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CONFORMAL BOUNDARY OPERATORS, T-CURVATURES,

AND CONFORMAL FRACTIONAL LAPLACIANS OF ODD

ORDER

A. ROD GOVER AND LAWRENCE J. PETERSON

Abstract. We construct continuously parametrised families of conformally in-
variant boundary operators on densities. These may also be viewed as con-
formally covariant boundary operators on functions and generalise to higher
orders the first-order conformal Robin operator and an analogous third-order
operator of Chang-Qing. Our families include operators of critical order on
odd-dimensional boundaries. Combined with the (conformal Laplacian power)
GJMS operators, a suitable selection of the boundary operators yields formally
self-adjoint elliptic conformal boundary problems. Working on a conformal man-
ifold with boundary, we show that the operators yield odd-order conformally
invariant fractional Laplacian pseudo-differential operators. To do this, we use
higher-order conformally invariant Dirichlet-to-Neumann constructions. We also
find and construct new curvature quantities associated to our new operator fam-
ilies. These have links to the Branson Q-curvature and include higher-order gen-
eralisations of the mean curvature and the T -curvature of Chang-Qing. In the
case of the standard conformal hemisphere, the boundary operator construction
is particularly simple; the resulting operators provide an elementary construction
of families of symmetry breaking intertwinors between the spherical principal se-
ries representations of the conformal group of the equator, as studied by Juhl
and others. We use our constructions to shed light on some conjectures of Juhl.

1. Introduction

Conformally invariant differential operators play a central role in the global
geometric analysis of Riemannian, pseudo-Riemannian, and conformal structures
[14, 20, 55, 61]. The nature of conformal geometry means that local issues can also
be subtle and difficult. For example, given a proposed leading symbol, a corre-
sponding conformally invariant differential operator may or may not exist, depend-
ing on the conformal class. While important open problems remain, nevertheless
over the past decades there have been significant advances in our understanding
of these issues [22, 33, 40, 41].

By comparison, relatively little is known about natural conformally invariant dif-
ferential operators along submanifolds. Here we treat an aspect of this gap. Our
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2 A.R. GOVER AND L.J. PETERSON

work is primarily motivated by potential applications to boundary value problems,
conformally invariant Dirichlet-to-Neumann constructions (cf. [5, 6, 7, 11, 12, 15,
23, 24]), and related issues linked to geometric PDE, scattering, and the AdS/CFT
correspondence of physics [42, 52, 53, 54]. Although we do not treat continuous
families of non-local operators here, we believe that our results are complementary
to e.g. [7, 12, 15, 42] and that the tools developed here should shed light on such
families. The results also give new constructions of families of representation inter-
twining operators in the sense of Juhl’s families [47] and the differential symmetry
breaking operators of Kobayashi et al. [50]. See also [18, 28, 49].

In this paper, we construct continuously parametrised families of conformally
invariant differential boundary operators on densities. We also construct curva-
tures associated to these operator families. The new operators may be viewed as
conformally covariant boundary operators on functions and for most parameter
values generalise to higher orders the well-known first-order conformal Robin op-
erator. We show that some of the operators from the new families combine with
the GJMS operators of Graham et al. [41] to yield formally self-adjoint elliptic
conformally invariant higher-order Laplacian boundary problems. In conjunction
with these problems, we construct higher-order conformally invariant Dirichlet-to-
Neumann operators that provide realisations of odd-order conformally invariant
fractional Laplacian pseudo-differential operators. In the later sections, we work in
the setting of general conformally curved manifolds with boundary, but by virtue
of the conformal invariance, the results may be applied to conformally compact
manifolds and in particular to asymptotically hyperbolic and Poincaré-Einstein
manifolds. Earlier work of Branson and the first author in [6] used tractors to con-
struct new families of boundary operators. (We will review tractors in Section 3.2,
below.) In the present article, the approach is again via tractors, but it is simpler,
quite different, and most importantly, more effective; we close gaps in [6].

We now explain in more detail the problems treated in this paper, the motiva-
tions for these problems, and the results obtained. Throughout our work, M is a
manifold of dimension n, c is a conformal equivalence class of metrics on M , and
g is a metric in c. The term hypersurface will always refer to a smooth confor-
mally embedded (n− 1)-dimensional conformal manifold (Σ, c) in (M, c). In this
context, c denotes the conformal equivalence class of the metric on Σ induced by
any g ∈ c, and g will denote the metric on Σ induced by such a g. We will often
assume that M is initially given as a manifold with boundary, and Σ = ∂M is the
boundary of M . But in this case, for the convenience of treating the local issues,
we will assume that we have extended M to a collar neighbourhood of Σ (so that
Σ consists of interior points of M). Unless we indicate otherwise, we will always
assume that n ≥ 3. For simplicity of discussion, all structures we consider below
will be taken to be smooth to infinite order, and we shall restrict to the case of
Riemannian signature. These restrictions can be relaxed to a large extent with
little change.

The operators in our new families are natural. In Section 2, below, we will
discuss the idea of natural differential operators along a hypersurface, as well as the
idea of scalar Riemannian hypersurface invariants. We note here, however, that a
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natural differential operator along a hypersurface is a rule that defines a differential
operator on a neighbourhood of any hypersurface (Σ, c) in any ambient conformal
n-manifold (M, c). In a similar way, a hypersurface invariant is actually a rule
which defines an invariant in a neigbourhood of any hypersurface (Σ, c) of any
(M, c). (In both cases, however, we may require (Σ, c) and (M, c) to meet certain
conditions.) The operators in our new families are parametrised by n (in each case
in some infinite set D ⊆ Z≥3) and a real number w. We say that w is a weight. The
operators in a given family will always be determined by a single universal symbolic
formula, so we will sometimes use the word “operator” to refer to any of our new
families of operators or to any other family of operators determined by a single
universal symbolic formula. Similar remarks apply to families of hypersurface
invariants. Although our main results give operators that, along the hypersurface,
are determined by the conformal embedding, the development of these results
involves operators that can depend on a choice of metric g within c.

Some of the operators and curvature quantities we construct in this paper are
motivated by certain well-known natural differential operators and their associ-
ated curvature quantities. One such operator and curvature pair is the conformal
Robin operator (of Cherrier [17]) and the mean curvature. To define the conformal
Robin operator, we begin by identifying Σ with its image submanifold under an
embedding ι : Σ → M . Fixing g ∈ c determines a metric g ∈ c, and we write na

for the associated unit conormal field to Σ. This conormal field together with the
metric determines a unit normal vector field na = g

abnb. We let H (or sometimes
Hg) denote the mean curvature of Σ. Let ∇ denote the Levi-Civita connection
determined by g, and let C∞(M) and C∞(Σ) denote the sets of all smooth real-
valued functions on M and Σ, respectively. The conformal Robin operator is the
operator δ : C∞(M) → C∞(Σ) defined by the composition of f 7→ na∇af − wHf
with restriction to C∞(Σ). Here w is a real parameter. As before, we say that w
is a weight. We define conformal covariance and bidegree in Definition 2.1 below.
For all w ∈ R, δ is conformally covariant of bidegree (−w, 1− w).

The operator δ is a Robin operator because it mixes Dirichlet and Neumann
data. Its conformal covariance is important for forming well-posed conformal
boundary problems involving the conformal Laplacian (or “Yamabe operator”)
[6, 17, 23, 45] on the n-dimensional interior. Let w = 1− n/2, which is the weight
selected by the covariance properties of the Yamabe operator, and consider the
limiting case in which n = 2. Then w = 0, and δ is just the Neumann operator
na∇a. The mean curvature H drops out of the formula for δ, but it retains an in-
teresting limiting link with δ: In this specific case, H is the geodesic curvature and
transforms conformally by the rule H ĝ = e−Υ(Hg + δgΥ). Here and throughout
this paper, Υ ∈ C∞(M), and ĝ = e2Υg.

In connection with the problem of understanding Polyakov-type formulae for
conformally covariant elliptic differential operators on compact 4-manifolds with
boundary, Chang and Qing discovered a third-order analogue, PCQ

3 , of the confor-
mal Robin operator. (They denoted this operator by P3.) See [16]. This operator
acts along the boundary of the compact 4-manifold. Chang and Qing showed that
PCQ
3 is naturally associated to a scalar curvature quantity T = TCQ along the
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boundary and that the transformation rule for T under conformal change of met-
ric is T ĝ = e−3Υ(T g + PCQ

3,g Υ). In this and other ways (as explained in Section 7,

below) the relation between PCQ
3 and TCQ is analogous to the relation between the

Neumann operator and the geodesic curvature on a surface with boundary which
we described above. By [16], PCQ

3 is conformally covariant of bidegree (0, 3).
In [41], Graham et al. defined a conformally invariant kth power of the Lapla-

cian on a conformal n-manifold (M, c). This operator is commonly known as the
GJMS operator of order 2k, and we will denote it by P2k. It acts on conformal
densities, and it is well-defined for all positive integers k within an appropriate
range. (We will discuss conformal densities and their weights in Section 3.2, be-
low.) In [4], Branson used Pn to define a scalar curvature quantity Qn on a compact
Riemannian manifold (M, g) without boundary of even dimension n ≥ 4. This cur-
vature is called the Q-curvature of (M, g). The operator Pn may be viewed as a
conformally covariant operator P g

n : C∞(M) → C∞(M) of bidegree (0, n). (See
Proposition 3.2.) Under conformal change of metric, Qn transforms according to
the rule Qĝ

n = e−nΥ(Qg

n + P g

nΥ). The pair (δ,H) in dimension n = 2 and the

Chang-Qing pair (PCQ
3 , TCQ) in dimension n = 4 give, in a certain sense, odd-

order boundary analogues of the pair (Pn, Qn). This has generated considerable
interest ([11, 13, 47, 53, 54, 59]) and motivates Problem 1.2, below.

The statement of Problem 1.2 involves the notion of the transverse order of a
boundary operator along Σ, as defined in Definition 1.1, below. Definition 1.1 is
adapted from the definition of the normal order of a boundary operator given in
[6]. Our definition uses a defining function for Σ on a neighbourhood U of a point
p ∈ Σ. Here and below, a such a function is a function t ∈ C∞(U) such that Σ∩U
is the zero locus of t and dt is nonvanishing on U .

Definition 1.1. Let a Riemannian manifold (M, g), a hypersurface (Σ, g) in
(M, g), a vector bundle F over M , and a differential operator B : F 7→ F|Σ
be given. Also let p ∈ Σ be given, and suppose that t is any defining function for
Σ on some neighbourhood U of p. For any m ∈ Z>0, we say that B has transverse
order m at p if there is a smooth section V of F such that B(tmV )|p 6= 0 but
B(tm+1V ′)|p = 0 for all smooth sections V ′ of F . If B(tV )|p = 0 for all smooth
sections V of F , then we say that B has transverse order 0 at p. Now let m ∈ Z≥0

be given. If B has transverse order m at every p ∈ Σ, then we say that B has
transverse order m. Finally, suppose that m > 0. If B has transverse order less
than m at every p ∈ Σ, then we say that B has transverse order less than m or
transverse order at most m− 1.

In the definition here, and also throughout the article, we interpret notation to
mean vector bundles or their smooth section spaces according to context. The
properties described in this definition are independent of the choice of the defin-
ing function t. The transverse order at a point p ∈ Σ measures the number of
derivatives in directions transverse to Σ at p. If we say that a natural hypersur-
face differential operator B has order m, order less than m, transverse order m,
or transverse order less than m, we mean that the property holds for all hyper-
surfaces in all possible Riemannian manifolds; for the operator families that we
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deal with in this paper, the presence of these properties may depend on the values
of the parameters w and n mentioned above. The conformal Robin operator has
transverse order 1 in all dimensions, and PCQ

3 has transverse order 3.
In the statement of Problem 1.2 that follows, and throughout this paper, differ-

ential operators will act on everything to their right, unless parentheses indicate
otherwise. In addition, we will always indicate multiplication operators by jux-
taposition. For example, let differential operators Op1, Op2 : C

∞(M) → C∞(M)
and functions f1, f2 ∈ C∞(M) be given. Then Op1f1Op2f2 denotes Op1 acting on
the product of f1 and Op2f2. All differential operators in this paper will be linear.

We may now state one of the main problems of this paper.

Problem 1.2. For some K ∈ Z>0, construct a family of natural hypersurface
operators P g

w,K : C∞(M) → C∞(Σ) parametrised by the dimension n and a real
parameter w such that the following properties hold: (1) For all w ∈ R, P g

w,K has
order at most K. There is a small finite set E such that for all w ∈ R\E, P g

w,K has
order and transverse order K. The set E may depend on n. (2) For all f ∈ C∞(M)

and all w ∈ R, P ĝ

w,Kf = e−(K−w)ΥP g

w,Ke
−wΥf . (3) The family P g

w,K determines a

scalar curvature quantity Q along Σ with the property thatQĝ = e−KΥ(Qg+P g

0,KΥ).
This scalar curvature quantity is a local scalar Riemannian hypersurface invariant.

One of our main objectives will be to find solutions to Problem 1.2 in which
the set E of exceptional weights is as small as possible or solutions in which some
specific undesirable weight (such as w = 0) is absent from E.

We will be especially interested in higher-order generalisations of the conformal
(Cherrier-)Robin operator and the Chang-Qing operator. The Chang-Qing oper-
ator has order and transverse order n − 1 = 3, the dimension of Σ. Similarly,
in the limiting case in which n = 2, the conformal Robin operator likewise has
order and transverse order n − 1. In general even dimensions n, establishing the
existence of conformal boundary operators of order and transverse order n − 1 is
rather delicate. Such operators sit in a special position that is in part analogous
to the place of the dimension-order GJMS operators of [41]. Thus, in the setting
of Problem 1.2, if n is even, we will say that a boundary operator of order and
transverse order n − 1 is a critical operator and that n − 1 is the critical order.
Paramount in our considerations here is finding a solution to Problem 1.2 that
includes such operators as part of a continuous family. For emphasis we state the
following special case of Problem 1.2:

Problem 1.3. In Problem 1.2, suppose that n is even and K = n − 1. Find a
solution such that P g

0,K is a critical operator.

In this paper, we construct families of operators which solve Problem 1.3 in
general even dimensions n ≥ 4. We do this by first constructing three families
of operators which solve Problem 1.2. Let K be as in Problem 1.2. Then for
all K ∈ Z>0, the operator family δ0K of Theorem 5.12 solves Problem 1.2 in the
simplest setting, namely the case of conformally flat metrics. (Throughout this
paper, conformally flat means what is sometimes referred to as “locally conformally
flat”, that is, the Weyl and Cotton tensors both vanish. Also, note that we suppress
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the g and the w from the operator notation.) The δ0K family is defined in all
dimensions n ≥ 3. Next, for all K ∈ Z>0, the operators δJ,k of Theorem 5.16,
with J + k = K, are defined for general Riemannian conformal structures in
suitable dimensions and for conformally flat structures in all dimensions n ≥ 3.
Similarly, for all K ∈ Z>0, the operators δK of Lemma 5.4 are defined on general
Riemannian conformal structures in all dimensions n ≥ 3. The families δJ,k and
δK solve Problem 1.2.

The δ0K operator family solves Problem 1.2 on the standard conformal hemi-
sphere, and in this case, the operators δ0K provide families of symmetry breaking
intertwinors between the spherical principal series representations of the conformal
group of the equator, as studied by Juhl and others [18, 47, 50]. There is some ap-
peal in this picture, as here the symmetry breaking (the reduction of the conformal
group of the sphere to a subgroup preserving the closed hemisphere) is manifestly
governed by the normal tractor. By using the tools in, for example, [34], one may
develop generalisations of the δ0K and δJ,k families which treat differential forms
and other tensors. Such generalisations should be of some interest to the more
general intertwinor programme as in [28, 48], but we do not investigate this idea
in this paper.

As part of a construction of a family of conformally invariant higher-order
Dirichlet-to-Neumann operators, Branson and the first author discover and con-
struct a family δBG

K of conformally invariant hypersurface operators in Theorem 5.1
of [6]. Although used at a discrete set of weights in [6], by construction the oper-
ators are available on any density bundle, and in the interesting work [47], Juhl
studies the resulting continuously parametrised families of boundary operators (as
well as so-called “residue families”) and considers some problems linked to those
studied here; see for example [47, Section 1.10 and Section 6.21]. Unfortunately,
as evident in [6, Theorem 5.1] and its proof, the δBG

K family does not provide an
answer to Problem 1.3. In [43], Grant constructs a modification δG3 of δBG

3 which
solves Problem 1.3 in the dimension n = 4 case. (See also Stafford [57] and Case
[11].) However, Grant’s work was specific to third-order operators, and the prob-

lem of finding higher-dimensional analogues of the Chang-Qing pair (PCQ
3 , TCQ)

has, to our knowledge, remained open up to now.
For every even integer n ≥ 4, the δ0K family includes an operator which solves

Problem 1.3 for conformally flat Riemannian conformal manifolds of dimension n,
and the δJ,k family contains a solution to this same problem for general Riemannian
conformal manifolds of dimension n. See Theorem 7.10, below.

In Section 6.1, the operators δJ,k and δK are used to set up conformally invariant
elliptic boundary problems for the GJMS operators and then to construct non-local
operators. The first main result is Theorem 6.3, which, for any GJMS operator P2k,
describes a corresponding conformally invariant boundary system B such that the
boundary value problem (P2k, B) is formally self-adjoint. The boundary system
B is given by (50). Lemma 6.5 then shows that the boundary problem (P2k, B)
satisfies the Lopatinski-Shapiro condition. The pair (P2k, B) is properly elliptic,
and in Theorem 6.7, we use this fact, together with the other properties of the pair,
to construct Dirichet-to-Neumann operators. The statement of Theorem 6.7 is too
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technical to be given in this introduction, but we may easily state two corollaries
of the theorem here. In these corollaries, Ē [w] denotes the bundle of conformal
densities of weight w associated to (Σ, c); here w is any given real number. The first
corollary follows from the case k = n/2 (n even) of Theorem 6.7 and Lemma 6.1.

Corollary 1.4. Let a compact Riemannian conformal manifold with boundary
(M,Σ, c) of even dimension n ≥ 4 be given. Let B be as in (50), and suppose that
(Pn, B) has trivial kernel. Then for 2m = 1, 3, 5, . . . , n− 1, Theorem 6.7 yields
conformally invariant non-local operators

P
T, n/2
2m : Ē

[
m−

n− 1

2

]
→ Ē

[
−m−

n− 1

2

]

which have leading term (−∆)m.

Corollary 1.4 produces a critical-order (i.e. order n − 1) fraction Laplacian as
the case 2m = n− 1. Such an operator was missing from the results of [6].

The next corollary also follows from Theorem 6.7 and Lemma 6.1.

Corollary 1.5. Let a compact Riemannian conformal manifold with boundary
(M,Σ, c) of dimension n ≥ 3 be given. Also let k ∈ Z>0 be given, and suppose
that (1) n is odd, or (2) n is even and k ≤ n/2, or (3) (M, c) is conformally flat.
Finally, let B be as in (50), and suppose that (P2k, B) has trivial kernel. Then
for 2m = 1, 3, 5, . . . , 2k − 1, Theorem 6.7 yields conformally invariant non-local
operators

P T,k
2m : Ē

[
m−

n− 1

2

]
→ Ē

[
−m−

n− 1

2

]

which have leading term (−∆)m.

For each solution P g

w,K to Problem 1.2, we will say that the associated scalar
curvature quantity Q is a Q-type curvature. This Q-type curvature has certain
properties analogous to those of Branson’s Q-curvature. However, for any dimen-
sion n and any K ∈ Z>0, if a solution P g

0,K has transverse order K, then we will
say that the Q-type curvature associated to P g

w,K is a T -curvature of order K and
that (P g

0,K , Q
g) is a T -curvature pair of this order. We often let T g denote Qg in

this case. In Section 7, we will see that for any given even dimension n ≥ 4, there
are T -curvature pairs of all orders. Specifically, we will establish the following
theorem:

Theorem 1.6. Let n0 ∈ Z≥4 be given, and suppose that n0 is even. Then in
dimension n = n0, there are canonical T -curvature pairs

(δ1, T
g

1 ), (δ2, T
g

2 ), . . . , (δn0/2, T
g

n0/2
), (δ1, n0/2, T

g

1+n0/2
), . . . ,

(δ(n0−2)/2, n0/2, T
g

n0−1), (δn0
, T g

n0
), (δn0+1, T

g

n0+1), . . .

of orders 1, 2, 3, . . . , respectively.

Let g ∈ c be given. Proposition 7.15, below, gives conditions which ensure
that for all m ∈ Z≥2, there is a metric ĝ ∈ c which induces g and which satisfies

T ĝ

1 = T ĝ

2 = · · · = T ĝ

m = 0 along Σ. Under these same conditions, T ĝ

1 = H ĝ ; this
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will become clear later. So under these conditions, the hypersurface Σ is minimal
for the metric ĝ in the sense that H ĝ = 0 along Σ, and Σ also satisfies the related
higher-order condition T ĝ

2 = · · · = T ĝ

m = 0 along Σ.
We have computed explicit symbolic symbolic formulae for our new operator

families and their Q-type curvatures in certain cases. One such formula is the
following formula for the Q-type curvature of the δ1,2 family:

(1) 3na∇aJ− (n− 2)nanbnc∇aPbc + 6HJ− 6(n− 2)Hnanb
Pab + 2(n− 2)H3 .

