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Abstract

In this paper we provide a computational method for evaluating in a
uniform way the complexity of a large class of mathematical problems. The
method is illustrated on a variety of examples coming from different areas
of mathematics and its power and limits are studied.

1 Introduction

Evaluating (or even guessing) the degree of difficulty of an open problem (or of
a solved problem but before seeing its solution) is notoriously hard not only for
beginners, but also for the most experienced mathematicians.

Can one develop a (uniform) method to evaluate, in some objective way,
the difficulty of a mathematical problem? The question is not trivial because
mathematical problems can be so diverse—the Mathematics Subject Classifica-
tion (MSC2000), based on two databases, Mathematical Reviews and Zentralblatt
MATH, contains over 5,000 two-, three-, and five-digit classifications, cf. [32]—and
there is no clear indication that all, or most, or even a large part of mathematical
problems have a kind of “commonality” allowing a uniform evaluation of their
complexity. How could one compare a problem in number theory with a problem
in complex analysis or a problem in algebraic topology?

∗This work was supported in part by The Andrea von Braun Foundation, Munich, under the
grant for “Artistic Forms and Complexity”.



Surprisingly enough, such a “commonality” exists for many mathematical prob-
lems and one of them (which will be discussed in this paper) is based on the pos-
sibility of expressing the problem in terms of a (natural) question in theoretical
computer science, the so-called halting problem [7]. As a consequence, a uniform
approach for evaluating the complexity of a large class of mathematical problems
can be (and was) developed.

The paper is structured as follows. In the next section a series of interest-
ing mathematical problems will be presented and analysed in order to find their
“commonality”: the infinity of primes, Goldbach’s conjecture and other problems
in number theory, the pigeonhole principle, Hilbert’s tenth problem, the four colour
theorem, Riemann hypothesis, Collatz and palindrome conjectures. We will show
that all these problems are closely related to the halting problem. The third sec-
tion discusses the most (in)famous problem in theoretical computer science, the
halting problem. Section 4 presents the method for evaluating the complexity.
Section 5 gives an example of a class of problems to which the proposed method
applies, namely the class of finitely refutable problems, and section 6 examines
the power and limits of the proposed method. We finish the paper with a few
concluding remarks.

2 Some interesting mathematical problems:

what do they have in common?

In this section we discuss some interesting, solved or open, mathematical problems
searching for their possible “common computational structure”.

2.1 The infinity of primes

Euclid is credited with the first proof that the set of primes is infinite: there
is no largest prime as much as there is no largest natural number. The typical
argument—a reasoning by absurdity—runs as follows. Let us suppose that the set
of primes is finite, say {p1, p2, p3, . . . , pn}. Construct the number q = p1p2p3 · · · pn+
1. If q is a prime, then we have a new prime as q > pi for all 1 ≤ i ≤ n. If q is
not a prime, then (by the prime factoring theorem) it must be divisible by a prime
r < q. But r cannot be any pi in our original exhaustive list of primes because
dividing q by pi produces the remainder 1. As a consequence, r is a new prime as
well. In both cases we have found a prime not in the original list, a contradiction.
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Wittgenstein1 criticised Euclid’s proof on its “totality” nature because:2

In mathematics we must always be dealing with systems, and not with
totalities.

Instead of a proof of the existence of an infinity of primes based on deduction
from certain formal or informal assumptions, Wittgenstein called for the construc-
tion of “a formal expression that proves the infinity of primes by its syntactical
features.”

Such a proof can be easily obtained by rephrasing Euclid’s argument in terms
of a formal or informal (computer) program Πprimes which generates the sequence
of primes in increasing order: the infinity of primes is equivalent with the property
of Πprimes to continue indefinitely (never stop).3

2.2 Goldbach’s conjecture and other problems in number
theory

Goldbach’s conjecture, which is part of Hilbert’s eighth problem [16], states that

all positive even integers greater than two can be expressed as the sum
of two primes.

