and so is (uniformly on n) for Tn. If T is

l-Lipschitz in each interval Ii then Tn is ln-Lipschitz in each of its continuity intervals and

the Lipschitz constant of ψ ◦ Tn on each continuity interval can be computed. Anyway,

the functions ψ ◦ Tn are almost computable and then by Proposition 2.2.2.1 the integrals∫
X ψ ◦ T

ndm are uniformly computable.

Now, from [Via97] proposition 3.8, remark 3.2 it holds that there are λ < 1, C > 0,

such that for each ψ ∈ L1

|
∫
X
ψ ◦ Tndm−

∫
ψdµ| ≤ C λn ||ψ||L1 .

Hence, as
∫
X ψ ◦ T

ndm is uniformly (in n) computable, so is
∫
ψdµ. By Thm 2.2.2.3,

µ is computable.

As Unif. Hyperbolic systems, also Piecewise Expanding maps can be shown to have

exponential decay of correlations on bounded variation observables (see [Via97] Remark

3.2) and BV norm of functions in H can be computed. Hence as in the previous section we

obtain,

Corollary 5.3.3.1. In an m-computable piecewise expanding system equipped with its SRB

measure, the set of computable typical points is dense in [0, 1].

5.3.4 Manneville-Pomeau type maps

We say that a map T : [0, 1]→ [0, 1] is a Manneville-Pomeau type map (MP map) with

exponent s if it satisfies the following conditions:

1. there is c ∈ (0, 1) such that, if I0 = [0, c] and I1 = (c, 1], then T
∣∣
(0,c)

and T
∣∣
(c,1)

extend to C1 diffeomorphisms, which is C2 for x > 0, T (I0) = [0, 1], T (I1) = (0, 1]

and T (0) = 0;

2. there is λ > 1 such that T ′ ≥ λ on I1, whereas T ′ > 1 on (0, c] and T ′(0) = 1;

3. the map T has the following behaviour when x→ 0+

T (x) = x+ rx1+s(1 + u(x))

for some constant r > 0 and s > 0 and u satisfies u(0) = 0 and u′(x) = O(xt−1) as

x→ 0+ for some t > 0.
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In [Iso03] (see also [Gou04]) it is proved that for 0 < s < 1 these systems have a

unique absolutely continuous invariant measure, whose density f is locally Lipschitz in a

neighborhood of each x > 0 (the density diverges at x = 0) the system has polynomial

decay of correlations for (1− s)-Hölder observables. Moreover we have that:

Theorem 5.3.4.1. If T is a computable MP map then its absolutely continuous invariant

measure µ is computable.

Proof. Let f be the density of µ. T is topologically conjugated to the doubling map x →
2x (mod 1) hence for each small interval I there is k > 0 such that T k(I) = [0, 1]. Since

f is locally Lipschitz, there is a small interval J on which f > δ1 > 0. Let n be such that

Tn(J) = [0, 1]. Let I be some small interval, then there exist J ′ ⊂ J such that Tn(J ′) = I.

Since T is λ-Lipschitz, we have m(J ′) ≥ m(I)
λn . By this, µ(J ′) ≥ δ1m(I)

λn and by the invariance

of µ, µ(I)
m(I) ≥

δ1
λn and then, as I is arbitrary, for each x ∈ [0, 1] we have f(x) > δ1

λn > 0. In

particular, 1
f is (1− s)-Hölder. Now we use the fact that the system has polynomial decay

of correlations for (1 − s)-Hölder observables. Let us consider φ ∈ H. Then we have that
1
f dµ = dm and

∫
1
f dµ = 1, hence, by the decay of correlation of this kind of maps

|
∫
φ ◦ Tndm−

∫
φdµ| = |

∫
φ ◦ Tn 1

f
dµ−

∫
φdµ

∫
1
f
dµ| ≤ C ||φ||1−s

∣∣∣∣∣∣∣∣ 1f
∣∣∣∣∣∣∣∣

1−s
ns−1.

The norm ||φ||1−s can be estimated for functions inH, and then, as in the previous examples

we have a way to calculate
∫
φdµ for each φ ∈ H and again by Thm 2.2.2.3, µ is computable.