Here Pab is the Schouten tensor, and J = Pa
a. (We define the Schouten tensor

in Section 3, below.) We give explicit formulae for δ1,2 and a few of our other
operator families and their curvatures in Section 8, below. Some of these formulae
are valid only in certain dimensions, as explained in that section.

Our operator and curvature constructions use the Fefferman-Graham ambient
metric of [25, 26], its link to tractors[9], and the tractor construction of the GJMS
operators developed in [35]. We will often work with symbolic formulae which are
polynomial in the parameter w of Problem 1.2 and rational in the dimension n. As
a consequence, our proofs will often use polynomial continuation in w and rational
continuation in n. To treat these notions, we develop some tools and results in
Section 4, below.

2. Conformally covariant operators along a hypersurface

In this section, we work with arbitrary Riemannian metrics. We will generally
employ Penrose’s abstract index notation. (If no ambiguity will occur, however, we
will sometimes omit indices from tensors.) We shall write Ea to denote the space
of sections of the tangent bundle TM over M , and Ea for the space of sections
of the cotangent bundle T ∗M . (In fact, we will often use the same symbols for
the bundles themselves.) We write E for the space of real-valued functions on
M (or for the trivial bundle M × R). All functions, vector bundles, and sections
of vector bundles will be assumed to be smooth, meaning C∞. An index which
appears twice, once raised and once lowered, indicates a contraction. The metric
gab and its inverse g

ab enable the identification of Ea and Ea, and we indicate this
by raising and lowering indices in the usual way. In Section 3, below, we will
discuss the Riemannian and Weyl curvature tensors and the Ricci and Schouten
tensors; throughout much of this paper, the term “Riemannian curvature tensor”
will include these tensors and the traces of the Ricci and Schouten tensors.

Let an embedded hypersurface Σ of M be given, and suppose that M and Σ
are both orientable. We will usually work locally and assume that Σ is the zero
locus Z(t) of a defining function t, so the orientability assumptions will usually not
impose any restriction. We will need to consider geometric quantities determined
on Σ. Rather than deal with the awkwardness of fields and quantities which are
defined only along Σ, we will define extensions of these into a neighbourhood of
Σ; we emphasise that our final results will not depend on the choice of these
extensions. We will calculate in a neighbourhood on which dt is nowhere zero, and
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we define

(2) na :=
dt

|dt|g

in this neighbourhood. The level sets of t define a foliation Σt, with Σ = Σ0, such
that na gives the unit conormal field along each leaf t = constant.

For operators on functions, the notion of naturality along a hypersurface is an ob-
vious adaptation of the usual notion from Riemannian geometry (see, e.g., [2, 58]).
A natural differential operator along a hypersurface is a differential operator which,
in a neighbourhood of the hypersurface, may be expressed by a universal symbolic
formula which is polynomial in the Levi-Civita connection ∇ of (M, g) and has
tensor-valued pre-invariants as coefficients. We refer the reader to Section 2.4
of [37] for the definitions of scalar- and tensor-valued Riemannian hypersurface
pre-invariants and invariants. In this paper, any family of natural operators will
always be given by the same universal symbolic formula for all possible conformal
manifolds (M, c); a similar remark applies to families of invariants. The symbolic
formula for a family of such operators or invariants will be a polynomial in the
conormal field na, the Riemannian metric gab, its inverse g

ab, the Riemannian cur-
vature tensor Rab

c
d, the mean curvature H , and the Levi-Civita connection ∇a.

(We give examples of symbolic formulae for operators and invariants at various
points in this paper. Tractors, the trace-free part of the second fundamental form,
and various operators will appear in some of these formulae, but it will always
be possible to expand these formulae and write them as polynomials of the above
type.) The coefficients in the polynomial formula for a family of operators or in-
variants will be real functions of the dimension n and the weight parameter w that
we discussed in Section 1, above. This real function will be polynomial in w and
rational in n. In the case of an invariant, w will be absent from the formula. For
most of the universal formulae that we work with in this paper, we may assume
that ∇a never explicitly hits nb or H .

In Section 3.2, below, we will incorporate conformal densities into our operators
and invariants. The above definitions of natural operators and hypersurface invari-
ants will extend to this situation in the obvious way. Our work will also require the
notion of natural differential operators between sections of tractor bundles. As we
will see in Section 3.2, below, a tractor bundle is a finite-dimensional vector bundle
over (M, c). We will see that for each g ∈ c, a tractor bundle decomposes into a
direct sum of tensor bundles. Naturality of a differential operator between sections
of tractor bundles will mean naturality with respect to any such decomposition.
Our earlier discussion concerning families of operators and invariants extends to
our work with densities and tractors in an obvious way.

Now suppose that we choose an orientation for Σ. Then on Σ, hypersurface
invariants and natural differential operators along Σ are independent of the choice
of the defining function t, because we insist that dt/|dt|g be consistent with the
orientation. Such invariants and operators need not be uniquely determined off
of Σ. Let F denote E or the set of all smooth sections of any power of the tractor
bundle overM , and let V ∈ F be given. Also let a natural hypersurface differential
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operator Op : F → F|Σ be given. Then OpV will usually denote the restriction
of OpV to Σ, but we will sometimes indicate the restriction explicitly by writing
OpV |Σ. We will sometimes write Op : F → F instead of Op : F → F|Σ.

One example of a scalar hypersurface invariant is the mean curvature H =
(1/(n − 1))gabLab. Here Lab is the second fundamental form, and g

ab is the hy-
persurface metric determined by g as in Section 3.1, below. Similarly, Lab is a
tensor-valued hypersurface invariant, and |L|2 = LabL

ab := g
ac
g
bdLabLcd is an-

other scalar invariant.
For any w ∈ R, a scalar Riemannian hypersurface invariant K determines a

conformal invariant of weight w if it satisfies the conformal covariance relation
K(e2Υg, t) = ewΥΣK(g, t) for all Υ ∈ E . Here ΥΣ is the pullback of Υ to the
hypersurface Σ. Thus K determines a homogeneous function on Q, the bundle
of conformal metrics. This function represents an invariant conformal density of
weight w.

Definition 2.1. We say that a natural differential operator P g : E → E is con-
formally covariant of bidegree (w1, w2) in R2 if P ĝV = e−w2ΥP gew1ΥV for all g
and for all Υ and V in E . This definition extends to hypersurface operators and
operators on tractors in the obvious way.

In Section 3.3, we will replace conformal covariance with the equivalent notion
of conformal invariance. This will simplify the discussion and calculations. Our
aim will be to construct special natural conformally invariant operators; there will
be no attempt to classify operators. The strategy is to build these in such a way
that, by construction, they satisfy the naturality conditions. Achieving conformal
invariance, although more subtle, will eventually be seen to yield to the same
approach.

Before continuing, we consider two examples of conformally covariant natural
operators. For the conformal Robin operator δ : E → E|Σ, naturality is evident
from the formula

(3) δf := na∇af − wHf .

We will also let δ1 or δ1,g,w denote the conformal Robin operator. In any dimension
n ≥ 2, the mean curvature H satisfies the conformal transformation rule Hĝ =
e−Υ(Hg + δ1,g,0Υ). From this it follows that for any w ∈ R, the conformal Robin
operator is conformally covariant of bidegree (−w, 1− w).

A second-order analogue of δ1 is the operator δ2 (also denoted by δ2,g,w) given
by the formula
(4)

δ2f =
−(∆ + wJ)f + (n+ 2w − 2)nanb∇a∇bf − 2(w − 1)(n+ 2w − 2)Hna∇af
+(w − 1)w(n+ 2w − 2)H2f + w(n+ 2w − 2)nanb

Pabf .

Here ∆ = ∇i∇i and f ∈ E . In Section 3, below, we will see that Pab and J

are Riemannian invariants. From this it will follow that δ2 is manifestly natural,
since each object in the formula for δ2 is determined by the data of the ambient
Riemannian structure onM and the embedding. No other information is involved.
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The normal vector field na appears in the formula, but along Σ, the value of δ2f is
independent of the extension of na off of Σ. Consideration of the tractor formula
for δ2 in Section 5.1 will show that if w is any real number, then δ2,g,w is conformally
covariant of bidegree (−w,−w + 2). If w = 1 − n/2, then δ2 = −�, where � is
as defined in (16), below. In this case, � is the Yamabe operator for (M, c). In
Section 8.1, we will relate δ2 to the intrinsic Yamabe operator on Σ and to a second-
order hypersurface operator of [43]. Finally, note that δ2 is considerably more
complex than δ1. It is easily seen that there is exponential growth in complexity
as order increases. A näıve approach to conformal submanifolds will therefore not
suffice.

3. Conformal geometry and hypersurfaces

Let ∇a denote the Levi-Civita connection on a Riemannian manifold (M, g) of
dimension n ≥ 2. The Riemannian curvature tensor R on (M, g) is defined by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

Here X , Y , and Z are arbitrary vector fields. In abstract index notation, R is
denoted by Rab

c
d, and R(X, Y )Z is XaY bZdRab

c
d. In dimensions n ≥ 3 this can

be decomposed into the totally trace-free Weyl curvature Cabcd and the symmetric
Schouten tensor Pab according to

(5) Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c ,

where [· · · ] indicates antisymmetrisation over the enclosed indices. In (5), Pab is a
trace modification of the Ricci tensor given by

(6) Rcab = (n− 2)Pab + Jgab .

Here Rcab = Rca
c
b, and J = Pa

a. In dimensions 2 and 3 the Weyl tensor Cabcd

vanishes identically by dint of its symmetries. In dimension 2, (6) does not define
a Schouten tensor in the sense we require in this work. By adding additional
structure (a Möbius structure [8]), however, one may define a Schouten tensor in
dimension 2 in such a way that that it has conformal properties similar to the
Schouten tensor in higher dimensions.

3.1. Riemannian hypersurfaces. In this subsection, we discuss covariant de-
rivatives and various structures on Σ and relate them to covariant derivatives and
structures on M . These ideas will facilitate the understanding of some of the
example formulae in Section 8, below. This material is standard and appears in
such sources as [56], Chapter 1, but we develop it here to set notation fit with our
current approach via defining functions, cf. [19, 37, 43, 57].

To begin, let Σ denote a hypersurface in (M, g) as in Section 1, and let t denote
any local defining function for Σ, as in Section 2. We are concerned with local
theory here, so without loss of generality, we may assume that dt is nowhere zero.
Let na be as in (2). Recall that the level sets of t define a foliation Σt, with Σ = Σ0.
For each leaf t = t0, the embedding ι : Σt0 → M induces an injective bundle map
ι∗ : TΣt0 → TM , and we shall simply identify TΣt0 with its image. Dually, T ∗Σt0

is naturally a quotient of T ∗M . The bundle epimorphism T ∗M → T ∗Σt0 is split
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by the metric, and so T ∗Σt0 is naturally identified with the subbundle of T ∗M
consisting of 1-forms orthogonal to the conormal bundle to Σt0 . We shall thus use
the same abstract indices for TΣt0 as we do for TM . We will, however, use a bar
to denote objects intrinsic to Σ or to any leaf of the foliation. Thus Ēa (resp. Ēa)
will denote the subbundle of Ea defined by the foliation (resp. the subbundle of
1-forms annihilating na), the spaces of smooth sections of these, or the restrictions
of these objects to a leaf Σt0 (for any t0 ∈ R where the foliation is defined). For
example, ua ∈ Ea is a section of Ēa if and only if uan

a = 0. In particular, this
applies along Σ = Σ0, where our interest really lies, and any section of Ēa (resp.
Ēa) along Σ will be assumed to be the restriction to Σ of a section of Ēa (resp. Ēa)
defined in a neighbourhood of Σ. This idea will be extended to tensor powers in
an obvious way with little further mention.

Next, let Πa
b := δa

b − nan
b. As a section of End(TM), this defines projections

TM → TΣt0 and T ∗M → T ∗Σt0 in the obvious way. Thus, for example, the
formula g ab := gab − nanb defines a symmetric 2-tensor that restricts to give an
induced intrinsic metric along any Σt0 . Similarly g

ab = g
ab − nanb, which is

consistent with raising indices using the ambient metric g
ab. We write ∇ for the

corresponding intrinsic Levi-Civita connection along the leaves, and R denotes the
corresponding Riemannian curvature. Although we shall be finally interested in
these quantities only along Σ = Σ0, it is convenient to have fixed an extension off
Σ in this way; this is consistent with our treatment of vector fields and tensors
in general, as discussed above. They depend smoothly on points in the foliated
neighbourhood of Σ.

Along Σ, and indeed along each leaf Σt0 , the second fundamental form of the
embedding, Lab, is given by the formula Lab = Πa

c∇cnb. (Note that the sign
of L here differs from that of many sources, including [56].) By the Weingarten
equations Lab is symmetric. An easy exercise shows that naLab = 0, so L defines
a smooth section of Ē(ab), the second symmetric power of Ēa. Let V a, T b ∈ Ēa be
given. Then LabV

aT b = −g(na,∇V T ) along Σ, again by the Weingarten equations.
Thus if dt is compatible with a given orientation on Σ, then Lab, and hence also
the mean curvature H , are independent of the choice of the defining function t.

The metric trace-free part of L, denoted by
o

L, is given by
o

Lab = Lab −Hgab.
An easy computation shows that H = (1/(n− 1))∇an

a. Hypotheses 4.1, below,
will refer to a modified mean curvature tensor G given by G = ∇an

a. The purpose
of defining G in this way is to obtain a curvature given by a symbolic formula
which involves ∇a and na but not the dimension n.

It is easily verified that ∇ is related to the ambient Levi-Civita connection ∇
by the Gauss formula

(7) ∇aV
b = Πa

c∇cV
b + nbV cLac ,

where V a ∈ Ēa; in particular ∇aV
b = Πa

cΠd
b∇cV

d. From this follows the classical
Gauss equation, which we give in our current notation:

Proposition 3.1. Let Rab
c
d denote the intrinsic Riemannian curvature tensor.

Then
Rabcd = Πa

iΠb
jΠc

kΠd
lRijkl + LacLbd − LadLbc .
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3.2. Conformal structures. A conformal geometry is a manifold of dimension
at least 2 equipped with a conformal structure, i.e. an equivalence class c of Rie-
mannian metrics such that if g, ĝ ∈ c, then ĝ = e2Υg for some Υ ∈ E . Our
operator constructions will require several results and techniques from conformal
geometry. For further details see [3, 9, 35], or [19] for a recent overview.

We begin by interpreting a conformal structure c as a ray subbundle Q ⊆
S2T ∗M whose fibre over x ∈ M consists of the set of all metrics at x which
are conformally related to some given metric g at the point x. The principal
bundle π : Q → M has structure group R>0, so for any w ∈ R, the representation
R>0 ∋ x 7→ x−w/2 ∈ End(R) induces a natural (oriented) line bundle onM that we
term the bundle of conformal densities of weight w. We let E [w] denote the space
of sections of this bundle or the bundle itself. There is a tautological section gab of
S2T ∗M ⊗E [2] that is termed the conformal metric. Similarly, g−1 is a section g

ab

of S2TM ⊗ E [−2]. Henceforth, gab and g
ab will be the default objects that will

be used to identify TM with T ∗M ⊗E [2] and to raise and lower indices associated
to these bundles (even when a metric g ∈ c has been chosen). As a consequence,
tensors, hypersurface invariants, and natural differential operators will now carry
weights. For example, if Rab

c
d is the Riemannian curvature tensor associated to a

metric g ∈ c, then Rab
c
d will have weight 0. Similarly, Rabcd will denote g ceRab

e
d,

and this tensor will have weight 2. The weights of other such curvature tensors will

be evident from their definitions. We will assign weights to na, Lab, H , and
o

Lab in
Section 3.3. If P is a natural differential operator acting between densities, then for
some c ∈ R and all conformal manifolds (M, c) (or all conformally flat conformal
manifolds (M, c)) of appropriate dimensions, P will map E [w] to E [w − c]. For
example, for any f ∈ E [w], we have ∆f = g

ab∇a∇bf ∈ E [w − 2].
A metric g ∈ c is equivalent to a positive section ξg of E [1] via the relation

gab = (ξg)−2
gab. We say that ξg is the scale density associated to g. Let w ∈ R

and a section σ of E [w] be given. We may write σ = (ξg)wf for some f ∈ E .
It is easily verified that the Levi-Civita connection ∇, of g, acting on E [w], is
the connection mapping σ to (ξg)wdf , where d is the exterior derivative. Let

Eb[w] = Eb ⊗ E [w], and let ∇̂ denote the Levi-Civita connection associated to the
metric ĝ = e2Υg. Then for all µb ∈ Eb[w],

(8) ∇̂aµb = ∇aµb + (w − 1)Υaµb −Υbµa + gabΥ
cµc ,

where Υa = ∇aΥ.
On a general conformal manifold there is no distinguished connection on TM .

There is, however, a canonical conformally invariant connection on a slightly larger
bundle, and this is called the (conformal) tractor connection [3]. It is linked, and
equivalent to, the normal conformal Cartan connection of Elie Cartan [10]. On
a conformal manifold (M, c) of dimension n ≥ 3, let T (or T A as the abstract
index notation) denote the (standard) tractor bundle. This bundle is a canonical
rank n+2 vector bundle equipped with the canonical (normal) tractor connection
∇T . This connection is conformally invariant. We usually write ∇ instead of ∇T .
We let T Φ denote any tensor power of T , including E . To distinguish different (or
potentially different) powers of T , we write T Φ1 and T Φ2. Let T Φ[w] = T Φ⊗E [w].
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Y A ZAc XA

YA 0 0 1
ZA

b 0 g
bc 0

XA 1 0 0

Figure 1. The tractor metric

Also let T , T Φ and T Φ[w] denote the spaces of sections of these bundles. A choice
of metric g ∈ c determines a splitting of T , i.e. an isomorphism

(9) T
g

∼= E [1]⊕ Eb[1]⊕ E [−1] .

We may write T
g

= (σ, µb, ρ) to indicate that T is an invariant section of T , and
(σ, µb, ρ) is its image under the splitting given by (9). In general, a conformally

related metric ĝ determines a different splitting of T . If T
g

= (σ, µb, ρ), then

(10) T
ĝ

= (σ, µb + σΥb, ρ− g
cdΥcµd −

1
2
σg cdΥcΥd) .

To facilitate our computations, we introduce three algebraic splitting operators,

Y A ∈ EA[−1] , ZAb ∈ T Ab[−1] := T A ⊗ E b ⊗ E [−1] , XA ∈ EA[1] ,

which administer the isomorphism (9) determined by the metric g ∈ c. If TA g

=
(σ, µb, ρ), then T

A = σY A+µbZ
Ab+ρXA. Note that (10) determines the transfor-

mations of Y A, ZAb, and XA under conformal change of metric. These are easily
computed and are given explicitly in [35].

There is a conformally invariant tractor metric h on T which is preserved by
∇T . We let h# denote the co-metric associated to h on the dual bundle to T .
In terms of the splitting operators, the tractor metric is given by Figure 1. In a
symbolic tractor expression with tractor indices, one may eliminate all references
to h and h# as follows. First, if one index of h or h# is contracted with an index
of some other tractor, one may eliminate the reference to h or h# by raising or
lowering the index of this other tractor. On the other hand, if h or h# has only
free indices, then one may express h and h# in terms of the splitting operators X ,
Y , and Z. For example, hAB = ZA

cZBc +XAYB + YAXB, as noted in [35].
The tractor connection is usefully encoded in the formulae for the tractor Levi-

Civita coupled derivatives of the splitting operators:

(11) ∇aY
A = PabZ

Ab, ∇aZ
A
b = −PabX

A − gabY
A, ∇aX

A = ZA
a .

The curvature Ω of the tractor connection is defined by

(12) (∇i∇j −∇j∇i)V
A = Ωij

A
BV

B

for V A ∈ T A. A basic computation using (11) shows that

(13) Ωij
A
B = Cij

k
mZ

A
kZB

m + 2(∇[iPj]
k)ZA

kXB − 2(∇[iPj]m)X
AZB

m .

We will also use the conformally invariant tractor W -curvature WABCE as de-
scribed in e.g. [35]:

(14) WABCE = (n− 4)ZA
aZB

bΩabCE − 2X[AZB]
b∇pΩpbCE .
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From this formula and well known results it follows easily that c is conformally
flat if and only if WABCE = 0.

The notation ψ : T Φ1[w] → T Φ2 [w − c]|Σ or ψ : T Φ1 [w] → T Φ2[w − c] will
indicate that ψ is a family of natural differential operators parametrised by w
and n. Here c is a real constant and w is a real number. The family ψ is a
rule given by a universal symbolic formula. This rule defines an operator for all
(M, c) of dimension n, all bundles T Φ1, and all w ∈ R. (We may require (M, c)
to meet various conditions, and T Φ2 will depend on T Φ1 and ψ.) If w appears in
the symbolic formula for ψ, we set w equal to the weight of the bundle on which
ψ acts, unless we explicitly indicate otherwise. Since ψ is given by a universal
symbolic formula, we will sometimes refer to ψ as an “operator” rather than a
family of operators.

One important family of conformally invariant natural operators on weighted
tractors is the family D : T Φ[w] → T A ⊗ T Φ[w − 1] defined as follows:

(15) DAV = w(n+ 2w − 2)Y AV + (n + 2w − 2)ZAb∇bV −XA(∆ + wJ)V .

Cf. [3]. For developments of D and proofs of its conformal invariance, see [21, 30].
Another important family of natural operators is the family� : T Φ[w] → T Φ[w−2]
given by

(16) �V = (∆ + wJ)V .

