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This thesis studies connections between computable randomness in Rn and various

properties related to di↵erentiability. This research was inspired by results in two re-

cent papers: one by Brattka, Miller and Nies and another one by Freer, Kjos-Hanssen,

Nies and Stephan. In those papers it was shown that computable randomness on the

unit interval can be characterized by di↵erentiability properties of computable Lip-

schitz functions and computable monotone function. We generalize to Rn most of

those results. Moreover, we show several new results of this kind both on the real

line and on Rn. In the process, we prove e↵ective versions of several notable classical

results such as: Rademacher’s theorem, Aleksandrov’s theorem, Sard’s theorem for

monotone Lipschitz functions and Brenier’s theorem. In most cases we prove converse

results as well.
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Chapter 1

Introduction

1.1 What this thesis is about

The subject of this thesis lies at the interface of computable analysis and algorithmic

randomness. Computable randomness is a randomness notion defined in terms of

e↵ective betting strategies. One of the main results in the paper of Brattka, Miller

and Nies [BMN16] shows that computably random points on the unit interval can be

characterized as points where all computable monotone real-valued functions of one

variable are di↵erentiable. An analogous result for computable Lipschitz functions

has been proven in the paper of Freer, Kjos-Hanssen, Nies and Stephan [FKHNS14].

Those results suggest that there are close connections between computable ran-

domness and di↵erentiability of certain classes of objects in Euclidean spaces. In

order to advance our understanding of this particular phenomenon, we pursue two

directions of research. Firstly, we seek to generalize, where possible, known results to

higher dimensions (that is to Rn). Secondly, we study how computable randomness

and di↵erentiability interact for other classes of objects that are closely related to

monotone and Lipschitz functions.

1.2 Computable analysis and algorithmic random-

ness

The theory of algorithmic randomness (see Nies [Nie09], Downey and Hirschfeldt

[DH10]) is the area of mathematics that formalizes and studies the intuitive notion

of randomness. Intuitively, an element of some space is random if it does not exhibit

any exceptional properties. This approach can be formalized, utilizing measure the-

ory and computability, by identifying exceptional properties with e↵ective null sets.

Di↵erent types of e↵ective null sets correspond to di↵erent notions of algorithmic

randomness. This use of computability theory to rigorously specify which properties
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are exceptional, explains the word “algorithmic” in “algorithmic randomness”. Below

we provide some informal examples of known randomness notions.

Computable randomness

An infinite binary sequence is said to be computably random, if no e↵ective
betting strategy can make unbounded profits while betting on this sequence.
This notion of randomness can be generalized to Rn by identifying elements of
Rn with their binary expansions.

Weak 2-randomness

An element of a computable measure space (X,µ) is said to be weakly 2-random
if it does not belong to any e↵ective G� null set V ✓ X.

Martin-Löf randomness

Let (X,µ) be a computable measure space. A V ✓ X is a Martin-Löf test
if there is a computable sequence (Gi)i2N of e↵ectively open subsets such that
V = \Gi and µ(Gj)  2�j for all j.

x 2 X is said to be Martin-Löf random if it does not belong to any Martin-
Löf test.

Computable analysis (see Weihrauch [Wei00], Pour-El and Richards [PER89] and

Ker-I Ko [Ko91]), building on tools and foundations of computability theory, studies

e↵ective versions of notions and results from analysis. In this area various notions

of computability of mathematical objects from analysis (for example, real numbers,

real-valued functions on Rn, measures, closed subsets of Rn) are rigorously defined

and studied.

It is known that for functions from integers to integers, all sensible known no-

tions of computability are equivalent. The situation is di↵erent for most classes of

objects studied in analysis, such as real-valued functions on Rn, real numbers, etc.

In those cases, there are multiple known notions of computability which are pairwise

incompatible.

We customarily use the term “e↵ective” to denote a known and rigorously defined

notion of computability without specifying which one. As such, this word is reserved

to informal discussions, while all mathematical results either explicitly specify which

notions of computability are used, or this information is clear from the context. The

main notion of computability for real-valued functions on Rn is that of Grzegorczyk-

Lacombe (we will define this notion rigorously later). Every time we write about

“computable functions” on Rn, we mean this particular notion of computability.

A typical result in computable analysis assumes e↵ectiveness of some or all of the

objects in the premises and then asserts (some level of) e↵ectiveness of objects in the
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conclusion. Consider the following two examples.

Theorem (A)

If f : R ! R is a computable Lipschitz function, then its derivative exists at
every computably random z.

Theorem (B)

If f : R ! R is computable and C2, then its derivative is a computable function.

Results such as Theorem (A) are e↵ective versions of known theorems from anal-

ysis. Not all results are of this kind: Theorem (B) is an example of a statement for

which its non-e↵ective version is trivial.

Since algorithmic randomness studies e↵ective null sets and measure theory plays

a prominent role in analysis, there are numerous connections between algorithmic

randomness and computable analysis. Theorem (A) is an example of a result at the

interface of those two areas.

1.3 Randomness and “a.e. theorems”

Randomness notions are examples of mathematical properties that hold almost every-

where (that is, on a set of full measure with respect to some fixed measure). Such

properties appear naturally in various contexts and play important roles in many

established areas of mathematics, such as analysis, ergodic theory, integration theory,

geometric measure theory and others. Consider statements of the following form:

(AEP) given an object e of some class C, the property P (e, x) holds for almost all

x 2 X with respect to some measure µ on X.

A statement of this kind can be interpreted as saying that elements of the class C

exhibit a high degree of regularity with respect to the property P : given e 2 C, its

set of irregularity, IP (e) = {x : ¬P (e, x)}, is negligible.
Many known mathematical results appear in this form. We call those a.e. theo-

rems. Notable examples of a.e. theorems include:

Rademacher’s theorem (Rademacher, 1919)

If f : Rn ! R is Lipschitz, then it is di↵erentiable at almost all x 2 Rn.
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Birkho↵ ’s Ergodic Theorem (Birkho↵, 1931)

Let (X,µ) be a probability space, and let T : X ! X be ergodic. Let f : X ! R
be L1(X). Then for almost all X,

lim
n!1

1

n

n
X

j=1

f(T j(x)) =

Z

f dµ.

Lebesgue di↵erentiation theorem (Lebesgue, 1910)

If f 2 L1

loc(Rn), then for almost all x 2 Rn,

f(x) = lim
r!0

1

�(B(x, r))

Z

B(x,r)

f d�.

A natural question to ask is how known randomness notions are related to a.e.

theorems from various areas of mathematics. One meaningful way of approaching

this question is to consider e↵ective variants of (AEP) statements. E↵ectivization

restricts the class C to some countable subset of its e↵ective members and ensures

the complement of the union of all sets of irregularities

RP =
\

e2C is e↵ective

{ x | P (e, x)}

is a set of full measure. This means that every e↵ective variant of an a.e. theorem

can be seen as a definition of a randomness notion. The question then is to compare

such notions to known randomness notions. Recent research suggests, somewhat

surprisingly, that more often than not e↵ective versions of a.e. theorems correspond

to only a small number of well known algorithmic randomness notions. Below we

describe two examples related to two of the above-mentioned a.e. theorems.

By results of Bienvenu, Day, Hoyrup, Mezhirov and Shen [BDH+12], and, inde-

pendently, by Franklin, Greenberg, Miller and Ng [FGMN12], a particular e↵ective

version of Birkho↵’s ergodic theorem characterizes Martin-Löf randomness. Specifi-

cally, they have shown the following result:

Theorem 1.3.1. Let (X,µ) be a computable probability space, and let T : X ! X
be a computable ergodic map. Then x 2 X is Martin-Löf random if and only if
for all e↵ectively closed subsets C ✓ X,

lim
n!1

#{i < n : T i(x) 2 C}
n

= µ(C).

Pathak, Rojas and Simpson [PRS14] matched an e↵ective form of the Lebesgue

di↵erentiation theorem to Schnorr randomness via the following result:
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Theorem 1.3.2. For all x 2 [0, 1]n the following are pairwise equivalent.

1. x is Schnorr random.

2. limQ!x

R
Q

f(x) dx

�(Q)

exists for all L1�computable functions f 2 L1([0, 1]n),
where the limit is taken over all cubes Q containing x as the diameter of
Q tends to 0.