Corollary 5.3.4.1. In a computable Manneville-Pomeau type system, the set of computable

typical points is dense in [0, 1].





Chapter 6

Some open questions and future

work

6.1 Computing invariant measures

Let (X,T ) be a dynamical system over the computable metric space X. Let M(X)

denote the set of Borel probability measures on X. The problem of computing the invariant

measures can be handled in a more general way. The dynamics T induces a dynamics

L : M(X) → M(X) called the Perron Frobenius operator. It is defined by duality in the

folloving way: if µ ∈ PM(X) then L(µ) is such that

∫
X
f dL(µ) =

∫
X
f ◦ T dµ

for each f ∈ C0
b (X).

Then, invariant measures can be found as solutions of the equation

W1(µ,L(µ)) = 0

where W1 denotes the Wasserstein distance. It is not hard to prove that under the

following conditions, then these solutions can be computed.

1. the operator L is computable,

2. the space M(X) is recursively compact,

3. the solutions of this equation are isolated.
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Condition 1 is easily satisfied when T is computable on the whole space X. If X itself

is recursively compact, then it can be shows that so is M(X). If T is not computable then

L is not necessarily computable. Still, by Corollary 2.2.2.4 and Proposition 2.2.2.1 we have

that L can be computed at all measures µ which are “far enough” from the discontinuity

set D. This is technically expressed by the condition µ(D) = 0. Hence, condition 1 and

2 can be replaced by “L is computable on some subset V ⊂ M(X) which is recursively

compact”. In order to find that V , one idea is to define a norm over probability measure

and search among the subsets of measures whose norm is less than a certain rang.

6.2 Computing metric entropy

The problem of computing the metric entropy can be handled using the computable met-

ric space of Borel sets. As the metric entropy of a computable partition is a computable real,

the existence of a computable generating partition implies the upper semi-computability of

the metric entropy. If moreover, this partition is effectively generating, then the metric

entropy can be computed. Are there such partitions?

6.3 More abstract random objects

Sometimes it is not easy to define what the uniform measure is. This is typically the

case when we consider infinite dimensional spaces (as functions spaces). Such a notion could

be obtained with the help of Kolmogorov complexity through the identification random-

incompressible. For example, the space of continuous functions over [0, 1] can be turned

into a computable metric space, and then the Kolmogorov complexity of this functions can

be defined. For instance, the fact that complex functions are nowhere derivable should not

be difficult to prove. It would be interesting to see what properties random dynamical

systems have.
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Appendix A

Background

A.1 Measure theory

We briefly present the Kolmogorov axiomatization of probability theory [Kol33].

Let X be a set. A family B of subsets of X is called an algebra if

X ∈ B,

A ∈ B ⇒ AC ∈ B,

A,B ∈ B ⇒ A ∪B ∈ B.

We say that B is a σ-algebra if moreover

Ai ∈ B, i ≥ 1⇒
⋃
i

Ai ∈ B.

If B0 is a family of subsets of X, the σ-algebra generated by B0 (denoted σ(B0)) is

defined to be the smallest σ-algebra over X that contains B0. A separable sigma algebra

is a sigma algebra that can be generated by a countable collection of sets.

We then call the pair (X,B) a measurable space. A finite measure on (X,B) is a

function µ : B → R+ satisfying µ(∅) = 0 and (additivity) µ(∪∞n=1Bn) =
∑∞

n=1 µ(Bn)

whenever {Bn}∞1 is a sequence of members of B which are pairwise disjoint subsets of X.

A finite measure space is a triple (X,B, µ) where (X,B) is a measurable space and µ is a

finite measure on (X,B).
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If X is a topological space, the Borel σ-algebra of X is defined as the σ-algebra

generated by the family of open sets of X. Sets in the Borel σ-algebra are called Borel sets.

If the topology on X has a countable basis, then the Borel σ-algebra is separable.