If w = 1 − n/2, then � is the Yamabe operator, which is conformally invariant.
We will use D and � in our main operator constructions.

3.3. Conformal hypersurfaces. Let a hypersurface ι : Σ → M be given. In
this subsection, we present the necessary elements of basic conformal hypersurface
geometry.

Let g, ĝ ∈ c be given. These metrics induce conformally related metrics g

and ĝ on Σ, and so c induces a conformal structure c on Σ. We term c the
intrinsic conformal structure of Σ. If n ≥ 4, this conformal structure determines
an intrinsic version of each of the constructions and results from Section 3.2 in
the usual way. (We treat the n = 3 case in Section 3.4, below.) Let g denote
the intrinsic conformal metric, and let (T ,∇T ) denote the intrinsic tractor bundle
and its connection on Σ. (In fact, we shall usually write ∇ rather than ∇T .) The
conformally invariant (and ∇-parallel) metric on T , the intrinsic tractor metric,
shall be denoted h and has signature (n, 1). We identify E [w]|Σ with Ē [w] in the
obvious way.

Now let a local defining function, t, for Σ, as in Section 2, be given. Henceforth,
we let

(17) na := dt/|dt|g .

Thus na is now a weight 1 conformally invariant conormal field for Σ and, more
generally, for the Σt foliation. Let gab := gab − nanb. This tensor extends the
intrinsic conformal metric of (Σ, c) to a neighbourhood of Σ; its restriction gives
the conformal metric on each leaf Σt0 . Given g ∈ c, we again define Lab, H , and
o

Lab on a neighbourhood of Σ as in Section 3.1, above. This time, however, we
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replace g with g , and we use (17) to define na. As a consequence, Lab, H , and
o

Lab will have weights 1, −1, and 1, respectively. This convention will hold for the
remainder of this paper. In fact, all formulae will now carry conformal weights,
unless we note otherwise. This use of weights simplifies the transformation of the
formulae under conformal rescaling. The formulae and results from Section 3.1
carry over to the present setting in the obvious way.

These remarks apply to natural differential operators, of course, and this leads
to the following proposition.

Proposition 3.2. Let a pair (w1, w2) ∈ R
2 and natural differential operators

P : T Φ[−w1] → T Φ[−w2] and P ′ : T Φ → T Φ be given. Finally, suppose that
P = (ξg)−w2P ′(ξg)w1 for all g ∈ c. Then P ′ is conformally covariant of bidegree
(w1, w2) if and only if P is conformally invariant. A similar statement holds for
operators mapping T Φ[−w1] to T Φ[−w2]

∣∣
Σ
and T Φ to T Φ

∣∣
Σ
.

Proof. Note that (ξ ĝ)w = e−wΥ(ξg)w for any w ∈ R. The result thus follows from
an elementary argument. �

Remark 3.3. Proposition 3.2 allows us to identify conformally covariant and
conformally invariant operators. In the main new operator constructions of this
paper, we will work with conformally invariant operators, so for the rest of this
paper, we will usually replace property (2) of Problem 1.2 with the following
equivalent property: P g

w,K : E [w] → Ē [w −K] is conformally invariant. Here K is
as in Problem 1.2.

3.4. Tractors and conformal Gauss theory. We will subsequently exploit a
conformally invariant replacement for the Gauss formula (7). Here we develop this
machinery. In the following, we work along Σ, but the discussion applies to any
leaf of the foliation without adjustment. Thus all quantities defined are extended
into a neighbourhood of Σ. We assume n ≥ 3, except as noted.

An elementary computation shows that

(18) L̂ab = Lab + gabΥ
cnc ,

whence

(19) Ĥ = H +Υan
a .

(Since H and na now carry weights, (19) differs from the conformal transformation

law for H that we discussed in Section 1, above.) It follows from (18) that
o

Lab is
conformally invariant. From (19) and (10) it follows that

(20) NA = nbZ
Ab −HXA

is conformally invariant along Σ and, more generally, along each leaf of the foliation
Σt. This is the normal tractor as defined in [3]. It has conformal weight 0. From
g

abnanb = 1, it follows that hABNANB = 1. Let T be the (conformally invariant)
subbundle of T A|Σ whose fibre is the orthogonal complement (with respect to h)
of NA. If n ≥ 4, then T exists and has the same rank as T . This suggests the
following proposition. This proposition follows [43, 57], which in turn follow an
equivalent argument in [6].
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Proposition 3.4. Suppose n ≥ 4. Then along any leaf of the foliation, we may
canonically and isometrically identify the bundles T and T .

Proof. Let g ∈ c be given, and along any leaf of the foliation Σt, define an embed-
ding i : T →֒ T as follows:

(21) T ∋ T
g

= (σ̄, µ̄b, ρ̄) 7→ (σ̄, µ̄b + σ̄Hnb, ρ̄−
1
2
H2σ̄)

g

= iT .

The range of i is clearly orthogonal to NA. By (10), (19), and a basic calculation, it
follows that i : T → T is a conformally invariant bundle isomorphism compatible
with the tractor metrics. �

In the case n = 3, we can still define the intrinsic tractor bundle T in the usual
way (i.e. as in higher dimensions), or we can equivalently identify T = T along Σ
as in [6]. In any case, we then define the intrinsic tractor connection ∇ and tractor
D-operator, D, on T as in that reference.

For all n ≥ 3, we shall henceforth identify T and T . We can thus use the same
abstract indices for the intrinsic and ambient tractor bundles; sections of T are
characterised by orthogonality to NA. In an obvious way, these conventions are
extended to the dual tractor bundle, tensor products, and so forth.

The normal tractor gives a conformally invariant tractor analogue of a Riemann-
ian hypersurface conormal. Along any hypersurface Σ, the ambient tractor bundle
T decomposes directly and orthogonally into T ⊕N , where N is the tractor sub-
bundle generated by the normal tractor field NA. Note that ΠA

B := δA
B−NAN

B ,
as a section of End(T ), gives the projection T → T , and using the abstract index
notation, we write ΠA

B : T A → T B.
Although Proposition 3.4 is not surprising, there is a slight subtlety involved.

Specifically, in the case n ≥ 4, the proposition shows that the tractor splitting (9)
determined by g ∈ c is not related to the splitting determined by g ∈ c in the
most näıve way. (But it is, if, on a particular hypersurface, we work in a scale
with H ≡ 0. Compare to [6, 29].)

By Proposition 3.4 and the above discussion, we have the following.

Proposition 3.5. hAB = hAB −NANB and h
AB

= hAB −NANB for all n ≥ 3.

Now suppose n ≥ 4. Let Y A, ZAb, and XA, in T A[−1]|Σ, T Ab[−1]|Σ, and
T A[1]|Σ, respectively, denote the algebraic splitting operators associated to T as
determined by the induced metric g . From (21), we see that

Y A = Y A +HnbZ
Ab − 1

2
H2XA, ZAb = Πc

bZAc, XA = XA .

Let a section V A of T be given, and suppose that V A g

= (σ̄, µ̄b, ρ̄). Then

V A = σ̄Y A + µ̄bZ
Ab + ρ̄XA .

On the other hand, if V A = σY A + µbZ
Ab + ρXA ∈ T , then

(22) V A = σY A + µaΠb
aZAb + (ρ+ 1

2
H2σ)XA .

Equation (22) describes the inverse of the isomorphism T → T (as in [57]).
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Suppose again that n ≥ 4, and define a projected ambient connection ∇̃ on T
as in [57] by letting

∇̃cT
A = ΠB

AΠc
e∇eT

B

for all sections TA of T . In [57], Stafford defines the tractor contorsion, which has
the property that

(23) ∇cT
B − ∇̃cT

B = CcA
BTA

for any section TB of T . By [57],

(24) CcA
B = XAZ

BbFbc −XBZA
aFac,

where Fbc := Pbc−Πb
iΠc

j
Pij−H

o

Lbc−
1
2
gbcH

2 is the conformally invariant Fialkow
tensor. Formulae (23) and (24) will be useful in Section 4 below.

Some of the examples in Section 8, below, will refer to the tractor second fun-
damental form. The tractor second fundamental form is a conformally invariant
tractor prolongation LAB ∈ T AB[−1] of the second fundamental form Lab. We use
the definition given in [43].

Definition 3.6. In dimensions n = dim(M) ≥ 4, the tractor second fundamental
form is given by

LAB = (n− 3)ZA
aΠa

d∇dNB −XA∇
aΠa

d∇dNB .

along Σ.

The tractor second fundamental form is conformally invariant. To see this, begin
by letting w ∈ R and n ≥ 4 be given. Define an operator EAB

aC : Ēa ⊗ T C [w] →
T AB[w − 1] as follows. For any TaC ∈ Ēa ⊗ T C [w], let

EAB
aCTaC = (n+ w − 3)ZA

aTaB −XA∇
aTaB .

In this definition, ∇ acts as the intrinsic Levi-Civita connection on Ea[w] and as the
intrinsic tractor connection on T C . An easy adaptation of (8) shows that EAB

aC

is conformally invariant. A substitution then shows that LAB = EAB
aCΠa

d∇dNC .
Thus LAB is conformally invariant.

Various versions of the following proposition appear in [37, 43, 57].

Proposition 3.7. In dimensions n ≥ 4,

LAB = (n− 3)ZA
aZB

b
o

Lab − 2 n−3
n−2

X(AZB)
a∇b

o

Lab

+XAXB(
o

LabP
ab + 1

n−2
∇a∇b

o

Lab) .

Here (A B) indicates symmetrisation over A and B.

The following corollary summarises some of the important properties of the
tractor second fundamental form:

Corollary 3.8. In dimensions n ≥ 4, LAB is conformally invariant, symmetric,
and trace free.
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4. Bases of Operators

One of the keys to our operator constructions will be to work with bases of
finite-dimensional vector spaces of natural hypersurface operators. In this section,
we will construct such bases and derive some results relating to our work with
these bases. The development of these bases will involve families of hypersurface
operators ψ which satisfy the following hypotheses:

Hypotheses 4.1. The family ψ is a family of natural hypersurface differential op-
erators given by a single universal symbolic formula. This formula is a polynomial
in na, Rab

c
d, gab, g

ab, the modified mean curvature G, and Levi-Civita connection
∇. In this formula, ∇ never explicitly hits na or G. If gab or g

ab appears in the
formula, then a and b are contracted with indices on na, Rab

c
d, or ∇a. For some

c ∈ R, some infinite set D of dimensions, all Riemannian manifolds (M, g) of all
dimensions n ∈ D, all hypersurfaces Σ in such manifolds, and all w ∈ R, the sym-
bolic formula for ψ determines an operator ψ : E [w] → Ē [w− c]. In the polynomial
formula for ψ, the coefficients are real functions of w and n which are polynomial
in w and rational in n.

The set D in Hypotheses 4.1 will be important in our work with the spacesQK,c,w,

RK,c,0, and SK,c,0, below. The trace-free part,
o

Lab, of the second fundamental
form appears in many of the example formulae in Section 8, below, but these

appearances of
o

Lab result from manipulation of other computed formulae.
In Hypotheses 4.1 and throughout this section, we may work with general Rie-

mannian metrics. All of the results of this section continue to hold, however,
if we assume that all metrics are conformally flat. In some situations, we will
implicitly modify Hypotheses 4.1 by adding the assumption that all metrics are
conformally flat. We do this, for example, in the proof of Theorem 5.12, below.
Theorem 5.16, below, implicitly treats two cases, namely (1) conformally flat met-
rics and (2) general metrics, including conformally flat metrics. The proof of this
theorem will implicitly require two separate applications of the theory of this sec-
tion. Some of our other proofs will also implicitly treat the above two cases as
separate cases.

Our development of operator bases and related results will require some ground-
work. One key idea will be the idea of the mass of an operator, tensor, tractor,
or combination of these. The concept of mass will allow us to construct finite-
dimensional vector spaces of operators and classes of operators. We will also use
the concept of mass in Section 5.3, below, to estimate the order of a differential
operator. We define mass as follows. Let P be a symbolic formula which is poly-
nomial in na, Rab

c
d, gab, g

ab, the coupled Levi-Civita connection ∇, the splitting
operators Y A, ZAb, and XA, the tractor metric h, its co-metric h#, and real powers
of ξg . Suppose that the coefficients in this polynomial are real rational functions
of n which may depend polynomially on a weight w. We will say that Rab

c
d has

mass 2, ∇ and Y A have mass 1, na, gab, g
ab, ZAb, h, h#, and powers of ξg have

mass 0, and XA has mass −1. All coefficients in P will have mass 0. We define the
mass of any given term of P to be the sum of the masses of the expressions that
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appear in the term. In this paper, all of the terms in a given symbolic formula
P will always have the same mass, and we will say that this common mass is the
mass of P (or the mass of the operator, tensor, or tractor corresponding to P).

The use of (11), (12), and Figure 1 preserves mass. If one commutes covariant
derivatives, one typically generates terms containing curvatures, but these terms
have the same mass as the original expression. Recall that Lab = Πa

c∇cnb. Thus
Lab has mass 1, and hence H also has mass 1. From (20) it then follows NA has

mass 0. Similarly, XA has mass −1, ZAb has mass 0, δ, DA, ∇,
o

Lab, Y
A, CcA

B,
and LAB have mass 1, and δ2, ∆, �, Rabcd, Cabcd, Pab, J, Ωij

A
B, and WABCE have

mass 2. In Section 8, below, the operators in figures 2 and 3 have masses 3 and 4,
respectively.

In the proofs of propositions 4.6 and 4.9, below, we will use a certain technical
procedure which we now describe. Let a family of natural hypersurface operators
ψ be given, and suppose that ψ satisfies Hypotheses 4.1. Let w, c, n, and D be as
in Hypotheses 4.1, and let w = 0. Suppose there is an infinite set S ⊆ D such that
in all dimensions n ∈ S, ψ : E [0] → Ē [−c] is the zero operator. Letm ∈ D be given,
and also let the following be given and fixed: a Riemannian manifold (M, g) of
dimension m, a hypersurface Σ of M , a point p ∈ Σ, and a smooth function V on
M . Then (ξg)c(ψV )(p) is given by a symbolic formula. In this symbolic formula,
we have set n equal to m, but suppose we now replace m with an arbitrary integer
parameter n. (In the symbolic formula for (ξg)c(ψV )(p), we still keep (M, g), Σ, p,
and V fixed.) The result is a real rational function f of n. Of course f(m) is equal
to the original numerical value of (ξg)c(ψV )(p). In the proofs of propositions 4.6
and 4.9, our plan will be to show that f(n) = 0 for infinitely many n ∈ Z. The
key to doing this will be Proposition 4.2, below. The idea is to consider the action
of a natural operator in a given dimension and relate this action to the action of
the operator in other dimensions.

Proposition 4.2 will refer to the scale density ξg associated to a Riemannian
metric g as defined in Section 3.2, above. Proposition 4.2 will also refer to the
“natural” elevation of tensor indices. For ∇ and the unit conormal field, this
means that the index is down. The Riemannian curvature tensor naturally has
one index up and three indices down. For g, it is natural to have both indices up
or both down.

Proposition 4.2. Let a family of natural hypersurface operators ψ be given, and
suppose that ψ satisfies Hypotheses 4.1. Let c, D, and w be as in Hypotheses 4.1,
and suppose that w and n do not appear in the universal symbolic formula for ψ.
In this formula, suppose that all indices appear at their natural elevations, and
consider (ξg)cψ as acting on densities of weight zero only. For simplicity, we will
write ψ instead of (ξg)cψ. Let m, m′ ∈ D be given, and suppose that m < m′.
Finally, let a Riemannian manifold (M, g) of dimension m, a hypersurface Σ of
M , and V ∈ C∞(M) be given. Then there is a Riemannian manifold (M ′, r) of
dimension m′, a hypersurface Σ′ of M ′, and V ′ ∈ C∞(M ′) such that the following
holds: For all p ∈ Σ, there is a p′ ∈ Σ′ such that

(25) (ψV )(p) = (ψV ′)(p′) .
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The proof of Proposition 4.2 appears in Appendix A, below.
We now turn to the definition of two general families of natural operators and

one general family of operator classes. These families will lead to the bases that
we mentioned above. Let K ∈ Z>0, c, w ∈ R, and an infinite set D ⊆ Z>0 be given.
Let QK,c,w denote the set of all natural operators ψ : E [w] → Ē [w − c] of mass K
defined in all dimensions n ∈ D. We will assume that every ψ ∈ QK,c,w satisfies
all of the properties in Hypotheses 4.1 with the following exception: The value of
w is always equal to the fixed value given above. For this choice of w, ψ always
maps E [w] to Ē [w − c]. We will also assume that the coefficients in the symbolic
formula for ψ are independent of n. These coefficients are thus real constants.
We emphasise that every ψ ∈ QK,c,w is a rule which determines a hypersurface
operator for every hypersurface Σ in every Riemannian manifold (M, g) of every
dimension n ∈ D. We never consider ψ in dimensions n /∈ D. If ψ ∈ QK,c,w is zero,
this means that ψ is the zero operator in all dimensions n ∈ D. It is clear that
QK,c,w is a vector space over R.

Proposition 4.3. Let K ∈ Z>0 and c, w1, and w2 ∈ R be given, and define a
mapping Φ : QK,c,w1

→ QK,c,w2
as follows. For all ψ ∈ QK,c,w1

, let Φ(ψ) : E [w2] →
Ē [w2 − c] be the operator given by the universal symbolic formula for ψ. Then Φ
is a vector space isomorphism.

Proof. Note that Φ is clearly linear and surjective. To show that Φ is injective, let
ψ ∈ QK,c,w1

be given, and suppose that Φ(ψ) = 0. Also let V ∈ E [w1] be given.
Since powers of ξg are parallel, it follows that

ψV = (ξg)w1−w2ψ(ξg)w2−w1V = (ξg)w1−w2Φ(ψ)(ξg)w2−w1V = 0 .

Thus ψ is the zero element of QK,c,w1
, and Φ is injective. �

Now let K, c, w, and D again be as above. Let RK,c,0 denote the set of all
natural differential operators ψ : E [0] → Ē [−c] of mass K which satisfy all of the
properties of Hypotheses 4.1 except as follows. First, w will always be zero. Thus
every ψ ∈ RK,c,0 will always map E [0] to Ē [−c], and the coefficients in the universal
symbolic polynomial formula for ψ will be real rational functions of n. Also, in the
universal symbolic formula for any given ψ ∈ RK,c,0, we will allow the coefficients
to be singular in some dimensions n ∈ D. We will only consider ψ in dimensions
n ∈ D. It may be helpful to think of RK,c,0 as a set of symbolic operator formulae.

Let F denote the field of all real rational functions of n. We would like to
view RK,c,0 as a vector space over F , but singularities in elements of F make
this difficult. To overcome this difficulty, we define a new space as follows. For
each ψ1, ψ2 ∈ RK,c,0, we identify ψ1 and ψ2 if there is an n0 ∈ D such that in all
dimensions n ∈ D ∩ Z≥n0

, ψ1 and ψ2 are both regular and ψ1 = ψ2. Let SK,c,0

denote the set of equivalence classes that result from this identification. Then
SK,c,0 is clearly a vector space over F . For all ψ ∈ RK,c,0, let [ψ] denote the
equivalence class of ψ in SK,c,0. For any ψ ∈ RK,c,0, [ψ] is the zero element of
SK,c,0 if and only if there is an n0 ∈ D such that ψ is the zero operator in all
dimensions n ∈ D ∩ Z≥n0

.



22 A.R. GOVER AND L.J. PETERSON

We will find bases for QK,c,w and SK,c,0. We begin with QK,c,w. Let K, c, and
w be given, as above. Let S denote the set of all monomials Ig in na, Rab

c
d, gab,

g
ab, G, and ∇ which have the following properties. First, each Ig ∈ S has mass K

and coefficient 1. Each Ig determines a natural operator ψ : E [w] → Ē [w− c], and
this operator ψ satisfies Hypotheses 4.1 (but with the value of w fixed). In each
case, Ig has the properties of the universal symbolic formula for ψ discussed in
Hypotheses 4.1. We include the subscript g in the notation to indicate the metric
used to define na, Rab

c
d, G, and ∇ in the symbolic formula for Ig . This metric is

a representative of the conformal class used in the definition of gab and g
ab. One

can easily verify that there are only finitely many ways of constructing a monomial
Ig of the above type; the key to doing so is the fact that Ig must have mass K. It
follows that S is a finite set. Thus S = {Iα,g}α∈A1

, where A1 is a finite index set.
The set S clearly spans QK,c,w.

Proposition 4.4. Let {Iα,g}α∈A1
be as above. Then there is a finite set A ⊆ A1

such that {Iβ,g}β∈A is a basis for QK,c,w. The set A and the symbolic formulae for
the operators Iα,g are independent of w.

Proof. The claim that A and the symbolic formulae are independent of w follows
from Proposition 4.3. �

Corollary 4.5. Let {Iβ,g}β∈A be as above, and let ψ ∈ RK,c,0 be given. Then
ψ =

∑
β∈A fβ(n)Iβ,g, where for each β ∈ A, fβ(n) is some real rational function

of n. We may assume that the functions fβ(n) have the following property: If the
coefficients of ψ are regular in some dimension n0 ∈ D, then each function fβ(n)
is regular for n = n0.