As it was mentioned before, often there are multiple incompatible notions of com-

putablity known for a given class of mathematical objects. This means that one a.e.

theorem often can be e↵ectivized in a number of ways and di↵erent e↵ectivizations

could characterize di↵erent randomness notions. For example, Pathak, Rojas and

Simpson [PRS14] characterized Schnorr randomness via another e↵ective version of

Birkho↵’s ergodic theorem. Similarly, at the end of this thesis, we will prove an

e↵ective version of the Lebesgue di↵erentiation theorem characterizing computable

randomness.

A typical result of this kind consists of two parts:

• The forward direction part of the form ‘’if z is random, then f is di↵erentiable

at z”. It is an e↵ective version of a given a.e. theorem.

• The corresponding e↵ective version of the converse direction. This usually in-

volves exhibiting an e↵ective object with a prescribed set of irregularities.

Such results are interesting because they improve our understanding both of ran-

domness notions and analytical properties used to characterize them. We will return

to this point later.

1.4 Randomness and di↵erentiability of real-valued

functions on Rn

Analysis in general and di↵erentiability of functions on Rn in particular, is a rich

source of a.e. theorems. Many classes of well-behaved functions are known to be a.e.

di↵erentiable, for example:

• Lipschitz functions from Rn to Rm, by Rademacher’s theorem;

• real-valued functions belonging to W 1,p(Rn), by Calderon’s theorem from 1951;

• monotone functions on Rn, via result by Mignot [Mig76];

• cone-monotone real-valued functions on Rn, by the result of Chabrillac and

Crouzeix [CC87].
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This opens up the possibility of studying di↵erentiability of e↵ective functions

through the lens of algorithmic randomness. Moreover, it makes it possible to char-

acterize algorithmic randomness notions (on Rn) in terms of di↵erentiability proper-

ties of e↵ective functions. It is possible to show that non-di↵erentiability points of

computable real-valued functions on Rn form an e↵ective G� set. This means that

di↵erentiability of computable functions can be used to characterize randomness no-

tions weaker than or equal to weak-2-randomness. As it happens, most of major

randomness notions fall into this category. A lot of research in this areas has been

published, especially for computable real-valued functions on the unit interval:

• Brattka, Miller and Nies [BMN16] characterized weak-2-randomness, Martin-

Löf randomness, computable randomness and Schnorr randomness in terms of

di↵erentiability of various classes of a.e. di↵erentiable computable real-valued

functions on the unit interval. They have studied the following classes of func-

tions: a.e. di↵erentiable functions, functions of bounded variation, absolutely

continuous functions and monotone functions.

• Freer et al. [FKHNS14] have studied di↵erentiability of computable Lipschitz

functions. They have characterized computable randomness and Schnorr ran-

domness using two di↵erent subclasses of computable Lipschitz real-valued func-

tions on the unit interval.

• Nies in [Nie14] has shown that p-randomness can be characterized in terms of

di↵erentiability of polynomial time computable real-valued monotone functions

on the unit interval.

Apart from the notion of di↵erentiability of functions, there are other, closely

related notions, which appear frequently in a.e. theorems. Some of them have been

studied in the context of algorithmic randomness as well:

• Miyabe [Miy13] has characterized weak randomness in terms of Lebesgue points

of a.e. computable real-valued function on X, where X is some computable

metric space.

• Pathak, Rojas and Simpson [PRS14] and, independently, Rute [Rut13], have

characterized Schnorr randomness in terms of Lebesgue points of L1-computable

real-valued functions on Rn.

• Bienvenu, Hölzl, Miller and Nies [BHMN14], using an e↵ective version of the

Denjoy-Young-Saks theorem, characterized computable randomness in terms of

Dini derivatives of computable real-valued functions on the unit interval.
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1.5 Non-di↵erentiability sets

Two-directional results mentioned in the previous section can be seen as randomness-

focused characterizations of non-di↵erentiability sets of e↵ective functions. By a

non-di↵erentiability set of f we mean the set of points where f is not di↵erentiable.

Characterizations of non-di↵erentiability sets of functions on Rn have been studied in

analysis as well. Below we mention several results in this area that are particularly

relevant in the context of this thesis.

Several important results are contained in the seminal paper of Zahorski [Zah46],

who characterized non-di↵erentiability sets of various classes of real-valued functions

on the real line. In particular, he fully characterized non-di↵erentiability sets of

continuous functions, Lipschitz functions and monotone functions.

Remark 1.5.1 (Zahorski’s construction). The main step in his characterization
of non-di↵erentiability sets of continuous functions was the construction, for
any G� set A of measure zero, of a monotone Lipschitz function f : R ! R such
that its non-di↵erentiability set is equal to A.

Zajicek [Zaj79] characterized non-di↵erentiability sets of convex functions on Rn.

The problem of characterizing non-di↵erentiability sets of Lipschitz functions from

Rn to Rm has attracted a lot of attention. This interest is related to the quest of

formulating and proving a converse to Rademacher’s theorem. It turned out to be a

highly non-trivial problem which took two decades of e↵orts to finally solve it. For

more details, please see the paper by Alberti, Csörnyei and Preiss [APC11], and the

paper by Preiss and Speight [PS15]. The vital part of this solution is the construction,

for a given G� set A ✓ Rn of measure zero, of a Lipschitz function f : Rn ! Rn which

is non-di↵erentiable at all elements of A. The paper with this construction, announced

close to a decade ago, has not been published to this day.

1.6 Computable randomness and di↵erentiability

The focus of this thesis is on a particular subset of results mentioned in Section 1.4

— those related to computable randomness and di↵erentiability of computable mono-

tone and computable Lipschitz functions. Our starting point is the following pair of

theorems:

Theorem 1.6.1 ([BMN16]).
A real number z 2 [0, 1] is computably random ()

every computable monotone f : [0, 1] ! R is di↵erentiable at z.
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Theorem 1.6.2 ([FKHNS14]).
A real number z 2 [0, 1] is computably random ()

every computable Lipschitz f : [0, 1] ! R is di↵erentiable at z.

Computable randomness is defined in terms of betting strategies on infinite binary

strings. This definition is very natural in the space of infinite binary sequences. It can

be extended to more general spaces, in particular to Rn, but the definition becomes

much less natural. Monotonicity and Lipschitz continuity, on the other hand, are two

very natural notions from analysis in Rn. It is curious how di↵erentiability links those

natural, but seemingly distant, notions.

Generalizing to Rn forward directions of those two results would involve proving

e↵ective versions of two known theorems from analysis: Rademacher’s theorem and

Mignot’s result from [Mig76]. Generalizing converse directions is a trickier problem.

As it was mentioned, the converse direction of Rademacher’s theorem has attracted a

lot of interest and a non-e↵ective solution has been announced, but the construction

of a Lipschitz function with prescribed non-di↵erentiability properties has not been

published yet. The converse to Mignot’s theorem has not been studied. On the unit

interval, both converse directions of Theorem 1.6.2 and Theorem 1.6.1 depended on

an e↵ective version of the construction mentioned in Remark 1.5.1. Generalizing this

particular construction to Rn is one of the topics of this thesis.

Several other notions are naturally related to monotonicity and Lipschitz continu-

ity. Among those are convex functions and positive measures. In higher dimensions

there are several important a.e. theorems related to di↵erentiability of monotone, Lip-

schitz and convex functions. As we will see, some of those characterize computable

randomness too.

An important source of motivation for studying connections between algorithmic

randomness and analysis is that such studies often deepen our understanding of both

areas. Let us mention two examples from this thesis:

1. In Section 6.1 we describe a very natural generalization to Rn of Zahorski’s

construction. However, finding this generalization is much easier if the starting

point is (the divergence set of) an e↵ective betting strategy, rather then just

an arbitrary G� null-set. In this case, starting from a computable randomness

point of view made it easier to find a natural generalization of an important

construction from classical analysis.

2. One of intermediate results on our way to e↵ectivize Aleksandrov’s theorem

is an interesting preservation property: we showed that computable monotone

Lipschitz functions on Rn preserve computable non-randomness.
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1.7 Summary of contributions

Most of our contributions are related to characterizations of computable randomness

in Rn. We treat two cases, n = 1 and n � 1, separately. For n = 1, the starting

point was a pair of theorems, Theorem 1.6.2 and Theorem 1.6.1. All our results

on the unit interval are demonstrated in Chapter 3. In particular, we have proven

four new characterizations of computable randomness on the real line in terms of

di↵erentiability:

1. our Theorem 3.3.18 contains a stronger version of Theorem 1.6.1 — for almost

everywhere computable monotone functions,

2. the same theorem shows characterization of computable randomness in terms of

twice-di↵erentiability of computable convex functions, it is an e↵ective version

of Aleksandrov’s theorem and its converse on the real line,

3. our Theorem 3.3.25 contains two characterizations of computable randomness

in terms of di↵erentiability of computable measures.