In this work, we shall usually only consider probability spaces, which are finite measure

spaces (X,B, µ) with µ(X) = 1 and where B is the Borel σ-algebra of X. A set A ⊂ X

has measure zero if there is a Borel set A1 such that A ⊂ A1 and µ(A1) = 0. We call two

sets A1, A2 ⊂ X equivalent modulo zero, and write A1 = A2 (mod 0) if the symmetric

difference A4B has measure zero. We say that the collection B0 of subsets of X generates

B (mod 0) if for every A ∈ B there is some B ∈ σ(B0) such that A = B(mod 0). We

shall use the following result, see [Mañ87]:

Theorem A.1.0.2. [Approximation theorem]If (X,A , µ) is a probability space, a sub-

algebra A0 generates A (mod 0) if and only if, for every A ∈ A and ε > 0, there exists

A0 ∈ A0 such that µ(A0 4A) ≤ ε.

We write A1 ⊂ A2 (mod 0) if A1 is a subset of A2 and A1 = A2 (mod 0).

Definition A.1.0.1. Let us say that a family of Borel sets E is essential, if for every open

set U there is a sequence (Ei)i ⊂ E such that ∪iEi ⊂ U (mod 0). y

A random variable is a measurable function f : X → R∗ which means that for each

interval I, the event which yields f to take values in I, namely f−1(I), is a measurable

event, i.e., is a member of B. For a random variable f , we denote by µf =
∫
fdµ its

expectation value. Let us recall the following classical results:

Theorem A.1.0.3. [Coupling Theorem [Str65]]Let µ and ν be two probability measures

over a complete separable metric space X with ρ(µ, ν) ≤ ε. Then there is a probability

measure P on the space X × X with marginals µ and ν such that for a pair of random

variables f, g having joint distribution P we have P [x : d(f(x), g(x)) > ε] ≤ ε.

Theorem A.1.0.4 (Monotone convergence theorem). Let (fn) be a sequence of real inte-

grable functions on X such that the sequence (fn(x)) is monotonically increasing for almost

every point and assume

sup
n

∫
X
fndµ <∞

Then the function f(x) := lim fn(x) is integrable, and∫
X
fdµ = lim

∫
X
fndµ.
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A.2 Ergodic Theory

We will say just a few words about the standard way to model both deterministic

and stochastic physical systems within the same framework, that of ergodic theory. For

an introduction see for example [Mañ87], [Wal82], [HK95], [HK02], [Pet83]. The set of all

possible states of the system will be denoted by X, which will be usually a metric space.

A point x ∈ X is supposed to give all possible information about the system; absolutely

perfect knowledge of, for example, the position and momentum of every particle constituting

the system. Since such perfect information is unattainable, one only assumes to be able to

know whether or not x is consistent which some observable event B subset of X, that is,

whether or not x ∈ B. To permit countable-infinite set-theoretic operations, one suppose

the collection of all observable events to form a σ-algebra B, over which a probability

measure µ is considered. A measurement on the system is modeled by a random variable

f : X → R.

Now we describe dynamics. Development in time is modeled by a measure preserving

transformation T : X → X. This is a function which preserves observability (T is measur-

able) and probability: µ(T−1(B)) = µ(B) (we also say that µ is an invariant probability

measure). The idea is that if the system is in a state x ∈ X at a given instant, then at next

instant it will be in state T (x). The invariance of µ under T reflects the fact that we are in

an equilibrium situation: probabilities of observable events do not change in time. A typical

picture is the following: an initial point is chosen according to Lebesgue measure (subject to

errors in measurement); the trajectory (or orbit) of this point O(x) = {x, T (x), T 2(x), . . .}
approaches an “attractor”, on which the limiting dynamics take place, and that can be

quite complicated; Lebesgue measure itself also evolves in time towards a limiting invariant

measure, supported on the attractor, describing at least in statistical terms the dynamics

of the equilibrium situation of the system being studied. Different initial condition may

lead in long term to quite different particular behaviors, but identical in a qualitative sens.

An invariant measure is called ergodic if for all B ∈ B such that T−1(B) = B, it holds

µ(B) = 0 or µ(Bc) = 0.

Ergodic theory is firstly concerned with understanding “essentially different” measure

preserving transformations, where two transformations are considered to be essentially the

same if they are isomorphic. The approaches to the isomorphism problem usually involves

searching for isomorphism invariant quantities, which are useful in distinguishing and clas-
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sifying transformations.

