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Abstract. In this paper we study the logical principles of a common type of net-
work communication events that haven’t been studied from a logical perspective
before, namely network announcements, or tweeting, i.e, simultaneously send-
ing a message to all your friends in a social network. In particular, we develop
and study a minimal modal logic for reasoning about propositional network an-
nouncements. The logical formalisation helps elucidate core logical principles of
network announcements, as well as a number of assumptions that must be made
in such reasoning. The main results are sound and complete axiomatisations.

1 Introduction

Formalising reasoning about different types of interaction between multiple agents is
an active research topic in logic, artificial intelligence, knowledge representation and
reasoning, multi-agent systems, formal specification and verification, and other fields.
Most modern approaches are based on modal logic. Despite their ubiquitousness, rela-
tively little attention has been given to formalising reasoning about interaction in social
networks — with some notable exceptions [8, 14,13,12,9-11,2,5,4,3].

In this paper we deal with an issue that has not yet been studied in the sparse but grow-
ing literature on logics for social networks. Existing works broadly speaking fall in two
main categories; those using formal logic to characterise “global” network phenomena
such as cascades (e.g., [2]), and those using formal logic to capture the often subtle de-
tails of “local” social network events such as message passing (e.g., [11]). Works in the
latter category, in which the current paper falls, have mostly been motivated by captur-
ing events typical in Facebook-like applications, such as privately sending a message to
a friend (one-to-one messaging). In this paper we formalise reasoning about (what we
call) network announcements in social networks, the primary communication event on,
e.g., Twitter: the sending by one agent of a message which received simultaneously by
a number of other agents (the sender’s followers), determined by the network structure.
We will also refer to the act of making network announcements as tweeting.
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We introduce a minimal modal logic for reasoning about network announcements, hav-
ing expressions of the form (a : 6)y with the intuitive meaning that if agent a tweets
0, o will become true. This tweeting operator is not completely original; a very similar
operator [F'l¢] with the meaning “after I announce ¢ to my friends” was defined seman-
tically in [10] (and also mentioned in [11]), but not systematically studied. In particular,
the logic of network announcements, their logical principles, axiomatic basis, and so
on, has not been studied. Certain aspects of what we call network announcements have
been studied in computer science under the term (one-to-many) multi-cast messaging
[7, 6], but not using formal logic.

In this paper we restrict the beliefs of the agents, and thus also the messages they can
tweet, to be about basic propositional facts only, as opposed to higher-order beliefs,
beliefs about who follows whom, beliefs about who said what, etc. We also make a
number of additional idealising assumptions:

Sincerity Agents only tweet what they believe.

Credulity Agents believe the messages they receive.

Conservatism Agents never stop believing what they believed before.

Network stability  'Who follows whom after a tweet is the same as before.

Rationality Agents only believe what follows logically from their previous be-
liefs and the messages they receive.

Doxastic Agents believe all the logical consequences of what they believe.

Omniscience

These assumptions limit the applicability of the logic, but also allow us to focus on the
core concepts of network announcement epistemology. These need to be understood
before other more complex issues are addressed. We will see that already several inter-
esting phenomena emerge. In Section 6 we discuss the prospect for extensions.

One remaining, natural assumption is the consistency of each agent’s beliefs. Instead
of building this into our models from the beginning, we develop the logic without any
assumption of consistency and then characterise classes of models in which various
consistency assumptions hold. In this paper, we will consider two:

Weak Coherence  Each agent has consistent beliefs.
Global Coherence Agents have mutually consistent beliefs.

The paper is structured as follows. In the next section we introduce the syntax and
semantics of the logic, and illustrate what it can express and discuss some of its prop-
erties. In Section 3 we study logical properties in the form of valid formulas, and the
relationship between them, enabling us to form a Hilbert-style axiomatic system that is
shown to be complete in Section 4. A red thread, and indeed the crux of the complete-
ness proof, is how formulas expressing some agents’ beliefs or ignorance after some
tweet implicitly contains information about the network structure. In Section 5 we look
at completeness results for some variants of the logic, and we conclude in Section 6.
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2 Propositional Network Announcements

Let Agnt and Prop be non-empty sets of agent names and atomic propositional letters,
respectively.