Moreover, we have fully characterized non-di↵erentiability sets of real-valued con-

vex functions on the real line in Theorem 3.3.3. This result was then used to charac-

terize sets of atoms of computable probability measures on R in Proposition 3.3.22.

Finally, our Theorem 3.1.9 is a new, relativized version of the forward direction of

Theorem 1.6.1. The proof is based on ideas present in [Nie14].

In Chapter 4, we have proven e↵ective version of several known a.e. theorems

on Rn. Our Theorem 4.1.1 is an e↵ective version of Rademacher’s theorem. It is a

generalization of the forward direction of Theorem 1.6.2 to Rn. Our Theorem 4.3.2

is a computable version of Sard’s theorem for monotone Lipschitz functions. Theo-

rem 4.4.1 is a generalization to Rn of the forward direction of Theorem 1.6.1. Theo-

rem 4.6.3 is a stronger result for almost everywhere computable monotone functions

on Rn. Both of those results are e↵ective versions of Mignot’s theorem. Theorem 4.5.5

is an e↵ective version of Aleksandrov’s theorem.

Apart from e↵ective versions of known a.e. theorems, we proved a couple of re-

sults of independent interest. Theorem 4.2.8 characterizes computable randomness

on Rn in terms bounded Martin-Löf tests. It is a generalization to Rn of the known

characterization by Merkle, Mihailović and Slaman [MMS06]. We use this charac-

terization to prove Theorem 4.2.9, which shows that every computable monotone

Lipschitz function f : Rn ! Rn preserves computable non-randomness.

In Chapter 5 we prove an e↵ective version of Brenier’s theorem. This is a result of

independent interest, however we are interested in Brenier’s theorem mainly because

it allows to generalize Zahorski’s construction. This result will be used in Chapter 6.

In Chapter 6 we generalized to Rn the construction mentioned in Remark 1.5.1.

Our construction is very natural and due to this naturalness it can be seen as the

9



generalization of the idea of Zahorski. In order to achieve this, firstly we had to

reinterpret Zahorski’s construction in terms of transport maps. Then we used Bre-

nier’s theorem, an important result from the field of optimal transport, to make this

reinterpreted idea work in Rn. In order to e↵ectivize this construction, we used our

computable version of Brenier’s theorem, which is an important result of indepen-

dent interest. Using this e↵ectivization, we proved Theorem 6.0.1 — which is the

converse result both to our e↵ective version of Aleksandrov’s theorem and our ef-

fective version of Mignot’s theorem. In one aspect our generalization of Zahorski’s

construction is not a perfect one. The same construction on the real line yields a

monotone Lipschitz map. However, in higher dimensions, this Lipschitz continuity

becomes Hölder continuity. Which means that as it is, this construction can not be

used to obtain the converse direction for Rademacher’s theorem. Using a combination

of Theorem 6.0.1 and results from Chapter 4, we obtained several characterizations of

computable randomness in Rn. Apart from the already mentioned characterizations

in terms of e↵ective Aleksandrov’s theorem and e↵ective Mignot’s theorem, we have

shown:

1. Theorem 6.3.3, which is a characterization of computable randomness in terms

of di↵erentiability of computable absolutely continuous probability measures on

Rn. This result can be seen as an e↵ective version of the Lebesgue di↵erentiation

theorem for functions that are densities of computable absolutely continuous

measures on [0, 1]n.

2. We have proven the converse to our e↵ective version of Sard’s theorem. This

yielded Theorem 6.3.5 which characterizes computable randomness in terms of

critical values of computable monotone Lipschitz functions.

3. Finally, we have characterized computable randomness in terms of the Monge-

Ampère equation. This is Theorem 6.3.6.

1.8 Structure of the thesis

The structure of the thesis is straightforward. In Chapter 2 we introduce the notation,

basic notions and fundamental results used in the rest of the thesis.

Chapter 3 is devoted to results on the unit interval.

In Chapter 4 we prove most of our forward results on Rn. E↵ective versions of

Rademacher’s theorem, Aleksandrov’s theorem, Mignot’s theorem and Sard’s theo-

rems are proven there.

In Chapter 5 we prove our computable version of Brenier’s theorem.

In Chapter 6 are our converse results. There we show how to generalize Zahorski’s

construction.

10



Chapter 2

Preliminaries

The purpose of this chapter is to provide all necessary definitions, define non-standard

notation used in this thesis and formulate basic results used later. The notation index

is located at the end of the thesis in Section 6.3.4.

2.1 Computable analysis

Since we are interested in specific interactions between e↵ective versions of results

from analysis and algorithmic randomness, we need to define rigorously what “ef-

fective” in this context means. An area known as computable analysis provides the

necessary concepts and tools. As its name suggests, this area studies various e↵ec-

tive versions of notions from analysis. In the following subsections we provide the

definitions and some of results used throughout this thesis. For more comprehensive

introduction, please consult Weihrauch [Wei00], Pour-El and Richards [PER89] and

Ko [Ko91].

2.1.1 Computable elements of Rn

Definition 2.1.1. A sequence (qi)i2N of elements of Qn is said to be a Cauchy
name for x 2 Rn if lim qi = x and |x� qi|  2�i for all i. By CNx we denote the
set of all Cauchy names for x.

We say x 2 Rn is computable if there is a computable Cauchy name for x.
We say a sequence (xi)i2N of elements of Rn is computable if there is a

computable double sequence (of elements of Qn) (qi,j)i,j2N such that for every i,
(qi,j)j2N is a Cauchy name for xi.

Remark 2.1.2. The above notion of computability won’t be a↵ected if all ratio-
nals (in the definition) are required to be dyadic.
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Notation 2.1.3. If x 2 Rn is computable, we often assume that some of its
computable Cauchy names (let’s denote it by (qi)i2N) is fixed and then by (x)i
we denote qi, so that |x� (x)i|  2�i for all i.

The following fact is well-known (see [Wei00]):

Proposition 2.1.4. There is no computable sequence of elements in Rn that
enumerates all computable elements in Rn.

Several times we will use the following e↵ective version of Baire’s Category The-

orem:

Theorem 2.1.5 (cf. Corollary 7 in [Bra01]). Let A ✓ Rn be a dense ⇧0

2

set.
There is a dense computable sequence of elements belonging to A.

2.1.2 Computable functions on Rn

Various notions of computability for functions from N to N are known to be equivalent.

The situation is di↵erent for real-valued functions on Rn: several of partly equivalent

notions have been studied. We will rely on the so called Grzegorczyk-Lacombe notion

of computability. This approach is known to be equivalent to the one used in [PER89]

and the one used in [Ko91]. Our presentation of this approach is based on [Ko91]

(see Section 2.5 there), as this formulation is easily relativizable.

Definition 2.1.6. Let D ✓ Rn. A function f : Rn ! Rm is computable on D if
there is an oracle Turing machine M such that for all x 2 D, all � 2 CNx and
all i 2 N, M�(i) halts and outputs q 2 Qm with dyadic components such that

|q � f(x)|  2�i.

Here we assume some computable enumeration of Qn is fixed and we treat
Cauchy names as functions from N to N, so that they can be used as oracles.

We say f : Rn ! Rm is computable if it is computable on Rn. Similarly, we
say f : [0, 1]n ! Rm is computable if f is computable on [0, 1]n.

Notation 2.1.7 (Computed values at a given step). Let f : Rn ! Rm be com-
putable and let x 2 Rn. We often assume that a Turing machine M computing
f (in the sense of Definition 2.1.6) is fixed. Likewise, we often assume that one
of Cauchy names for x, �, is also fixed. In that case by (f(x))t we denote the
dyadic rational computed by M�(t), so that

|f(x)� (f(x))t |  2�t.

12



In Chapter 3 we will prove a number of one-dimensional results. In order to use

them later (particularly in Chapter 4), those results would have to formulated using

the notion of relativized computability (defined below).

Definition 2.1.8. Let D ✓ 2! ⇥ Rn. We say a function f : 2! ⇥ Rn ! Rm

is computable on D if there is a 2�oracle Turing machine M such that for all
(A, x) 2 D, all � 2 CNx and all i 2 N , MA,�(i) halts and outputs d 2 Qm with
dyadic components such that

|q � f(A, x)|  2�i.

