Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
Molecular Quest for Avirulence Factors in *Venturia inaequalis*

Joe Win

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences, The University of Auckland, 2003
Abstract

The molecular basis for the gene-for-gene relationship of V_m-resistance in apple to *Venturia inaequalis* was investigated. Incompatible reactions involved a hypersensitive response (HR), which was accompanied by the accumulation of dark brown pigments and autofluorescent materials in epidermal and mesophyll cells at the site of invasion. Cell-free culture filtrates of the avirulent isolate elicited an HR in the V_m host (h$_5$) leaves, but not in the susceptible host (h$_1$). The elicitor activity was resistant to boiling but was abolished by proteinase K digestion. Elicitation of HR was used to monitor purification of the avirulence factor, AVRVm, from liquid cultures of the avirulent isolate following ultrafiltration, acetone precipitation and ion-exchange chromatography. The purest fraction contained three major proteins all with low isoelectric points (pI 3.0-4.5). The fraction also elicited HR on the differential host h$_4$, but not on other resistant hosts (h$_2$, h$_3$ and h$_6$) tested. Three candidate AVRVm proteins were identified and amino acid sequences were obtained using Edman degradation and mass spectrometry. Nucleotide sequences corresponding to these proteins were found in databases of *V. inaequalis* expressed sequence tags. There were no polymorphisms evident between avirulent and virulent isolates (representing races 1 and 5 respectively) either at genomic DNA or cDNA level of the full open reading frames. RT-PCR revealed that all genes were expressed in both avirulent and virulent isolates during *in vitro* and *in planta* growth. All three genes showed similar levels of expression between avirulent and virulent isolates during their *in vitro* growth. However, preliminary RT-PCR experiments showed that two of these genes were likely to be expressed at lower levels in the virulent compared with the avirulent isolate during compatible infection. Implications of this difference in expression and the future experiments to identify the genuine *AvrVm* gene were discussed.
Dedication

To my mother, Mi Nyunt Kyi, who unconditionally supported (and she still does) me with love and everything else I asked of her throughout this thesis and my life.
Acknowledgments

Foremost, I thank my Supervisor Dr. Kim Plummer and Co-supervisor Dr. David Greenwood. Kim is the chief architect of this project. I appreciate her visionary guidance on the project and all the hours she put into this thesis editing and commenting. Dave acquired nano-spray ES-MS data from HPLC fractions and helped me a lot with protein biochemistry as well as my writing.

I acknowledge the involvement of Dr. Christiane Stehmann in acquiring MS data from the protein spots and her advice on protein purification. I also acknowledge the contributions from Dr Wei Cui who sequenced and aligned the genomic DNA from the fungal races, and Sarah Hollingworth who constructed the in vitro cDNA library.

Special thanks to Dr. Jan van Kan, Wageningen University, for his critical and insightful comments and discussions on the contents of this thesis and our paper, and his fresh ideas brought to the lab. Thanks also to Vincent Bus who supplied me with apple hosts that were essential part of the project. I owe Anna Fitzgerald a million thanks for her generosity with apple seedlings used in in planta experiments and for providing phage plates for library sequencing.

I value the moral and social support from all PHDie/GeneTechies who also are great source of expert information and techniques. Database searches would not have been possible without the help of Marcus Davy who not only compiled all the in vitro EST sequences into a database but also turned my PC into a BLAST work station.

All experiments in this thesis were performed at HortResearch, Mt Albert Research Centre, Auckland. This research was supported by The Royal Society of New Zealand through the Marsden Fund (Contract Number: HOR602) and by the Foundation for Research, Science and Technology, New Zealand (Contract Number: C06X0207).
Table of Contents

Abstract ... ii
Dedication ... iii
Acknowledgments ... iv
Table of Contents .. v
List of Tables .. ix
List of Figures ... x
Abbreviations ... xii