Proof. Let S = {Iα,g}α∈A1
be as above, with w = 0. By using the ideas that

we discussed in our construction of this set, above, one can show that ψ =∑
γ∈A1

hγ(n)Iγ,g . Here each coefficient hγ(n) is a real rational function of n. By
Proposition 4.4, as applied to QK,c,0, there exist constants Cγ,β ∈ R such that for
all γ ∈ A1, Iγ,g =

∑
β∈ACγ,βIβ,g . Thus ψ =

∑
β∈A(

∑
γ∈A1

Cγ,βhγ(n))Iβ,g . �

Proposition 4.6. Let K ∈ Z>0 and c ∈ R be given, and let notation be as above.
Then {[Iβ,g ]}β∈A is a basis for SK,c,0.

Proof. Let ψ ∈ RK,c,0 be given. Then ψ =
∑

β∈A fβ(n)Iβ,g , by Corollary 4.5.

Here notation is as in the corollary. Thus [ψ] =
∑

β∈A fβ(n)[Iβ,g ], and we see that

{[Iβ,g ]}β∈A spans SK,c,0.
We will use proof by contradiction to show that {[Iβ,g ]}β∈A is linearly indepen-

dent. Suppose there is a set {fβ(n)}β∈A ⊆ F of real rational functions of n which
are not all zero such that

(26)
∑

β∈A

fβ(n)[Iβ,g ] = 0 .

We may assume that all of the functions fβ(n) are in fact polynomials in n. Let
ℓ denote the largest degree of any of these polynomials. Let A2 denote the set of
all β ∈ A such that fβ(n) is nonzero, and for all β ∈ A2, let dβ and bβ denote the
degree and lead coefficient, respectively, of fβ(n). Let A3 = {β ∈ A2 | dβ = ℓ}.
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By (26), there is an n0 ∈ D such that
∑

β∈A(1/n
ℓ)fβ(n)Iβ,g is the zero operator

in all dimensions n ∈ D ∩ Z≥n0
. Let a dimension m ∈ D be given. Also let

a Riemannian manifold (M, g) of dimension m, a hypersurface Σ in M , a point
p ∈ Σ, and V ∈ C∞(M) be given. Next, let n1 = max{n0, m}. Finally, let
m′ ∈ D∩Z>n1

be given. Then by Proposition 4.2, there is a Riemannian manifold
(M ′, r) of dimension m′, a hypersurface Σ′ of M ′, a function V ′ ∈ C∞(M ′), and a
point p′ ∈ Σ′ such that

(ξg)c

(
∑

β∈A2

fβ(m
′)

(m′)ℓ
Iβ,gV

)
(p) = (ξr)c

(
∑

β∈A2

fβ(m
′)

(m′)ℓ
Iβ,rV

′

)
(p′) = 0 .

Thus

0 = lim
n→∞

(ξg)c

(
∑

β∈A2

fβ(n)

nℓ
Iβ,gV

)
(p) = (ξg)c

(
∑

β∈A3

bβIβ,gV

)
(p) .

Since m ∈ D was arbitrary, it follows that
∑

β∈A3
bβIβ,g is the zero operator for all

m ∈ D. This contradicts the linear independence of {Iβ,g}β∈A in QK,c,0. �

When we work with QK,c,w, RK,c,0, and SK,c,0, operators will act on densities of
a fixed weight. But many of the operators in this paper will act on densities of
any weight. For some c ∈ R and every w ∈ R, these operators will map E [w] to
Ē [w− c]. To deal with such operators, we will need the following two propositions.

Proposition 4.7. Let K ∈ Z>0, c ∈ R, and a family of natural hypersurface
operators ψ : E [w] → Ē [w − c] of mass K be given, and suppose that ψ satisfies
Hypotheses 4.1. Suppose also that the universal symbolic formula for ψ does not
refer to w or to n. Finally, let {Iβ,g}β∈A be the basis for QK,c,0 described in
Proposition 4.4. Then there exist real constants Cβ such that for all w ∈ R,
ψ : E [w] → Ē [w − c] is given by the symbolic formula ψ =

∑
β∈A CβIβ,g.

Proof. Let w ∈ R be given, and let Φ : QK,c,w → QK,c,0 be as in Proposition 4.3.
The universal symbolic formula for ψ determines an element of QK,c,w, and there
are real constants Cβ such that Φ(ψ) =

∑
β∈A CβIβ,g . Since Φ is an isomorphism,

ψ : E [w] → Ē [w − c] satisfies ψ =
∑

β∈A CβIβ,g . But the universal formula for ψ
does not refer to w, so the constants Cβ are independent of w. It follows that for
all w ∈ R, ψ : E [w] → Ē [w − c] satisfies ψ =

∑
β∈A CβIβ,g . �

Proposition 4.8. Let K ∈ Z>0 and a family of natural operators ψ be given.
Suppose that this family satisfies Hypotheses 4.1 and that the operators ψ have
mass K. Let c and D be as in Hypotheses 4.1, and let {Iβ,g}β∈A be the basis for
QK,c,0 described in Proposition 4.4. Then there exist real functions fβ(w, n) such
that for all w ∈ R and all n ∈ D, ψ : E [w] → Ē [w − c] is given by the symbolic
formula ψ =

∑
β∈A fβ(w, n)Iβ,g. For each β ∈ A, fβ(w, n) is polynomial in w and

rational in n. If the parameter w does not appear in the universal formula for ψ,
then each function fβ(w, n) is independent of w.

Proof. The result follows from Proposition 4.7 and an argument similar to the one
we used in the proof of Corollary 4.5, above. �
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We will use the following proposition in Section 7, below.

Proposition 4.9. Let K ∈ Z>0 and c ∈ R be given. Let D be as above, and let
ψ ∈ RK,c,0 be given. Suppose that the coefficient of every term in the universal
symbolic formula for ψ is regular for every n ∈ D. Suppose also that for some
n1 ∈ Z>0, ψ is the zero operator in all dimensions n ∈ D ∩ Z>n1

. Then ψ is the
zero operator in all dimensions n ∈ D.

Proof. By Corollary 4.5, we may may write ψ =
∑

β∈A fβ(n)Iβ,g , where each co-

efficient fβ(n) is a real rational function of n. Here Iβ,g and A are as above. We
may assume that fβ(n) is regular at every n ∈ D.

Let m ∈ D be given. Also let a Riemannian manifold (M, g) of dimension
m, a hypersurface Σ in M , a point p ∈ Σ, and V ∈ C∞(M) be given. Let
n2 = max{m,n1}, and let m′ ∈ D ∩ Z>n2

be given. Then by Proposition 4.2,
there is a Riemannian manifold (M ′, r) of dimension m′, a hypersurface Σ′ of M ′,
a function V ′ ∈ C∞(M ′), and a point p′ ∈ Σ′ such that

(ξg)c

(
∑

β∈A

fβ(m
′)Iβ,gV

)
(p) = (ξr)c

(
∑

β∈A

fβ(m
′)Iβ,rV

′

)
(p′) = 0 .

Since m′ ∈ D ∩ Z>n2
was arbitrary, (ξg)c(

∑
β∈A fβ(m

′)Iβ,gV )(p) is a real ratio-
nal function of m′ which is zero for infinitely many distinct values of m′. Thus
(
∑

β∈A fβ(m)Iβ,gV )(p) = 0. Since p and V were arbitrary, it follows that ψ is the
zero operator in dimension n = m. �

5. Invariant operator constructions

along a hypersurface

The basic example of a conformal boundary operator is the conformal Robin
operator, as given by the formula (3). In this section, we develop the δK , δ

0
K

and δJ,k operator families that we discussed in Section 1, above. Each gives, for
most weights, higher-order analogues of δ. The first key observation is that the
conformal Robin operator is strongly conformally invariant, which means that by
coupling formula (3) to the tractor connection, we obtain a conformally invariant
operator along Σ which acts on any weighted tractor bundle. We thus obtain

(27) δ1 = δ : T Φ[w] → T Φ[w − 1]
∣∣
Σ

along Σ for any weight w. We use this to build the higher analogues of δ. These
new constructions will lead to solutions to problems 1.2 and 1.3. The motivation
for many steps of our procedure will center around the paramount Problem 1.3.
As we noted in Remark 3.3, above, we may identify conformally covariant and
conformally invariant operators. This will be an important point in what follows.

5.1. Preliminary work. As above, we work locally along a hypersurface Σ in a
Riemannian conformal manifold (M, c) with dim(M) = n ≥ 3. For convenience,
the normal field, second fundamental form, and so on are extended off Σ via
a foliation, as discussed in sections 3.1 and 3.3, above. All quantities are thus
defined on an open neighbourhood of Σ. We use that E is the same as the space
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of smooth sections of E [0]. We begin by introducing a generalisation of the set E
of Problem 1.2.

Definition 5.1. Let m ∈ Z>0, c ∈ R, and a family of natural hypersurface
differential operators ψ : T Φ[w] → T Φ[w − c]|Σ of order at most m be given. Let
E(ψ) denote the set of all weights w such that ψ fails to have transverse order m.

The set E(ψ) of Definition 5.1 may depend on n. When we discuss E(ψ) in
this paper, the value of m will always be clear from the context. If m = 0, then
E(ψ) = ∅. We will always find that E(ψ) is independent of the bundle T Φ.

The first main step in our operator constructions will be to define the δK operator
family. We need some additional definitions and terminology that we introduce
now.

Definition 5.2. Let m ∈ Z≥3, a set D ⊆ Z≥3, and a family of natural differential
operator ψ be given, and suppose that ψ is well-defined in all dimensions n ∈ D.
Also suppose that ψ has order at most m in all dimensions n ∈ D and for operands
of all possible weights. Then lots and ltots will denote terms in a universal symbolic
formula for ψ which, in all dimensions n ∈ D and for operands of all possible
weights, have order less than m and transverse order less than m, respectively.

To simplify our discussions it will be convenient to introduce a notion that is
very specific to the details of the formulae that we use. First observe that a
symbolic formula for a natural differential operator may involve terms that move
tractor indices in a way that we now describe. Let T ab ∈ Eab be given, and define
an operator ψ : T A[w] → T A[w]|Σ by letting

(28) ψV A = T ab∇a∇bV
A

for all V A ∈ T A[w]. Then

(29) ψV A = T ab∇b∇aV
A + T abΩab

A
BV

B ,

by (12). In one term of (29), the tractor index A has moved off of V and onto
Ω. We say that the operator formula given by the right-hand side of (29) moves
tractor indices. The formula given by the right-hand side of (28) fixes tractor
indices. One can extend these ideas to other operators and to tractor bundles
of higher rank in the obvious way. We emphasise that the property of fixing or
moving tractor indices is a property of an operator formula and not a property of
an operator.

At many points in our operator constructions, we will work with a symbolic
operator formula which satisfies the following hypotheses:

Hypotheses 5.3. The symbolic operator formula fixes tractor indices and is a
polynomial in na, Rab

c
d, gab, g

ab, H, and the coupled Levi-Civita tractor connection
∇. The coefficients of this polynomial are real functions of w and n which are
polynomial in w and rational in n. Within the symbolic operator formula, ∇ never
explicitly hits na or H. For some c ∈ R, the symbolic operator formula defines a
family of natural differential operators ψ : T Φ[w] → T Φ[w − c]

∣∣
Σ
.
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All of our operator constructions will begin with the operator family δK of the
following lemma.

Lemma 5.4. For any j ∈ Z≥0, let K = j + 1. Then the formula

(30) δj+1 := NA1NA2 · · ·NAjδDA1
DA2

· · ·DAj

defines a family of natural hypersurface operators δK : T Φ[w] → T Φ[w −K]
∣∣
Σ
of

mass K. These operators are conformally invariant and may be given by a uni-
versal symbolic formula which satisfies Hypotheses 5.3 and is polynomial in n.

Proof. The claims of the lemma are clear by the formulae of (3), (11), (15), (20),
(27), and Figure 1. �

We will show that δK has order at most K, and we will find E(δK). To do this,
we will need several results. For any k ∈ Z>0, let ∇k

n denote na1 · · ·nak∇a1 · · ·∇ak ,
where ∇ is the coupled Levi-Civita tractor connection. This operator has trans-
verse order k.

Lemma 5.5. Let s ∈ R and k ∈ Z>0 be given. Then for any V ∈ T Φ[s],

(31) NA∇k
nDAV = (n+ 2s− 2− k)∇k+1

n V + k(∇k+1
n −∇k−1

n ∆)V + lots .

Here the lots can be given by a symbolic formula which satisfies Hypotheses 5.3.

Proof. This is a trivial consequence of the formula (15) for the tractor D-operator.
Verification in detail uses (11), (20), and the rules for the tractor metric given in
Figure 1. �

We want to base an induction around this result. To do this, we must deal with
terms similar to those in the second expression on the right-hand side of (31). The
following is result is easily verified.

Lemma 5.6. Let nonnegative integers p, q, r, s, and k be given, and suppose
p+ 2q = r + 2s = k > 0. Then ∇p

n∆
q −∇r

n∆
s, as an operator acting on densities

or weighted tractors, is an operator of transverse order less than k.

Our induction will also require the following lemma.

Lemma 5.7. Let K ∈ Z>0, c ∈ R, and a family of natural differential operators
Op : T Φ[w] → T Φ[w − c]

∣∣
Σ

be given, and suppose that Op can be given by a
symbolic formula which satisfies Hypotheses 5.3. Suppose also that, for all w ∈ R,
Op has order at most K. Then NAOpDA can also be given by a symbolic formula
which satisfies Hypotheses 5.3, and when acting on tractors of any weight w ∈ R,
this operator has order at most K + 1. For any given w ∈ R, if Op : T Φ[w] →
T Φ[w − c]

∣∣
Σ
has transverse order at most K − 1, then for this value of w,

NAOpDA : T Φ[w + 1] → T Φ[w − c]
∣∣
Σ

has transverse order at most K.

Proof. The result follows from (11), (15), (20), and Figure 1. The key points are as
follows. First, the leading part of DA is −XA∆. We may assume that Op is given
by a symbolic formula which satisfies Hypotheses 5.3, so in the symbolic formula
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for −NAOpXA, we may assume that the tractor indices A are in the locations
shown. But NAXA = 0, so in −NAOpXA, we may assume that at least one ∇
hits XA. It follows that −NAOpXA is an operator of order at most K + 1.

Now let w ∈ R be given, and suppose that Op : T Φ[w] → T Φ[w − c]
∣∣
Σ
has

transverse order at most K−1. To complete the proof of the lemma, we will show
that NAOpDA : T Φ[w+1] → T Φ[w − c]

∣∣
Σ
has transverse order at most K. To do

this, we need only consider the leading part −XA∆ of DA. As above, we assume
that the symbolic formula for Op satisfies Hypotheses 5.3, so we may write

Op = T i1i2...iK∇i1∇i2 . . .∇iK + lots ,

for some component functions T i1i2...iK . Let a defining function t for Σ and a
section V of T Φ[w + 1] be given, and consider

(32) NAT i1...iK∇i1 . . .∇iK (−XA∆t
K+1V ) .

Along Σ, this is a linear combination of terms of the form

(33) NAT i1...iK (−ZAia)(∇i1t) · · · (∇iât) · · · (∇iK t)(∇jt)(∇
jt)V .

Here â indicates omission of (∇iat). By (2), ∇it is (ξ
g)−1ni, up to multiplication

by a nowhere zero function, so (33) is equal to

(34) − (ξg)−Kni1 · · ·niKT
i1...iK (ξg)−1V ,

up to a nonzero scale. But (34), and hence also (32), vanish along Σ, since Op :
T Φ[w] → T Φ[w − c]

∣∣
Σ
has transverse order at most K − 1. �

Proposition 5.8. Let K ∈ Z>0 be given. Then for every real number w, δK :
T Φ[w] → T Φ[w −K]|Σ has order at most K, and along Σ,

(35) δK =
[K−1∏

i=1

(n+ 2w −K − i)
]
∇K

n + ltots .

Here the ltots can by given by a symbolic formula which satisfies Hypotheses 5.3.
If K = 1, we take the explicit product in (35) to be 1.

Proof. This follows by induction and lemmas 5.5, 5.6, and 5.7. �

Let K ∈ Z>0 be given. By Proposition 5.8, it follows that E(δK) is the set of all

w that solve
∏K−1

i=1 (n+ 2w −K − i) = 0. Thus E(δ1) = ∅, and for any K ∈ Z≥2,

(36) E(δK) =

{
2K − 1− n

2
,
2K − 2− n

2
, · · · ,

K + 1− n

2

}
.

For all w ∈ R\E(δK), the operator δK has transverse order K, and for all w ∈
E(δK), it has transverse order less than K. Note that if n = K + 1, then 0 is
an exceptional weight. Our solutions to Problem 1.3 will therefore require some
additional work, as we noted above. One of the keys to our work will be Proposi-
tion 5.10, below. In this proposition, P2k : E [k−n/2] → E [−k−n/2] is the GJMS
operator of [41] of order 2k. To ensure that this operator exists, we assume that
n, k, and (M, c) satisfy the following condition:
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Condition 5.9. (1) n is odd, or (2) n is even and k ≤ n/2, or (3) (M, c) is
conformally flat.

We will refer to Condition 5.9 at several points in our work.

Proposition 5.10. Let k ∈ Z>0 be given. There is a family of natural conformally
invariant differential operators

Pk
A1···Ak−1

: E [k − n/2] → TA1···Ak−1
[−1− n/2]

such that for any V ∈ E [k − n/2],

(37) (−1)k−1XA1
· · ·XAk−1

P2kV = �DA1
· · ·DAk−1

V + Pk
A1···Ak−1

V .

These operators are well-defined for all n and (M, c) which satisfy Condition 5.9.
For the case in which k ∈ {1, 2} or (M, c) is conformally flat, Pk

A1···Ak−1
= 0. In

other cases, Pk
A1···Ak−1

= Ψk
A1···Ak−1

PQDPDQ, where Ψk
A1···Ak−1

PQ is given by a
universal symbolic tractor formula. This formula is a polynomial in X, D, W , h,
and h# whose coefficients are real rational functions of n. Similarly, Pk

A1···Ak−1

is also given by such a tractor formula; every term of this formula is of degree at
least 1 in W and has mass k + 1 and weight −k − 1. In every term of the tractor
formula for Pk

A1···Ak−1
, at least one of the indices A1, . . . , Ak−1 appears on a W .

Proof. The proposition follows from a careful study of the statement and proof of
Proposition 4.5 of [35]. Note thatWABCE vanishes if (M, c) is conformally flat. �

Remark 5.11. The proof of Proposition 5.10 uses the tractor formula for P2k

described in [35]. The construction of this tractor formula in general involves a
finite number of choices; we assume that we have made and fixed these choices.
As a result, the operators Pk

A1···Ak−1
and Ψk

A1···Ak−1

PQ of Proposition 5.10, as
well as all operators and curvatures derived from them, will always be uniquely
determined.

5.2. Refining the boundary family in the conformally flat case. In the
conformally flat case, it turns out that for every second weight in (36), δK is the
zero operator. Dividing δK by the corresponding factors yields an improved family
of operators. We state this precisely as follows.

Theorem 5.12. Let K ∈ Z>0 be given. There is a family of natural conformally
invariant differential operators δ0K : E [w] → Ē [w − K] of order at most K on
conformally flat conformal manifolds (M, c) of dimension n ≥ 3 determined by
the equation

[ ⌊
K−1

2
⌋∏

j=1

(n+ 2w − 2K + 2j)
]
δ0K = δK

and polynomial continuation in w. Here ⌊(K − 1)/2⌋ denotes the integer part of
(K − 1)/2. The δ0K family satisfies Hypotheses 4.1 with D = Z≥3.

Proof. We may assume that K ≥ 3. We will apply the results of Section 4 with
D = Z≥3. Let {Iβ,g}β∈A be the basis for QK,K,0 described in Proposition 4.4.
By Proposition 4.8, we may write δK =

∑
β∈A fβ(w, n)Iβ,g. Here each coefficient
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fβ(w, n) is a polynomial in w whose coefficients are real rational functions of n.
By the polynomial division algorithm from elementary algebra, we may thus write

(38) fβ(w, n) =
[ ⌊

K−1

2
⌋∏

j=1

(n+ 2w − 2K + 2j)
]
qβ,n(w) + rβ,n(w) .

Here qβ,n(w) and rβ,n(w) are polynomials in w whose coefficients are real rational
functions of n. In performing the polynomial division, we are dividing by a poly-
nomial with leading term 2bwb, where b = ⌊(K−1)/2⌋. It follows that qβ,n(w) and
rβ,n(w) are regular at all n ∈ D, and rβ,n(w) has degree less than ⌊(K − 1)/2⌋.

Now let j ∈ Z and V ∈ E [K − j − n/2] be given, and suppose that 1 ≤ j ≤
⌊(K − 1)/2⌋. An easy computation shows that j < K − j. By (30),

(39) δKV = NAjNAj+1 · · ·NAK−1δjDAj
DAj+1

· · ·DAK−1
V .

By (15), (16), and Proposition 5.10,

(40) (−1)K−jXAj
XAj+1

· · ·XAK−1
P2(K−j)V = DAj

DAj+1
· · ·DAK−1

V .

Next, note that NAXA = 0, by (20) and Figure 1. Also note that δj has order at
most j, by Proposition 5.8. Thus δKV = 0, by (39) and (40).