We say a function f : D ! Rm is computable if there is a function
g : 2! ⇥ Rn ! Rm that is computable on D and f = g on D.

Theorem 2.1.9 (see Corollary 9.4 in [Bra08]). Let f : Rn ! Rm be a continuous
function. It is computable if and only if its graph, �f , is a ⇧0

1

set.

2.2 Computable metric spaces

Computability on Rn can be extended to a large class of metric spaces, called com-

putable metric spaces. This concept has been introduced in Weihrauch [Wei93] and

studied in Brattka and Presser [BP03] among others.

Definition 2.2.1 (Computable metric spaces). A computable metric space is a
triple (X, d, (↵i)i2N), where:

• (X, d) is a complete separable metric space,

• {↵i : i 2 N} is dense in X, and

• d (↵i,↵j) is computable uniformly in i, j.

The elements of (↵i)i2N are called the basic points. Without loss of generality,

i 7! ↵i can be assumed to be injective.

For x 2 X and r > 0, let B(x, r) denote the metric ball {y 2 X : d(x, y) < r}. We

say B(x, r) is a basic ball, if x is a basic point and r is a positive rational.
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Definition 2.2.2 (Cauchy names, computable points, computable functions).
Let (X, dX , (↵i)i2N) be a computable metric space. A Cauchy name for x 2 X
is a sequence (xi)i2N of basic points such that dX(xi, x)  2�i for all i. Again,
we can identify sequences of basic points with functions from N to N.
Let (Y, dY , (�i)i2N) be a computable metric space. A function f : X ! Y
is computable if there exists an oracle Turing machine M such that whenever
Ax : N ! N is a Cauchy name for x 2 X, then MA

x computes a Cauchy name
for f(x). That is, for every j 2 N, MA

x(j) halts and outputs a 2 N with

dY (�a, f(x))  2�j.

Proposition 2.2.3. Let (X, d, (↵i)i2N) be a computable metric space. The dis-
tance d : X ⇥X ! R is a computable function.

2.3 Computable measures

We follow Gács [Gác05] and Hoyrup and Rojas [HR09] in defining the notion of

computability of measures.

Notation 2.3.1. Given some abstract measure space X, by P (X) we denote
the set of all probability measures on X.

Since we work mostly with Polish spaces X equipped with their Borel ��algebras,

P (X) usually denotes the set of Borel probability measures on X.

Given a Polish metric space (X, d), the set P (X) of Borel probability measures

over X endowed with the weak topology is a Polish space.

Definition 2.3.2 (Prokhorov metric). The Prokhorov metric ⇡ on P (X) is
defined by:

⇡(µ, ⌫) = inf{✏ > 0 | µ(A)  ⌫(A✏) + ✏ for every Borel set A},

where A✏ = {x : d(x,A)  ✏}.

Suppose (X, d, (↵i)i2N) is a computable metric space. Let (�i)i2N be an e↵ective

enumeration of those elements of P (X) which are concentrated on finite subsets of

basic points and assign rational values to them. Then (P (X), ⇡, (�i)i2N) is a com-

putable metric space compatible with the weak topology on P (X). Following Gács

[Gác05] and Hoyrup and Rojas [HR09], we define computable measures as computable

elements of (P (X), ⇡, (�i)i2N).
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Recall that a real number r is said to be left c.e. if there is a nondecreasing

computable sequence of rationals (qi)i2N such that r = limi qi.

Proposition 2.3.3 (see Theorem 4.2.1 in [HR09]). Let µ 2 P (X). The following
are equivalent:

1. µ is computable, and

2. µ(Bi) is left c.e. uniformly in i, where (Bi)i2N is a computable numbering
of basic open balls.

Remark 2.3.4. The original Theorem 4.2.1 in [HR09] considered finite union of
open balls, rather then single balls. However, this is easily seen to be equivalent
to our formulation.

The characterization of computable probability measures in Proposition 2.3.3
is somewhat counterintuitive, as µ(Bi) is required to be left c.e. rather than
computable. In general, this can not be strengthened - µ(Bi) is not necessarily
computable uniformly in i. However, in some important cases it is, indeed,
computable. For example, if µ is absolutely continuous, µ(Bi) is computable
uniformly in i. Moreover, for a given computable µ, it is always possible to
find a computable sequence of open balls (B̂i)i2N so that µ(B̂i) is computable
uniformly in i and (B̂i)i2N forms a subbasis (of the underlying space X). See
the proof of Corollary 5.2.1 in [HR09].

Theorem 2.3.5 ([see Corollary 4.3.2 in [HR09]). Let µ 2 P (X). Let (fi)i2N be
a sequence of uniformly computable functions from X to R, i.e. such that the
function (i, x) 7! fi(x) is computable. If moreover fi has a bound Mi computable
uniformly in i, then the function (µ, i) 7!

R

fi dµ is computable.

2.4 Dyadic rationals and dyadic cubes in Rn

Notation 2.4.1. For every i 2 N+, let Dn
i denote the set of points in Rn with

all coordinates of the form k2�i for some integer k. Let S ✓ R. By Dn,S
i we

denote the set Dn
i \ Sn. Define Dn

⇤ = [iDn
i and Dn,S

⇤ = [iDn,S
i .

Let Dn denote the collection of half-open basic dyadic cubes in Rn. That is

Dn =
�

2�k([m
1

,m
1

+ 1)⇥ · · ·⇥ [mn,mn + 1)) : k 2 Z, m
1

, . . . ,mn 2 Z
 

.

If D ⇢ Rn is a cube, by l(D) we denote the side length of D.
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For k 2 Z, let Dn(k) denote the collection of basic (half-open) dyadic cubes in Rn

with its side length equal to 2�k. For x 2 Rn and i 2 N, define Dn(i, x) to be the

unique element of Dn(i) containing x.

The following proposition is known as the “1/3�shift trick” in Rn.

Proposition 2.4.2 (cf. Theorem 3.8 in [Tap12]). Consider Rn equipped with
the usual Euclidean metric. For any ball B = B(x, r) ⇢ Rn, there exists k 2 Z,
Q 2 Dn(k) and t 2 {0, 1/3, 2/3}n such that B ⇢ (Q+ t) and 6r < 2�k  12r.

We will also need the following version of Whitney’s covering lemma (see Section

1.1 in [Rog04]):

Lemma 2.4.3 (Dyadic covering). If A ✓ Rn is open, then there is a countable
collection of (basic) closed dyadic cubes (Qi)i2N with disjoint interiors such that
A = [iQi and for all j,

1  d(Qj, @A)p
nl(Qj)

 4.

Recall that the distance, d(A,B), between two subsets A and B, is defined as

d(A,B) = inf
x2A,y2B

|x� y|.

The above lemma says that every open set A is a union of closed basic dyadic cubes

Q with l(Q) being proportional to the distance between Q and the boundary of A.

In particular, every ball in Rn of radius r contains a basic dyadic cube whose side

length is proportional to r.

Remark 2.4.4. Additional notation related to dyadic cubes in Rn will be intro-
duced in the next section.

2.5 Computable randomness

Computable randomness is one of the more natural notions of algorithmic random-

ness. It is usually defined in terms of success sets of e↵ective betting strategies: a

sequence is said to be computably random if no computable betting strategy can make

an unbounded profit while betting on this sequence. Betting strategies are usually

formalized as martingales (see Chapter 7 in the book by Nies [Nie09]).
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Definition 2.5.1. We say a function B : 2<! ! R
+

[ {0} is a martingale if the
following condition holds for all � 2 2<! :

2B(�) = B(�0) + B(�1).

We say B succeeds on Z 2 2! if lim supn B(Z �n) = 1.
We say B diverges on Z if either B succeeds on Z or

lim inf
n

B(Z �n) < lim sup
n

B(Z �n).

Definition 2.5.2. A martingale B is called computable if B(�) is a computable
real number uniformly in �.
We say Z 2 2! is computably random if no computable martingale succeeds on
Z.

Remark 2.5.3. It is known that in the above definition “succeeds” can be re-
placed with “diverges” without changing the notion. That is, Z is computably
random i↵ no computable martingale diverges on Z.

Remark 2.5.4. If Z 2 2! is not computably random, there exists a computable
martingale B succeeding on Z. We may assume B has the following two addi-
tional properties:

• B only takes positive rational values (see Proposition 7.3.8 in [Nie09]) and

• we may also assume that B has the savings property :

B(�⌧) � B(�)� 1, for all �, ⌧ 2 2<!.