Definition 1 (Language). The language of propositional network announcement logic
is defined by the following grammar, where p € Prop and a € Agnt:

O:=p|-0|010 pu=Blb|-p|peAe|{a:b)p.

Expressions of type 6 are called message formulas or just messages; those of type ¢ are
called formulas. The usual derived propositional connectives are used, as well as [a : 6]
for —(a : §)-. The intended meaning of B,0 is that agent a believes 6, while (a : )¢
means that a can tweet 6, after which ¢ is the case. Formulas of the form B, 0 are called
belief formulas.

A model for our language has two parts: an assignment of belief states to each agent
and a “following” relation between agents. Recall that a propositional logic valuation is
a function from Prop to truth values. We denote the set of all valuations Val. We model
an agent’s belief state by a subset of Val, with no further restrictions. Each message
6 determines the set [0] of those valuations that make it true, according to the usual
semantics of propositional logic.

Definition 2 (Models). A propositional network announcement model over Agnt and
Prop is a pair (F,w), where the following relation F' is a binary relation on Agnt and
the belief state function w: Agnt — pow(Val) assigns each agent a (possibly empty) set
of valuations. We write F'a for the set {b | bFa} of followers of a.

Note that the subset ordering of belief states is inverse to the strength of the state, so we
define wy < ws iff wy(a) C wi(a) for every a. Any belief of a’s in state w; is also a
belief in state ws.

Definition 3 (Updates). When (only) agent a’s belief state is updated with 6, the re-
sult is the belief state function [a 1 f]w. More generally, the result of simultaneously
updating all the agents in a set C' of agents with 6 is [C'1 0]w, where

[C10]w(b) = {ZEZ; n[elitb e C

otherwise

Note that updating is monotonic: w < [C' 1 0]w. The language is interpreted in these
models as follows.

Definition 4 (Satisfaction). A formula ¢ of the language of propositional network an-
nouncement logic is satisfied by a model (F,w), written F, w |= ¢, as follows:
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F,w = B,0 iff w(a) C 4]

FwlE-p iff Fwloe

FwEeny iff FwlEpand FowEY
FuwkE{a:0)p iff FwpkE BfandF,[Fatllw E ¢

As usual we say that a formula is valid iff it is satisfied by every model. We will also be
interested in the class of models in which agents’ beliefs are mutually consistent:

Definition 5. A model (F,w) is weakly coherent iff w(a) # () for every a € Agnt. Itis
globally coherent iff (), cpgn w(a) # 0.

Clearly global coherence implies weak coherence but not vice versa.

2.1 A simple example

Figure 1 shows a model of three agents with the following beliefs (this is all they be-
lieve, modulo logical consequence): Claire believes that the party will be at Anna’s
place (g); Bill believes that Anna’s mother is in town (p); and Anna believes that if her
mother is in town the party will not be at her (Anna’s) place (p — -q). Note that the
beliefs are mutually inconsistent (the model is not globally coherent).

[r] [a] [(p — -q)]

b c a

Fig. 1. A simple model. An arrow from a to b means that a follows b.

At this point, each of the three friends have a consistent belief state (the model is weakly
coherent). Claire can tweet g, after which Anna and Bill will also believe the party is at
Anna’s place. That’s described by the formula (c : ¢)(B,q A Bpq)). Moreover, Bill can
tweet p, but the formula (b : p)-B,p tells us that still Anna would not believe p. That’s
because only Claire is following Bill, and so only she will get the message, and before
she does she cannot tweet it to Anna: —(c : p) Bup.

After Claire receives Bill’s tweet she can retweet it, and since Anna is following her,
she will then believe her mother is in town: (b : p)(c : p)B,p. Anna also believes
(p — -q), so when she receives this message she will also believe —¢, that the party
is not going to be at her place. Problems arise for Anna when she receives both of
Claire’s tweets: one indicating that the party will be at her place, and the other that it
will not. Since she is completely credulous, this will leave her in an inconsistent state:
(c: q){b:p){c: p)B,L. Neither Bill nor Claire suffer the same fate. In fact, both will
still believe that the party is at Anna’s place: (¢ : ¢)(b : p)(c: p)(Bpq A Bcq).