The conjecture was tested up to 1018, cf. [23].
Applying the same idea as for the infinity of primes one can write a (computer)

program ΠGoldbach which just enumerates all positive even integers greater than two
and for each of them checks the required property; the program ΠGoldbach stops
if and only if it finds a counter-example for Goldbach’s conjecture. Re-phrased:
ΠGoldbach never stops if and only if Goldbach’s conjecture is true.

The same approach works for many problems in number theory, in particular
for Fermat’s last theorem: the program ΠFermat systematically generates all 4-
tuples of positive integers greater than 3, (n, x, y, z), and stops when it finds the
first 4-tuple for which xn + yn = zn.

Can the same method be applied to the conjecture that

there are infinitely many Mersenne4 primes?

1Who advocated a form of anti-platonism by rejecting the interpretation of mathematical
propositions in terms of propositions which are capable of being true or false in correspondence
to reality, cf. [20].

2Cited from [20], p. 64.
3Although we do not subscribe to Wittgenstein’s philosophy of mathematics we acknowledge

the importance of his preference for process vs. function.
4Mersenne numbers are numbers of the form 2n − 1. Currently only 46 Mersenne primes are

known and the largest is 243112609−1. The conjecture is believed to be true because the harmonic
series diverges.
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Or to the twin prime conjecture5

there are infinitely many primes p such that p+ 2 is also prime?

It is clear that Goldbach’s conjecture and Fermat’s last theorem are statements
of the form (∀n)P (n), where P is a computable predicate. The last two conjectures
have a more complicated structure, i.e. they can be written in the form (∀N) (∃n >
N)P ′(n), where P ′ is a computable predicate. A program generating more and
more natural numbers satisfying the twin prime conjecture may not stop either
because there are infinitely many pairs of primes p, p+ 2 or because there are only
finitely many primes p such that p+ 2 is also prime!

So, directly, the last two conjectures cannot be represented by the halting prop-
erty of an associated program. It is an open question whether the last conjectures
can be represented in the form (∀n)P (n), where P is a computable predicate.
Still, can they be described in terms of the halting status of some program? A
positive answer will be given in section 6.

2.3 The pigeonhole principle

The statement

if n > m pigeons are put into m pigeonholes, there’s a hole with more
than one pigeon

is called the pigeonhole principle or the Dirichlet principle.
A more formal statement is the following:

every function from a set of n elements into a set with m < n elements
is not injective.

A program Πpigeonholeprinciple which for all n generates all functions from {1, 2, . . . , n}
into {1, 2, . . . ,m}, for all m < n, and for each of them checks whether the function
is injective will either find an injective function and stop, or will continue for ever.
The validity of the pigeonhole principle is equivalent to the fact that the program
Πpigeonholeprinciple never stops.

2.4 Hilbert’s tenth problem

Solving algebraic equations using integer (or rational) constants in the domain
of (positive) integers is an old mathematical activity. Some of these equations
do not have solutions at all; others have finitely many solutions or infinitely many

5Believed to be true because of the probabilistic distribution of primes.
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solutions. The equation 2x−2y = 1 has no integer solutions, the equation 5x = 10
has a unique integer solution while the equation 7x− 17y = 1 has infinitely many
integer solutions.

A Diophantine equation6 is an equation of the form P = 0 where P is a
polynomial with integer coefficients. Fermat’s equations xn + yn = zn for n =
1, 2, . . . are all Diophantine. To solve a given Diophantine equation P = 0 one
has to determine whether the equation has solutions in the domain of (positive)
integers, and, if it has, to find all of them.

The original formulation of Hilbert’s tenth problem is:7

10. Determining the solvability of a Diophantine equation. Given a
Diophantine equation with any number of unknowns and with rational
integer coefficients: devise a process, which could determine by a fi-
nite number of operations whether the equation is solvable in rational
integers.

