PETROLOGY

OF THE

CUVIER AND PARITU PLUTONS

AND THEIR METAMORPHIC AUREOLES.

Thesis submitted for the degree
of
Doctor of Philosophy
in
Geology

Philippe M. Black

University of Auckland

June 1967
ACKNOWLEDGEMENTS

The writer wishes to express her gratitude to members of the Geology Department, Auckland University for their unfailing help and encouragement, and especially to Professors R.H. Brothers and E.J. Searle for their advice and critical reading of this manuscript; to Mr. T.H. Wilson for tuition and guidance in analytical techniques; to Mr. B.J. Curhan for some thin-sections; and to Misses B. Horne and P. Ward for typing this manuscript.

Dr. J.J. Reed of the Geological Survey, Lower Hutt generously lent thin-sections and gave the writer analyses and analysed rock specimens of three Cuvier Plutonics and the results of two boron analyses of Cuvier hornfelses.

Work on Cuvier Island would not have been possible without the permission and co-operation of the Marine Department and in particular to Mr. Squires who arranged transport on the Lighthouse Relief Vessel.

The hospitality and interest of the lighthouse keepers, Messrs. Harris, Norris and Lloyd and their families of Cuvier Island, and of the Ward family of the Peritu district is sincerely appreciated.
TABLE OF CONTENTS

NOTE I

<table>
<thead>
<tr>
<th>NOTE I</th>
<th>1</th>
</tr>
</thead>
</table>

NOTE II

<table>
<thead>
<tr>
<th>NOTE II</th>
<th>3</th>
</tr>
</thead>
</table>

PART I: CUvier ISLAND

CHAPTER I. INTRODUCTION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION, PHYSIOGRAPHY</td>
<td>6</td>
</tr>
<tr>
<td>PREVIOUS WORK</td>
<td>7</td>
</tr>
<tr>
<td>OUTLINE OF GEOLOGY</td>
<td>7</td>
</tr>
</tbody>
</table>

CHAPTER II. BASEMENT STRATA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>LITHOLOGIES</td>
<td>12</td>
</tr>
<tr>
<td>(1) Sandstone</td>
<td>12</td>
</tr>
<tr>
<td>(2) Argillites</td>
<td>15</td>
</tr>
<tr>
<td>(3) Conglomerates</td>
<td>15</td>
</tr>
<tr>
<td>(4) Chert</td>
<td>16</td>
</tr>
<tr>
<td>(5) Limestone</td>
<td>16</td>
</tr>
<tr>
<td>(6) Variolitic lavas</td>
<td>16</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>16</td>
</tr>
</tbody>
</table>

CHAPTER III. CAMP BAY HYCOCITE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>18</td>
</tr>
<tr>
<td>FIELD DESCRIPTION</td>
<td>18</td>
</tr>
<tr>
<td>PETROGRAPHY</td>
<td>20</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>21</td>
</tr>
</tbody>
</table>

CHAPTER IV. REPANGA ANDESITE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>22</td>
</tr>
<tr>
<td>PETROGRAPHY</td>
<td>22</td>
</tr>
<tr>
<td>PETROCHEMISTRY</td>
<td>28</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>28</td>
</tr>
</tbody>
</table>

CHAPTER V. CUvier PLUTONICS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>29</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>32</td>
</tr>
<tr>
<td>CLASSIFICATION</td>
<td>37</td>
</tr>
<tr>
<td>FIELD RELATIONS</td>
<td>38</td>
</tr>
<tr>
<td>PETROGRAPHY</td>
<td>42</td>
</tr>
<tr>
<td>(1) Diorite</td>
<td>42</td>
</tr>
<tr>
<td>(2) Tonalite</td>
<td>44</td>
</tr>
<tr>
<td>(3) Granodiorite</td>
<td>45</td>
</tr>
<tr>
<td>(4) Adamellite</td>
<td>49</td>
</tr>
<tr>
<td>(5) Pegmatite-Aplites</td>
<td>51</td>
</tr>
<tr>
<td>XENOLITHES</td>
<td>52</td>
</tr>
<tr>
<td>DREUSE MINERALS</td>
<td>54</td>
</tr>
<tr>
<td>(1) Chabazite-Calcite</td>
<td>54</td>
</tr>
<tr>
<td>(1i) Tourmaline-Quartz</td>
<td>54</td>
</tr>
<tr>
<td>(1ii) Epidote-Quartz-Orthoclase-Albite</td>
<td>55</td>
</tr>
<tr>
<td>(1iv) Magnetite-Andradite-Epidote-Quartz</td>
<td>56</td>
</tr>
</tbody>
</table>
CHAPTER VI. THE CVIURU METAMORPHIC AUREOLE

CONTACT METAMORPHISM

PETROGRAPHY

(i) Siliceous Rocks: Cherts and Rhyolites
(ii) Pelitic and Psammitic Sediments
 Class 1 Mg il
 Class 2A
 Class 2B
 Class 2D
 Class 3A
 Class 3B
 Class 4A
 Class 4B
 Class 5