The possibility of inconsistent belief states can be regarded as a limitation of our model
due to the sometimes unrealistic assumption of credulity: our agents have no way of
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revising their beliefs. But it can also be regarded as a feature. Even if the agents’ beliefs
are globally inconsistent, the network structure will allow that inconsistency to emerge
in some places but not in others, and this can be described by formulas of our language.

2.2 Conditional tweeting and relational semantics

The dual tweeting operator [a : 6], can be seen to be a conditional:
Proposition1. F,w |=[a:0l¢ iff ifF,w = B, then F,[Fa10lw = ¢

Our notation for (a : @) and [a : 0] is no accident. Just like the diamond and box of
ordinary modal logic, they can be given a relational (“Kripke”) semantics. (We omit the
straightforward proof of the following.)

Proposition 2 (Relational Semantics). Define the relation F§ between belief state
Sfunctions by: F§(wy,ws) iff wi(a) C [0] and we = [Fa?6)ws. Then:

FwE{(a:0)p iff F,vl= @forsomev suchthat Ff(w,v)
FwEla:0l¢ iff F,v|=oforeveryv suchthat F§(w,v)

Define a function V' from belief formulas to sets of belief state functions, by V (B,0) =
{w | w(a) C [0]}. Let W be the set of belief state functions and let M (F') be the
(multi-)modal model (W, F, V') and take our language to be a language of propositional
modal logic, with each belief formula considered as a propositional variable and each
announcement operator as a modal operator. Then F,w |= ¢ iff M(F),w |= .

2.3 Potential belief, and tracking ghosts

An agent’s potential beliefs are those she may acquire as a result of communications
from other agents. To describe these clearly we need some notation. Given agents
Co, - - -, Cp, and messages Oy, ..., 0,, let (co : bp,...,c, : 0,) be an abbreviation for
the sequence of tweets (co : fp) ... (¢, : 0,). Let &be a variable over expressions of the
form cq : Oy, ..., cy : 05, s0 we can also write the (possibly empty) sequence of tweets
as (C). As for the basic language, we define [¢] as —(¢)-. The reversal of ¢, denoted ¢,
is the reverse sequence of tweets ¢, : 0,,,...,cq : 6g.

Definition 6. A formula of the form (¢) B, 0 is a potential belief formula. Agent a has
a potential belief that 0 iff F,w = (¢) B, for some €. (F,w) is potentially equivalent
to (F’,w’) iff every agent has the same potential beliefs in (F,w) as in (F',w’).

In the example, Bill’s and Claire’s beliefs are always consistent, whereas Anna’s are
not. She potentially believes a contradiction. The formula (¢ : ¢){b : p){c : p)B,L
that expresses a way in which Anna’s beliefs can become inconsistent is an example of
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a potential belief formula. The concept of potential inconsistency gives a finer-grained
picture of the initial distribution of beliefs than merely saying they are mutually incon-
sistent.

Lemma 1. [f (F,w) is potentially equivalent to (F',w') and w(a) C [0], then (F, [F, T
Olw) is potentially equivalent to (F',[F'at0]w’).

Proof. Assume that (F,w) is potentially equivalent to (F’,w’) and w(a) C [6]. By
Definition 6, w’(a) C [¢]. Then for any ¢, x, and agent b, the following are equivalent:
F,[Fat8lw = (@)Byx
F,w = (a:0)(C)Byx by Definition 4 and w(a) C [0]
F',w' E{a:0){(¢)Byx by Definition 6 and assumption
F',[F'at0lw’ = (€)Bpx by Definition 4 and w’(a) C [6].

Theorem 1. Propositional network announcement models satisfying the same potential
belief formulas are indistinguishable: they satisfy all the same formulas.

Proof. We prove that for any pair of potentially equivalent models (F,w) and (F’,w’),
F,w | @iff F/,w’' = ¢ for any ¢ by induction on . (i). The atomic case, F,w =
B,0iff F' ' | B,#, follows directly from Definition 6. (ii). The boolean cases are
straightforward. (iii). For ¢ = (a : 6)%, the induction hypothesis is that for any pair
of potentially equivalent models (F,w) and (F”,w’), F,w = x iff F',w’ | x for any
subformula y of ¢ — in particular for y = 1. The following are equivalent:

FwlE{a: )y

w(a) C [f] and F, [Fa?t0lw = ¢ by Definition 4

w'(a) C[0] and F',[F'a10]w’ =14 by (i), i.h. and Lemma 1

F' W E{a:0)¢ by Definition 4.