Consider a parametric Diophantine equation

P (a1, a2, . . . , an, x1, x2, . . . , xm+1) = 0, (1)

where a1, a2, . . . , an are parameters and x1, x2, . . . , xm+1 are unknowns. Fixing
values for parameters results in a particular Diophantine equation. For example,
in the parametric Diophantine equation (a1−a2)

2−x1−1 = 0 the parameters are
a1, a2 and x1 is the only unknown. If we put a1 = 1, a2 = 0 we get the Diophantine
equation x1 = 0; if we take a1 = a2 = 0 we get the Diophantine equation x1+1 = 0.

Given a parametric Diophantine equation (1) one can construct a program ΠP

which, beginning with the input a1, a2, . . . , an, will eventually halt if and only if
the equation (1) has a solution in the unknowns x1, x2, . . . , xm+1. The program ΠP

systematically generates all vectors with m + 1 integers (i1, i2, . . . , im+1), checks
for each of them whether P (a1, a2, . . . , an, i1, i2, . . . , im+1) = 0 and stops when the
first solution is found.

Can we make the program ΠP “independent” of P in the sense that P ap-
pears as an input of the program? The answer is affirmative: one can construct
a program ΠH10P which, given an arbitrary Diophantine equation (without pa-
rameters, i.e. n = 0) P = 0, eventually stops if and only if the equation P = 0
has a solution. Can we decide in a finite amount of time whether the program
ΠH10P eventually halts? The answer is negative as it is well-known, cf. [21].
The core argument is based on the fact that every computably enumerable set
of natural numbers can be represented in the form {n : P (n, x1, x2, . . . , xm) =
0 has a solution in the non-negative integers unknown x1, x2, . . . , xm}, cf. [12].

6Named after Diophantus of Alexandria (III century AD).
7For the original statement in German see [33].
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It is interesting to note that the counterpart of Hilbert’s tenth problem for real
unknowns, that is, given an equation of the form P (x1, x2, . . . , xm) = 0 where P is
a polynomial with integer coefficients (like in the classical case) but x1, x2, . . . , xm
are real unknowns, is decidable: there is a program which decides in a finite amount
of time whether the equation has a solution in the domain of reals. Indeed, the
decision problem is solved by Sturm method [30] for m = 1; Tarski’s method
[29] works for any number of unknowns.8 Of course, no program can in general
compute exactly some solutions, even if their number is known, because solutions
can be irrational.9 This leads us to following problem for standard Diophantine
equations.

Fix a Diophantine equation

D(n, x1, x2, . . . , xm) = 0, (2)

and then consider the following two questions:

• for a fixed n = n0, does the equation D(n0, x1, x2, . . . , xm) = 0 have a solu-
tion?

• for a fixed n = n0, does the equation D(n0, x1, x2, . . . , xm) = 0 have an
infinity of solutions?

Both questions are undecidable for some equations (2). For each equation (2)
the information contained in the sequence of k answers to the yes/no questions
“does the equation D(n0, x1, x2, . . . , xm) = 0 have a solution, for n = 1, 2, . . . , k?”
contains only log k bits of information (knowing how many equations have solutions
is enough to determine exactly which equations have solutions). This information
can be substantially compressed. However, for some equations (2) the information
contained in the sequence of k answers to the yes/no questions “does the equation
D(n0, x1, x2, . . . , xm) = 0 have infinitely many solution, for n = 1, 2, . . . , k?” con-
tains about k bits of information, i.e. this information cannot be algorithmically
compressed. See more in [6].

2.5 The four colour theorem

The four colour theorem—first conjectured in 1853 by Francis Guthrie—states
that every plane separated into regions may be coloured using no more than four
colours in such a way that no two adjacent regions receive the same colour. Two
regions are called adjacent if they share a border segment, not just a point; regions
must be contiguous, i.e. the plan has no exclaves.

8This shows that extrapolating computational facts from positive integers to reals is not
always possible.

9However, solutions can be effectively approximated up to any precision.
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In graph-theoretical terms, the four colour theorem states that the vertices
of every planar graph can be coloured with at most four colours so that no two
adjacent vertices receive the same colour. Shortly, every planar graph is four-
colourable.