A.3 Kolmogorov Complexity

There are various ways in which the intuition behind the definition of Kolmogorov

complexity [Kol83] can be stated. Consider the following strings, supposed to be generated

by a random process like coin tossing:

x = 000000000000000000000000

y = 001011001011001011001011

z = 100100110110001110110100

Under the hypothesis of random generation, the perfect regularity of x make it appears

to us extremely extraordinary and possibly it wouldn’t be accepted as a random outcome.

A little less evident is the regularity of the second string y, which is also a periodic one.

The third string z seems to have no evident regularity, and it would be possibly accepted

as a random outcome. However, probability theory assigns the same probability P = 2−24

to all of them, and allows no distinction.

In [Gác], Peter Gács remarks,

“...this convinces us only that the axioms of Probability theory, as developed in
[Kolmogorov], do not solve all mysteries that they are sometimes supposed to”.

Pierre-Simon Laplace has pointed out the following reason why intuitively a regular

outcome of a random event is unlikely,

“We arrange in our thought all possible events in various classes; and we regard
as extraordinary those classes which include a very small number. In the games
of heads and tails, if head comes up a hundred times in a row this appears
to us extraordinary, because the almost infinite number of combinations that
can arise in a hundred throws are divided in regular sequences, or those in
which we observe a rule that is easy to grasp, and irregular sequences, that are
incomparably more numerous.” ([Lap52])

But, how to formalize such a distinction between regular and irregular sequences?

Laplace distinguishes also between the object itself and a cause of the object,
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“The regular combinations occur more rarely only because they are less numer-
ous. If we seek a cause wherever we perceive symmetry, it is not that we regard
the symmetrical event as less possible than the others, but, since this event
ought to be the effect of a regular cause or that of chance, the first of these
suppositions is more probable than the second.”([Lap52].)

Or, in Lévy’s words,

“Si donc en présence d’une suite remarquable nous excluons la première hy-
pothèse [of the random origin of the data] ce n’est pas que le hasard ait a priori
moins de chance de la produire qu’une autre; c’est qu’une autre cause que le
hasard a plus de chance de la produire.” [Lév25]

So, we can expect regular sequences to be produced by other causes but chance. Be

able to find such a cause, that is, to have a theory (or a model) explaining the regularities

of large data, means to be able to reproduce the data using this theory (this model). Thus,

we can use it to give a much shorter description of the data than the data itself. This

identification between regularity and compressibility is the central idea in the definition of

Kolmogorov Complexity as a minimal description length function.

Let X be a class of finite objects, and C a class of finite words (the codes). A minimal

description length function corresponds to a (surjective) decoding procedure f : C → X

such that for all other decoding procedures g : C → X and for all object x ∈ X , f satisfy

an optimality property of the form:

min
c∈C
{|c| : f(c) = x} ≤ min

c∈C
{|c| : g(c) = x}

If we let the class of decoding procedures to be the class of all functions from C to

X , then there is no such a minimal procedure; the natural restriction to make here is to

consider only algorithmic procedures.

One more thing, the decoding procedure should be able to separate different codes

which have been concatenated in a single word without other information that the concate-

nated string itself, or equivalently, codes must include information about their own lengths.

That is, decoding procedures must have prefix-free domains (see section 1.2). Such codes

are called self-delimiting codes. Since a given code is supposed to contain all necessary

information to reconstruct in an algorithmic way the coded finite object, the Kolmogorov

Complexity is also called Algorithmic Information Content. We prefer to use the latter,
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since as we will see later, random objects have very high information contents. But ran-

domness is the absence of any “structure” and “organization”, so, in a sense, random objects

should not be very complex.

Definition A.3.0.2. . A prefix free algorithm is a partial recursive function A :

{0, 1}∗ → {0, 1}∗ which has a prefix-free domain. A prefix free algorithm is called com-

putable iff ∑
w∈domA

2−|w|

is a computable real. Let A be the set of all prefix free algorithms. y

Definition A.3.0.3. Let A ∈ A be a prefix free algorithm. The Kolmogorov Complexity

(or Information Content) KA(w) of w ∈ {0, 1}∗ is defined to be

KA(w) =

 ∞ if there is no p such that A(p) = w

|p| if p is a shortest input such that A(p) = w

y

To have the promised minimality property, we need the existence of a universal prefix

algorithm.