A closely related idea is that of “tracking”.

Definition 7. Agent b tracks agent a in a model (F,w) iff F,w = (¢)B,0 — (C)Byf
for every c'and 6.

If b tracks a then any potential belief of a is also a potential belief of b, but more than
that, their potential beliefs are synchronised, in the sense that whenever a acquires a
belief, b either acquires it at the same time or already has it.

The interesting point about tracking is that it obscures the following relation. It is pos-
sible for an agent to track without following, perhaps by coincidence or just because
she already believes every one of some other agent’s potential beliefs. If agent b tracks
agent a, it is impossible to detect, using the logical language, whether b follows a. We
say that b is a ghost follower of a if b tracks a without following a. Ghost followers are
indistinguishable from real followers.
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Taut + ¢ ¢ subst. inst. of prop. tautology MP if - @ — Y and F ¢ then - ¢
Kg F Ba(0 — x) = (Bab — BaXx) Necp iflq 0 thent B,0
K. Fla:0l(¢ = ¢) = ([a: 0l — [a:0]Y) Nec. ifk @thent [a: 0]y

Fig. 2. The modal base of pNAL. ¢ represents derivability in classical propositional logic.

3 The Logic

We consider various valid principles and properties of propositional network announce-
ment logic, working towards an axiomatisation (shown to be complete in the next sec-
tion): the system pNAL, shown in Figure 3. We use I to represent derivability in pNAL.
We now introduce the axioms step by step, and along the way present some additional
properties that are derivable by the axioms we have introduced “so far”.

3.1 The modal base

We have observed that the announcement operators have a relational semantics (Propo-
sition 2). It follows that their logic must be an extension of the modal logic K. The belief
operator B also has most of the properties of a normal modal operator, except that sub-
stitution of propositional variables is restricted to message formulas. By the modal base
of our logic, we mean the system in Figure 2. The following is straightforward.

Proposition 3. The modal base is sound: every derivable formula is valid.

Because of this modal base, we can do standard normal modal logic reasoning in our
logic (with the syntactic restriction that # must be propositional in B,6), which we will
make frequent use of in the following. The base is also enough to show that equivalent
formulas can be swapped. The proof (omitted here) is a standard induction on formulas.

Proposition 4 (Replacement of Logical Equivalents).
RLE ifto 0 <> x thent ©(0) < O(x) iftE o <> Y thent &(p) < P(¢)

where O(x) is the formula obtained from ©(0) by replacing some instances of 0 by x
or vice versa, and similarly for formulas () and D(1).

3.2 Duality and sincerity

The following dualities are derivable using propositional logic (and replacement of
equivalents) alone:

Proposition 5. Dual F [a:0]-p < —(a: 0)p F-la:8lp < (a:0)-¢
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But the operators are also linked by our assumption of sincerity, which says that B0 is
presupposed by (a : #) and serves as the antecedent of [a : 6]:

Sinc [a:0]p + (Byl — {a:0)p) (a:0)p > (Bab Ala:0)p)

These are inter-derivable using the modal base; the first is included as an axiom in
pNAL. Validity can be easily checked directly from the semantical definitions.

Proposition 6. Sinc is valid.
Sinc implies that when the precondition is satisfied, the two operators are equivalent:
Proposition 7. Swap + B0 — ([a: 0] « (a: 0)p)

Using only the precondition principle Sinc and the modal base, we can show the exis-
tence of normal forms.

Theorem 2 (Normal form). Every formula is provably equivalent to one in conjunc-
tive normal form or disjunctive normal form, with atoms generated by

p =Bl |[a:0)e ]| {a:0)p

which is to say: sequences of diamonds and boxes ending in a belief formula. Moreover,
the modal depth of the normal form is no greater than the depth of the original formula.

Proof. Given an arbitrary formula, first rewrite (by expanding or introducing abbrevi-
ations) so that the only operators are —, A, B, and [a : 6]. Then, given RLE, we only
need note that:

Red-, Fa:68]-p ¢ (B0 Ala: blp)

Redrn Fla:0l(pAY) < (Ja: 0l Ala:0]y)

(Red-, is tautologically equivalent to an instance of Sinc and Red, is just the modally
derivable distribution of box over conjunction.)