(iii) Basic Igneous Rocks:
 Class 5
 Class 6

(iv) Impure Limestones
 Class 7
 Class 8

MINERALOGY

Feldspar
 (1) Plagioclase
 (2) Orthoclase

Pyroxene
 (1) Orthopyroxene
 (2) Clinopyroxene

Aphiboles

Micas

Corinomite

Garnet

Epidote, Tourmaline

Azinite

Blue Pleochroic Mineral

Accessory Minerals

PETROCHEMISTRY

MINERALISATION

Sulphide Mineralisation

Epidotisation

Tourmalinisation

PART II: PARITU

CHAPTER VII. INTRODUCTION

PREVIOUS WORK

OUTLINE OF GEOLOGY
CHAPTER XII. THE PARITU METAMORPHIC AUREOLES

PETROGRAPHY

Metamorphosed Sedimentary Rocks

Pyroxene Hornfels Facies

Class 1 Mg IIb

Class 33

Hornblende Hornfels Facies

Class 1

Class 4

Albite–Epidote Hornfels Facies

Metamorphosed Igneous Rocks

Pyroxene Hornfels Facies

Hornblende Hornfels Facies

MINERALOGY

(1) Feldspar

(2) Pyroxenes

(3) Amphiboles

(4) Biotite

(5) Cordierite

(6) Garnet

TOURMALINIZATION

PETROCHEMISTRY

DISCUSSION

PART III: COMPARISONS AND PETROGENESIS

CHAPTER XIII. COMPARISONS AND PETROGENESIS OF THE CUVIER AND PARITU PLUTONS

ENVIRONMENT

GENERAL PETROGRAPHIC COMPARISONS

COMPARATIVE MINERALOGY

(1) Pyroxenes

(2) Amphiboles

(3) Plagioclase

(4) Alkaline Feldspar

(5) Accessory Minerals

PETROCHEMICAL COMPARISONS

ORIGIN OF THE ACID PHASES

Introduction

Granophyre

Granular Groundmass

Discussion

EMPLACEMENT OF THE PARITU AND CUVIER PLUTONS

THE ASSOCIATION OF PLUTONICS AND VOLCANICS

ORIGIN OF THE PARENT MAGMA

CHAPTER XIV. COMPARISONS AND PETROGENESIS OF METAMORPHIC AUREOLES SURROUNDING PARITU AND CUVIER PLUTONS

INTRODUCTION

SELECT TEXTURES

PETROGRAPHIC COMPARISONS OF CUVIER AND PARITU HORNFELSSES

CHEMICAL COMPARISON OF THE CUVIER AND PARITU META-SEDIMENTS

MINERALOGICAL NOTES

(1) Pyroxene

(2) Amphibole

(3) Biotite

(4) Feldspar

(5) Garnet

METASOMATISM IN THE CUVIER AND PARITU AUREOLES

MINERALIZATION
CHAPTER XIV. COMPARISONS AND PETROGENESIS OF METAMORPHIC AURSOLES
SURROUNDING PARTU AND CUJIVER PLUTONS (Contd.)

Tourmalinisation 338
Epidotisation 341
Sulphide Mineralisation 342
SUMMARY OF IONIC MIGRATION 343
PHYSICAL CONDITIONS OF METAMORPHISM 344
Temperature 344
Pressure 345

REFERENCES 347
NOTE 1

This thesis is intended as a petrological study of the plutons and contact metamorphosed rocks exposed on Cuvier Island and in the Paritu district (Fig. 1, p.2). The sulphide and base metal mineralisation of the Paritu district has formed part of a concurrent thesis by Mr. D.N.B. Skinner, so the present writer has carried out little work on ore minerals apart from that considered sufficient for comparison of the plutons and their aureoles.

In order to avoid unnecessary repetition, this study has been divided into three parts. Parts I and II are descriptions, with the minimum of discussion, of the Cuvier and Paritu plutons and their country rocks. In Part III mineralogical, petrological and petrochemical aspects of the two plutons and their metamorphic aureoles are compared and contrasted and their petrogenetic significance discussed.
FIGURE 1
LOCALITY MAP SHOWING POSITION OF PARITU AND CUVIER ISLAND
NOTE II

The following symbols and abbreviations have been used in this manuscript:

- a cell edge in the x direction
- c cell edge in the z direction
- x, y, z crystal axes
- \(\alpha, \beta, \gamma \) least, intermediate and greatest refractive indices; also vibration directions of the fast, intermediate and slow rays
- \(\varepsilon \) extraordinary ray, refractive index
- \(\omega \) ordinary ray, refractive index
- \(n \) refractive index for an isotropic mineral
- 2V optic axial angle
- \(r < v \) (or \(r > v \)) the optic axial angle in red light is less than (or greater than) that in violet light.

All refractive indices have been determined in white light and unless otherwise stated the standard error is believed to be no more than \(\pm 0.002 \).

Thin-sections and hand-specimens have the same number and are housed in the petrology collection of the Geology Department, Auckland University; specimen numbers prefixed by \(M \) refer to samples held in the mineral collection of the Geology Department, Auckland University.

Modal analyses of rocks were estimated by counting 1000 points with an electric point counter; normative analyses were calculated using the classical C.I.P.W. methods.

Staurographic plots of petrofabric analyses and structural data are all lower hemisphere projections.
Figure 3

Cuvier Island from the north-east. The lighthouse and the lighthouse settlement in the left foreground and Radar Point to the centre-right. In the distance is the Moehau Range of Cape Colville Peninsula.

Photo: Whites Aviation