Theorem A.3.0.5. A is recursively enumerable.

Proof. We construct an algorithm P which transforms any number e into a Gödelnumber

P (e) = eAP (e) for a prefix algorithm AP (e) and such that every prefix algorithm has at least

one Gödelnumber in the range of P . Given e, P generates the domain of the partial recursive

function with Gödelnumber e, φe. A partial recursive function AP (e) with Gödelnumber

P (e) is determined in the following way: AP (e)(q) equals φe(q) except for those q ∈ domφe
which are initial segments or prolongations of previously generated p ∈ domφe. For these

q, AP (e)(q) is undefined. By construction, AP (e) is a prefix algorithm and if φe is a prefix

algorithm then P (e) = e. Hence the set of prefix algorithms is recursively enumerable.

As a consequence, we have the existence of a universal prefix algorithm.

Theorem A.3.0.6. There exist a universal prefix free algorithm which is asymptotically

optimal, that is an U ∈ A such that ∀ A ∈ A ∃ cA ∈ N, which depends on A, such that ∀
p ∈ {0, 1}∗ ∃ q ∈ {0, 1}∗ which satisfy U(q) = A(p) and |q| = |p|+ cA.
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Proof. We define a universal prefix algorithm U as follows: on inputs of the form q = 0e
A

1p,

U simulates the action of the prefix algorithm A with Gödel-number eA on p. For this U , if

A is a prefix algorithm with Gödel-number eA and p ∈ {0, 1}∗ is an input, then q = 0e
A

1p

is such that U(q) = A(p) and |q| = |p|+ eA + 1.

We fix an asymptotically optimal universal prefix free algorithm U and we let K(w) =

KU (w). We can now state the invariance theorem, which gives the optimality property.

Theorem A.3.0.7. ∀A ∈ A, ∃ cA ∈ N such that ∀w ∈ {0, 1}∗ we have K(w) ≤ KA(w)+cA.

Proof. Let p∗ a shortest input such that A(p∗) = w, then q = 0e
A

1p∗ is such that U(q) = w

and then K(w) ≤ KA(w) + cA, where cA = eA + 1.

We have claimed that the central idea in the definition of Kolmogorov Complexity is the

identification between regularity and compressibility, so an irregular object (a random one)

should be incompressible, that is to say with a high Information Content. Consequently,

we have to look at sharp upper bounds and ask for a random object to have an information

content close to these bounds. Given a finite string w, it is not difficult to think in a self-

delimiting code which contains the word w itself and the information about its own length.

In fact, we have the following easy first upper bound.

Lemma A.3.0.1. For some constant c and all w: I(w) ≤ |w|+ I(|w|) + c

More generally we have the following:

Theorem A.3.0.8. Let µ be a computable measure on {0, 1}N. Then for some constant c

and all w: K(w) ≤ − logµ[w] +K(|w|) + c

We state now the promised relation between randomness and incompressibility for in-

finite sequence, expressed as the incompressibility of their initial segments.

Theorem A.3.0.9 (Schnorr, Levin). Let µ be a computable measure. Then ω is a Martin

Löf random sequence with respect to µ if and only if ∃m ∀n K(ω1:n) > − logµ[ω1:n]−m.

The minimal such m, defined by dµ(ω) := supn{− logµ[ω1:n]−K(ω1:n)} and called the

randomness deficiency of x w.r.t µ, in addition to be finite almost everywhere has also

a finite mean, that is
∫
dµ(ω)dµ ≤ 1. For a proof see [LV93].

For Schnorr random sequences, a characterization in terms of Kolmogorov complexity

is only available for the uniform measure. (At least at our knowledge).
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Theorem A.3.0.10 (Downey). An infinite sequence ω ∈ {0, 1}N is Schnorr random iff

for all computable prefix free algorithms C, there is a constant m such that, for all n

KC(ω1:n) ≥ n−m.