To see that there is no increase of modal depth (nesting of tweets), it is enough to note
that the formulas on either side of the equivalences Red_ and Red, are of the same
depth.

3.3 Rational conservative updating

The direct effect of a tweet is captured by two axioms:
Cnsv  Bpx — [a: 0]Bpx Rat (a:6)Byx — By(0 — x)

Conservatism (Cnsv) is our assumption that old beliefs are retained when receiving new
information. Rationality (Rat) is our assumption that agents only believe what follows
logically from their old beliefs and the content of the tweets they receive. Note that the
soundness of these axioms rely on the fact that there are no higher-order beliefs.
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Proposition 8. Both Cnsv and Rat are valid.

Proof. For Cnsv recall the previously mentioned monotonicity of updating: w < [C' 1
f)w. Since tweeting is a special case of updating, it is also monotonic. For Rat consider
two cases. If b is a follower of a, then b’s updated state [F, T 6]w(b) = w(b) N 6. But
w(b)No C [x]iff w(b) C [0 — x]. If bis not a follower of a then [Fy, 10]w(b) = w(b)
and w(b) C [x] implies w(b) C [¢ — x].

The implication in Rat can be turned into an equivalence under the assumption that b
believes what a tweets. The following can be proved using Rat and Cnsv.

Proposition9. Up + (a:0)By0 — ({a: 0)Byx < By(6 — X))

Proof. One half of the equivalence is a weakening of Rat. For the other, note that [a :
0]By(0 — x) — ({a: 6)Byf — (a : 0)Byx) is derivable by purely modal reasoning.
And By(60 — x) — [a : 0] By(6 — X) is an instance of Cnsv .

3.4 Following

Given the problem of ghosts described in Section 2.3, there can be no formula that
exactly defines the relation of following. Nonetheless, some sufficient and necessary
conditions are expressible.

Proposition 10. Given a and b, for any ¢ and any 0,

(Sufficient) If F,w = (¢)(=Bpx A {(a : 0)Byx) then bF a.
(Necessary) If bFa then F,w |= [C][a : 0] Byd

Proof. For the sufficient condition, suppose F,w = (¢)(-Byx A {a : 6)Byx). Letw’ be
the result of updating w according to (¢). Then F,w’ £ Byy but F, [Fa?10]w’ E Byy.
So w'(b) # [Fa?10)w'(b) and so b € Fa.

For the necessary condition, suppose bF'a. Then either one of the preconditions in
evaluating [¢] fails, and in which case the formula is satisfied, or they all succeed.
In that case, let w’ be as before. Since b € Fa, [Fa1 0w (b) = w'(b) N [0] and so
F,[Fat0|w’ |E Byf. Thus F,w [= [C][a : 0] By0.

Our approach to the logic, then, is to include an axiom saying that the sufficient condi-
tion implies the necessary condition:

Foll (&Y(=Byx A {a: x"YBpx) — [€]a : 6] B0
3.5 Network stability

The following axiom captures the assumption that the only thing that changes anything
is tweeting events, and that an “empty” tweet (of a tautology) changes nothing.



10 Zuojun Xiong, Thomas Agotnes, Jeremy Seligman, and Rui Zhu

Taut ifto @ thent ¢ MP if - ¢ — ¢ and - ¢ then - ¢

K F Ba(@ = x)— (Bl = Bax) K. Fla:0l(p—v)— ([a: 0 —[a:0]Y)
Necp if o 6 then - B,0 Nec. if - @ thent [a: O]

Sinc Fa:0]lp < (Bab — (a:0)p) Cnsvt Byx — [a:6]Byx

Rat + (a:8)Byx — Bs(6 — x) Foll + (&)Y(=Box A {a: X' )Byx) — [€]la: 0] By
Null ifto @thenk ¢ <> (a: O)¢

Fig. 3. Axioms and rules of pNAL.

Null iftg@thent ¢ <> (a: 0)p

Null is in fact the last axiom we need in order to get a complete axiomatic system, as
we shall see in the next section. We end this section with mentioning two additional
properties related to network stability. They are both already derivable (follows from
the completeness result in the next section).