The theorem was proved in 1977 [1, 2] (see also [31]) using a computer-assisted
proof which consists in constructing a finite set of “configurations”, and then prove
that each of them is “reducible”—which implies that no configuration with this
property can appear in a minimal counterexample to the theorem. Checking the
correctness of the original proof is a very difficult task: it implies, among other
things, checking the inputting of the descriptions of 1476 graphs, checking the cor-
rectness of the programs, proving the correctness of the compiler used to compile
the programs, checking the degree of reliability of the hardware used to ran the
programs.10 Various partial independent verifications have been obtained11 culmi-
nating with the formal confirmation announced in [28] which uses the equational
logic program Coq.12 The following part of the concluding discussion in [28] is
relevant for the current status of the proof:

However, an argument can be made that our ‘proof’ is not a proof
in the traditional sense, because it contains steps that can never be
verified by humans. In particular, we have not proved the correctness
of the compiler we compiled our programs on, nor have we proved the
infallibility of the hardware we ran our programs on. These have to
be taken on faith, and are conceivably a source of error. . . . Apart
from this hypothetical possibility of a computer consistently giving an
incorrect answer, the rest of our proof can be verified in the same way as
traditional mathematical proofs. We concede, however, that verifying a
computer program is much more difficult than checking a mathematical
proof of the same length.13

A program Πfourcolourtheorem which systematically generates all planar graphs
and checks for each of them whether it is colourable with four colours and stops
when the first counter-example is found will never halt if and only if the theorem
is true. However, this program will be quite long because testing the planarity of
a graph is difficult. A better solution is to use the Diophantine representation of
the four colour theorem proposed in [12]: a Diophantine equation

F (n, t, a, . . .) = 0, (3)

10This computer-assisted proof generated lots of mathematical and philosophical discussions
around the notion of acceptable mathematical proof, see for example [5, 8, 9].

11It appears that there is no verification in its entirety.
12See [14] for a recent presentation of the formal proof.
13Our emphasis.
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such that the equation (3) has no solution if and only if every planar graph can
be coloured with at most four colours so that no two adjacent vertices receive the
same colour. Based on the equation (3) one can write the program ΠF as in the
previous section which can be taken as Πfourcolourtheorem.

Actually, it is better to use a pre-Diophantine representation given by the
following conditions. Without restricting the generality we consider the maps Tn
consisting of the points (x, y) such that J(x, y) ≤ Q = (n2 + 3n)/2, where J is
Cantor’s bijection J(x, y) = ((x + y)2 + 3x + y)/2. Given a 4-colouring of Tn,
t0, t1, . . . , tQ there exist (and can be effectively computed) s, t such that for all
0 ≤ i ≤ Q:14

ti = rem(t, 1 + s(i+ 1)).

In other words, the sequence t0, t1, . . . , tQ can be coded by s and t.
Every sequence u0, u1, . . . , uQ with ui < 4 can be represented by some u ≤ R =

(1 + 4(Q+ 2)!Q+1) such that

ui = rem(u, (1 + 4(Q+ 2)!)Q+1).

Finally, there is a map (say Tn) which cannot be coloured in 4 colours if and
only if the following condition is satisfied:

(∃n, t, s)(∀u ≤ R)(∃x, y)[A ∨B],

where
A = (x+ y ≤ n ∧ uJ(x,y) ≥ 4),

B = (x+ y > n) ∧ [(tJ(x,y) = tJ(x+1,y) ∧ uJ(x,y) 6= uJ(x+1,y))

∨ (tJ(x,y) 6= tJ(x+1,y) ∧ uJ(x,y) = uJ(x+1,y))

∨ (tJ(x,y) = tJ(x,y+1) ∧ uJ(x,y) 6= uJ(x,y+1))

∨ (tJ(x,y) 6= tJ(x,y+1) ∧ uJ(x,y) = uJ(x,y+1))].

A simple inspection shows that the above condition is computable, so the four
colour theorem is of the form (∀n)P (n), where P is a computable predicate.