Appendix B

Some proofs

Proof of proposition 4.3.2.3. It follows from the following two lemmas.

Lemma B.0.0.2. Let V be a computable martingale for a computable measure µ over ΣN,

and f : N→ N an unbounded monotonic computable function. There is a Schnorr test (Yi)i

such that all elements of NV,f fail it.

Proof. For integer i ≥ 1 let

Yi = {x ∈ Σ∗ : V 2(x) > f(|x|) and V (x) > 2iV (Λ)}.

The sets Yi are uniformly recursively enumerable by the form of their definition. The

requirement V (x) > 2iV (Λ) and the martingale inequality (4.3.2.2) imply µ(Yi) ≤ 2−i, so

the sets Yi form a Martin-Löf test. It is also easy to see that ω ∈ NV,f implies ω ∈ YiΣN

for all i.

It remains to show that the value µ(Yi) is computable, uniformly in i. In order to

compute it to within 2−r, let n be such that f(n) > 22r, and let An = Yi \ ΣnΣ∗. Then we

have

Yi \An ⊆ {x ∈ Σ∗ : V (x) > 2r}

and by the martingale inequality µ(Yi) − µ(An) ≤ 2−r. Since the set An is finite, we can

compute µ(An) to arbitrary precision.

Lemma B.0.0.3. If (Yi)i is a Schnorr test for the uniform distribution λ over {0, 1}N, then

there is a computable martingale V (x) and an unbounded monotonic computable function

f with the property that the set of sequences failing the test is contained in NV,f .
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Proof. Let us show first some easy ways to create martingales for the uniform distribution.

First note that the positive linear combination of martingales is a martingale. The following

easy proposition allows to extend some partial functions to martingales.

Proposition B.0.0.1. For given integer n let V : {0, 1}n → R+ be some computable

function. We can extend it to be a martingale for the uniform distribution λ as follows. For

|x| ≥ n set V (x) = V (x[n]). For |x| < n set

V (x) = λ(x)−1
∑
y∈Σn

ywx

λ(y)V (y).

We have V (Λ) =
∑

y∈{0,1}n λ(y)V (y).

Given a Schnorr test (Yi)i it is easy to see that we can assume each set Yi to consist of

incompatible strings (to be “prefix-free”), and to be recursive (since only YiΣN matters, we

can arrange that at stage t of the enumeration of Yi we use only strings of length ≥ t). Let

B =
⋃
i Yi, then it is also easy to see that µ(B) is computable. Let Bn = B ∩ ΣnΣ∗, then

we can define an unbounded monotonic unbounded recursive function f(n) with µ(Bn) ≤
2−2f(n). With this we have ∑

x∈B
f(|x|)=m

λ(x)2f(|x|) ≤ 2−2m2m = 2−m,

∑
x∈B

λ(x)2f(|x|) ≤
∞∑
m=0

2−m = 2.

Also, the sum
∑

x∈B λ(x)2f(|x|) is computable, and we can define a monotonic unbounded

recursive function g(n) with ∑
x∈B∩Σg(n)Σ∗

λ(x)2f(|x|) ≤ 2−n. (B.1)

With a new test Y n = B ∩ Σg(n)Σ∗, it can be verified that the sequences failing the test

(Yi)i are the same as those failing (Y n)n.

For nonnegative integers i, n, let us define the function Vi,n : {0, 1}n → R+ by Vi,n(x) =

2f(n)1Y i(x), and define from it a martingale using the construction of Proposition B.0.0.1.

Then we have

Vi,n(Λ) =
∑

x∈{0,1}n∩Y i

λ(x)2f(|x|).
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Let us define the martingale Vi(x) =
∑

n Vi,n(x). Because of the fast convergence it is

easy to see that Vi(x) is computable, and (B.1) implies Vi(Λ) ≤ 2−i. Finally we define the

martingale V (x) =
∑

i≥1 Vi(x). It is again computable because of the fast convergence,

with V (Λ) ≤
∑

i≥1 2−i ≤ 1. Since x ∈ Y i implies V (x) ≥ f(|x|), if ω fails the test (Y i)i

then it is in NV,f .

This completes the proof of proposition 4.3.2.3.
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