For example, see the proof of Proposition 6.3.8 in [DH10].

A martingale B can be seen as a betting strategy for betting on bits of a string in the

ascending order. B(�) can be interpreted as B0s capital after betting on all bits of

�. Suppose, after betting on all bits of �, B bets an amount ↵, with 0  ↵  B(�),

that the next bit is 0. If B is right, it wins ↵ and hence B(�0) = B(�) + ↵, while

B(�1) = B(�)� ↵.

Both the following definition and the theorem are due to Miyabe and Rute [MR13].
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Definition 2.5.5. A total computable function M : 2! ⇥ 2<! ! R is an oracle
martingale if MZ(·) = M(Z, ·) is a martingale for every Z 2 2!.

We say A is computably random uniformly relative to B if there is an oracle
martingale M such that M(B, ·) succeeds on A.

Rute and Miyabe called oracle martingales uniform computable martingales. However,

we will use this concept in the context of relativization, hence our preference for a

di↵erent name.

The following form of van Lambalgen’s theorem for computable randomness will play

an important role in Chapter 4.

Theorem 2.5.6 (Theorem 1.3 in [MR13]). A�B is computably random if and
only if A is computably random uniformly relative to B and B is computably
random uniformly relative to A.

2.5.1 Computable randomness in Rn

Since we work mostly in Rn, we need a more general definition of computable random-

ness. One way of defining computable randomness in Rn is to define the concept of

binary expansions (for elements in Rn) and to declare those elements as computably

random, whose binary expansions are computably random. Since computable ran-

domness is known to be invariant under computable permutations, this definition

does not depend on a particular choice of computing binary expansions (with some

sensible restrictions). An approach to define computable randomness in more general

spaces has been described by Rute [Rut16]. Below we adopt this approach for our

purposes.
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Definition 2.5.7. We say (X,µ) is a computable probability space if X is a
computable Polish space and µ is a computable probability measure on X.
A pair U, V ✓ X is µ-a.e. decidable pair if

1. U and V are ⌃0

1

sets,

2. V \ U = ;, and

3. µ(U [ V ) = 1.

A set A is a µ-a.e. decidable set if there is a µ-a.e. decidable pair U, V such that
U ✓ A ✓ X \ V. The code for the µ-a.e. decidable set A is the pair of codes for
the ⌃0

1

sets U and V .
Let A = (Ai)i2N be a computable sequence of a.e. decidable sets. Let B be the
closure of A under finite Boolean combinations. We say A is an (a.e. decidable)
generator of (X,µ) if given a ⌃0

1

set U ✓ X one can find (e↵ectively from the
code of U) a c.e. family (Bi)i2N of sets in B such that µ(U \ [jBj) = 0.

Definition 2.5.8. Let A = (Ai)i2N be an a.e. decidable generator of (X,µ). Re-
call each Ai is coded by an a.e. decidable pair (A0

i , A
1

i ) where A
0

i ✓ Ai ✓ X \A1

i .
For � 2 2<! of length s > 1 define

[�]A = A�(0)
0

\ A�(1)
1

\ · · · \ A�(s�1)

s�1

.

When � = ✏, we let [�]A = X.
When possible, define x�A n as the unique � of length n such that x 2 [�]A. Also
when possible, define the A�name of x as nameA(x) = limn!1 x�A n. A point
without an A�name will be called an unrepresented point. Each [�]A will be
called a cell, and the collection of {[�]A}�22<!

will be called an (a.e. decidable)
cell decomposition of (X,µ).

Cell decompositions allow one to translate between Cantor space and other spaces.

With our interest in Rn in mind, we will fix one particular cell decomposition (for

every n) and we will use it throughout this thesis. Note that A
2

! = ([�])�22<! is a

cell decomposition of (2!,�). We call this the natural cell decomposition.
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Definition 2.5.9. Define X = {Z 2 2! : Z is co-infinite and infinite}.
Let F : X ! [0, 1) \ D1

⇤ be defined by

F (Z) = 0.Z =
X

i2Z

2�i�1.

Fix n 2 N. For i 2 N with 0  i  n� 1 and Z 2 2!, define

pni (Z) = {Z(kn+ i) : k 2 N}.

Define Fn : {Z 2 2! : pni (Z) 2 X for all 0  i  n� 1} ! ([0, 1) \ D1

⇤)
n by

Fn(Z) = 0.Z = (F (pn
0

(Z)), . . . , F (pnn�1

(Z))).

It is known that F is a bijection. F�1 maps real numbers from [0, 1) that are not

dyadic rationals to their binary expansions (for example, see 1.8.10-1.8.13 in [Nie09]).

Analogously, F�1

n maps elements from [0, 1)n\Dn
⇤ to their “binary expansions”, where

the binary expansion of x = (x
1

, . . . , xn) is the sequence resulting from bit-wise

interleaving of binary expansions of x
1

, . . . , xn.

Notation 2.5.10 (Correspondence between clopens in the Cantor space and
basic dyadic cubes in [0, 1]n). In the terminology of Rute, F is an a.e. computable
isomorphism between (2!,�) and ([0, 1],�

1

). That is, both F and its inverse are
a.e. computable and measure preserving. Similarly, Fn is an a.e. computable
isomorphism between (2!,�) and ([0, 1]n,�n). By Proposition 7.7 in [Rut16],
(Fn)�1 and the natural cell decomposition of (2!,�) induce a cell decomposition
on ([0, 1]n,�n). Let us denote this cell decomposition by An. With respect to
this cell decomposition, [�]A

n

is the set of those x 2 [0, 1]n \ Dn
⇤ , whose binary

expansions F�1

n (x) extend �. That is, [�]A
n

is always a finite union of open basic
dyadic cubes in [0, 1]n. From now on, when it is clear from the context that we
are working in [0, 1]n, we will write [�] instead of [�]A

n

. Please note that in
this notation [�] always denotes a finite union of open dyadic cubes. We will be
writing [�] to denote the closure of [�].

Definition 2.5.11. We say z 2 [0, 1]n is computably random if its binary ex-
pansion, that is Z 2 2! with Z = F�1

n (z), is defined and it is computably
random.

Let z 2 Rn. Let p 2 Zn be such that z� p 2 [0, 1]n. We say z is computably
random if z � p is computably random.

The above definition seems to depend on the choice of Fn. However, by Theorem 5.7

in [Rut16], every choice of Fn, provided it is an a.e. computable isomorphism, results

in the same notion of computable randomness.

20



Notation 2.5.12. Let � 2 2<! and let p 2 Zn. When it won’t cause ambiguities,
as a notational convenience, we will write [�]p instead of [�] + p.

Definition 2.5.13. AMartin-Löf test is a uniformly computable sequence (Ui)i2N
of ⌃0

1

subsets of [0, 1]n such that � (Ui)  2�i for all i. We say (Ui)i2N covers
z 2 [0, 1]n if z 2

T

i Ui.
We say a Martin-Löf test (Ui)i2N is bounded if there is a computable pre-measure
⌫ : 2<! ! [0,1) satisfying

� (Ui \ [�])  2�i⌫(�)

for all i 2 N and � 2 2<!.

We will need the following characterization of computable randomness in the unit

cube due to Rute:

Proposition 2.5.14 (cf. Theorem 5.3 in [Rut16]). Let z 2 [0, 1]n \ Dn
⇤ . The

following two are equivalent:

1. z is not computably random, and

2. there is a bounded Martin-Löf test (Ui)i2N that covers z.

It is worth noting that the above characterization is a straightforward generaliza-

tion of a result by Merkle, Mihailović and Slaman from [MMS06].

2.6 Di↵erentiability of real-valued functions on Rn

2.6.1 Functions on the real line

Definition 2.6.1. Let f : R ! R be a function. We say f is di↵erentiable at
a 2 Rn if the following limit exists

lim
h!0

f(a+ h)� f(a)

h
.

In that case, the value of that limit is denoted by Df(a). We call Df(a) the
derivative of f at a.

We will be using several closely related notions. Below we define them and intro-

duce the relevant notation that will be used in this thesis.
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Definition 2.6.2. Let f : R ! R be a function and let x 2 R.
Define

Df(x) = lim sup
h!0

f(x+ h)� f(x)

h
,

Df(x) = lim inf
h!0

f(x+ h)� f(x)

h
.