14The integer remainder function is denoted by rem.
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2.6 The Riemann hypothesis

The Riemann hypothesis is probably the most famous/important conjecture in
mathematics. It appears in Hilbert’s eighth problem [16]: the non-trivial complex
zeros of Riemann’s zeta function, which is defined for Re(s) > 1 by

ζ(s) =
∞∑
n=1

1

ns
,

lie exactly on the line Re(s) = 1/2.
According to Matiyasevich [21], p. 119–121, the negation of the Riemann

hypothesis is equivalent to the existence of positive integers k, l,m, n satisfying
the following six conditions (here x | z means “x divides z”):

1. n ≥ 600,

2. ∀y < n [(y + 1) | m],

3. m > 0 &∀y < m [y = m ∨ ∃x < n [¬ [(x+ 1) | y]]],

4. explog(m− 1, l),

5. explog(n− 1, k),

6. (l − n)2 > 4n2k4,

and explog(a, b) denotes the predicate

∃x [x > b+ 1 & (1 + 1/x)xb ≤ a+ 1 < 4(1 + 1/x)xb].

An inspection of the above conditions shows that the Riemann hypothesis is
of the form ∀n,R(n), where R is a computable predicate. Hence, one can write a
program ΠRiemann such that the Riemann hypothesis is false if and only if ΠRiemann

halts.

2.7 Collatz and palindrome conjectures

When he was a student L. Collatz posed the following problem:15 given any integer
seed a1 there exists a natural N such that aN = 1, where

an+1 =

{
an/2, if an is even,
3an + 1, otherwise .

There is a huge literature on this problem and various natural generalisations:
see [19, 15, 11]. Erdös has said (cf. [19]) that

15Known as Collatz’s conjecture, the Syracuse conjecture, the 3x + 1 problem, Kakutani’s
problem, Hasse algorithm, or Ulam’s problem.
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Mathematics may not be ready for such problems.

Does there exist a program ΠCollatz such that Collatz’s conjecture is false if and
only if ΠCollatz halts?

First we note that a brute-force tester, i.e. the program which will enumerate
all seeds and for each of them will try to find an iteration equal to 1, may never
stop in two different cases: a) because the conjecture is indeed true, b) because
for some specific seed a1 there is no N such that aN = 1. It is not clear how to
differentiate these cases; even worse, it is not clear how to refute b) by a brute-force
tester.

A simple non-constructive argument answering in the affirmative our question
appears in [7]. Indeed, observe first that the set

Collatz = {a1 | aN = 1, for some N ≥ 1}

is computably enumerable. Collatz’s conjecture requires to prove that Collatz
contains indeed all positive integers.

If Collatz is not computable, then the conjecture is false, and any program
which eventually halts can be taken as ΠCollatz as a) is ruled out. If Collatz is
computable, then we can write a program ΠCollatz to find an integer not in Collatz:
the conjecture is true if and only if ΠCollatz never stops.

Next we present the palindrome conjecture. The reverse (mirror) of a number is
the number formed with the same decimal digits but written in the opposite order.
For example, the mirror of 12 is 21, the mirror of 131072 is 270131, etc. Start with
the decimal representation of a natural a, reverse the digits and add the constructed
number to a; iterate this process till the result is a palindrome. Following [13] the
palindrome conjecture states that for every natural a, a palindrome number will
be obtained after finitely many iterations of the above procedure.

The same non-constructive argument used for Collatz’s conjecture applies also
to the palindrome conjecture: there exists a program Πpalindrome such that the
palindrome conjecture is true if and only if Πpalindrome never stops.

Collatz and palindrome conjectures have the following general form. Let a ∈ N
and let T be a computable function from naturals to naturals. The conjecture
associated to (a, T ) is: “for each x ∈ N, T i(x) = a, for some i > 0”.