Now let V0 ∈ E [0] be given, and let j be as above. Then

δK(ξ
g)K−j−n/2V0 =

∑

β∈A

fβ(K − j − n/2, n)Iβ,g(ξ
g)K−j−n/2V0 = 0

along Σ. But ∇((ξg)K−J−n/2) = 0, so
∑

β∈A fβ(K− j−n/2, n)Iβ,gV0 = 0 along Σ.

For all β ∈ A, Iβ,g determines an element [Iβ,g ] of SK,K,0. Since V0 was arbitrary,
our work shows that

∑
β∈A fβ(K − j − n/2, n)[Iβ,g ] is the zero element of SK,K,0.

Thus by Proposition 4.6, it follows that fβ(K − j − n/2, n) = 0 for all β ∈ A and
all n ∈ Z. But then rβ,n(K − j − n/2) = 0 for all β ∈ A and all n ∈ D, by (38).
Let β ∈ A be given. Then for all n ∈ D, rβ,n(w) is a polynomial in w having
⌊(K−1)/2⌋ distinct zeros. The coefficients of this polynomial are thus zero for all
n ∈ D and hence for all n ∈ Z. Thus rβ,n(w) = 0 for all w ∈ R and all n ∈ Z.

We now let δ0K =
∑

β∈A qβ,n(w)Iβ,g . A polynomial continuation argument shows
that for all w ∈ R, this operator is well-defined and conformally invariant. �

Corollary 5.13. Let E(δ0K) be as in Definition 5.1. Then E(δ01) = ∅, and for all
K ∈ Z≥2,

E(δ0K) =
{

2K−1−n
2

, 2K−1−n
2

− 1, · · · , 2K−1−n
2

−
⌊
K−2
2

⌋}
.

For all w ∈ R\E(δ0K), the operator δ0K has transverse order K, and for all w ∈
E(δ0K), it has transverse order less than K.

Proof. By Theorem 5.12 and Proposition 5.8, it follows that

(41)
[ ⌊K−1

2
⌋∏

j=1

(n + 2w − 2K + 2j)
]
δ0K =

[K−1∏

i=1

(n + 2w −K − i)
]
∇K

n + ltots .
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By Proposition 4.8, ltots =
∑

β∈A hβ(w, n)Iβ,g . Here A and Iβ,g are as above.

Each coefficient hβ(w, n) is a polynomial in w whose coefficients are real rational
functions of n. By reasoning as in the proof of Theorem 5.12, we find that

ltots =
[ ⌊K−1

2
⌋∏

j=1

(n+ 2w − 2K + 2j)
]∑

β∈A

sβ,n(w)Iβ,g ,

where sβ,n(w) is polynomial in w and rational in n. Polynomial continuation in w
shows that for all w ∈ R, the operator

∑
β∈A sβ,n(w)Iβ,g has transverse order less

than K. To obtain δ0K , we divide (41) by the coefficient of δ0K on the left-hand side
of (41). The corollary then follows. �

We will use Corollary 5.13 to identify a critical operator in the proof of Theo-
rem 7.10, below.

5.3. The refinement in the general case. We now consider arbitrary metrics
and develop an additional refinement of δK : E [w] → Ē [w −K]. The key to this
new construction will be the operator family PA1···Ak

of Proposition 5.14, below.
In the definition of δK in (30), we will replace some of the D-operators with
PA1···Ak

. Then, depending on parameters, we will divide the resulting operator
by a polynomial in w in much the same way as we did in our construction of δ0K ,
above. Under certain conditions, this polynomial will be (n+2w−1−K). Suppose
that we do in fact divide by (n+ 2w− 1−K). Then for cases in which n is even,
K = n− 1, and w = 0, the refined operator will be a critical operator.

The key to the construction of PA1···Ak
is the operator family Pk

A1···Ak−1
of Propo-

sition 5.10. In that proposition, Pk
A1···Ak−1

acts on a section of E [k − n/2]. Any
symbolic tractor formula for Pk

A1···Ak−1
, however, determines a family of confor-

mally invariant differential operators on E [w] for general weights w ∈ R. In the
next proposition, we will use this fact to construct PA1···Ak

.

Proposition 5.14. Let k ∈ Z>0 be given. By using the symbolic formula for
Pk

A2···Ak
, define a family of operators

PA1···Ak
: E [w] → TA1···Ak

[w − k]

by letting

(42) PA1···Ak
V = DA1

. . .DAk
V −XA1

Pk
A2···Ak

V

for all V ∈ E [w]. Then for any V ∈ E [k − n/2],

(43) PA1···Ak
V = (−1)kXA1

· · ·XAk
P2kV .

The operators PA1···Ak
are conformally invariant natural differential operators given

by a universal symbolic formula which is a polynomial in g, Y , Z, X, h, h#, ∇,
and the Riemannian curvature of g, where g is a representative of the conformal
structure on M . The coefficients of this polynomial are polynomial in w and ra-
tional in n, and each term of the polynomial has mass k. The operators PA1···Ak

are well-defined for all n and (M, c) which satisfy Condition 5.9.
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Proof. Let V ∈ E [k − n/2] be given. By (15) and (37), it follows that

(−1)kXA1
· · ·XAk

P2kV = DA1
· · ·DAk

V −XA1
Pk

A2···Ak
V .

Thus (43) holds. The other claims of the proposition follow from (13), (14), (15),
and Proposition 5.10. �

Our new refinement of δK will require additional groundwork. For any E ⊆ R

and x ∈ R, let E + x = {y + x | y ∈ E}.

Lemma 5.15. Let J ∈ Z>0, a real number c, and a family of natural differential
operators Op : T Φ[w] → T Φ[w − c]

∣∣
Σ
be given. Suppose that Op has mass J and

order at most J and can be given by a universal symbolic formula which satisfies
Hypotheses 5.3. Suppose also that Op has transverse order less than J for all
w ∈ E(Op). Then there exist families of natural differential operators O1 and O2

having the following properties:

(1) For all w ∈ R, O1 and O2 map T Φ[w] to T Φ[w − c− 1]
∣∣
Σ
.

(2) NAOpDAV = (n+ 2w − 2− J)O1V +O2V for all sections V ∈ T Φ[w].
(3) O1 and O2 have mass J + 1 and order at most J + 1 and can be given by

universal symbolic formulae which satisfy Hypotheses 5.3.
(4) O1 has transverse order less than J + 1 for all w ∈ E(O1), and E(O1) =

E(Op) + 1.
(5) For all w ∈ R, O2 has transverse order less than J + 1.

Proof. Let w ∈ R be given. We will assume that Op is given by a symbolic formula
which satisfies Hypotheses 5.3. Thus Op = T i1...iJ∇i1 . . .∇iJ + lots, where T i1...iJ

are some component functions. By Lemma 5.7, NAlotsDA is an operator of order
less than J + 1, which we include in O2. Let V ∈ T Φ[w] and a defining function t
for Σ be given, and consider the behaviour of NAT i1...iJ∇i1 . . .∇iJDAt

J+1V along
Σ. We consider the various parts of DA, beginning with −XA∆. Along Σ, we have
(44)

NAT i1...iJ∇i1 . . .∇iJ (−XA)∆t
J+1V =

−
∑J

a=1(J + 1)!NAT i1...iJZAiag
kl(∇i1t) · · · (∇iât) · · · (∇iJ t)(∇kt)(∇lt)V =

−
∑J

a=1(J + 1)!niaT
i1...iJg

kl(∇i1t) · · · (∇iât) · · · (∇iJ t)(∇kt)(∇lt)V .

Here â denotes omission of the factor. By (17),

niag
kl(∇kt)∇lt =

∇iat

|dt|g
g
kl(∇kt)∇lt = (∇iat)g

kl(∇kt)nl = (∇iat)n
k∇kt .

Thus by (44),

NAT i1...iJ∇i1 . . .∇iJ (−XA)∆t
J+1V =

−J(J + 1)!T i1...iJnk(∇i1t) · · · (∇iJ t)(∇kt)V

along Σ.
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Now consider the part of DA corresponding to (n + 2w − 2)ZA
k∇k. Along Σ,

we have

NAT i1...iJ∇i1 . . .∇iJ (n+ 2w − 2)ZA
k∇kt

J+1V =

(n+ 2w − 2)T i1...iJnk∇i1 . . .∇iJ∇kt
J+1V =

(n+ 2w − 2)(J + 1)!T i1...iJnk(∇i1t) · · · (∇iJ t)(∇kt)V .

Thus
NAT i1...iJ∇i1 . . .∇iJDAt

J+1V =

(n + 2w − 2− J)(J + 1)!T i1...iJnk(∇i1t) · · · (∇iJ t)(∇kt)V

along Σ. Let O1 := T i1...iJnk∇i1 . . .∇iJ∇k. Then

NAT i1...iJ∇i1 . . .∇iJDA =

(n + 2w − 2− J)O1 +NAT i1...iJ∇i1 . . .∇iJDA − (n + 2w − 2− J)O1 .

The indicated sum of the second and third operators on the right-hand side of this
equation is an operator of transverse order less than J + 1, by our above work,
and we include this operator in O2.

Let w ∈ R\(E(Op )+1) and p ∈ Σ be given, and choose a section V of T Φ[w−1]
such that T i1...iJ∇i1 . . .∇iJ t

JV is nonzero at p. Then T i1...iJ (∇i1t) · · · (∇iJ t)V is
nonzero at p. Thus O1t

J+1ξgV is nonzero at p, and hence w ∈ R\E(O1).
Finally, let w ∈ E(Op ) + 1 and V ∈ T Φ[w] be given. Along Σ, we have

(45) O1t
J+1V = (J + 1)nk(∇kt)ξ

gT i1...iJ∇i1 . . .∇iJ t
J (ξg)−1V .

But w − 1 ∈ E(Op ), and Op has transverse order less than J for all weights in
E(Op ). It follows that (45) vanishes along Σ. Thus w ∈ E(O1), and O1 : T Φ[w] →
T Φ[w − c− 1]|Σ has transverse order less than J + 1. �

The following theorem gives our refinement of δK in the general case.

Theorem 5.16. Let J, k ∈ Z>0 be given. There is a family of natural conformally
invariant differential operators δJ,k : E [w] → Ē [w − k − J ] determined as follows.
For k ≤ J ,

δJ,k = NA1 · · ·NAkδJPA1···Ak
.

If k > J , then δJ,k is determined by the equation

(n+ 2w − 2k)δJ,k = NA1 · · ·NAkδJPA1···Ak

and polynomial continuation in w. The δJ,k family satisfies Hypotheses 4.1, and
the operators δJ,k have mass J + k and order at most J + k and are well-defined
for all n and (M, c) which satisfy Condition 5.9. Moreover,

(46) E(δJ,k) = E(δJ+k)\{k − n/2} ,

and δJ,k has transverse order J+k for all w ∈ R\E(δJ,k) and transverse order less
than J + k for all w ∈ E(δJ,k).

Proof. Suppose first that k > J and suppose also that V ∈ E [k − n/2]. Then by
Proposition 5.14,

NA1 · · ·NAkδJPA1...Ak
V = NA1 · · ·NAkδJ(−1)kXA1

· · ·XAk
P2kV .
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This is zero along Σ, since NAXA = 0. We will use this later in the proof.
Now consider general positive integers J and k. Let w ∈ R be given, and suppose

that V ∈ E [w]. By the definition of PA1...Ak
,

(47)
NA1 · · ·NAkδJPA1...Ak

V =

NA1 · · ·NAkδJDA1
. . .DAk

V +NA1 · · ·NAkδJ(−XA1
Pk

A2···Ak
V ) .

If Pk
A2···Ak

is nonzero, then every term of Pk
A2···Ak

V contains at least one occur-
rence of the tractor curvature W . We may use (13), (14), and (15) to expand all
occurrences ofW and the tractor D-operator in the second term on the right-hand
side of (47). We may then use the rules in Figure 1 to eliminate all occurrences
of X , Y , and Z in the resulting expression. By (13) and (14), each of the result-
ing terms will contain at least one occurrence of the Weyl tensor or the Schouten
tensor. Since each term of (47) has mass J + k, it follows that the second term on
the right-hand side of (47) has order less than J + k for all w ∈ R. This second
term satisfies the conditions in Hypotheses 4.1.

By lemmas 5.7 and 5.15,
(48)

NA1 · · ·NAkδJDA1
. . .DAk

V =
[∏k

i=1(n+ 2w − 2k + i− 1− J)
]
O1V +O2V

for some natural operators O1 and O2 of mass J + k and order at most J +
k. The operators O1 and O2 may be given by symbolic formulae which satisfy
Hypotheses 5.3. The operator O1 has transverse order less than J + k for all
w ∈ E(O1), and E(O1) = E(δJ ) + k. The operator O2 has transverse order less
than J + k for all w ∈ R. By (47) and (48),

(49)
NA1 · · ·NAkδJPA1···Ak

V =[∏k
i=1(n + 2w − 2k + i− 1− J)

]
O1V +O2V + lots .

Suppose now that k ≤ J , and let S denote the set of all w for which the
explicit product in (49) is zero. Then E(δJ,k) = S ∪ (E(δJ) + k). By (36) and an
algebraic exercise, it follows that E(δJ,k) = E(δJ+k). Since k ≤ J , it follows that
k − n/2 /∈ E(δJ+k). Thus (46) holds in the case k ≤ J .

Now suppose instead that k > J . Let O2V +lots be as in (49). Then O2V +lots =
O3V for some natural operator O3 of mass J + k. We apply Proposition 4.8 with
K = c = J + k. We conclude that O3 =

∑
β∈A fβ(w, n)Iβ,g , where A and Iβ,g are

as in Proposition 4.8. Here fβ(w, n) is a polynomial in w whose coefficients are
real rational functions of n. By the polynomial division algorithm from elementary
algebra, we may write

fβ(w, n) = (n + 2w − 2k)qβ,n(w) + rβ,n

for each β ∈ A. Here qβ,n(w) is a polynomial in w whose coefficients are real
rational functions of n, and rβ,n is a real rational function of n. We are dividing by
a polynomial whose leading term is 2w. Thus if fβ(w, n) is regular at some value
of n, then qβ,n(w) and rβ,n are also regular for this value of n.
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We now work with the same operator formula, but we trivialise the density
bundles as in Section 4. So we operate now on V0 ∈ E [0]. Then

O3(ξ
g)k−n/2V0 =

∑

β∈A

fβ(k − n/2, n)Iβ,g(ξ
g)k−n/2V0 = 0

along Σ, by (49) and our work at the beginning of this proof. Since ∇((ξg)k−n/2) =
0, it follows that

∑
β∈A fβ(k − n/2, n)Iβ,gV0 = 0 along Σ. For each β ∈ A, Iβ,g

determines an element [Iβ,g ] of SJ+k, J+k,0. Since V0 ∈ E [0] was arbitrary, it follows
that

∑
β∈A fβ(k − n/2, n)[Iβ,g ] is the zero element of SJ+k, J+k, 0. Thus by Propo-

sition 4.6, we see that fβ(k − n/2, n) = rβ,n = 0 for all β ∈ A and all n ∈ Z. We
may therefore conclude that

O3 = (n+ 2w − 2k)
∑

β∈A

qβ,n(w)Iβ,g

for general weights w. Let O4 =
∑

β∈A qβ,n(w)Iβ,g . We may then let

δJ,k :=
[∏k

i=1, i 6=J+1(n+ 2w − 2k + i− 1− J)
]
O1 +O4 .

Polynomial continuation in w shows that if w = k − n/2, then O4 has transverse
order less than J + k. Thus O4 has transverse order less than J + k for all w ∈ R.
This establishes (46). Polynomial continuation also shows that δJ,k is well-defined
and conformally invariant. �

A simple key case is as follows.

Corollary 5.17. Let n0 ∈ Z≥4 and n ∈ Z≥3 be given. Also let J = ⌊(n0 − 2)/2⌋,
and let k = ⌊(n0 + 1)/2⌋. Suppose that k, n, and c satisfy Condition 5.9. Then
for all w ∈ R, δJ,k : E [w] → Ē [w − n0 + 1] is well-defined and has order at most
n0 − 1.

Now suppose in addition that n = n0. If the dimension n is odd, then E(δJ,k) =
{0} ∪ {i/2 | 2 ≤ i ≤ n− 3, i ∈ Z}. On the other hand, if n is even, then E(δJ,k) =
{i/2 | 1 ≤ i ≤ n− 3, i ∈ Z}.

We will use Corollary 5.17 to identify a critical operator in the proof of Theo-
rem 7.10, below.

6. Conformal Dirichlet-to-Neumann Operators

In this section, we construct conformally invariant Dirichlet-to-Neumann oper-
ators on a Riemannian conformal manifold with boundary (M,Σ, c). Our con-
struction uses the GJMS operators P2k on (M, c) and the hypersurface operator
families of this paper. We begin with some groundwork in Section 6.1. We use
standard theory of elliptic boundary problems as in [44, 46]; a summary of the key
results needed from those sources is given in [6, Section 6].
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6.1. Formally self-adjoint boundary problems. For any K ∈ Z>0, we will use
δTK to denote any of the operators of order and transverse order K from Lemma 5.4
and theorems 5.12 and 5.16, above, as available according to context. For any
w ∈ R, let δT0 : E [w] → Ē [w] be given by δT0 u = u|Σ. We also let δ0 denote δ

T
0 . The

following lemma describes some cases in which the operators δTK are available.

Lemma 6.1. Let a positive integer k be given, and suppose n, k, and (M, c) satisfy
Condition 5.9. Let i ∈ Z be given, and suppose that 0 ≤ i ≤ 2k− 1. Then there is
an operator δTi : E [k − n/2] → Ē [k − n/2 − i] of order and transverse order i. In
particular, k − n/2 /∈ E(δTi ).

Proof. If i = 0, let δTi = δ0. Now suppose instead that 1 ≤ i ≤ k. Then k − n/2 /∈
E(δi), by (36), so we may let δTi = δi. Finally, suppose that k+1 ≤ i ≤ 2k−1. Let
j = i− k. Then k − n/2 /∈ E(δj,k), by Theorem 5.16, so we may let δTi = δj,k. �

LetM be a compact conformal n-manifold with smooth boundary Σ = ∂M . Re-
call that a boundary problem (A,B) is formally self-adjoint (FSA), or symmetric,
if and only if ∫

M

[(Au)v − uAv] = 0

whenever Bu = Bv = 0 on Σ.
Recall that each GJMS operator P2k : E [k− n/2] → E [−k− n/2] is conformally

invariant and FSA [27, 42]. For each such GJMS operator, we will consider the
associated conformal generalised Dirichlet problem (P2k, B), where B is the multi-
boundary operator

(50) B = (δT0 , δ
T
1 , · · · , δ

T
k−1) .

We will need the following observation.

Lemma 6.2. Let k ∈ Z>0 and a section u of E [k − n/2] be given. Suppose that u
is in the kernel of B, i.e.

0 = δT0 u = δT1 u = · · · = δTk−1u along Σ .

Then the (k − 1)-jet of u is zero at every point of Σ.

Proof. Let s be any local defining function for Σ. We will use induction to show
that for all ℓ ∈ {1, 2, . . . , k}, there is a smooth section uℓ of E [k − n/2] such that
u = sℓuℓ. Let c ∈ {2, 3 . . . , k} be given, and suppose that u = sc−1uc−1 for some
uc−1 ∈ E [k − n/2]. Then along Σ, δTc−1u = F i1···ic−1(∇i1s) · · · (∇ic−1

s)uc−1 = 0 for
some component functions F i1···ic−1. Since δTc−1 has transverse order c − 1 in this
context, it follows that uc−1 = suc for some section uc of E [k − n/2]. �

This leads to the following result.

Theorem 6.3. Let k ∈ Z>0 be given, and let B be as in (50). Suppose that
n, k, and (M, c) satisfy Condition 5.9. Then the conformal generalised Dirichlet
problem (P2k, B) is FSA.
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Proof. Let sections u and v of E [k − n/2] be given, and fix a metric g ∈ c for the
purpose of calculating. Since P2k is FSA, we have

(51)

∫

M

[(P2ku)v − uP2kv] =

∫

Σ

skP2k
(u, v) ,

where skP2k
(u, v) is a skew bilinear form on the Cauchy data and its tangential

derivatives at the boundary Σ. To see this, repeatedly integrate terms of the
left-hand side of (51) by parts in the usual way. All integrals over M eventually
cancel out, and the boundary integral of a bilinear form b(u, v) remains. But this
boundary integral is skew-symmetric in u and v, so in this integral, we may replace
b(u, v) with its skew part. In each term of skP2k

(u, v), either u or v is differentiated
at most k − 1 times, so the result follows from Lemma 6.2. �

To construct our conformal Dirichlet-to-Neumann operators, we will work with
well-posed boundary problems, in particular, boundary problems which satisfy
the so-called Lopatinski-Shapiro condition (see e.g. [1, 6, 46]). We will assume
thatM is compact with nonempty boundary Σ. We define the Lopatinski-Shapiro
condition below. We will use the definition given in [6]. Our definition begins with
the idea of elliptic and properly elliptic operators. Let a differential operator A of
order j acting on E [w] be given, and let aj(x, ξ) denote the leading symbol of A.
We say that A is elliptic if there is a constant C > 0 such that |aj(x, ξ)| ≥ C|ξ|j

on M . Here |ξ|2 = g
abξaξb. In this context, we will always assume that j is even.

Now consider arbitrary x ∈ Σ and ηa ∈ Ea, as well as the polynomial p(τ) =
aj(x, ηa + τna). We say that A is properly elliptic if for all x ∈ Σ and all ηa not
parallel to na at x, the zeros of p(τ) are separated by the real axis. This means
that one may label the zeros as τ±i , for i = 1, . . . , j/2, and do this in such a way
that Im τ+i > 0 and Im τ−i < 0 for all i.