We call Df(x) (resp. Df(x)) lower derivative (resp. upper derivative) of f at
x. Similarly we define lower and upper dyadic derivatives of f at x:

D
2

f(x) = lim sup
h!0,h2D1

⇤

f(x+ h)� f(x)

h
,

D
2

f(x) = lim inf
h!0,h2D1

⇤

f(x+ h)� f(x)

h
.

If the following limits exist, their respective values are called right-sided and
left-sided derivatives of f at x:

D
+

f(x) = lim
h!0,h>0

f(x+ h)� f(x)

h
,

D�f(x) = lim
h!0,h<0

f(x+ h)� f(x)

h
.

Collectively, D
+

f(x) and D�f(x) are known as one-sided derivatives of f at x.

2.6.2 Functions on Rn, partial and directional derivatives

Definition 2.6.3. A function f : Rn ! Rm is di↵erentiable at a 2 Rn if there
is a linear transformation T : Rn ! Rm such that

lim
h!0

|f(a+ h)� f(a)� T (h)|
|h| = 0.

In that case, the linear transformation T is unique and it is denoted by Df(a).
We call this transformation the derivative of f at a.

22



Definition 2.6.4 (Partial derivatives, gradient). Let f : Rn ! R be a function
and let a 2 Rn. The limit

lim
h!0

f(a+ hei)� f(a)

h

if it exists, is denoted Dif(a), and called the ith partial derivative of f at a.
When all partial derivatives of f at a exist, define the gradient of f at a,

rf(a) 2 Rn, by rf(a) = (D
1

f(a), . . . , Dnf(a)).

Definition 2.6.5 (Directional derivatives). Let f : Rn ! R be a function, let
a 2 Rn and let v 2 Sn�1. The limit

lim
t!0

f(a+ tv)� f(a)

t

if it exists, is denoted Df(a; v), and called the directional derivative of f at a,
in the direction of v.
The limit

lim
t!+0

f(a+ tv)� f(a)

t

if it exists, is denoted D
+

f(a; v), and called the one-sided directional derivative
of f at a, in the direction of v.

2.6.3 Di↵erentiability of partial functions

In order to reason rigorously about twice di↵erentiability of convex functions, we

need to be able to define the concept of di↵erentiability for functions that are defined

almost everywhere. A minor modification of Definition 2.6.3 su�ces:

Definition 2.6.6. Let A ✓ Rn be of full measure. A function f : A ! Rm is
di↵erentiable at a 2 A if there is a linear transformation T : Rn ! Rm such that

lim
h!0,a+h2A

|f(a+ h)� f(a)� T (h)|
|h| = 0.

In that case, the linear transformation T is unique and it is denoted by Df(a).
We call this transformation the derivative of f at a.

2.6.4 Derivatives and antiderivatives

Since we are interested in functions that are not necessarily di↵erentiable on the

whole domain but are di↵erentiable almost everywhere, we use the terms derivative

and antiderivative in the following sense:
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Definition 2.6.7. We say g is a derivative of f if g(x) = Df(x) on all x where
Df(x).

We say f is an antiderivative of g if g is a derivative of f .

2.6.5 Non-di↵erentiability sets of functions

Characterizing points of non-di↵erentiability of e↵ective functions is one of the main

themes of this thesis. This warrants a separate notation.

Notation 2.6.8. Let A ✓ Rn. Let f : A ! Rm be a function. Define

Nf = {z 2 A | f is not di↵erentiable at z}.

2.6.6 Approximate continuity, essential values and Lebesgue
points

To control (non)di↵erentiability of functions, we will be using several very closely

related notions.

Definition 2.6.9. Let f : Rn ! Rm . We say l 2 Rm is the approximate limit
of f as y ! x, written

ap lim
y!x

f(y) = l,

if for each ✏ > 0,

lim
r!0

� (B(x, r) \ {y : |f(y)� l| � ✏})
� (B(x, r))

= 0.

We say f is approximately continuous at x if

ap lim
y!x

f(y) = f(x).

Definition 2.6.10. Let f : Rn ! R be a locally integrable function. Let
x
0

2 Rn and let ↵ 2 R. We say f has an essential value ↵ at x
0

if

lim
r!0

R

B(x,r) |f(t)� ↵| dt
� (B(x, r))

= 0.

Definition 2.6.11. Let f : Rn ! R be a locally integrable function. We say
x 2 Rn is a Lebesgue points of f if f(x) is an essential value of f at x.

24



Remark 2.6.12. It is known that if x is a Lebesgue point of a locally integrable
function f : Rn ! R, then x is a point of approximate continuity. See Section
1.7 in [EG92]. Conversely, suppose f : Rn ! R is locally integrable and bounded
(that is |f(x)|  M for some M 2 R). If f has an approximate limit ↵ at x,
then f has an essential value ↵ at x (see Remark 6.7 in [Vuo82]).

This means that for locally integrable bounded functions, points of approx-
imate continuity coincide with Lebesgue points.

On the real line the following result is known.

Theorem 2.6.13 (see Theorem 5.5(a) in [Bru78]). Let f : R ! R be bounded
and measurable and fix a 2 R. Define

g(x) =

Z x

a

f(t) dt. (2.1)

Then for any point x
0

2 R at which f is approximately continuous, g is di↵er-
entiable at x

0

and Dg(x
0

) = f(x
0

).

For semi-continuous functions, the converse also holds:

Theorem 2.6.14 (Theorem 5.8 in [Bru78]). Let f be bounded in a neighborhood
I of x

0

and lower (or upper) semi-continuous at x
0

. Then f is approximately
continuous at x

0

if and only if f is the derivative of its integral (that is g defined
in (2.1)) at x

0

.

2.7 Lipschitz, convex and monotone functions

This thesis is concerned mostly with three classes of functions on Rn: Lipschitz, con-

vex and monotone ones. Here we provide relevant definitions, set-up the required

notation and list some of the properties used later. This is by no means a compre-

hensive introduction, rather a small subset of notions and results needed in this thesis.

For more information on Lipschitz functions, please consult lecture notes by Heinonen

[Hei05] and the book by Lindenstrauss and Preiss [LPT12]. Regarding convex and

monotone functions, we relied on the books by Borwein and Vanderwer↵ [BV10] and

by Phelps [Phe93], and a great survey paper on monotone functions by Alberti and

Ambrosio [AA99]. Finally, since the three classes feature prominently in the area

known as variational analysis, the following two books are worth mentioning: the one

by Rockafellar and Wets [RW97] and the one by Ekeland and Témam [ET99].
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Definition 2.7.1 (Lipschitz functions). A function f : Rn ! Rm is Lipschitz if
there exists L 2 R+ such that

|f(x)� f(y)|  L|x� y| for all x, y 2 Rn.

The least such L is called the Lipschitz constant for f . We denote it by Lip(f).
We say f is K�Lipschitz if Lip(f)  K.

The following result shows that Lipschitz functions (from Rn to Rn) do not stretch

sets too much:

Theorem 2.7.2 (see Section 2.4.1 in [EG92]). Let f : Rn ! Rn be a Lipschitz
function. Let A ⇢ Rn be Borel. Then

� (f(A))  (Lip(f))n � (A) .

Definition 2.7.3 (Convexity). A set C ✓ Rn is said to be convex if tx+(1�t)y 2 C
whenever x, y 2 C and 0  t  1.
Let C ✓ Rn be convex. A function f : C ! [�1,+1] is convex if the following
condition holds for all x

0

, x
1

2 C and all t 2 [0, 1]:

f((1� t)x
0

+ tx
1

)  (1� t)f(x
0

) + tf(x
1

),

whenever the right-hand side is defined.
The set {x 2 Rn | f(u) < +1} is called the e↵ective domain of f .
We say that a function f : C ! [�1,+1] is proper if it is nowhere equal

to �1 and is not identically equal to +1.

It is clear from the above definition, that convex functions are not necessarily

continuous. However, a convex function on Rn is continuous on the interior of its

e↵ective domain.

The following concept is useful in the context of convex functions:

Definition 2.7.4. The epigraph of a function f : C ! [�1,+1] is defined by

epif = {(x, t) 2 C ⇥ R | f(x)  t}.

A function is convex if and only if its epigraph is convex.

Up until Chapter 6, we will only deal with continuous convex functions. In Chap-

ter 6 we will have to deal, at least in the proofs, with discontinuous convex functions.