Considering the set

B(a, T ) = {x ∈ N : T i(x) = a, for some i > 0},

the conjecture associated to (a, T ) becomes equivalent with the equality B(a, T ) =
N. The argument used for Collatz’s conjecture applies to this general case too,
so one can prove in a non-constructive way the existence of a program Π(a,T) such
that the conjecture associated to (a, T ) is true if and only if Π(a,T) never stops.
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3 The halting problem

In the previous sections the halting property of various programs repeatedly ap-
peared. It is time to ask the question: can the halting problem be solved by a
program? As all our programs have a very specific form—they have no input and
each of them either stops (in which case the output is a natural number) or never
stops—we will show (with a simple argument) that the halting problem, the prob-
lem whether such a program eventually stops, is unsolvable by any program. This
means that there is no program H having the following three properties:

1. H accepts as input any program of the above type,

2. H eventually halts, and

3. H produces the output one if the input-program eventually stops or zero in
case the input-program never stops.

Here is an information-theoretic analysis of the existence of the hypothetical
program H. Assume that there exists a halting program H having the above three
properties. Using H we construct the following (legitimate) program P:

1. read a natural N ;

2. generate all programs up to N bits in size;

3. use H to check for each generated program whether it halts;

4. simulate the running of the remaining programs, and

5. output one plus the biggest value output by these programs.

The program P halts for every natural N . Indeed, the number of programs
of less than N bits in size is finite, so by the assumption that H can decide the
halting status of every program in a finite amount of time one can filter out all
non-halting programs. The remaining ones (certainly, finitely many) can be run
and after a finite (maybe very long) computation they will all halt and each will
produce a natural number as output. Did we obtain a contradiction?

To answer the question we have to ask the right auxiliary question: How long
is P? Answer: P is about log2N bits. Indeed, we need about log2N bits to code
N in binary, and the rest of the program P is a constant, say c. Hence, the length
of P is log2N + c bits.
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Now observe that there is a big difference between the size of P and the size
of the output produced by P. Indeed, for large enough N , P belongs to the set
of programs having less than N bits because log2N + O(1) < N . Hence, in this
case, P generates itself at some stage of the computation. As P always halts, the
program H decides that P stops, so P is run as a part of the simulation (inside the
computation of P) and produces a natural number as a result. But the program P
itself will output a natural number which is different from every output produced
by a simulated computation, in particular from the output produced by P itself,
a contradiction.

The above proof (see [6] for more details) shows that in general there is no
method, no uniform procedure, to test whether an arbitrary program eventually
stops or not. Of course, this does not imply that for some (infinite) class of
programs we cannot find a program deciding the halting status of those programs.16

What is the situation with the programs associated to the problems discussed
before? Can we hope to decide for each of them whether it halts or not? For some
programs, like ΠFermat, we know the answer: the program never stops as certified
by A. Wiles’ proof of the Fermat’s last theorem. For the program ΠRiemann the
answer is not known. We [currently] cannot even write explicitly the program
ΠCollatz.

17 For some programs Π the statement “Π halts” is independent of ZFC.18

4 A computational method for evaluating the

complexity of mathematical problems

Let us return to Fermat’s last theorem and to the fact that the theorem is equiva-
lent with the statement “ΠFermat never halts”. We do not propose to prove Fermat’s
last theorem by showing that ΠFermat never halts, but to use the program ΠFermat

as a measure of complexity of Fermat’s last theorem.
How? Simply by counting the number of bits necessary to specify ΠFermat in

some fixed “universal formalism” (like a universal self-delimiting Turing machine
[6]). Of course, there are many programs equivalent to ΠFermat, so a natural way
to evaluate the complexity is to consider the smallest such program.

The choice of the universal formalism used to code programs is irrelevant up
to an additive constant, so if a problem is significantly more complex in some
fixed formalism than another one, then it will continue to be more complex in
any other formalism. However, the proposed measure is uncomputable (see [6]), so

16Actually, there are infinite sets of programs for which the halting problem is decidable, e.g.
the class of primitive recursive programs (which are all total).

17We conjecture that the statement “ΠCollatz never stops” is independent of ZFC.
18Such a statement has to be true. A proof of independence is an alternative proof—admittedly

not usual—for the statement.
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we have to work with an upper bound on the size of a program “describing” the
conjecture/problem/theorem.