First, tweeting does not affect the network structure; in fact, the following relation is
kept fixed. That’s our assumption of network stability. Consider the following property:

Stab  (b:x)B.d — [a: 0](b: x)B.0

Stab is a necessary but insufficient condition of network stability; and that’s the best we
can do. There is no sufficient condition available. Fortunately, we don’t need one to get
a complete axiomatisation, as we shall see in the next section.

Network stability is needed for many principles involving the iteration of tweets; in
particular, for moving a conditional tweet to the beginning of a sequence of tweets:

Perm (@)[b: x]e — [b: X](@)y
Proposition 11. Null, Stab and Perm are valid.

Proof. The case for Null is trivial. We show the case for Stab, Perm is (also) straight-
forward. Suppose F,w = (b : x)B.6 then (1) F,w = Bpx and (2) F, [Fb1 x]w = B.J.
Now suppose F,w |= B,0. Then (3) F, [Fa?16]w = Byx since (1) and [Fa10|w(b) C
w(b). We also have (4) F, [FbT x]([Fat0|w) = B.d since [Fb1x]([Fat0lw) = [Fat
O1([FbTx]w) C [Fb1x]w and (2). Thus by (3) and (4), F,w = [a : 0]{b: x)B.0.

4 Completeness

We show that the system pNAL, displayed in Figure 3 is (strongly) complete. We as-
sume the usual concepts of consistency, maximal consistency, and logical closure. The
Lindenbaum result that any consistent set of formulas can be extended to a maximal
consistent set holds for standard reasons. We have shown the derivability of various
additional principles (Dual, Swap, and Up) that will be used below (Propositions 5, 7
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and 9). All that remains is to use a maximal consistent set of formulas I to construct
a following relation F'r and a belief state function wy for which we can prove a Truth
Lemma (that F'rr, wr satisfies every formula in I7). So we define:

bFraiff [€][a: 0]By0 € I'foralléand 0  wp(a) = {[0] | B.6 € I'}.

Note that the definition of F uses the set of all formulas providing necessary condi-
tions for following, as identified in Proposition 10. In a given model, any ghost follower
of a will also satisfy all these conditions. Our approach is to build a model in which all
trackers of a are taken to be followers.

Regarding belief formulas, the definition of w does it’s job:
Lemma 2. wr(a) C [0] iff B.0 € I for any a and 0,

Proof. Right-to-left is immediate since wr(a) = ({[x] | Bax € I'}. For the other
direction, by completeness of propositional logic, Fo (x1 A ... A xn) — 6 for some
Buxi,---Baxn € I'.Thent By((x1 A ... A xn) — 0) by Necg and so - (Bgx1 A
...\ Byxn) — B, by more modal reasoning using K and Necg. Thus B,6 € I.

Lemma 2 is the obvious base case of an attempt to prove the Truth Lemma by induction
on the structure of formulas. But such a direct approach doesn’t work because the clause
for (a : 0) requires us to update the model. There are several options here. A first
thought is to try to construct the set of formulas satisfied by the updated model, i.e., to
find a maximal consistent set I such that Fr» = Fr and wp = [Fra?60lwr. But the
search for something satisfying the first of these conditions is plagued by ghosts: each
time the model is updated, new ghost followers may appear. Instead, we’ll construct a
I’ to meet only the second condition, using a syntactic update operation:

(a:0)"={¢ | (a:0)p €T}

Our proof of the Truth Lemma (Lemma 5) will involve a strengthening of it that quan-
tifies over sets obtained by repeated applications of syntactic update. This requires new
notation and a some technical lemmas.

Definition 8. Define the relation < between sets of formulas as follows: I' < I iff
B0 € I'and I'" = {a : O)T for some a and 0. Let < be the transitive closure of <.

Lemma 3. If I is a maximal consistent set and I" < I’ then

1. I'"is also a maximal consistent set and
2. there is a € such that: (a) I'" = (C)I, and (b) [¢]p € I iff ¢ € I’ for all @, where
‘C is the reversal of C.