We may now define the Lopatinski-Shapiro condition. Let k ∈ Z>0, a properly
elliptic differential operator A of order 2k, and a multi-boundary operator O =
(O1, . . . , Ok) be given. For each i, suppose that Oi has order mi and leading
symbol bi(x, ξ). Suppose also that 0 ≤ m1 < m2 < · · · < mk < 2k. For every
i ∈ {1, . . . , k}, let pi(τ) = bi(x, ηa + τna). Let τ+i be as above, and let M+ =
Πk

i=1(τ − τ+i ). Let I denote the principal ideal in C[τ ] generated by M+. Each
f(τ) in C[τ ] determines an element [f(τ)] of C[τ ]/I. We say that (A,O) satisfies
the Lopatinski-Shapiro condition if, for all x ∈ Σ and all ηa not parallel to na at
x, the elements [pi(τ)] are linearly independent in C[τ ]/I.

If n, k, and c satisfy Condition 5.9, then P2k is elliptic and properly elliptic.
If A = P2k, then there is an α ∈ C such that M+ = (τ − α)k. We will use this
formula for M+ in the proof of the following lemma.

Lemma 6.4. Let k ∈ Z>0 be given, and let O denote the multi-boundary operator
(δ0, n

a∇a, (n
a∇a)

2, . . . , (na∇a)
k−1). If n, k, and (M, c) satisfy Condition 5.9,

then the boundary problem (P2k, O) satisfies the Lopatinski-Shapiro condition.

Proof. Let j ∈ {0, 1, . . . , k−1} be given, and note that (na∇a)
j has leading symbol

bj(x, ξ) = Cj(n
aξa)

j for some nonzero constant Cj . Let x ∈ Σ be given, and
suppose that ηa is not parallel to na at x. Then bj(x, ηa + τna) = Cj(n

aηa + τ)j .
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Now let I denote the principal ideal in C[τ ] generated by M+. We claim
that the elements [Cj(n

aηa + τ)j ], 0 ≤ j ≤ k − 1, are linearly independent in
C[τ ]/I. To see this, suppose there are constants C ′

0, . . . ,C
′
k−1, not all zero, such

that
∑k−1

j=0 C
′
j[Cj(n

aηa + τ)j ] = I. Then there is a polynomial h(τ) in C[τ ] such
that

(52)

k−1∑

j=0

C ′
jCj(n

aηa + τ)j = h(τ)(τ − α)k .

But then the left-hand side of (52) is a polynomial of lower degree than the poly-
nomial on the right-hand side of (52). This is a contradiction. The linear inde-
pendence claim therefore holds, and thus (P2k, O) satisfies the Lopatinski-Shapiro
condition. �

Lemma 6.5. Let k ∈ Z>0 be given, and suppose that n, k, and (M, c) satisfy
Condition 5.9. Let B be as in (50). Then the boundary problem (P2k, B) satisfies
the Lopatinski-Shapiro condition.

Proof. Let j ∈ {0, . . . , k − 1} be given. By Riemannian invariant theory, there
exist intrinsic natural differential operators Dm on Σ (for 0 ≤ m ≤ j − 1) of order
at most j −m such that

δTj = cj(n
a∇a)

j +

j−1∑

m=0

Dm(n
a∇a)

m

along Σ. Here cj is a nonzero constant. The result then follows by Lemma 6.4,
above, and Lemma 6.3 of [6]. �

Our construction of Dirichlet-to-Neumann operators will also require the follow-
ing definition:

Definition 6.6. Let k ∈ Z>0 and a multi-boundary operator O = (O1, . . . , Ok)
be given. Suppose that O1, . . . ,Ok are differential operators of orders m1, . . . ,mk ,
respectively, and suppose that 0 ≤ m1 < · · · < mk < 2k. Finally, suppose that for
each i ∈ {1, . . . , k}, the operator Oi has transverse order mi. Then we say that O
is a normal multi-boundary operator.

Definition 6.6 is equivalent to the definition of a normal system of boundary
operators given on page 34 of [6]. The multi-boundary operator B of (50) is
normal.

6.2. The fraction Laplacians. The next theorem gives our construction of con-
formally invariant Dirichlet-to-Neumann operators.

Theorem 6.7. Let a compact Riemannian conformal manifold with boundary
(M,Σ, c) be given. Let k ∈ Z>0 and ℓ ∈ {0, 1, · · · , k − 1} be given, and sup-
pose that n, k, and (M, c) satisfy Condition 5.9. Let B be as in (50), and suppose
that the conformal generalised Dirichlet problem (P2k, B) has trivial kernel. Then
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there is a well-defined conformally invariant Dirichlet-to-Neumann operator

P T,k
2m : Ē

[
m−

n− 1

2

]
→ Ē

[
−m−

n− 1

2

]

given by

Γ

(
Ē

[
m−

n− 1

2

])
∋ f 7→ δT2k−1−ℓu .

Here m := k − 1/2− ℓ, and u solves the conformal generalised Dirichlet problem

(53) P2ku = 0, δTℓ u = f, δTj u = 0 for j 6= ℓ and 0 ≤ j ≤ k − 1 .

The operator P T,k
2m has leading term (−∆)m.

Proof. The problem (P2k, B) is properly elliptic, normal, and FSA. It satisfies the
Lopatinski-Shapiro condition, and by assumption, it has trivial kernel. Thus by
standard theory it follows that (53) has a unique solution u (see e.g. [46, Sec-
tion 20.1]). Thus the map f 7→ δT2k−1−ℓu gives a well-defined non-local operator

P T,k
2m : Ē [m− (n− 1)/2] → Ē [−m− (n− 1)/2]. By construction this is conformally

invariant.
In the case of the dimension n hemisphere, equipped with the standard confor-

mal structure of the round sphere, it is well-known that there is a unique inter-
twinor between boundary conformal density bundles and with the domain space
Γ(Ē [m− (n− 1)/2]). This takes values in Γ(Ē [−m − (n − 1)/2]) and has leading
term (−∆)m. See [6]. Thus by the universality of the construction, the final claim
follows. �

7. Q-Type Curvatures

In this section, we define and investigate the Q-type curvatures that we dis-
cussed in Section 1, above. Our definition is very general. It associates Q-type
curvatures to the operator families δK , δ

0
K , and δJ,k of Section 5 and to any other

operator families satisfying appropriate properties. This general Q-type curvature
will exist in all dimensions in which the associated operators exist. The construc-
tion of our Q-type curvature resembles the construction of Branson’s Q-curvature
in [4], and under conformal change of metric, our Q-type curvature will transform
in essentially the same way as Branson’s Q-curvature. Note, however, that the
integral of Branson’s Q-curvature over a compact manifold without boundary is a
conformal invariant; we do not claim that our Q-type curvatures have this prop-
erty. Our curvature definition applies to families of natural hypersurface operators
ψ which satisfy the following hypotheses:

Hypotheses 7.1. For some c ∈ R, K ∈ Z>0, and D ⊆ Z>0, the family of opera-
tors ψ : E [w] → Ē [w−c] satisfies Hypotheses 4.1. The operators ψ are conformally
invariant and have mass K and order at most K. The set E(ψ) of Definition 5.1
may depend on n but is always finite. Finally, in all dimensions n ∈ D, ψ anni-
hilates constant densities of weight zero. Specifically, if f is a constant section of
E [0], then ψf = 0 along Σ.

The definition of our Q-type curvatures requires some groundwork.
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Definition 7.2. Let {Iβ,g}β∈A be the basis for QK,c,w that we discussed in Propo-
sition 4.4, above. Let B denote the set of all β ∈ A such that Iβ,g is a composition
of the form Oβ,g ◦ ∇ for some natural operator Oβ,g. Let C denote the set of all
β ∈ A such that Iβ,g is a zero-order operator.

Note that A = B ∪ C and B ∩ C = ∅. Now recall that if g is any Riemannian
metric, then ξg denotes the scale density associated to g.

Definition 7.3. Let c ∈ R and a family of conformally invariant natural differen-
tial operators ψ : E [w] → Ē [w − c] be given. For all w ∈ R and all g ∈ c, define
ψg,w : C∞(M) → C∞(Σ) by letting ψg,wf = (ξg)−w+cψ(ξg)wf for all sections f of
E [0]. Now let {Iβ,g}β∈A be as in Proposition 4.4. For every w ∈ R and β ∈ A, let
iβ,g = (ξg)−w+cIβ,g(ξ

g)w.

In Definition 7.3, ψg,w is conformally covariant of bidegree (−w,−w+c), by Propo-
sition 3.2. The definition of our Q-type curvatures will rely on the following propo-
sition.

Proposition 7.4. Let a family of natural hypersurface operators ψ be given, and
suppose that ψ satisfies Hypotheses 7.1. Let notation be as in definitions 7.2 and
7.3. Then for all w ∈ R,

(54) ψg,w =
∑

β∈B

fβ(w, n) iβ,g +
∑

β∈C

w qβ,n(w) iβ,g ,

where both fβ(w, n) and qβ,n(w) are polynomial in w and rational in n.

Proof. By Proposition 4.8, ψ =
∑

β∈B∪C fβ(w, n)Iβ,g, where each function fβ(w, n)
is polynomial in w and rational in n. Let β ∈ C be given. By the polynomial
division algorithm from elementary algebra, we may write fβ(w, n) = wqβ,n(w) +
rβ,n. Here qβ,n(w) and rβ,n are rational in n, and qβ,n(w) is polynomial in w.
Note that qβ,n(w) and rβ,n are clearly regular at all n ∈ D, where D is as in
Hypotheses 7.1. Since ψ annihilates constant densities of weight zero, it follows
that

∑
β∈C fβ(0, n)Iβ,g = 0 for all n ∈ D. Thus

∑
β∈C fβ(0, n)[Iβ,g ] is the zero

element of SK,c,0. Here [Iβ,g ] denotes the element of SK,c,0 determined by Iβ,g .
Thus fβ(0, n) = rβ,n = 0 for all β ∈ C and all n ∈ Z, by Proposition 4.6. It
follows that fβ(w, n) = wqβ,n(w) for β ∈ C, all w ∈ R, and all n ∈ D. The result
follows. �

The next definition gives our new general Q-type curvatures.

Definition 7.5. Let a family of natural hypersurface operators ψ be given, and
suppose that ψ satisfies Hypotheses 7.1. Let notation be as above. We define the
following curvature quantity along Σ:

(55) Qg(ψ) := −
∑

β∈C

qβ,n(0) iβ,g .

Remark 7.6. The curvature quantity Qg(ψ) is a family of hypersurface invariants
parametrised by the dimension n. We will only be interested in the values of Qg(ψ)
at points p ∈ Σ, and Qg(ψ) is uniquely determined at such points. Note, however,
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that the right-hand side of (55) is defined on an open neighbourhood of M ; this
will be important in the proof of Proposition 7.15, below.

The following proposition describes a transformation rule for Qg(ψ) under con-
formal change of metric.

Proposition 7.7. Let ψ be as in Definition 7.5, and let notation be as above.
Then

ecΥQĝ(ψ) = Qg(ψ) + ψg,0Υ .

If we view Qg(ψ) as a density of weight −c, then the transformation rule becomes

Qĝ(ψ) = Qg(ψ) + ψΥ .

Proof. We apply e(−w+c)Υψĝ,w to the constant function 1. By conformal covariance,
we obtain

(56)

e(−w+c)Υ
∑

β∈C w qβ,n(w) iβ,ĝ =

−w e−wΥ
∑

β∈B fβ(w, n) iβ,g Υ+ w2 e−wΥ ℓg(w, n,Υ)

+w e−wΥ
∑

β∈C qβ,n(w) iβ,g .

Here ℓg(w, n,Υ) is defined as follows. Let β ∈ B be given. Then

iβ,ge
−wΥ = e−wΥ(−w iβ,gΥ+ w2kβ,g(w,Υ)) ,

where kβ,g(w,Υ) is polynomial in w. Let ℓg(w, n,Υ) =
∑

β∈B fβ(w, n)kβ,g(w,Υ).

Now divide (56) by −w e−wΥ to obtain

(57)
−ecΥ

∑
β∈C qβ,n(w) iβ,ĝ =∑

β∈B fβ(w, n) iβ,g Υ− w ℓg(w, n,Υ)−
∑

β∈C qβ,n(w) iβ,g .

This equation holds in the case w = 0, since both sides are polynomial in w. In
this case, we may use (54) to identify the presence of ψg,0 on the right-hand side
of (57), and we see that the proposition holds. �

We now apply Definition 7.5 to the operator families δK , δ
0
K , and δJ,k.

Proposition 7.8. Let K ∈ Z>0 be given, and let ψ : E [w] → Ē [w − K] denote
the δK operator family of Lemma 5.4, as acting on densities, the δ0K family of
Theorem 5.12, or the δJ,k family of Theorem 5.16. (In the latter case, n, k, and
(M, c) must satisfy Condition 5.9, and J + k must equal K.) Then ψ satisfies
Hypotheses 7.1, and Definition 7.5 gives a Q-type curvature Qg(ψ) associated to
ψ and a representative g of the conformal structure on M .

Proof. Suppose first that ψ = δK . The proposition then follows trivially, since by
(15), the Thomas D-operator annihilates constant functions.

The proofs for ψ = δ0K and ψ = δJ,k are similar. We will give the proof for
ψ = δJ,k only. We begin by letting ψ = δJ,k. We will consider the family of
conformally invariant operators OJ,k : E [w] → Ē [w − J − k] given by OJ,k :=
NA1 · · ·NAkδJPA1···Ak

. By Proposition 5.14, we know that PA1···Ak
is a family of

conformally invariant natural operators of mass k given by a universal symbolic
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formula. It follows that OJ,k has mass J + k and satisfies Hypotheses 4.1. By
propositions 5.10 and 5.14, PA1···Ak

is given by either

DA1
. . .DAk

or DA1
. . .DAk

−XA1
Ψk

A2···Ak

PQDPDQ .

Here Ψk
A2···Ak

PQ is as in Proposition 5.10. Thus OJ,k annihilates constant func-
tions, and the proposition follows in the case k ≤ J . We may thus assume that
k > J .

Let D denote the set of all dimensions n in which δJ,k is well-defined. We
apply Proposition 4.8 with D and with K = c = J + k. We may write OJ,k =∑

β∈B∪C fβ(w, n)Iβ,g, where Iβ,g , B, and C are as in Definition 7.2. For each

β ∈ B ∪ C, fβ(w, n) is a polynomial in w whose coefficients are real rational
functions of n. For all β ∈ C, we may use polynomial division to symbolically
compute functions sβ,n(w) and tβ,n(w), such that

(58) fβ(w, n) = w(n+ 2w − 2k)sβ,n(w) + tβ,n(w) .

In this polynomial division, we treat fβ(w, n) and w(n+ 2w− 2k) as polynomials
in w. Thus sβ,n(w) and tβ,n(w) are polynomials in w whose coefficients are real
rational functions of n. These rational functions are regular at all n ∈ D, since the
divisor has leading term 2w2. The degree of tβ,n(w) is at most 1.

For all β ∈ B ∪ C, let [Iβ,g ] denote the element of SJ+k, J+k,0 determined by
Iβ,g . Since OJ,k annihilates constant densities of weight zero, it follows that∑

β∈C fβ(0, n)Iβ,g is the zero operator for all n in D. It therefore follows that∑
β∈C fβ(0, n)[Iβ,g ] is the zero element of SJ+k, J+k,0. Thus fβ(0, n) = 0 for all

β ∈ C and all n ∈ Z, by Proposition 4.6, so tβ,n(0) = 0 for all β ∈ C and all
n ∈ D, by (58).

Now consider any V0 ∈ E [0]. Then (ξg)k−n/2V0 ∈ E [k−n/2], so by Theorem 5.16,
∑

β∈B∪C

fβ(k − n/2, n)Iβ,g(ξ
g)k−n/2V0 = OJ,k(ξ

g)k−n/2V0 = 0

along Σ. But ∇((ξg)k−n/2) = 0, so
∑

β∈B∪C fβ(k− n/2, n)Iβ,gV0 vanishes along Σ.

It then follows that
∑

β∈B∪C fβ(k − n/2, n)[Iβ,g ] is the zero element of SJ+k, J+k,0.

Thus fβ(k − n/2, n) = 0 for all β ∈ B ∪ C and for all n ∈ Z, by Proposition 4.6,
so tβ,n(k − n/2) = 0 for all β ∈ C and all n ∈ D, by (58).

Let β ∈ C and n ∈ D\{2k} be given. Then tβ,n(w) is a polynomial in w with
two distinct zeros, so the coefficients of tβ,n(w) must vanish in dimension n. Since
D\{2k} is an infinite set, these coefficients must therefore vanish for all n ∈ Z.
Thus fβ(w, n) = w(n+ 2w − 2k)sβ,n(w) for all n ∈ D and all w ∈ R.

Similar reasoning shows that for all β ∈ B and all n ∈ D, we have fβ(w, n) =
(n+2w− 2k)hβ,n(w). Here hβ,n(w) is polynomial in w and rational in n. Thus by
polynomial continuation in w,

δJ,k =
∑

β∈B

hβ,n(w)Iβ,g +
∑

β∈C

w sβ,n(w)Iβ,g .

Thus δJ,k annihilates constant densities of weight zero. �
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Corollary 7.9. For all K ∈ Z>0, the operator families δK , δ
0
K , and δJ,k solve Prob-

lem 1.2. (In the case of δJ,k, we assume that n, k, and (M, c) satisfy Condition 5.9
and that J + k = K.)

The following theorem gives higher-order analogues of PCQ
3 in the conformally

flat setting and in the case of general Riemannian metrics.

Theorem 7.10. Let an even integer n0 ≥ 4 be given, and let K = n0 − 1. Then
δ0n0−1 and δ(n0−2)/2, n0/2 solve Problem 1.3 in dimension n = n0.

Proof. If n = n0, then 0 /∈ E(δ0n0−1) and 0 /∈ E(δ(n0−2)/2, n0/2), by corollaries 5.13
and 5.17. So if n = n0, then δ

0
n0−1 and δ(n0−2)/2, n0/2 are critical operators. �

The next two theorems give symbolic tractor formulae associated to Qg(δJ,k),
Qg(δK), and Qg(δ

0
K).

Theorem 7.11. Let J, k ∈ Z>0 be given, and view Qg(δJ,k) as a density of weight
−J−k. Let IE = (n−2)YE−JXE. Then there is a family of conformally invariant
differential operators P 1

A1...Ak

E : TE [w] → TA1...Ak
[w − k + 1] with the following

properties:

• It is well-defined for all n and (M, c) satisfying Condition 5.9.
• It is given by a polynomial in D, W , X, h, and h# of mass k − 1 whose
coefficients are rational in n.

• If k > J , then

(59) (n− 2k)Qg(δJ,k) = −NA1 · · ·NAkδJP
1
A1...Ak

EIE .

• If k ≤ J , then

Qg(δJ,k) = −NA1 · · ·NAkδJP
1
A1...Ak

EIE .

Proof. Let PA1...Ak
be as in Proposition 5.14, above, and suppose first that k > J .

Then by Proposition 5.10, we may write PA1...Ak
= P 1

A1...Ak

EDE, where P
1
A1...Ak

E

is a polynomial in D, W , X , h, and h# whose coefficients are rational in n. Let D
denote the set of all dimensions n in which δJ,k is defined. By Proposition 7.4,

δJ,k,g,w =
∑

β∈B

fβ(w, n) iβ,g +
∑

β∈C

w qβ,n(w) iβ,g .

Here notation is as in definitions 7.2 and 7.3 and Proposition 7.4. By (15),

(60)

(n+ 2w − 2k)δJ,k,g,w1 =
∑

β∈C

w (n + 2w − 2k) qβ,n(w) iβ,g

= (ξg)−w+J+kNA1 · · ·NAkδJP
1
A1...Ak

EwĨE(ξ
g)w ,

where ĨE = (n+2w−2)YE−JXE . We may use (11), (13), (14), (15), (20), and the
rules of Figure 1 to expand the rightmost expression in (60). Then by polynomial
continuation in w, we find that

(61)
−(n+ 2w − 2k)(ξg)−J−k

∑

β∈C

qβ,n(w) iβ,g =

−(ξg)−wNA1 · · ·NAkδJP
1
A1...Ak

E ĨE(ξ
g)w



Conformal boundary Operators 43

for all w ∈ R. If we let w = 0 in (61), then (59) follows.
The proof for the case k ≤ J is straightforward. �

Theorem 7.12. Let IE be as in Theorem 7.11, and for all K ∈ Z>0, view Qg(δK)
and Qg(δ

0
K) as densities of weight −K. Then for all K ∈ Z≥2,

Qg(δK) = −NA1 · · ·NAK−1δ1DA1
· · ·DAK−2

IAK−1

and

[ ⌊
K−1

2 ⌋∏

j=1

(n− 2K + 2j)
]
Qg(δ

0
K) = −NA1 · · ·NAk−1δ1DA1

· · ·DAK−2
IAK−1

.

In the above equations, if K = 2, then DA1
. . .DAK−2

is the identity operator. On
the other hand, Qg(δ1) = H and Qg(δ

0
1) = H.