In practice, to evaluate the complexity of a problem P we need to obtain
effectively the program ΠP and to compute its size in bits: this gives an upper
bound on the complexity of ΠP, hence on the difficulty of P . But, as we have seen
with Collatz and palindrome conjectures, even this type of approximation may
not be achievable in all cases: we cannot evaluate a bound on the difficulty of a
problem P if we do not know at least one “explicit” program ΠP.

5 Finitely refutable problems

It is time to ask the question: what is the class of problems whose complex-
ity/difficulty can be evaluated with the method proposed in the preceding section?
We will not answer this question—which is open—but give an example of a large
class of problems to which the method applies. With Pythagoras’ dictum “all is
number” as a guiding principle we will look at finite numerical tests.

Let N denote the set of positive integers and for every k ∈ N consider a
predicate P on N.

Consider the formula

f = Q1n1 Q2n2 . . . Qknk P (n1, n2, . . . , nk)

where Q1, Q2, . . . , Qk ∈ {∀,∃} are quantifier symbols. In analogy with the arith-
metic classes, we say that f is in the class Π̂s or Σ̂s if the quantifier prefix of f
starts with ∀ or ∃, respectively, and contains s− 1 alternations of quantifier sym-
bols. When P is computable, then f is in Πs or Σs, respectively. It is sufficient to
consider only such formulæ f in which no two consecutive quantifier symbols are
the same; in the sequel we make this assumption without special mention. With
f as above, one has s = k.

As usual, with P as above, we write P (n1, . . . , nk) instead of P (n1, . . . , nk) =
1 when n1, . . . , nk are elements of N. Thus, ¬P (n1, . . . , nk) if and only if
P (n1, . . . , nk) = 0. Moreover, since we consider variable symbols only in the
domain N, if f is any formula in first-order logic, we write f is true instead of f
is true in N.

Let Γs be one of the classes Π̂s, Σ̂s, Πs, and Σs. We refer to the task of proving
or refuting a first-order logic formula as a problem and especially, to problems
expressed by formulæ in Γs as Γs-problems.

We say that a problem is being solved if the corresponding formula is proved
or disproved to be true, that is, if the truth value of the formula is determined.
A problem is said to be finitely solvable if it can be solved by examining finitely
many cases.
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For example, consider the predicate

P (n) =

{
1, if n is even or n = 1 or n is a prime,
0, otherwise,

that is, P (n) = 0 if and only if n is an odd number greater than 1 which is not a
prime. Then the conjecture expressed by the formula (∀n)P (n) is finitely solvable;
indeed, it is sufficient to check all n up to 10 to refute this conjecture.

Goldbach’s conjecture is a Π1-problem. To express it let PGoldbach : N→ {0, 1}
be such that

PGoldbach(n) =

{
1, if n is odd or (n is even and n is the sum of two primes),
0, otherwise.

Thus, fGoldbach = (∀n) PGoldbach(n) is true if and only if Goldbach’s conjecture is
true.

Similarly, the Riemann hypothesis is a Π1-problem. By a result of [12], the
Riemann hypothesis can be expressed in terms of the function δRiemann : N → R
defined by

δRiemann(k) =
∏
n<k

∏
j≤n

ηRiemann(j),

where

ηRiemann(j) =

{
p, if j = pr for some prime p and some r ∈ N,
1, otherwise.

The Riemann hypothesis is equivalent with the assertion that for all n ∈ N( ∑
k≤δRiemann(n)

1

k
− n2

2

)2

< 36n3.

If we set

PRiemann(n) =

{
1, if

(∑
k≤δRiemann(n)

1
k
− n2

2

)2

< 36n3,

0, otherwise.

then, fRiemann = (∀n) PRiemann(n) is true if and only if the Riemann hypothesis
is true. Clearly, PRiemann is decidable, therefore, the Riemann hypothesis is a
Π1-problem.