CHAPTER I. GENERAL INTRODUCTION .. 1
1.1 Introduction ... 2
1.2 Plant-pathogen interactions .. 2
1.3 Fungal avirulence genes .. 4
 1.3.1 Avirulence genes from *Cladosporium fulvum* .. 6
 1.3.1.1 *Avr2* .. 6
 1.3.1.2 *Avr4* .. 7
 1.3.1.3 *Avr4E* ... 8
 1.3.1.4 *Avr9* ... 8
 1.3.1.5 *Ecp1-5* .. 9
 1.3.2 Avirulence genes from *Magnaporthe grisea* ... 11
 1.3.2.1 *Pwl2* ..------- 12
 1.3.2.2 *Avr-Pita* .. 13
 1.3.2.3 *Avr1-CO39* ... 14
 1.3.3 Avirulence gene from *Rhynchosporium secalis* .. 14
 1.3.3.1 *Nip1* ... 15
1.4 Resistance genes against phytopathogenic fungi .. 16
1.5 Perception of the pathogen signal ... 20
 1.5.1 Receptor-ligand model .. 20
 1.5.2 Co-receptor model .. 21
 1.5.3 Guard model ... 21
 1.5.4 Protease-dependant defence elicitation .. 23
1.6 Hypersensitive response ... 24
1.7 *Malus-Venturia inaequalis* interaction ... 26
1.8 Aims of this thesis ... 31

CHAPTER II. PATHOGENICITY OF *VENTURIA INAEQUALIS* RACES 1 AND 5 ON *MALUS* HOSTS *h₁* AND *h₅* ... 32
2.1 Introduction .. 33
2.2 Materials and methods .. 34
 2.2.1 Maintenance and storage of fungal and host materials 34
CHAPTER III. ISOLATION OF CANDIDATE AVRV\textit{m} PROTEINS FROM \textit{VENTURIA INAEQUALIS} .41

3.1 Introduction ..42

3.2 Materials and methods...43

3.2.1 Fungal materials and growth conditions ...44

3.2.2 Plant materials and growth conditions ...44

3.2.3 Estimation of protein concentration required to elicit HR ...44

3.2.4 \textit{In planta} bioassay of fungal proteins ..45

3.2.5 Heat treatment and proteinase K digestion ...45

3.2.6 Purification of HR-eliciting protein from liquid cultures of \textit{V. inaequalis} ..46

3.2.6.1 Ultrafiltration and acetone precipitation ..46

3.2.6.2 Fractionation by ion-exchange chromatography ...47

3.2.6.3 Isolation of HR-eliciting protein precipitated in 60\% acetone by eluting from native-state polycrylamide gel ...48

3.2.7 Isoelectric focusing ...49

3.2.8 Bioassay of partially purified proteins on differential hosts ...49

3.3 Results ..49

3.3.1 \textit{In planta} bioassay of fungal proteins ..49

3.3.2 Heat treatment and proteinase K digestion ...51

3.3.3 Purification of HR-eliciting protein from liquid cultures of \textit{V. inaequalis} ..52

3.3.3.1 Ultrafiltration and acetone precipitation ..52

3.3.3.2 Fractionation by ion-exchange chromatography ...53

3.3.3.3 Isolation of HR-eliciting protein precipitated in 60\% acetone by eluting from native-state polycrylamide gel ...55

3.3.4 Isoelectric focusing ...56

3.3.5 Bioassay of partially purified proteins on differential hosts ...56

3.4 Discussion ..57

CHAPTER IV. FROM PROTEINS TO DNA: A REVERSE GENETICS APPROACH TO IDENTIFY CANDIDATE \textit{AvrVm} GENES ... 60

4.1 Introduction ...61

4.2 Material and methods ...61

4.2.1 N-terminal amino acid sequencing from IEF gel of HR-inducing proteins62

4.2.2 Two-dimensional gel electrophoresis ...62

4.2.2.1 Two-dimensional gel electrophoresis using Immobiline™ DryStrip and ExcelGel®63

4.2.2.2 Two-dimensional gel electrophoresis using Bio-Rad ReadyStrips™ ..64
CHAPTER V. CHARACTERISATION OF AvrVm CANDIDATES: SEQUENCE ANALYSIS AND GENE EXPRESSION .. 88