Proof. The proof is similar to the proof of Theorem 7.11. �

One may use theorems 7.11 and 7.12 to construct symbolic formulae forQg(δJ,k),
Qg(δK), andQg(δ

0
K). In some cases, this requires a special procedure. For example,

consider Qg(δJ,k) when k > J . By applying (11), (13), (14), (15), (20), and
the rules in Figure 1, above, one may convert the right-hand side of (59) into a
polynomial in na, Rab

c
d, gab, g

ab, the modified mean curvature G, and the Levi-
Civita connection ∇. By commuting covariant derivatives and applying standard
tensor identities, one may (in principle) convert this polynomial into an expression
of the form (n − 2k)ψ, where ψ is again a polynomial of the above type. Thus
(n − 2k)Qg(δJ,k) = (n − 2k)ψ in all dimensions n ∈ D, where D is the set of all
dimensions in which δJ,k is defined. Now let K = J + k, and note that Qg(δJ,k)
and ψ define differential operators of order zero. These operators are elements of
RK,K,0, and they are equal in all dimensions n ∈ D\{2k}. Thus Qg(δJ,k) = ψ in
dimension n = 2k, by Proposition 4.9.

We have used (59) and the above procedure to find an explicit symbolic formula
for Qg(δJ,k) in a few specific low-order cases.

Next we shall see that the behaviour of the curvatures of δK and δJ,k, as defined
by (55), or equivalently by theorems 7.11 and 7.12, varies strongly according to
dimension parity. This suggests that we introduce some terminology.

Definition 7.13. Let c ∈ R, K ∈ Z≥0, and a Riemannian hypersurface invariant
T g ∈ Ē [−c] be given. Suppose that T g has a conformal transformation of the
form T ĝ = T g + PΥ, where P : E [0] → Ē [−c] is a conformally invariant natural
hypersurface differential operator of order and transverse order K. Then we shall
say that T g is a hypersurface T-curvature (or transverse curvature) of order K.
We shall call (P, T ) a T-curvature pair.

This terminology is inspired by the Chang-Qing pair (PCQ
3 , TCQ) which we dis-

cussed in Section 1, above. This pair is a T -curvature pair in the sense of Defini-
tion 7.13. This is very different from the Branson Q-curvature of the hypersurface,
so we shall say “Q-curvature” for quantities closer to that behaviour. More pre-
cisely, we make the following definition.
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Definition 7.14. Let c ∈ R, K ∈ Z>0, and a Riemannian hypersurface invariant
Qg ∈ Ē [−c] be given. Suppose that Qg has a conformal transformation of the
form Qĝ = Qg + PΥ, where P : E [0] → Ē [−c] is a conformally invariant natural
hypersurface differential operator of order K and transverse order less than K.
Then we shall say that Qg is a hypersurface Q-curvature of order K. We shall call
(P,Q) a Q-curvature pair.

It is clear that the T -curvatures of Definition 7.13 are recovered from the opera-
tors δK , δ

0
K , and δJ,k in all cases in which these operators are defined and the weight

0 is not in the respective exceptional list E(δK), E(δ
0
K), or E(δJ,k). Theorem 1.6,

above, thus follows from (36) and Theorem 5.16.
Let notation be as in Theorem 1.6, and let an even integer n0 ≥ 4 be given. Then

in dimension n = n0, we should think of the critical pair (δ(n0−2)/2, n0/2, Tn0−1) as

an analogue of the Chang-Qing (PCQ
3 , TCQ)-pair. Note that T g

1 is simply Hg , the
mean curvature of the hypersurface, so the T -curvatures may also be thought of as
(conformal geometry-inspired) higher-order generalisations of the mean curvature.
This also suggests an interesting application of the T -curvatures, which we describe
as follows.

Proposition 7.15. Suppose that n is even, Σ is closed as a subset of M , and Σ
and M are orientable. For all i ∈ Z>0, let T

g

i be as in Theorem 1.6. Finally, let
g ∈ c be given. Then for all m ∈ Z>0, there is a metric ĝ ∈ c such that ĝ induces
g and

(62) T ĝ

1 = T ĝ

2 = · · · = T ĝ

m = 0 along Σ .

Along Σ, the metric ĝ is uniquely determined by g to order m.
The above results also hold if Σ is not closed as a subset of M . In this case,

however, we only claim that the metric ĝ is defined on an open neighbourhood O
of Σ in M . Thus ĝ = e2Υg on O for some Υ ∈ C∞(O). The neighbourhood O
may depend on m.

Proof. Suppose first that Σ is closed. For any p ∈ Σ, we may define local coordi-
nates (x1, . . . , xn) on a neighbourhood of p in M such that xn is a local defining
function for Σ. Suppose that (y1, . . . , yn) is any other local coordinate system,
and suppose that yn is also a local defining function for Σ. We may assume that
∂yn/∂xn > 0 at all points of Σ at which both coordinate systems are defined; this
follows from the fact that M and Σ are both orientable. By using such coordinate
systems along with an appropriate partition of unity, one can show that for some
open neighbourhood U of Σ, there is a defining function t for Σ on U .

For any Υ, Υ′, and Υ′′ in E , we will let ĝ = e2Υg, ĝ′ = e2Υ
′

g, and ĝ
′′ = e2Υ

′′

g.
For all i ∈ Z>0, let ψi denote the operator corresponding to T g

i in Theorem 1.6.
To establish the existence of the desired ĝ, we proceed by induction on m. Let

s ∈ Z≥0 be given. If s = 0, let Υ ≡ 0 on M . Otherwise, suppose there is an Υ ∈ E
such that Υ vanishes along Σ, and (62) holds in them = s case. Since 0 /∈ E(ψs+1),
there is an open set V ⊆M such that (1) Σ ⊆ V ⊆ U , and (2) ψs+1t

s+1 is nonzero
on V . Choose any ϕ ∈ E with support in V such that ϕ ≡ 1 on Σ, and let
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Υ′ = Υ − ts+1ϕT ĝ

s+1/(ψs+1t
s+1). Then T ĝ

′

1 = T ĝ
′

2 = · · · = T ĝ
′

s+1 = 0 along Σ, by
Proposition 7.7.

To establish uniqueness, it suffices to show that for every m ∈ Z>0 and every
Υ′,Υ′′ ∈ E , if ĝ = ĝ

′ and ĝ = ĝ
′′ induce g and satisfy (62), then Υ′′−Υ′ vanishes to

order m along Σ. We again proceed by induction on m. Let s ∈ Z≥0 be given. If
s > 0, suppose that the desired statement holds in the case m = s. Let Υ′, Υ′′ ∈ E
be given, and suppose that ĝ = ĝ

′ and ĝ = ĝ
′′ induce g and satisfy (62) in the

m = s+ 1 case. Then Υ′′ −Υ′ vanishes to order s along Σ. But ĝ′′ = e2(Υ
′′−Υ′)

ĝ
′.

Thus ψs+1(Υ
′′ − Υ′) = 0 along Σ, by Proposition 7.7. Recall that 0 /∈ E(ψs+1).

So if we work in local coordinates of the type that we discussed above, a short
argument shows that Υ′′ −Υ′ vanishes to order s+ 1 along Σ.

If Σ is not closed, the proof is similar to the above proof. �

Remark 7.16. In even dimensions, Proposition 7.15 generalises a previous result
which has occasionally been used in the literature of general relativity. For even
n ≥ 4, Proposition 7.15 gives a way of normalising the conformal scale so that
in the new scale, Σ is minimal (i.e. H = 0) and also satisfies related higher-order
conditions. By Theorem 7.18, below, similar results hold in the case in which M is
odd-dimensional, but the range of available T -curvatures is smaller. A statement
of a zero-order version of these results appears in Proposition 4.1 of [29].

In the proof of Theorem 7.18, below, we will use the following lemma to deter-
mine the order of δK : E [0] → Ē [−K] in odd dimensions.

Lemma 7.17. Let K ∈ Z>0 and w ∈ R be given, and suppose that V is any
section of T Φ[w]. Then

δKV =
[K−1∏

i=1

(n + 2w − 2i)
]
∇K

n V +
∑

β∈A

Cβ(n, w)PβV + lots .

Here A is a finite index set, and for each β ∈ A, Cβ(n, w) is a real polynomial in n

and w. For each β ∈ A, there is an ℓ ∈ Z>0 such that Pβ = ni1 · · ·niK−2ℓOβ
i1...iK−2ℓ

,

where Oβ is the composition of the operators ∇i1, . . . , ∇iK−2ℓ
, and ℓ copies of ∆,

in some order. Finally, lots can be given by a symbolic formula which satisfies
Hypotheses 5.3.

Proof. The lemma follows from (11), (15), (20), Figure 1, lemmas 5.5 and 5.7, and
an inductive argument. �

Theorem 7.18. Let K ∈ Z>0 be given, and suppose that dim(M) = n is odd. Let
ψ : E [w] → Ē [w−K] denote the operator family δK of Lemma 5.4 or the operator
family δJ,k of Theorem 5.16. (In the latter case J + k must equal K.) If

n+ 1

2
≤ K ≤ n− 1 ,

then there is a canonical Q-curvature pair (ψ,Qg

K) of order K. Here Qg

K := Qg(ψ).
In particular, in the critical-order case in which K = n−1, we obtain a Q-curvature
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pair (ψ,Qg

n−1). If

K ≤
n− 1

2
or n ≤ K ,

then there is a T -curvature pair (ψ, T g

K) of order K. Here T g

K := Qg(ψ).

Proof. Suppose first that K ≤ (n − 1)/2 or n ≤ K. Then 0 /∈ E(δK), by (36).
Thus if ψ = δJ,k, then 0 /∈ E(ψ), by Theorem 5.16. Thus ψ : E [0] → Ē [−K] has
order and transverse order K, and Qg(ψ) is a T -curvature.

Now suppose instead that (n + 1)/2 ≤ K ≤ n − 1. Then 0 ∈ E(δK), by (36).
For the case in which ψ = δJ,k, note that k − n/2 6= 0, since n is odd; thus
0 ∈ E(δJ,k), by Theorem 5.16. So to complete the proof, it suffices to show that
ψ : E [0] → Ē [−K] has order K.

Let V ∈ E [0] be given, and apply Lemma 7.17. By commuting covariant deriva-
tives, if necessary, we may write

δKV =
[K−1∏

i=1

(n− 2i)
]
∇K

n V +

⌊K/2⌋∑

i=1

C ′
i(n)∇

K−2i
n ∆iV + lots .

Here C ′
i(n) is a real polynomial in n. It follows that δK , as acting on V , has order

K. Now suppose that ψ = δJ,k. Since w = 0, it follows from Theorem 5.16 that
ψ is a nonzero multiple of NA1 · · ·NAkδJPA1...Ak

. But by (47) and the discussion
following (47), NA1 · · ·NAkδJPA1...Ak

= δK + lots. Thus ψ : E [0] → Ē [−K] has
order K. �

8. Examples

By using the constructions of Lemma 5.4 and theorems 5.12 and 5.16, one may
construct explicit formula for δK , δ

0
K , and δJ,k of the type described in Hypothe-

ses 4.1. One may also use theorems 7.11 and 7.12 to construct similar explicit
formulae for Qg(δK), Qg(δ

0
K), and Qg(δJ,k). The construction of such formulae

for δJ,k and Qg(δJ,k) uses the algorithm of [35] for constructing tractor formulae
for the GJMS operators P2k. We have constructed explicit formulae of the above
types in a few low-order cases. In this section, we discuss these constructions and
give some of the resulting explicit formulae. In some cases, we have incorporated

the trace-free second fundamental form
o

Lab into the formulae. In constructing the
explicit formulae, we used the results described in Section 3, above. In many cases,
we also used Mathematica, together with J. Lee’s Ricci package [51, 62].

We will need specific tractor formulae for two of the operator families of Propo-
sition 5.14. By [35], we have PAB = DADB and

(63) PABC = DADBDC −
2

n− 4
XAWB

E
C
FDEDF .

8.1. Second-Order Operator. The operator family δ2 : T Φ[w] → T Φ[w − 2]
∣∣
Σ

of Lemma 5.4 is given by (4). By Definition 7.5,

Qg(δ2) = J+ (n− 2)H2 − (n− 2)nanb
Pab .
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(n+ 2w − 5)δ�f

−(n+ 2w − 2)
(
�δf − 2

3(n−3)
ℓ2f + 3n−5

4(n−2)

o

Lab

o

Labδf

− n−5
2(n−3)

o

Lab

o

La
c

o

Lbcf − n−5
2(n−3)

nanb
o

LcdCa
c
b
df
)

+(n+ 2w − 2)(n+ 2w − 5)
(
−Hnanb∇a∇bf − 2(n+2w−1)

3

o

Lab∇a∇bf

+7−4n−12w+4nw+8w2

3
(∇aH)∇af + 3(w−1)

2
H2na∇af

+−7+4n+12w−4nw−8w2

3
nanbnc

Pab∇cf + 2(5−2n−6w+2nw+4w2)
3

na
Pa

b∇bf

− 1
4(n−2)

o

Lab

o

Labnc∇cf − w(5−2n−6w+2nw+4w2)
3(n−3)

(∆H)f − w(w−1)
2

H3f

+w(9+2n−2n2−6nw+2n2w+4nw2)
3(n−3)

Hnanb
Pabf

+w(5−2n−6w+2nw+4w2)
3(n−3)

nanbnc(∇aPbc)f − w(5−2n−6w+2nw+4w2)
3(n−3)

HJf

−w(5−2n−6w+2nw+4w2)
3(n−3)

na(∇aJ)f − 2w(n+2w−2)(n+2w−4)
3(n−3)

o

Lab
Pabf

−w(−31+33n−8n2+48w−40nw+8n2w−32w2+16nw2)
12(n−2)(n−3)

H
o

Lab

o

Labf

+ (2w+1)(9−3n−8w+2nw+4w2)
6(n−3)2

o

Lab

o

La
c

o

Lbcf

+ (2w+1)(9−3n−8w+2nw+4w2)
6(n−3)2

nanb
o

LcdCa
c
b
df
)

Figure 2. δ1,2f for dimensions n ≥ 4 and f ∈ E [w]

From (36), it follows that E(δ2) = {(3 − n)/2}, so for all n ≥ 4, Qg(δ2) is a
hypersurface T -curvature in the sense of Definition 7.13. In the n = 3 case, Qg(δ2)
is a Q-curvature in the sense of Definition 7.14.

In [43], D.H. Grant discusses a related family of conformally invariant second-
order hypersurface differential operators DAΠA

BDB : E [w] → Ē [w − 2]. For any
w ∈ R and any f ∈ E [w],

DAΠA
BDBf = (n+ w − 3)

(
(n+ 2w − 2)�f

+(n+ 2w − 3)( (n+ 2w − 2)(Hna∇af − w
2
H2f) − �f )

)
,

by [43]. A computation shows that

(n+ w − 3)δ2f +DAΠA
BDBf = −

w(n + w − 3)(n+ 2w − 2)

2(n− 2)

o

Lab

o

Labf .

If we divide by n+ w − 3, polynomial continuation shows that

δ2f = −�f +
n− 3

4(n− 2)

o

Lab

o

Labf , for f ∈ E

[
3− n

2

]
.

In this case, � is the intrinsic Yamabe operator.

8.2. Third-Order Operator. Consider δ1,2 : E [w] → Ē [w − 3]. This family of
operators is well-defined in all ambient dimensions n ≥ 3, and from Theorem 5.16,
it follows that E(δ1,2) = {(5 − n)/2}. By Theorem 5.16, (n + 2w − 4)δ1,2 =
NANBδDADB. For n ≥ 4, symbolic computations show that δ1,2 is given by the
formula in Figure 2. Here ℓ2 is the conformally invariant operator LABDADB;
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additional symbolic computations show that for all w ∈ R and all f ∈ E [w],

ℓ2f = (n+ 2w − 2)(n+ 2w − 4)
(
(n− 3)

o

Lab∇a∇bf

−2(n− 3)(w − 1)(∇aH)∇af + w(w − 1)(∆H)f

−n(w − 1)wHnanb
Pabf − w(w − 1)nanbnc(∇aPbc)f

+w(w − 1)HJf + 2(n− 3)(w − 1)nanbnc
Pab∇cf

+w(w − 1)na(∇aJ)f − 2(n− 3)(w − 1)naP
ab∇bf

+w(n+ 2w − 5)Pab

o

Labf + w(w − 1)H
o

Lab

o

Labf

−w(w−1)
n−3

o

Lab

o

La
c

o

Lbcf − w(w−1)
n−3

nanb
o

LcdCa
c
b
df
)
.

Figure 2 shows that for f ∈ E [1 − n/2], we have δ1,2f = −3δ�f . Thus δ1,2 :
E [1−n/2] → Ē [−2−n/2] is the composition of two conformally invariant operators.
Similarly, Figure 2 shows that for f ∈ E [5/2− n/2],

δ1,2f = −3�δf + 2
n−3

ℓ2f − 3(3n−5)
4(n−2)

o

Lab

o

Labδf

+3(n−5)
2(n−3)

o

Lab

o

La
c

o

Lbcf + 3(n−5)
2(n−3)

nanb
o

LcdCa
c
b
df .

Here � acts on a density of weight 1− (n− 1)/2. Thus � is conformally invariant
in this case, and we have again expressed δ1,2 in terms of conformally invariant
operators. We gave a symbolic formula for Qg(δ1,2) in (1).

In Section 1, above, we discussed the operators δG3 of [43]. These operators exist
in all dimensions n ≥ 4 and map E [(4−n)/2] to Ē [(−2−n)/2]. The leading term of
δG3 equals the leading term of δ1,2 : E [(4− n)/2] → Ē [(−2− n)/2], up to a nonzero
scale.

Now suppose that M is a compact 4-manifold with boundary Σ, and suppose
that the unit normal vector na points inward. Symbolic computations using [51]
and [62] show that for all f ∈ E [0], δ1,2 and the third-order boundary operator

PCQ
3 of [16] satisfy the following:

PCQ
3 f = −

1

2
δ1,2f − LABDBDAf +

o

Lab

o

Labδf .

8.3. Fourth-Order Operator. Consider δ1,3 : E [w] → Ē [w − 4]. By Theo-
rem 5.16, together with (63),

(n+ 2w − 6)δ1,3f = NANBNCδ(DADBDCf −
2

n− 4
XAWB

E
C
FDEDFf)

for all f ∈ E [w]. For n ≥ 5, symbolic computations show that δ1,3 has the form
given in Figure 3. In this figure, K(LAB, LCD) is a scalar invariant which we
define as follows. First, note that by (15) and Figure 1, (DALBC)D

ALBC contains
a factor (n − 5). Divide the symbolic formula for (DALBC)D

ALBC by (n − 5),
and let K(LAB, LCD) be defined by the resulting symbolic formula. The quantity
defined in this way is conformally invariant in all dimensions n ≥ 5. In dimension 5,
this follows from dimensional continuation.

Inspection of Figure 3 reveals the particular form that δ1,3f takes when the
weight w, of f , is equal to 2 − n/2, 1 − n/2, 5/2 − n/2, or 7/2 − n/2. In each
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(n+2w−2)(n+2w−5)(n+2w−7)
2

(−Y A
�DAf)

+ (n+2w−4)(n+2w−5)(n+2w−7)
10

δ2�f

− (n+2w−2)(n+2w−4)(n+2w−7)
2

(
− Y A

�DAf + 4
3(n−3)

LABδDADBf

−2(n−4)
3(n−3)

o

Lab

o

Labδ2f − n−7
2(n−3)2(n−2)

LAB
�LABf

− 2(n−5)
3(n−3)(n−4)

NCNDWA
C
B
DDADBf + 2(n−1)

3(n−3)3
LA

CL
CBDADBf

+n−5
n−3

o

Lac

o

La
d

o

Lcdδf + n−5
(n−4)(n−3)2

NANBLCDWA
C
B
Dδf

+ 4
3(n−4)(n−3)

NBLCDW
AC

B
DDAf − 1

2(n−3)2(n−2)
K(LAB, LCD)f

+ n−5
(n−3)2

o

Lab

o

Lcd

o

Lac
o

Lbdf + n−5
(n−3)2

nanbncndCaebiCc
e
d
if

+ (n−5)(n3−15n2+51n−53)
16(n−3)2(n−2)2

o

Lab

o

Lab
o

Lcd

o

Lcdf + 2(n−5)
(n−3)2

nanb
o

Lcd

o

Lc
eCa

d
b
ef
)

− (n+2w−2)(n+2w−4)(n+2w−5)
10

(
� δ2f − 4

3(n−3)
LABδDADBf

+ 7n−13
4(n−2)

o

Lab

o

Labδ2f + 2
3(n−4)

NCNDWA
C
B
DDADBf

− 2
3(n−3)2

LA
CL

CBDADBf − 4
(n−4)(n−3)

NALBCW
EB

A
CDEf

−5(n−5)
n−3

o

Lbc

o

Lb
d

o

Lcdδf − 5(n−5)
(n−4)(n−3)2

NANBLCDWA
C
B
Dδf

)

+(n+ 2w − 2)(n+ 2w − 4)(n+ 2w − 5)(n+ 2w − 7)
(

− 1
10
nanbncnd∇a∇b∇c∇df + lots

)

Figure 3. δ1,3f for dimensions n ≥ 5 and f ∈ E [w]

of these cases, the formula in the figure expresses δ1,3 in terms of conformally
invariant operators. To see this, note first that by [35], the (conformally invariant)
Paneitz operator P4 : E [2 − n/2] → E [−2 − n/2] satisfies P4 = −Y A

�DA. Thus
if w = 2 − n/2 in Figure 3, then δ1,3 = 3P4. Similarly, if w = 5/2 − n/2, then
−Y A

�DA, in Figure 3, is the intrinsic Paneitz operator. On the other hand, � :
T Φ[1−n/2] → T Φ[−1−n/2] is conformally invariant. The operators LABδDADB,
NCNDWA

C
B
DDADB, and L

A
CL

CBDADB in the figure have order less than four.
The Q-type curvature associated to δ1,3 is as follows:

Qg(δ1,3) = 6(n− 4)(n− 2)H4 − 36(n− 4)(n− 2)H2nanb
Pab

−12(n− 4)(n− 2)Hnanbnc∇aPbc

−(n− 4)(n− 2)nanbncnd∇a∇bPcd

+(n− 2)nanb∆Pab + 36(n− 4)H2
J− 3∆J+ 6J2

+36(n− 4)Hna∇aJ+ 2(n− 6)(n− 2)nanb
PacPb

c

+6(n− 4)(n− 2)nanbncnd
PabPcd − 12(n− 4)nanb

PabJ

+(5n− 22)nanb∇a∇bJ− 2(n− 2)PabP
ab + 2(n− 2)nanb

PcdCa
c
b
d .