What is the “commonality” of all problems in classes Π̂s and Σ̂s?
For s ∈ N, let Γ̂s denote any of Π̂s and Σ̂s, and let Γs denote any of Πs and

Σs. Let
f = Q1n1 Q2n2 . . . Qsns P (n1, n2, . . . , ns)

14



with s ∈ N, where Q1, Q2, . . . , Qs are alternating quantifier symbols.
Following [10], we define a test set for f to be a set T ⊆ Ns such that f is true

in Ns if and only if it is true in T . The problem f is finitely solvable if there is a
finite test set for f . In [10] the following result was proved:

Every f ∈ Γ̂s is finitely solvable.

In other words, a solution to each mass problem19 in the above classes can be
obtained by inspecting only finitely many instances of the problem. As we might
expect, this fact cannot be used to obtain a uniform algorithmical way to solve
these type of problems because the finite test set cannot be computed even for all
problems in the class Π1:

There is no constructive proof showing that every f ∈ Π1 has a finite
test set.

6 The power and the limits of the method

Our analysis gives a new method of comparing the difficulties of two or more finitely
refutable problem. The main obstacle is the non-computability of the measure, cf.
[6]. However, working with upper bounds one can obtain a practical method for
evaluating the complexity which allows a relative ranking of problems.20

The method can be applied to every Π1-problem. All problems discussed in
section 2 can be analysed with this method (see [7]). Trying to reduce the lengths
of programs is in general possible; of course, proving minimality is, in general,
impossible cf. [6].

The method proposed is, certainly, not universal. Let us discuss here the class
of Π1-problems. Not every mathematical statement is a Π1-problem. For instance,
the twin prime conjecture—discussed in section 2.2—is not a Π1-problem. Writing

PTP(n,m) =

{
1, m > n and m and m+ 2 are primes,
0, otherwise,

this conjecture can be stated as

fTP = ∀n ∃mPTP(n,m).

The formula fTP is in the class Π2. Bennett [3] conjectured that most mathematical
conjectures can be settled indirectly by proving stronger conjectures. For the

19A problem having an infinite number of instances/cases.
20In weighting the importance of computing the exact value of the complexity measure one

should recall Knuth [18]: “premature optimization is the root of all evil” and Rabin [27] “we
should give up the attempt to derive results and answers with complete certainty”.
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twin prime conjecture a stronger Π1-problem is obtained as follows. Consider the
predicate

P ′T(n) =

{
1, if there is m with 10n−1 ≤ m ≤ 10n, m and m+ 2 primes,
0, otherwise.

Let f ′T = (∀n)P ′T(n). Thus, f ′T gives rise to a Π1-problem and, if f ′T is true, then
fT is also true (but the converse is not necessarily true).

However, there exists a program ΠTP such that the twin prime conjecture is true
if and only if ΠTP never halts. As in Collatz’s case the argument is non-constructive
and is based on the fact that the set

TP = {n : ∀n∃m > n such that m and m+ 2 are primes}

is computably enumerable.
The paper [17] discusses the possibility that one of the recently solved prob-

lems in topology—see [24, 25, 26], the Poincaré conjecture, is equivalent to the
unsolvability of a Diophantine equation (see also [22]). If this would be true then
our method would offer, at least in principle, an indication of the difficulty of this
problem too.

7 Conclusions

We have presented a computational method to evaluate the complexity of mathe-
matical problems.

If a mathematical problem, irrespective of its nature, can be equivalently ex-
pressed in terms of the property that a certain (associated) program eventually
halts then the proposed method applies. For example, the method applies to every
Π1-problem. Specific instances of such problems are, for example, the Fermat last
theorem, the Goldbach conjecture, the four colour problem, the Riemann hypoth-
esis, the Hilbert 10th problem, the Collatz problem, the palindrome conjecture
and the twin prime conjecture. As an illustration, according to this complexity
complexity measure, the Riemann hypothesis is more difficult21 than the Goldbach
conjecture [7]. Although the method applies to both Collatz and twin prime conjec-
tures, it is an open question whether one can effectively evaluate the complexities
of these problems.

In the second part of this study we will present a formalism for evaluating
in a uniform way the complexities of the problems discussed in this paper and a
(partial) ranking of those problems will be presented.

21In fact, about twice as difficult.
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