5.1 Introduction .. 89
5.2 Material and methods .. 90
 5.2.1 Oligonucleotide primers .. 90
 5.2.2 Extraction of genomic DNA from mycelia of V. inaequalis 91
 5.2.3 Amplification of the candidate genes from the genomic DNA isolated from V. inaequalis races 1 and 5 ... 92
 5.2.4 Sequencing of PCR products amplified from genomic DNA 93
 5.2.5 Extraction of total RNA from V. inaequalis grown in liquid cultures 93
 5.2.6 Extraction of total RNA from V. inaequalis infected leaves from apple seedlings ... 93
 5.2.7 First strand cDNA synthesis by reverse transcription (RT) 95
 5.2.8 Amplification of the candidate genes expressed in total RNA isolated from V. inaequalis races 1 and 5 grown in vitro .. 95
 5.2.9 Amplification of the candidate genes expressed in total RNA isolated from leaves of apple seedlings infected separately with V. inaequalis races 1 and 5 ... 95
 5.2.10 Cloning and sequencing of RT-PCR products 96
 5.2.11 DNA sequence analysis .. 97
5.3 Results ... 97
 5.3.1 Amplification of candidate avirulence genes from the genomic DNA isolated from V. inaequalis races 1 and 5 ... 97
 5.3.2 Amplification of the candidate genes expressed in total RNA isolated from V. inaequalis races 1 and 5 grown in vitro .. 98
 5.3.3 Amplification of the candidate genes expressed in total RNA isolated from leaves of apple seedlings infected with V. inaequalis races 1 and 5 .. 103
5.4 Discussion ... 105

CHAPTER VI. CONCLUDING DISCUSSION ... 108

6.1 Introduction ... 109
6.2 Pathogenicity tests for Venturia inaequalis races 1 and 5 110
6.3 Isolation and characterisation of a protein fraction from V. inaequalis that induces HR on h5 ... 110
6.4 Identification of cDNA clones encoding three candidates for AvrVm 112
6.5 Nucleotide sequence comparisons and expression studies of the candidate AvrVm genes of V. inaequalis ... 113
6.6 Future prospects ...114

APPENDIX A. GENOMIC DNA NUCLEOTIDE SEQUENCE ALIGNMENTS OF CANDIDATE AVIRULENCE GENES FROM ISOLATES OF VENTURIA INAEQUALIS RACES 1-5116
GLOSSARY ..124
LIST OF REFERENCES ..126
List of Tables