Proof. By induction on the length of the shortest chain I" < ... < I'". In the base case,
I'" = I and we can take C to be the empty sequence. So now suppose the length of
the shortest chain is strictly positive. Then there is a I such that I" < I < I"". Note
that the chain I < ... < IV is shorter. By definition of <, there are a and 6 such that
B0 eland I = {a:6)I.
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1. We first show that I is a maximal consistent set: ~¢ € I'" iff —=p € (a : 0)I" (by
I' = {(a:0)I)iff (a : )-~p € I (by def. of (a : O)I") iff =[a : O] € I" (by
Dual) iff ={a : @) € I" (by Swap and B0 € I iff (a: O)p & I"iff o & (a: O)I
(by def. of (a : O)") iff o & I (I = (a : 6)I"). Now, since there is a shorter
chain from I to I and I"” is a maximal consistent set we can apply the induction
hypothesis, to get that I is a maximal consistent set.

2. Also from the induction hypothesis: there is ¢ such that (1) I = (&)I"" and (2)
[¢lo e I'"iff p € I forall p. Solete = ¢, a: 6. Then from (1): IV = (¢)I"" =
(€Y a: I = (¢,a:0)" = (). We get the following equivalences: [€]p € I’
iff [a : 0,¢)p € I' (def. of €) iff [a : ][c]¢ € I' (definition of [a : 6,7¢]) iff
(a : O)[c]p € I' (Swap, B0 € I')iff [c]Jp € (a : O)I (def. of (a : O)I) iff
[Ep e I" (I = (a:0)D)iff p € I' (2).

Lemma 3 enables us to show that belief state functions behave properly under updates:
Lemma 4. Foranym.c.s. I', if ' < I" and B,0 € I'' then [Fra®0lwr: = w0y

Proof. Suppose I' < I'" and B, € I''. We first need a fact about propositional logic:

Claim: ({[x] | 6 = x € A}={[x] | x € A} N []
for any formula € and any logically closed set A of formulas (of propositional

logic). It can be proved easily from the deduction theorem.

By Lemma 3, I'" = (¢)I" for some ¢ and this is a maximal consistent set. Let b be in
Agnt. We will show that w 4.0y (b) = [Fra16lwr (b). We have two cases depending
on whether or not b is tracking a:

b € FraThen|[¢|a: 0]|ByfisinI".By Lemma 3.2, [a : 8] Byfisin (¢)I". But B,0 isin
I and so by Swap so is {(a : 8) B,6. From this, Up tells us that (a : 8) Byx <> By(6 —
X) is in I’ for any y, but also by definition of {a : 8)I", we know that (a : 0) Byx € I/
iff Byx € (a : )I". Putting these together: Byx € (a: 6)I"iff B,(§ — x) € I".
So (UIX] | Bex € (a: )"} = (W] | Bo(0 = x) € I}

({Ix] | Bex € I"} N [6] by Claim, with
A={x|Byxel"}

Thus waeyr: (b) = [Fratflwr (b)

b ¢ Fra Then there is some € and some 6’ for which [€][a : §'] By6 is notin I'. Foll then
tells us that (¢) (-ByxA{a : 0) Byx) isnotin I" for any x. But I" is a maximal consistent
set so it does contain [¢]({a : 6)Byx — Bpx). So by Lemma 2, (a : 6)Byx — Bpx
isin (¢)I" = I"". We also have that Byx — (a : 8)Bypx is in I"’. (This is by Cnsv and
Swap since B0 € I'".) Thus:
Byx € I'iff (a:0)Byy € I"
iff Bpx € (a:60)I"  Defn. (a:6)I"
Hence (Ix] | Box € (a: 0)I"} = (I | Box € I}
Thus wia:0r (b) = [FratOlwr (b)

Lemma 5 (Truth Lemma). Fr,wr = ¢ iff ¢ € I, for any formula ¢ and m.c.s. I'.
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Proof. Let I' be a maximal consistent set. We prove that for any I/, if I < I then
Fr,wr = 4 iff ¢ € I, by induction on . The base case v = B,0 follows from
Lemma 2, and the cases for negation and conjunction are straightforward.

Consider the case that 1) = {(a : 6)p. Note that I is a maximal consistent set by
Lemma 3.1. The following are equivalent:

Frowr E{a:0)p

Fr,wr | Byb and Fr, [Frat6lwr |= ¢ by semantics (Definition 4)

B, € I'"and Fr, [Frat6lwr E ¢ by the B,0 case, above
BoO € I'"and Fr, w0y = ¢ by Lemma 4, since I" < I’
B0 eIand p € (a:0)I" by LH., since I’ < (a : 0)I"
B0 €I"and (a:0)p eI’ by definition of (a : 6)I"
(a:0ypel”’ by Sinc and closure of I

This completes the induction. Finally, let T be any tautology. Then B, T by Necp and
I'={a: T)I"'by Null. Thus I" < " and so I" < I', and the result follows.

