Varieties of Group Knowledge

Jeremy Seligman
Philosophy Department, The University of Auckland

Thursday December 12, 2013

2013 AAP New Zealand Conference
 (Annual New Zealand Philosophy Conference for 2013)

Auckland

Varieties of Group Knowledge

While the concepts of common knowledge (we know it and we all know that we all know it) and distributed knowledge (were we to talk to each other, we would know it) are well-known to epistemologists and epistemic logicians, both ignore the role played by social relationships within our community. I will consider the effect of such relationships in structuring both the content and mode of access that we have to group knowledge, and show that consideration of this structure reveal many distinctions in the way in which knowledge can be shared, and how we reason about this.

In a nutshell. . .

My friends know they are my friends.

Outline

(1) Reasoning about what a group knows
(2) Reasoning from within a group
(3) Reasoning about social relations
(4) Social Cognitive Logic

Based on joint work with

\star Liu Fenrong (Tsinghua) \star Patrick Girard (Auckland) \star Liang Zhen (SWU/Auckland) ^

Outline

(1) Reasoning about what a group knows
(2) Reasoning from within a group
(3) Reasoning about social relations
(4) Social Cognitive Logic

Group knowledge

Group knowledge

Bella's friends know that she is a spy.

Group knowledge

Bella's friends know that she is a spy.
Bella's only friends are Andre and Charlie, neither of whom are friends with each other.

Group knowledge

Bella's friends know that she is a spy.
Bella's only friends are Andre and Charlie, neither of whom are friends with each other.

Who knows what?

Independent access

Andre, when alone with Bella, sees her secretly sliding a knife into her boot. Charlie, jealously rifling though Bella's handbag find three passports in different names all with Bella's photograph.

Joint acquisition

Bella has a rendezvous with Erik, a known enemy agent, in a location she supposes to be secret. Unknown to her, Andre and Charlie have been following her and observe her with Erik. They also see each other.

Collusion

Andre discovers a code pad engraved into a tube of Avon lipstick, discarded in his bathroom. It could only have been left by Bella or Danielle. Charlie knows that Danielle never wears Avon.

Three kinds of group knowledge

General/Mutual knowledge: Andre and Charlie both knows that Bella is a spy

$$
E_{a, c} s(b)
$$

Three kinds of group knowledge

General/Mutual knowledge: Andre and Charlie both knows that Bella is a spy

$$
E_{a, c} s(b)
$$

Common knowledge: Andre and Charlie both know that Bella is a spy. In addition, each knows that the other knows, and each knows that the other knows he knows, etc.

$$
C_{a, c} s(b)
$$

Three kinds of group knowledge

General/Mutual knowledge: Andre and Charlie both knows that Bella is a spy

$$
E_{a, c} s(b)
$$

Common knowledge: Andre and Charlie both know that Bella is a spy. In addition, each knows that the other knows, and each knows that the other knows he knows, etc.

$$
C_{a, c} s(b)
$$

Distributed knowledge: Andre and Charlie would know that Bella is a spy if they shared their information about her.

$$
D_{a, c} s(b)
$$

Three kinds of group knowledge

General/Mutual knowledge: Andre and Charlie both knows that Bella is a spy

$$
E_{a, c} s(b)
$$

Common knowledge: Andre and Charlie both know that Bella is a spy. In addition, each knows that the other knows, and each knows that the other knows he knows, etc.

$$
C_{a, c} s(b)
$$

Distributed knowledge: Andre and Charlie would know that Bella is a spy if they shared their information about her.

$$
D_{a, c} s(b)
$$

c.f. Halpern and Moses,1990

Some Principles of Epistemic Logic

$$
\begin{array}{ll}
K p \supset p & \text { knowledge implies } \\
K(p \supset q) \supset(K p \supset K q) & \text { epistemic closure } \\
K p \supset K K p & \text { positive introspect } \\
\sim K p \supset K \sim K p & \text { negative introspec } \\
C_{G} p \equiv E_{G}\left(p \& C_{G} p\right) & \text { fixed point } \\
D_{G} \supset D_{H} \text { if } H \subseteq G & \text { inclusion }
\end{array}
$$

Induction rule: from $\varphi \supset E_{G}(\varphi \& \psi) \operatorname{infer} \varphi \supset C_{G} q \psi$

Outline

(1) Reasoning about what a group knows
(2) Reasoning from within a group
(3) Reasoning about social relations
(4) Social Cognitive Logic

Subject-indexical propositions

$$
s \quad \text { I am a spy }
$$

Subject-indexical propositions

$$
s \quad \text { I am a spy }
$$

s is true of Bella but is false of Danielle.

Subject-indexical propositions

$$
s \quad \text { I am a spy }
$$

s is true of Bella but is false of Danielle.
From Bella's perspective, s is true.
From Danielle's perspective, s is false.