Most of them will be proper lower semi-continuous :
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Definition 2.7.5. A function f : Rn ! [�1,+1] is said to be lower semi-
continuous if it satisfies the following condition:

8x̂ 2 Rn, lim
x!x̂

f(x) � f(x̂). (2.2)

2.7.1 Properties of continuous convex functions on R

Theorem 2.7.6 (see Theorem 2.1.2 in [BV10]). Let A ⇢ R be an open interval
and suppose f : A ! R is convex. Then

1. D
+

f(x) and D�f(x) exist and are finite at each x 2 A,

2. D
+

f(x) and D�f(x) are non-decreasing functions on A,

3. D
+

f(x)  D�f(y)  D
+

f(y) for all x < y with x, y 2 A,

4. f is locally Lipschitz on A, in particular if [a, b] ✓ A and

M = max{|D
+

f(a)|, |D�f(b)|},

then
|f(x)� f(y)|  M |x� y| for all x, y 2 [a, b].

Sets of points of non-di↵erentiability of real valued convex functions on the real line

have a simple characterization: they are precisely the countable subsets of the real

line.

Proposition 2.7.7 (see Theorem 2.1.2 and 2.2.15 in [BV10]). N ✓ R is count-
able if and only if there is a convex function f : R ! R such that Nf = N .

We will discuss other properties of convex functions later, after introducing monotone

functions.

2.7.2 Monotone functions

Monotone operators were first introduced in Minty [Min60] and Zarantonello [Zar60].

This notion can be seen both as a nonlinear generalization of linear endomorphisms

with positive semidefinite matrices, and a multidimensional generalization of nonde-

creasing functions of a real variable. We are mainly interested in the latter. Monotone

operators are often defined as set-valued functions from a Banach space to its dual,

however we are only interested in (set-valued) functions from Rn to Rn.
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A set-valued function u : Rn ! Rn takes every point x 2 Rn to some set

u(x) ✓ Rn. When no ambiguities may arise, we call these set-valued functions simply

functions.

Notation 2.7.8. Let set-valued functions u, v, real numbers a, b and a set
B ✓ Rn be given. For all x 2 Rn we set

domain of u, Dm u = {x : u(x) 6= ;},
image of u, Im u = {y : 9x, y 2 u(x)},

graph of u, �u = {(x, y) 2 Rn ⇥ Rn : y 2 u(x)},
(generalized) inverse of u, [u�1](x) = {y : x 2 u(y)},

[au+ bv](x) = {ay + by0 : y 2 u(x), y0 2 v(x)},
u(B) = {y : 9x 2 B, y 2 u(x)}.

Definition 2.7.9 (Monotone functions). We say a (possibly partial) set-valued
function u : Rn ! Rn is monotone if

hy
1

� y
2

, x
1

� x
2

i � 0 for all x
1

, x
2

2 Rn and all y
1

2 u(x
1

), y
2

2 u(x
2

).

Proposition 2.7.10 (Basic properties). Let T : Rn ! Rn be a monotone (set-
valued) function. Then

1. T�1 is a monotone function,

2. ↵T is monotone for any ↵ > 0,

3. if T 0 : Rn ! Rn is monotone, then T + T 0 is monotone.

The following sub-class of monotone functions is of particular importance:

Definition 2.7.11 (Maximal monotone functions). A set-valued monotone func-
tion u is said to be maximal if its graph is not properly included in the graph
of another monotone function, that is if the following implication holds:

�(u) ✓ �(v) ^ v is monotone =) v = u.

Definition 2.7.12 (Maximal monotone extensions). Let u : Rn ! Rn and
u : Rn ! Rn be monotone functions. We say u is an extension of u if
�(u) ✓ �(u). Moreover, if u is maximal, we say u is a maximal (monotone)
extension of u.
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Remark 2.7.13. Clearly for every monotone function u, there exists a maximal
extension. Furthermore, if the domain of u is dense in Rn, then the maximal
extension is unique. We will discuss this in more detail in Section 4.6. This
means that in the majority of cases discussed in this thesis, we may and we will
write about the maximal extension.

The usual notion of continuity for functions from Rn to Rn can be extended to set-

valued functions from Rn to Rn in such a way that both notions coincide for single-

valued functions. We are not particularly interested in this extended notion of con-

tinuity (a rigorous exposition can be found in Section 5.B in [RW97]). However, we

need to mention a particular relationship between single-valuedness and continuity in

the case of maximal monotone functions.

Proposition 2.7.14 (Continuity of maximal monotone functions). Let T : Rn ! Rn

be a maximal monotone function. Then:

1. T is single-valued almost everywhere on int(Dm T ).

2. T is continuous at a point x 2 Dm T if and only if T is single-valued at
x, in which case necessarily x 2 int(Dm T ).

Proposition 2.7.15. Every continuous single-valued monotone function with
domain Rn is maximal.

As a consequence, all computable monotone functions are maximal.

2.7.3 Subdi↵erentials of convex functions

Derivatives of convex functions are closely related to monotone set-valued functions.

On the real line, a function is monotone if and only if it coincides (almost everywhere)

with a derivative of a convex function. In the case of functions on Rn, the situation

is somewhat more nuanced.

The following notion that generalizes the notion of a derivative will be used fre-

quently in this thesis:
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Definition 2.7.16. Let ⌦ be an open subset of Rn and let u : ⌦ ! (�1,+1] be
a proper function. The subdi↵erential of u, is the set-valued function @u : ⌦ ! Rn

defined by
@u(x

0

) =
\

x2⌦

{p : u(x) � u(x
0

) + hp, (x� x
0

)i}

for all x
0

where u(x
0

) is finite. If u(x
0

) = +1, then @u(x
0

) is defined to be
empty.
Given A ⇢ ⌦, we define @u(A) =

S

x2A @u(x).

Let S ✓ Rn and let x 2 @S. A hyperplane H ✓ Rn is said to be a supporting

hyperplane of S at x, if x 2 H and S is entirely contained in one of the two closed

half-spaces bounded by H.

When @u(x) is not empty, its elements are called subgradients of u at x. A vector

g 2 Rn is a subgradient of u at x if the a�ne function (of z) u(x)+ hg, (z�x)i defines
a supporting hyperplane to the epigraph of u at (x, u(x)).

Since the fundamental results by Rockafellar [Roc66, Roc70] we know that sub-

di↵erentials of convex functions and monotone functions are very closely related and

this relationship can be summarized in the following two theorems:

Theorem 2.7.17 (Rockafellar [Roc66]). If f : Rn ! (�1,+1] is a lower
semicontinuous proper convex function, then @f is a maximal monotone func-
tion.

Theorem 2.7.18 (Rockafellar [Roc70], also see Theorem 12.25 in [RW97]). A
function T : Rn ! Rn has the form T = @f for some proper, lower semicon-
tinuous, convex function f : Rn ! (�1,+1] if and only if T is a maximal
cyclically monotone function. Then f is determined by T uniquely up to an
additive constant.

Remark 2.7.19. The class of cyclically monotone functions is a proper subclass
of the class of monotone functions. However, we are not interested in the notion
of cyclical monotonicity — plain monotonicity will su�ce for our purposes.

The following theorem shows how derivatives, gradients and subdi↵erentials of

(proper lower semicontinuous) convex functions are related.
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Theorem 2.7.20. Let f : Rn ! (�1,+1] be a lower semicontinuous proper
convex function and let x 2 Rn. The following are equivalent:

1. f is di↵erentiable at x,

2. rf(x) exists and

3. @f(x) is a singleton.

Moreover, when any of the above conditions is true, we have

@f(x) = {rf(x)} = {Df(x)}.

2.7.4 Minty’s correspondence

We proceed with recalling a connection between monotone functions and Lipschitz

functions discovered by Minty [Min62] and some of its consequences relevant to our

work.

Minty showed that the Cayley transformation

� : Rn ⇥ Rn ! Rn ⇥ Rn defined by �(x, y) =
1p
2
(y + x, y � x)

transforms the graph of a monotone function into a graph of a 1-Lipschitz function.

Note that when n = 1 this is a clockwise rotation of ⇡/4.

Notation 2.7.21. By In we denote the identity function on Rn. When it won’t
lead to a confusion we tend to drop the subscript and write I instead of In.

We will rely on the following consequences of Minty’s discovery.