When I’ is a set of formulas and ¢ a formula, we write I" |= ¢ to mean that any model
satisfying I also satisfies ¢, and I" I ¢ to mean that there is a theorem (o1 A. . .Apy,) —
 of pNAL for some finite sequence of formulas ¢, ..., @, in I

Theorem 3 (Soundness and Completeness). For any I and p, I' = p iff I' F .

Proof. Soundness follows from validity of the axioms and rules (Propositions 3, 6, 8,
10 and 11). (Strong) completeness follows from the Truth Lemma.

5 Variants

We have a brief look at some natural variants of the logic.

5.1 Irreflexivity

Do agents follow themselves? We have not assumed that they don’t; we allow models
were agents do follow themselves. Indeed, the canonical model in the previous sec-
tion is reflexive — all agents always follow themselves. However, it is easy to see that
self-following cannot be expressed in our logical language. I.e., we have the following

property.

Proposition 12. For any formula ¢ and any model (F,w), F,w |E @ iff F~,w = ¢,
where F'~ is the largest irreflexive submodel of F (i.e., F~ = F\{(a,a) : a € Agnt}).

We thus immediately get the following corollary of the results in the previous section
(by taking F' to be the (reflexive) canonical following relation).
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Corollary 1. pNAL is sound and strongly complete with respect to the class of models
with an irreflexive following relation.

5.2 Coherence

Our logic can easily be extended to axiomatise the class of weakly or globally coherent
models. Consider the following schemata (n ranges over positive natural numbers):

WCoh iftq -6 thent -B,0
GCoh ifkg—=(01 A...A0,) thent =(Bg, 01 A--- A Bq, 0n)

Let the wCpNAL be the axiom system pNAL extended with WCoh and let gCpNAL be
the axiom system pNAL extended with GCoh. The following can be easily checked.

Lemma 6. A model is weakly (globally) coherent iff it satisfies all inst. of WCoh (GCoh).

From this, and the fact that the rules of the logic preserve validity on the classes of
weakly and globally coherent models, respectively, we immediately get the following.

Theorem 4. wCpNAL and gCpNAL are sound and strongly complete with respect to
the classes of weakly and globally coherent models, respectively.

6 Discussion

In this paper we laid the groundwork for formal reasoning about network announce-
ments in social networks (“tweeting”). We defined a minimal modal logic based on
(not necessarily consistent) propositional beliefs and a “tweeting” modality (a : 6),
and studied the logic in detail. We believe that this detailed study lays a solid founda-
tion for richer frameworks to be studied in the future. For example, the technique we
used for encoding network structure using logical formulas in the completeness proof
is general. We made several assumptions clear in the beginning of the paper, some of
which showed up again as axioms of the logic. It could be interesting to investigate a
weakening of some of these assumptions starting from a syntactic angle, by weakening
the axioms. Regarding coherence, there is a third, natural, form that we haven’t consid-
ered in this paper: no agent can enter an inconsistent belief state as a result of network
announcements (“local coherence”).

There are two main and orthogonal directions for future work. The first is extending
the semantics to model agents with higher-order beliefs and possibly even beliefs about
the network structure. Higher-order beliefs would introduce a number of subtleties and
complications and would require a number of assumptions. For example, with higher
order beliefs assumptions would have to be made about different agents’ beliefs about
the possibility of tweeting events taking place, belief states are would no longer be
monotonic under tweeting, the belief state of the tweeter would not be static under
tweeting, and so on. With incomplete information about the network structure, new
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beliefs about that structure could actually be formed as a result of receiving tweets
in certain situations. The second direction is extending the synfax. One natural and
interesting possibility for enriching the language is to add modalities of the form (a)
(where a is an agent) quantifying over tweets, known from group announcement logic
[1], where a formula of the form (a)¢ would intuitively mean that a can make ¢ true
by tweeting some message. Such operators can potentially be used to capture many
interesting phenomena related to the information flow in social networks.
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