Shifting perspectives

Shifting perspectives

$\mathfrak{@}_{b} s$ is true of Andre, who is not a spy, because Bella is a spy.

Shifting perspectives

$\mathfrak{@}_{b} s$ is true of Andre, who is not a spy, because Bella is a spy.
From Andre's perspective, $\sim s \& @_{b} s$ is true.

Shifting perspectives about knowledge

$@_{b} K s \quad$ Bella knows that she is a spy

Shifting perspectives about knowledge

$@_{b} K s \quad$ Bella knows that she is a spy
$@_{a} \sim K @_{b} s$ Andre does not know that Bella is a spy.

The Essential Indexical

Bella suffers a traumatic injury, loses her memory and undergoes extensive reconstructive surgery. While recovering she read the detailed file on secret agent Isabella "Bella" Donna. She knows that the beautiful and deadly Bella is a spy but she does not know that she is Bella.

The Essential Indexical

Bella suffers a traumatic injury, loses her memory and undergoes extensive reconstructive surgery. While recovering she read the detailed file on secret agent Isabella "Bella" Donna. She knows that the beautiful and deadly Bella is a spy but she does not know that she is Bella.

$$
\sim K s \& K @_{b} s
$$

The Essential Indexical

Bella suffers a traumatic injury, loses her memory and undergoes extensive reconstructive surgery. While recovering she read the detailed file on secret agent Isabella "Bella" Donna. She knows that the beautiful and deadly Bella is a spy but she does not know that she is Bella.

$$
\sim K s \& K @_{b} s
$$

Also $\sim K b$.

Group knowledge revisited

Andre and Charlie know that Bella is a spy.

$$
\begin{array}{ll}
\text { General knowledge } & @_{a} K @_{b} s \& @_{c} K @_{b} s \\
\text { Common knowledge } & C_{a, c} @_{b} s \\
\text { Distributed knowledge } & D_{a, c} @_{b} s
\end{array}
$$

Andre and Charlie know that they are not spies.

$$
\begin{array}{ll}
\text { General knowledge } & @_{a} K s \& @_{c} K s \\
\text { Common knowledge } & C_{a, c} s ? \\
\text { Distributed knowledge } & D_{a, c} s ?
\end{array}
$$

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

$$
@_{a} K \sim s \& \quad @_{c} K \sim s
$$

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

$$
\begin{aligned}
& @_{a} K \sim S \& \quad @_{c} K \sim s \& \\
& @_{a} K @_{c} K \sim s ~ \& ~ @ ~
\end{aligned}{ }_{c} K @_{a} K \sim s
$$

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

$$
\begin{aligned}
& @_{a} K \sim s ~ \& ~ @ \\
& { }_{c} K \sim S ~ \& ~ \\
& @_{a} K @_{c} K \sim s ~ \& ~ @_{c} K @_{a} K \sim s ~ \& ~ \\
& @_{a} K @_{c} K @_{a} K \sim s ~ \& ~ . . .
\end{aligned}
$$

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

$$
\begin{aligned}
& @_{a} K \sim s ~ \& ~ @ \\
& { }_{c} K \sim s ~ \& ~ \\
& @_{a} K @_{c} K \sim s ~ \& ~ @_{c} K @_{a} K \sim s ~ \& ~ \\
& @_{a} K @_{c} K @_{a} K \sim s ~ \& ~ . . .
\end{aligned}
$$

Equivalent to $C_{a, c}\left(@_{a} \sim s \& @_{c} \sim s\right)$

Common and distributed knowledge of indexical propositions

Andre and Charlie know that they are not spies.

$$
\begin{aligned}
& @_{a} K \sim s \& @_{c} K \sim s \& \\
& @_{a} K @_{c} K \sim s \& @_{c} K @_{a} K \sim s ~ \& ~ \\
& @_{a} K @_{c} K @_{a} K \sim s ~ \& . .
\end{aligned}
$$

Equivalent to $C_{a, c}\left(@_{a} \sim s \& @_{c} \sim s\right)$
Similarly $D_{a, c}\left(@_{a} \sim s \& @_{c} \sim s\right)$

Self-identification

Bella knows that Andre does not know she is a spy.

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?

$$
K @_{a} \sim K s
$$

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
I know that Andre does not know that he is a spy.

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
I know that Andre does not know that he is a spy.
$K @_{a} \sim K @_{b} s$

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
$K @_{a} \sim K @_{b} s$

I know that Andre does not know that he is a spy.

I know that Andre does not know that Bella is a spy.

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
$K @_{a} \sim K @_{b} s$
I know that Andre does not know that he is a spy.

I know that Andre does not know that Bella is a spy.
$\downarrow \times K @_{a} \sim @_{x} K s$

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
$K @_{a} \sim K @_{b} s$
$\downarrow \times K @_{a} \sim @_{x} K s$

I know that Andre does not know that he is a spy.