8.4. Fifth-Order Operator. Finally, consider δ2,3 : E [w] → Ē [w − 5]. By (63),
we see that

(64)
(n+ 2w − 6)δ2,3f =

NANBNCNEδDE(DADBDCf − 2
n−4

XAWB
F
C
GDFDGf) .
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24(−8 + n)(−4 + n)(−2 + n)H5

−240(−8 + n)(−4 + n)(−2 + n)H3nanb
Pab

−120(−8 + n)(−4 + n)(−2 + n)H2nanbnc∇aPbc

−20(−8 + n)(−4 + n)(−2 + n)Hnanbncnd∇a∇bPcd

+20(−7 + n)(−2 + n)Hnanb∆Pab

−(−8 + n)(−4 + n)(−2 + n)nanbncndne∇a∇b∇cPde

+(−2 + n)(−22 + 3n)nanbnc∆∇aPbc

+(−14 + n)(−2 + n)(−14 + 3n)nanbnc
Pad∇d

Pbc

+20(−2 + n)(96− 29n+ 2n2)Hnanb
PacPb

c

+2(−8 + n)(−2 + n)(−32 + 3n)nanbnc
Pad∇cPb

d

+120(−8 + n)(−4 + n)(−2 + n)Hnanbncnd
PabPcd

+24(−8 + n)(−4 + n)(−2 + n)nanbncndne
Pab∇cPde

−20(−2 + n)(−17 + 2n)HPabP
ab + 8(−9 + n)(−2 + n)na

P
bc∇bPac

−20(−9 + n)(−2 + n)na
Pbc∇aP

bc + 240(−8 + n)(−4 + n)H3
J

−240(−8 + n)(−4 + n)Hnanb
PabJ

+(−684 + 268n− 23n2)nanbnc
J∇aPbc + 120(−8 + n)HJ

2

+360(−8 + n)(−4 + n)H2na∇aJ+ 75(−8 + n)na
J∇aJ

−2(1236− 452n+ 37n2)nanbnc
Pab∇cJ

+(−312 + 34n+ n2)na
Pab∇b

J+ 20(178− 63n+ 5n2)Hnanb∇a∇bJ

−60(−8 + n)H∆J+ (276− 92n+ 7n2)nanbnc∇a∇b∇cJ

−15(−8 + n)na∆∇aJ+ 20(−10 + n)(−2 + n)Hnanb
PcdCa

c
b
d

+4(−9 + n)(−2 + n)nanbnc
Pde∇aCb

d
c
e

+8(−9 + n)(−2 + n)nanbncCb
d
c
e∇ePad

+4(−9 + n)(−2 + n)nanbncCb
d
c
e∇aPde

Figure 4. Qg(δ2,3)

One may use (64) to express δ2,3f , in terms of ∇,
o

Lab, H , the normal vector
n, the curvature of a representative g of the conformal structure, and f . By
setting w equal to 2 − n/2 in the resulting expanded formula, one can show that
δ2,3 = −60δP4, where P4 is the (conformally invariant) Paneitz operator. Similarly,
for f ∈ E [1 − n/2], we have δ2,3f = −5δ3�f ; note that in this context, � is
conformally invariant. An expanded formula for Qg(δ2,3) appears in Figure 4.

9. Final remarks

Here we mention some related points that we find very interesting. We only
touch on these points however, as a full treatment lies beyond the scope of the
current work.

9.1. Poincaré-Einstein manifolds. We recall the well-known notions of confor-
mally compact and Poincaré-Einstein manifolds. For simplicity, we assume here
that all relevant structures are orientable.

Definition 9.1. Let a compact manifold M of dimension n with boundary Σ be
given. Also let a Riemannian metric g+ on the interior, M+, of M be given, and
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suppose that for some nonnegative defining function x for Σ, the metric g = x2g+

extends to a Riemannian metric on M . Then we say that (M+, g+) is conformally
compact. The restriction of g to TΣ determines a conformal structure c on Σ,
and we say that (Σ, c) is the conformal infinity of M+. Finally, suppose that the
metric g+ on M+ is Einstein and that Rcg+ = −(n− 1)g+. Then we say that M
is a Poincaré-Einstein manifold.

In fact, we will assume, as above, that M , the defining function x, and g are
extended to a collar neighbourhood of Σ. The assumption that x is nonnegative
will only apply to points of the original manifold.

Conformally compact manifolds have, in particular, the structure of a conformal
manifold with boundary. Thus all the results from the earlier sections apply to this
setting. It is worth noting, however, that in the special case of a Poincaré-Einstein
manifold, rather strong simplifications arise. (This is also true for manifolds which
are asymptotically Einstein to sufficient order. We leave the details of this to
the reader, but some related results are discussed in [19].) This stems from the
following result.

Lemma 9.2. Let Σ be the conformal infinity of a Poincaré-Einstein manifold
M , and let x be a nonnegative defining function for Σ as in Definition 9.1. Let
σ = xξg, and let IA = 1

n
DAσ. Then IA|Σ = NA|Σ, and IA has the following

properties on M : (1) IA is parallel, (2) IAI
A = 1, and (3) the contraction of IA

with any index of WBCDE is zero.

Proof. The fact that IA|Σ = NA|Σ and properties (1) and (2) are proved in [31].
(See also [19] for a recent treatment.) Note that [31] and [19] use d and n to
denote the dimensions ofM and Σ, respectively. By [35], WBCDE has Weyl tensor
symmetries. Thus WBCDE = −WBCED and WBCDE = WDEBC . Since IA is
parallel, property (3) follows from (12) and (14). �

Moreover since IA|Σ = NA is parallel along Σ, it follows that Σ is totally umbilic
[29]. The Einstein condition, i.e. the fact that IA is parallel, also forces other
hypersurface invariants to vanish, cf. [19, 37]. We should thus expect the formulae
for the boundary operators and associated curvatures to simplify. Indeed, we have
the following:

Proposition 9.3. Let Σ be the conformal infinity of a Poincaré-Einstein manifold
M . Let g and n be as in Definition 9.1, and let c denote the conformal class
associated to g. Let j, k ∈ Z>0 be given, and suppose that n and (M, c) satisfy
Condition 5.9. Finally, let P be as in Proposition 5.14. Then

(65) NA1 · · ·NAkδjPA1···Ak
= NA1 · · ·NAkδjDA1

. . .DAk

along Σ.

Proof. From Lemma 9.2, it follows that

NA1 · · ·NAkδjPA1···Ak
= δjI

A1 · · · IAkPA1···Ak

along Σ. But by Proposition 5.10, in every term of the tractor formula for Pk
A2···Ak

,
at least one of the indices A2, . . . , Ak appears on a W . Thus (65) follows from
(42) and Lemma 9.2. �



52 A.R. GOVER AND L.J. PETERSON

The simplification expressed in (65) enables, in this setting, further refinements
beyond Theorem 5.16. This will be taken up elsewhere. Meanwhile, inspired by
Proposition 9.3, we now consider the very simple operator

(66) NA1 · · ·NAkDA1
. . .DAk

= IA1 · · · IAkDA1
. . .DAk

along the boundary Σ of a Poincaré-Einstein manifold. The right-hand side of
(66) is defined not only along Σ, but on all of M as well. Since I is parallel, the
right-hand side of (66) is simply (I·D)k. Here I·D = IADA. This idea was studied
in [32] (to produce GJMS operators of the interior manifold) and in e.g. [36, 37].
These operators have a number of applications. For example, for any m ∈ Z>0,

(67) (I·D)2m : E

[
m−

n− 1

2

]
→ E

[
−m−

n− 1

2

]
,

acts tangentially along Σ [36, Theorem 4.1], and for suitable m recovers nonzero
multiples of the order-2mGJMS operators of the boundary [36, Theorem 4.5]. Here
tangential is as defined in [36]. (In comparing with [36], note that with I parallel it
follows that I2 := IAIA is constant, and in the Poincaré-Einstein case this constant
is non-zero.) From this one can, in an obvious way, find “factorisations” of the
I·D powers at appropriate weights. For example, along Σ and for k ∈ Z>0,

(I·D)2m+k = (I·D)2m ◦ (I·D)k : E

[
m+ k −

n− 1

2

]
→ E

[
−m−

n− 1

2

]

evidently factors as a composition of a GJMS operator of Σ applied to the restric-
tion to Σ of (I·D)k acting on E [m+k− (n−1)/2]. Factorisations along these lines
have been sought in the work [47] of Juhl. Again, further examples are beyond the
scope of the current work, but we believe that these observations are of interest. In
particular we believe that, in the setting of Poincaré-Einstein (or suitably asymp-
totically Poincaré-Einstein) manifolds, one may use these observations, together
with the main techniques of the present paper, to construct simpler families of
boundary operators that solve the problems 1.2 (and 1.3), and indeed yield rather
stronger results. Again this will be taken up elsewhere.

9.2. Juhl’s conjectures. Several of the results in the sections above solve prob-
lems closely related to (other) directions and conjectures in Juhl’s monograph [47].
For example, the T -curvature pairs of Theorem 1.6, above, satisfy the “fundamen-
tal identity” that expression (1.10.4) in [47] would satisfy if the residue described
there were to vanish. So the critical T -curvature pair of Theorem 1.6 provides a
version of the objects sought at that point in [47]. (See also Chapter 6 of that
work.)

The tractor families “DT
K(M,Σ; g;λ)” of Definition 6.21.1 and Definition 6.21.2

in [47] are the operators denoted “δK” in Theorem 5.1 of [6]. In comparing with our
discussion above, the reader should note that in [47], n denotes dim(Σ), whereas
here n is dim(M) = dim(Σ)+1. Conjecture 1.10.1 of [47] (which is stated in more
detail as Conjecture 6.21.3 of the same source) proposes that for case of dim(Σ)
even, these operators admit a certain decomposition into an intrinsic Laplacian
power part plus another part, termed an “extrinsic” part, and that this occurs in
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a manner compatible with corresponding Q-curvatures. As stated, that conjecture
relies on Conjecture 6.21.1 of [47], which asserts that for dim(Σ) even, δBG

K is the
zero operator on densities of weight w = 0.

We do not see evidence that Conjecture 6.21.1 should hold in the curved setting
if dim(Σ) is (even and) greater than 4. However, any of the operators δJ,k, with
J + k = dim(Σ), or either of the operators δK or δ0K , with K = dim(Σ), provides
a replacement for the operator DT

dim(Σ)(·,Σ; g; 0) sought in that conjecture, as δK ,

δ0K , and δJ,k are all regular at weight 0. One can use δK , δ
0
K , and δJ,k to show

that a variant of Juhl’s Conjecture 6.21.3 (or 1.10.1) does in fact hold. To see
this, begin by supposing that n ≥ 5 and that n is odd. Let P n−1 denote the
intrinsic order-(n−1) GJMS operator on Σ mapping E [0] to E [1−n]. Let Bn−1(g)
denote the Branson Q-curvature of Σ associated to the metric g on Σ induced by
a representative g of the conformal structure on M . View Bn−1(g) as a density of
weight 1− n. For a conformal metric ĝ = e2Υg on M ,

(68) Bn−1( ĝ ) = Bn−1(g) + (−1)(n−1)/2P n−1Υ ,

by (1.13) of [4]. The factor (−1)(n−1)/2 in (68) occurs because Branson’s sign
convention for ∆ differs from ours.

With these preparations complete, we obtain at once the promised variant of
Juhl’s Conjecture 6.21.3.

Theorem 9.4. Suppose that dim(M) = n ≥ 5, and suppose that n is odd. Let
α ∈ R be given, and let K = n− 1. Let ψ : E [w] → Ē [w −K] denote the operator
δK of Lemma 5.4, as acting on densities, the operator δ0K of Theorem 5.12, or the
operator δJ,k of Theorem 5.16. (In the latter case, J+k must equal K.) Then there
exist natural conformally invariant differential operators Pn−1 : E [0] → E [1 − n]
and P e

n−1 : E [0] → E [1− n] and natural sections Qn−1(g) and Q
e
n−1(g) of E [1− n]

and E [1− n]
∣∣
Σ
, respectively, with the following properties. First, for the operator

ψ : E [0] → Ē [1− n], we have αψ = Pn−1 + P e
n−1. Also,

(−1)(n−1)/2Qg(αψ) = Qn−1(g) +Qe
n−1(g) .

Here Pn−1 has leading term ∆(n−1)/2, and Qg(αψ) is as in Definition 7.5. We

view Qg(αψ) as a section of E [1− n]
∣∣
Σ
. Finally, suppose that ĝ = e2Υg. Then

(69) Qn−1( ĝ ) = Qn−1(g) + (−1)(n−1)/2Pn−1Υ ,

and

(70) Qe
n−1(ĝ) = Qe

n−1(g) + (−1)(n−1)/2P e
n−1Υ .

Remark 9.5. We do not claim that ψ, Pn−1, P
e
n−1, Qn−1(g), or Qe

n−1(g) is
uniquely determined, but see Remark 5.11.

Proof of Theorem 9.4. Let P n−1 and Bn−1(g) be as above. Let P
e
n−1 = αψ−P n−1,

and let Pn−1 = P n−1. Let Qn−1(g) = Bn−1(g), and let

Qe
n−1(g) = (−1)(n−1)/2Qg(αψ)−Qn−1(g) .

The transformation rules given in (69) and (70) then follow from (68) and Propo-
sition 7.7. �
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[rab] =

[
gab|p Om×d

Od×m Id×d

]
, [rab] =

[
g
ab|p Om×d

Od×m Id×d

]

Figure 5. The component matrices of r and its inverse at a point
(p, q) ∈M × Rd

As stated Juhl’s Conjecture 6.21.3 allows for the freedom to choose α in The-
orem 9.4. However it is natural to fix this to the special value α = α0 6= 0 so
that when specialised to the case that (M, g+) is the Poincaré ball metric, with
Σ the boundary at infinity (i.e. the conformally flat model for Poincaré-Einstein
geometry), then P e

n−1 is zero. For the case of ψ = δK the existence of α0 follows
directly from the discussion surrounding (67). More generally it follows from the
uniqueness of the intertwinors in this case.

Finally we mention that the role of extrinsic geometry in generalised notions of
Q-curvature (and related “T -curvatures” as associated transgression curvatures)
is explored in [38, 39].

Appendix A. Proof of Proposition 4.2

All of the expressions in this proof will carry a weight of zero. Let d = m′ −m,
and let M ′ =M ×Rd. Also let Σ′ = Σ×Rd. Let gE denote the Euclidean metric
on Rd, and let r denote the product metric g ⊕ gE on M ′. One key to our proof
is the fact that the operator ψ is given by the same universal symbolic formula
on M and on M ′. Our strategy will be to relate expressions on (M ′, r) to their
counterparts on (M, g).

Let (y1, . . . , yd) denote the standard coordinates on Rd. Let U be any open
subset of M on which a local coordinate system (x1, . . . , xm) is defined, and sup-
pose there is a local defining function t for Σ on U . Note that (z1, . . . , zm

′

) =
(x1, . . . , xm, y1, . . . , yd) is a local coordinate system forM ′ on U×Rd. Let Γab

c and
Γ′
ab

c denote the Christoffel symbols of g and r in the (x1, . . . , xm) and (z1, . . . , zm
′

)
coordinate systems, respectively.

Figure 5 gives the components of r and its inverse in the (z1, . . . , zm
′

) coordinate
system at a point (p, q) ∈ M ′. In this figure, gab|p and g

ab|p denote the m × m
component matrices of g and its inverse, respectively, at p, Id×d is the d×d identity
matrix, and Om×d and Od×m are the zero matrices of the indicated dimensions.

Note that Γ′
ab

c = 1
2
rcd(∂arbd + ∂brad − ∂drab). Thus if {a, b, c} is not a subset of

{1, . . . , m}, one can use the formulae in Figure 5 to show that Γ′
ab

c = 0 on U ×Rd.
On the other hand, if {a, b, c} is a subset of {1, . . . , m}, then for all (p, q) ∈ U×Rd,
we have Γ′

ab
c|(p,q) = Γab

c|p. For all {a, b, c} ⊆ {1, . . . , m′}, Γ′
ab

c is independent of

zm+1, . . . , and zm
′

.
Let (R′)ab

c
d denote the components of the Riemannian curvature tensor of r.

Then

(R′)ab
c
d =

∂

∂za
Γ′
bd

c −
∂

∂zb
Γ′
ad

c + Γ′
bd

eΓ′
ae

c − Γ′
ad

eΓ′
be

c .
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Now let (p, q) ∈ U × Rd be given. If {a, b, c, d} ⊆ {1, . . . , m}, then (R′)ab
c
d|(p,q) =

Rab
c
d|p. Otherwise, (R′)ab

c
d|(p,q) = 0.

We will now construct a unit conormal field for Σ′. Let π : U × R
d → U be the

natural projection, and let t′ denote the lift (pullback) of t along π. Consider any
given (p, q) ∈ U × Rd. Note that (dt′)|(p,q) =

∂t
∂xi

∣∣
p
dxi|(p,q) and that t′(p, q) = 0

if and only if p ∈ Σ. Thus t′ is a local defining function for Σ′ on U × Rd. The
unit conormal field for Σ′ on Σ′ ∩ (U × Rd) is given by n′

a = dt′

|dt′|r
. If we consider

Figure 5, we find that |dt′|r, evaluated at (p, q), is equal to |dt|g , evaluated at p.
Now let a ∈ {1, . . . , m′} be given, and let n′

a denote the component of the unit
conormal field for Σ′ corresponding to a. If m+ 1 ≤ a ≤ m′, then n′

a|(p,q) = 0. If
1 ≤ a ≤ m, then n′

a|(p,q) = na|p; here na|p denotes the component of na at p.
Let G′ denote the modified mean curvature associated to M ′ and Σ′, as defined

in Section 3.1, above. Also let ∇′ denote the Levi-Civita connection of r on
M ′. Then G′ = rab∇′

an
′
b on U × Rd, and for any (p, q) ∈ U × Rd, we have

G′|(p,q) = rab((∂/∂za)n′
b − Γ′

ab
cn′

c)|(p,q). We may assume here that a, b, and c are
summed from 1 to m only. Thus

G′
∣∣∣
(p,q)

= g
ab

(
∂

∂xa
nb − Γab

cnc

)∣∣∣∣
p

= G|p .

Next, let V ′ denote the lift of V along π. Also let β ∈ Z>0 and (p, q) ∈ U × R
d

be given, and consider the following component expressions:

(71) (∇′
a1
. . .∇′

aβ
V ′)
∣∣∣
(p,q)

and (∇′
a1
. . .∇′

aβ
(R′)ij

k
ℓ)
∣∣∣
(p,q)

.

We may symbolically expand both of these and express them in terms of the
Christoffel symbols Γ′

ij
k and partial derivatives of V ′, Γ′

ij
k and (R′)ij

k
ℓ. (See Sec-

tion 2.5 of [60].) Let P1 and P2 denote the expressions that result from the
expansion of the respective expressions in (71) in this way. Note that V ′, Γ′

ij
k, and

(R′)ij
k
ℓ are independent of q. Also recall that Γ′

ab
c|(p,q) vanishes whenever {a, b, c}

is not a subset of {1, . . . , m}. Similarly, (R′)ab
c
d|(p,q) vanishes if {a, b, c, d} is not

a subset of {1, . . . , m}. We may thus assume that all indices in P1 and P2 take
values in {1, . . . , m} only.

Now let p ∈ Σ and q ∈ Rd be given. We may assume that p ∈ U . We claim
that (ψV )(p) = (ψV ′)(p, q). To see this, begin by expanding the symbolic formula
for (ψV ′)(p, q) in the way in which we expanded the two expressions in (71),
above. In the resulting expansion, we may assume that all indices are summed
from 1 to m only. Next, replace all occurrences of (R′)ab

c
d|(p,q), Γ

′
ab

c|(p,q), G
′|(p,q),

n′
a|(p,q), rab|(p,q), r

ab|(p,q), V ′(p, q), and ∂
∂zi

|(p,q) with Rab
c
d|p, Γab

c|p, G|p, na|p, gab|p,

g
ab|p, V (p), and ∂

∂xi |p, respectively. The resulting expression is (ψV )(p). If we let
p′ = (p, q), then p′ satisfies (25). �
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