Table 1.1	The Expected Outcome of an Interaction Between a Pathogen and a Plant Host in a Gene-for-Gene Relationship	4
Table 1.2	Cloned Fungal Avr Genes	5
Table 1.3	Extracellular Proteins Secreted By Cladosporium fulvum Into the Apoplastic Fluid of Tomato Leaves During Infection	10
Table 1.4	Classification of Resistance Genes Against Phytopathogenic Fungi	17
Table 1.5	Linnaean Classification of Venturia inaequalis	28
Table 1.6	Resistance Genes Identified in Malus Species	28
Table 1.7	Differential Malus Selections for the Known Races of Venturia inaequalis	29
Table 4.1	Program for Isoelectric Focusing with Immobiline™ Drystrip	63
Table 4.2	Running Conditions for Second Dimensional Separation	64
Table 4.3	Program for Isoelectric Focusing with Readystrips™	65
Table 4.4	N-Terminal Amino Acid Sequences from Proteins from IEF Gel	68
Table 4.5	N-Terminal Amino Acid Sequences from the Proteins in Gel Pieces Excised from a 2D-Gel	72
Table 4.6	Peptide Mass Fingerprints of 14 Protein Spots from the 2D Gel	76
Table 4.7	Amino Acid Sequences Obtained De Novo By Q-TOF MS of Proteins Separated in 2D Gel	77
Table 5.1	Oligonucleotide Primers Used in Amplification of the Candidate Genes from the cDNA and Genomic DNA Isolated from Race 1 and Race 5 Isolates of V. inaequalis	90
Table 5.2	Relative Intensities of Ethidium Bromide-Stained DNA Bands	104
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Biochemical Models for Perception of Pathogen-Derived Signals by Plant Resistant Gene Products in a Gene-for-Gene System</td>
<td>20</td>
</tr>
<tr>
<td>1.2</td>
<td>An Apple Heavily Infected with Venturia inaequalis</td>
<td>26</td>
</tr>
<tr>
<td>1.3</td>
<td>Host Responses to V. inaequalis Infection</td>
<td>27</td>
</tr>
<tr>
<td>1.4</td>
<td>Venturia inaequalis Growing on a Susceptible Detached Leaf</td>
<td>30</td>
</tr>
<tr>
<td>2.1</td>
<td>Responses of Detached Leaves from h₁ and h₅ to V. inaequalis Races 1 and 5</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Infiltration of an h₅ Leaf with Cell-Free Culture Filtrate of V. inaequalis</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Bioassay of HR-Inducing Proteins in Cell Free Culture Filtrate of V. inaequalis</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Responses of Leaves from Resistant Host h₅ and Susceptible Host h₁ to Heat Treated or Protease K digested Culture Filtrate of V. inaequalis</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>HR-Inducing Proteins of V. inaequalis After Various Purification Steps</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>(A) Elution Profile of the HR-Inducing Proteins Separated on an EconoPac Q Ion-Exchange Cartridge; (B) Proteins in Eluted Fractions Analyzed by SDS-PAGE</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>(A) Native-State PAGE Separation of 60% Acetone Precipitated Proteins; (B) Eluted off Proteins from the Gel Pieces</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Isoelectric Focusing of The Purified HR-Inducing Proteins</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Responses from Malus Differential Hosts (h₁-h₅) to the Infiltration of Partially Purified HR-Eliciting Proteins from V. inaequalis into the Leaves</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Isoelectric Focusing of HR-Inducing Proteins</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Nucleotide Sequence of EST 252 from the MAAB Library</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Sequence Alignment of EST 252 and Other Major Allergen-Like Protein Precursors</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-Dimensional Gel Electrophoresis of HR-Inducing Proteins Eluted from the Econo-Q Anion-Exchange Cartridge</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>DNA Sequence of EST 180212 from the ABEA Library</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Alignment of Amino Acid Sequence from the Predicted Protein of EST 180212 and other β-1,3- Glucosidase Enzymes</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>2D-Gel Electrophoresis of HR-Inducing Proteins Eluted from the Econo-Q Anion-Exchange Cartridge</td>
<td>75</td>
</tr>
<tr>
<td>4.8</td>
<td>Grouping of Proteins According to Their Similarities in Peptide Fingerprints Determined By Mass-Spectrometry</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>Nucleotide Sequence of EST 252 and the Deduced Amino Acid Sequence</td>
<td>78</td>
</tr>
<tr>
<td>4.10</td>
<td>Absorbance Spectra of the Proteins Eluted from the C4 Column During Reverse-Phase HPLC</td>
<td>79</td>
</tr>
<tr>
<td>4.11</td>
<td>(A) Total Ion Current Trace of LC ESI-MS of the Protein Fraction 13 Digested with Trypsin; (B) A Portion of the Result from a Database Search Using the Peptide Fragment Mass Data Acquired from Spectral Peaks</td>
<td>80</td>
</tr>
<tr>
<td>4.12</td>
<td>Nucleotide Sequence of EST 186651 from the ABEA Library</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>Alignment of Amino Acid Sequence of the Protein Predicted from EST 186651 and Putative Cell-Adhesion Proteins from Other Organisms</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>Approximate Positions of the Gene Specific Primers to Amplify EST Sequences</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Apple Seedlings Grown in a Transparent Chamber</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>Amplified Genomic DNA from Race 1 and Race 5 Isolates by PCR</td>
<td>97</td>
</tr>
<tr>
<td>5.4</td>
<td>PCR Products Amplified from cDNA of V. inaequalis Races 1 and 5 Grown In Vitro</td>
<td>98</td>
</tr>
</tbody>
</table>
Figure 5.5 Comparison of Three cDNA Sequences Between Races 1 and 5 of *V. inaequalis* 103