I know that Andre does not know that Bella is a spy.

I know that Andre does not know that I am a spy.

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
$K @_{a} \sim K @_{b} s$
$\downarrow x K @_{a} \sim @_{x} K s$
$@_{b} \downarrow \times K @_{a \sim} @_{x} K s$

$$
@_{b} \downarrow \times K @_{a} \sim @_{x} K s
$$

I know that Andre does not know that he is a spy.

I know that Andre does not know that Bella is a spy.

I know that Andre does not know that I am a spy.

Self-identification

Bella knows that Andre does not know she is a spy.
What does Bella know (from her perspective)?
$K @_{a} \sim K s$
$K @_{a} \sim K @_{b} s$
I know that Andre does not know that he is a spy.

I know that Andre does not know that Bella is a spy.
$\downarrow \times K @_{a} \sim @_{x} K s \quad$ I know that Andre does not know that I am a spy.
$@_{b} \downarrow x K @_{a} \sim @_{x} K s \quad$ Bella knows that Andre does not know that she is a spy.

Some Principles of Subject-Indexical Logic

$$
\begin{array}{ll}
@_{n}(p \supset q) \supset\left(@_{n} p \supset @_{n} q\right) & \text { perspective closure } \\
@_{n} K p \equiv @_{n} K @_{n} p & \text { transparency } \\
@_{n} p \supset \sim @_{n} \sim p & \text { self-dual } \\
n \supset\left(p \equiv @_{n} p\right) & \text { intro } \\
@_{n} n & \text { ref } \\
@_{n} @_{m} p \equiv @_{m} p & \text { agree }
\end{array}
$$

Name: if n is not in φ then from $@_{n} \varphi$ infer φ

Outline

(1) Reasoning about what a group knows
(2) Reasoning from within a group
(3) Reasoning about social relations
(4) Social Cognitive Logic

Knowing who your friends are

Charlie is my friend.

Knowing who your friends are

Charlie is my friend.
$\langle F\rangle c$

Knowing who your friends are

Charlie is my friend. $\langle F\rangle c$
I don't know whether Erik is my friend.

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend. None of my friends is a spy.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend. None of my friends is a spy.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle_{S}$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
None of my friends is a spy.
I know that none my friends is a spy.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
None of my friends is a spy.
I know that none my friends is a spy.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$

Each of my friends knows $s /$ he is not a spy.

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend. None of my friends is a spy.
I know that none my friends is a spy.
Each of my friends knows $s /$ he is not a spy. $F K \sim s$ I am a friend of all my friends.
$\langle F\rangle c$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend. None of my friends is a spy.
I know that none my friends is a spy.
Each of my friends knows $s /$ he is not a spy. I am a friend of all my friends.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$
$F K \sim s$
$\downarrow n F\langle F\rangle n$

Each of my friends knows I'm a friend.

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
None of my friends is a spy.
I know that none my friends is a spy.
Each of my friends knows $s /$ he is not a spy. I am a friend of all my friends.
Each of my friends knows I'm a friend. I know I'm a friend of each of my friends.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$
$F K \sim s$
$\downarrow n F\langle F\rangle n$
$\downarrow n F K\langle F\rangle n$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
None of my friends is a spy.
I know that none my friends is a spy.
Each of my friends knows s/he is not a spy. I am a friend of all my friends.
Each of my friends knows I'm a friend.
I know I'm a friend of each of my friends.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$
$F K \sim s$
$\downarrow n F\langle F\rangle n$
$\downarrow n F K\langle F\rangle n$
$\downarrow n K F\langle F\rangle n$

Knowing who your friends are

Charlie is my friend.
I don't know whether Erik is my friend.
None of my friends is a spy.
I know that none my friends is a spy.
Each of my friends knows s/he is not a spy. I am a friend of all my friends.
Each of my friends knows I'm a friend.
I know I'm a friend of each of my friends.
$\langle F\rangle c$
$\sim(K\langle F\rangle e \vee K \sim\langle F\rangle e)$
$\sim\langle F\rangle s$
$K \sim\langle F\rangle s$
$F K \sim S$
$\downarrow n F\langle F\rangle n$
$\downarrow n F K\langle F\rangle n$
$\downarrow n K F\langle F\rangle n$
$\downarrow n F \downarrow m @_{n} K @_{m}\langle F\rangle n$

Indexical groups

Bella's friends $@_{n} @_{b}\langle F\rangle n$
 Those of whom Bella is a friend $\langle F\rangle b$

(Assume symmetry of friendship for the moment.)

Knowledge among friends

My friends know I am spy.

$$
\begin{array}{ll}
\text { General knowledge } & \downarrow n F K @_{n} s \\
\text { Common knowledge } & \downarrow n C_{\langle F\rangle n} @_{n} s \text { ? } \\
\text { Distributed knowledge } & \downarrow n D_{\langle F\rangle n} @_{n} s ?
\end{array}
$$

Common non-indexical knowledge among friends

My friends know I am spy.
It is common knowledge among my friends that I am spy.

Common non-indexical knowledge among friends

My friends know I am spy.
It is common knowledge among my friends that I am spy.
Andre is my friend, so Andre knows I am a spy.
Charlie is my friend, so Charlie knows I am a spy.

Common non-indexical knowledge among friends

My friends know I am spy.
It is common knowledge among my friends that I am spy.
Andre is my friend, so Andre knows I am a spy.
Charlie is my friend, so Charlie knows I am a spy.

$$
@_{n} F K @_{n} s
$$

So Andre knows Charlie knows I am a spy.
And Charlie knows Andre knows I am a spy.

Common non-indexical knowledge among friends

My friends know I am spy.
It is common knowledge among my friends that I am spy.
Andre is my friend, so Andre knows I am a spy.
Charlie is my friend, so Charlie knows I am a spy.

$$
@_{n} F K @_{n} s
$$

So Andre knows Charlie knows I am a spy.
And Charlie knows Andre knows I am a spy.

$$
@_{n} F K F K @_{n} s
$$

Common non-indexical knowledge among friends

My friends know I am spy.
It is common knowledge among my friends that I am spy.
Andre is my friend, so Andre knows I am a spy.
Charlie is my friend, so Charlie knows I am a spy.

$$
@_{n} F K @_{n} s
$$

So Andre knows Charlie knows I am a spy.
And Charlie knows Andre knows I am a spy.

$$
@_{n} F K F K @_{n} s
$$

But even if my only friends are Andre and Charlie, this leads to a notion of common knowledge that is not equivalent to $@_{n} C_{\langle F\rangle n} @_{n} s$ unless it is also common knowledge that my only friends are Andre and Charlie.

Indexical knowledge among friends

My friends know they are my friends.

General knowledge $\quad \downarrow n F K\langle F\rangle n$
Common knowledge $\quad \downarrow n C_{\langle F\rangle n}\langle F\rangle n$?
Distributed knowledge $\downarrow n D_{\langle F\rangle n}\langle F\rangle n$?

Distributed indexical knowledge among friends

My friends know they are my friends.
It is distributed knowledge among my friends that I am their friend.

Distributed indexical knowledge among friends

My friends know they are my friends.
It is distributed knowledge among my friends that I am their friend.
By communicating, each of my friends can infer that $s / h e$ is my friend.
But this can be done with or without each friend knowing that each friend knows that s / he is my friend.

Outline

(1) Reasoning about what a group knows
(2) Reasoning from within a group
(3) Reasoning about social relations
(4) Social Cognitive Logic

Two Dimensional Framework

Agents A and states W

Two Dimensional Framework

belief
knowledge preference

Agents A and states W

Cognitive structure $\quad F_{a}=\left\langle W, R_{a}\right\rangle$ for each $a \in A$

Two Dimensional Framework

friendship
trust
authority

Agents A and states W

Cognitive structure $\quad F_{a}=\left\langle W, R_{a}\right\rangle$ for each $a \in A$ Social structure $\quad G_{w}=\left\langle A, S_{w}\right\rangle$ for each $w \in W$
E.g. Epistemic Logic of Friendship: $R_{a}=\left\{\approx_{a}\right\}$ and $S_{a}=\left\{\sim_{a}\right\}$

Epistemic Logic of Friendship

$$
\rho|\eta| \sim \varphi|(\varphi \& \varphi)| K \varphi|F \varphi| A \varphi|\downarrow \eta \varphi| C_{\varphi} \psi \mid D_{\varphi} \psi
$$

$$
@_{\eta} \varphi=A(\eta \supset \varphi)
$$

Further questions

- distributive knowledge as potential knowledge of a group
- communication via social relations

Some References I

E
Philippe Balbiani and Dimiter Vakarelov.
PDL with intersection of programs: a complete axiomatization.
Journal of Applied Non-Classical Logics, 13(3-4):231-276, January 2003.
R
R Fagin, J.Y Halpern, Y Moses, and M.Y Vardi.
Reasoning about Knowledge.
The MIT Press, 1995.
Jeremy Seligman, Fenrong Liu, and Patrick Girard.
Logic in the community.
In Mohua Banerjee and Anil Seth, editors, ICLA, volume 6521 of Lecture Notes in Computer Science, pages 178-188, 2011.

Jeremy Seligman, Fenrong Liu, and Patrick Girard.
Facebook and the epistemic logic of friendship.
CoRR, abs/1310.6440, 2013.

Yî N Wáng and Thomas Ågotnes.
Public announcement logic with distributed knowledge: expressivity, completeness and complexity.
Synthese, January 2013.