Figure 5.6 PCR Products Amplified from the cDNA Made from the Leaves of Apple Seedlings Infected By Race 1 and Race 5 Isolates of *V. inaequalis*.. 103
Abbreviations

SI units (Système International d'unités) and their derived units were used throughout this thesis. One-letter symbols for amino acids and nucleotides were according to IUPAC-IUB (The International Union of Pure and Applied Chemistry -International Union of Biochemistry) guidelines (International Union of Biochemistry, 1978).

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Centigrade</td>
</tr>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>APAF</td>
<td>Australian Proteome Analysis Facility</td>
</tr>
<tr>
<td>Avr</td>
<td>avirulence</td>
</tr>
<tr>
<td>AvrVx</td>
<td>avirulence gene from V. inaequalis corresponding to resistance gene V.x</td>
</tr>
<tr>
<td>AVRVx</td>
<td>avirulence protein from V. inaequalis corresponding to resistance Protein V.x</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CC</td>
<td>coiled-coil domain</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CF</td>
<td>cell-free culture filtrate</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate</td>
</tr>
<tr>
<td>cM</td>
<td>centi-Morgan</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E-value</td>
<td>Expect value</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HR</td>
<td>hypersensitive response</td>
</tr>
<tr>
<td>h_x</td>
<td>Malus differential host, x = number</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focusing</td>
</tr>
<tr>
<td>IPG</td>
<td>immobilised pH gradient</td>
</tr>
<tr>
<td>LB</td>
<td>Luria broth</td>
</tr>
<tr>
<td>LC</td>
<td>liquid chromatography</td>
</tr>
<tr>
<td>LRR</td>
<td>leucine rich repeat</td>
</tr>
<tr>
<td>LZ</td>
<td>leucine zipper</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption/ionisation-time of flight</td>
</tr>
<tr>
<td>MES</td>
<td>2-[N-morpholino]ethanesulphonic acid</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>N-terminal</td>
<td>amino terminal</td>
</tr>
<tr>
<td>NBS</td>
<td>nucleotide binding sites</td>
</tr>
<tr>
<td>No.</td>
<td>number</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>potato dextrose agar</td>
</tr>
<tr>
<td>PDB</td>
<td>potato dextrose broth</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>PK</td>
<td>protein kinase</td>
</tr>
<tr>
<td>PR</td>
<td>pathogenesis-related</td>
</tr>
<tr>
<td>PTH</td>
<td>3-phenyl-2-thiohydantoin</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene difluoride</td>
</tr>
<tr>
<td>Q-TOF</td>
<td>quadrupole-time of flight</td>
</tr>
<tr>
<td>R</td>
<td>resistance</td>
</tr>
<tr>
<td>RGH</td>
<td>resistance gene homologs</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase-primed polymerase chain reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate EDTA running buffer</td>
</tr>
<tr>
<td>TBP</td>
<td>Tributylphosphine</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TIF</td>
<td>tagged image format</td>
</tr>
<tr>
<td>TIR</td>
<td>Toll/Interleukin 1 receptor</td>
</tr>
<tr>
<td>TM</td>
<td>transmembrane region</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>UV</td>
<td>ultra-violet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>Vh</td>
<td>Volt hours</td>
</tr>
<tr>
<td>V_x</td>
<td>Resistance gene against V. inaequalis from Malus spp., x = initial of the species of Malus (e.g., V_m = V. inaequalis resistance gene from M. micromalus)</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>