Proposition 2.7.22 (cf. Proposition 1.2 in [AA99]). Let u : Rn ! Rn be a
monotone function. Then

1. if u is maximal, �(u) is closed, and u(x) is a convex, closed (possibly
empty) set for every x 2 Rn;

2. u is maximal if and only if (u+ I) is onto, i.e., if and only if the domain
of (u+ I)�1 is Rn;

3. (u+ I) and (u+ I)�1 are monotone and (u+ I)�1 is 1-Lipschitz.
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Proposition 2.7.23 (cf. Theorem 12.65 in [RW97]). Let u : Rn ! Rn be
a continuous monotone function. Let z 2 Rn and define f = (u + I)�1 and
ẑ = u(z) + z. The following two are equivalent:

1. u is di↵erentiable at z, and

2. f is di↵erentiable at ẑ and Df(ẑ) is invertible.

Those two propositions will allow us to translate questions about di↵erentiability of

monotone functions into questions about di↵erentiability of Lipschitz functions.

2.7.5 Other properties of convex functions on Rn

Proposition 2.7.24 (See Lemma 2.1.8 in [BV10]). The convex functions on Rn

form a convex cone closed under taking pointwise suprema: if f� is convex for
each � 2 � then so is x 7! sup�2� f�(x).

We will also need the following known fact:

Proposition 2.7.25. Let g : R ! R be a monotone function with Dm g = R.
Let C ✓ R be its set of continuity. Define f : R ! R by f(x) =

R x

0

g(t) dt. Then
f is convex, Df = g|C and Nf = R \ C.

Proof. Convexity of f follows from monotonicity of g and Theorem 6.2 in [Bru78].

For every x 2 C, by Theorem 2.6.13 we have Df(x) = g(x). Thus Df = g|C and

hence Nf ✓ R\C. To complete the proof, we need to show R\C ✓ Nf . Let z 2 R\C.

Since g is monotone and discontinuous at z, we have either

g(z) < lim
x!+z,x2C

g(x) = D
+

f(z)

or

g(z) > lim
x!�z,x2C

g(x) = D�f(z).

Either way, we have D
+

f(z) > D�f(z) and then f is not di↵erentiable at z.

2.7.6 Convex conjugate functions

Definition 2.7.26. The Fenchel conjugate of a function f : Rn ! [1,+1] is
the function f ⇤ : Rn ! [1,+1] defined by

f ⇤(�) = sup
x2Rn

{h�, xi � f(x)}.
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The conjugate function f ⇤ is always convex and if the domain of f is nonempty,

then f ⇤ never takes the value �1.

If f is proper, lower semicontinuous and convex, then one has f ⇤⇤ = f and in this

case f and f ⇤ are said to be conjugate.

2.7.7 Monge-Ampère measures

Definition 2.7.27. Let ⌦ ✓ Rn be open and let u : ⌦ ! R be continuous. The
class S = {E ✓ ⌦ : @u(E) is Lebesgue measurable} is a Borel ��algebra. The
set function Mu : S ! [0,+1] defined by

Mu(A) = � (@u(A))

is a measure, called the Monge-Ampère measure associated with u.

“Monge-Ampère” in the name comes from the fact that those measures are related

to the so called Monge-Ampère equation. We will discuss this further in Section 6.2.1.

For more details about Monge-Ampère measures, please see the book by Gutiérrez

[Gut01].

2.7.8 Symmetric derivative of a measure

In studying di↵erentiability of measures we will rely on the concept of symmetrical

derivatives, which we define below together with a few non-standard but related

notions.
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Definition 2.7.28. Let µ be a Borel measure on Rn. Define the symmetric
derivative of µ at x 2 Rn to be

D�µ(x) = lim
r!0

µ (B(x, r))

� (B(x, r))
,

at those points x at which this limit exists. When this limit exists, we say µ is
di↵erentiable at x, otherwise we say µ is not di↵erentiable at x.

Let X 2 2! be the binary expansion of x 2 Rn. Define the dyadic derivative
of µ at x to be

D
2

µ(x) = lim
i!1

µ ([X�ni])
� ([X�ni])

,

at those points x at which this limit exists.
Similarly, we define

D
2

µ(x) = lim inf
i!1

µ ([X�ni])
� ([X�ni])

,

D
2

µ(x) = lim sup
i!1

µ ([X�ni])
� ([X�ni])

.
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Chapter 3

Computable randomness and
di↵erentiability on the unit interval

In this chapter we study characterizations of computable randomness on R in terms

of various di↵erentiability properties.

Our first result, Theorem 3.1.9, is a relativized version of the ) direction of

Theorem 1.6.1. We will use this result in Chapter 4 to prove our e↵ective version

of Rademacher’s theorem. Our proof uses the notion of porosity. This is a notion

smallness of sets in metric spaces. Our proof is simpler than the one in [BMN16].

To a significant extent this proof uses ideas from a paper by Nies [Nie14]. However,

the idea of using porosity in this context is certainly older. For real functions of one

variable, porosity appears in sets where di↵erent types of derivatives disagree (see

[BT84, Tho85] and [BLPT86]).

In Section 3.2 we revisit the construction mentioned in Remark 1.5.1.

In Section 3.3 we study how computable randomness is related to di↵erentiability

properties of computable convex functions and computable measures. This section

contains the majority of our new results on R.

3.1 Porosity, di↵erentiability and betting

3.1.1 Martingales, measures and monotone functions

There is a correspondence, which will be used repeatedly in this chapter, between

martingales, atomless (positive) Borel measures on [0, 1] and non-decreasing contin-

uous functions on the [0, 1]. Here we set up the notation only, for formal details and

proofs, please consult Section 3.2 in [BMN16].
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Notation 3.1.1 (Slopes of functions). Let f : R ! R be a function. For every
� 2 2<!, we define

Sf (�) =
f(0.� + 2�|�|)� f(0.�)

2�|�| .

Similarly, for all a, b 2 R, let

Sf (a, b) =
f(a)� f(b)

a� b
.

Notation 3.1.2. For every martingale M there is a corresponding measure µM

on the unit interval defined by

µM([�]) = 2�|�|M(�) for every � 2 2<!.

We say a martingale M is atomless if µM is atomless.
For the other direction, let µ be an atomless (positive) Borel measure on the

unit interval. We define the corresponding martingale Mµ by letting

Mµ(�) = 2|�|µ([�]) for every � 2 2<!.

Likewise, there is a correspondence between atomless martingales and continu-

ous non-decreasing functions on the unit interval. Below we introduce a relativized

version.

Notation 3.1.3. Let M be an oracle martingale such that MA is atomless for
every A 2 2!. We define fM : 2! ⇥ [0, 1] ! R on the unit interval by letting

fA
M(x) = fM(A, x) = µMA([0, x])

for all A 2 2!, x 2 [0, 1].
For the other direction, let f : 2! ⇥ [0, 1] ! R be computable and such that

fA(x) = f(A, x)

is non-decreasing for every A 2 2!. We define an oracle martingaleMf by letting

MA
f (�) = SfA(�)

for every � 2 2<!.

3.1.2 Porosity points

The notion of porosity, which originated in works of Denjoy, plays an important role

in this chapter.
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Let (X, d) be a metric space. A point x 2 X is said to be a porosity point of

S ✓ X if

por(x, S) = lim sup
r!0

�(x, r, S)/r > 0,

where �(x, r, S) is defined for any r > 0 as

sup{r0 > 0 : for some z 2 X, B(z, r0) ✓ B(x, r) and B(z, r0) \ S = ;}.

A set S is said to be porous if all its points are porosity points of S. A set is said to

be ��porous if it is a countable union of porous sets.

Informally, if x is a porosity point of S ✓ Rn, then it is possible to find relatively

large balls disjoint from S (called holes in S) arbitrarily close to x. The following

definitions formalize an e↵ective version of this notion.

Definition 3.1.4. Let C be a subset of 2! and let Z 2 C. Define

por
2

(Z,C) = lim inf
i!1

{|�|� i | � � Z�i ^ [�] \ C = ;}.

If por
2

(Z,C) < 1, then we say that Z is a dyadic porosity point of C. When
⇢ = por

2

(Z,C) is known, we say Z is a ⇢-porosity point of C.

Since we are interested in computable betting strategies, we need to restrict our

attention to subsets of 2! for which finding holes can be done e↵ectively.

Definition 3.1.5. Let X,A 2 2!. We say X is an A�porosity point if there
exists a ⇧0

1

(A) set C ✓ 2! such that:

• X is a dyadic porosity point of C and

• the set H = {� | [�] \ C = ;} is truth-table reducible to A.

If A = ;, we say X is a computable porosity point.

The reason of why truth-table reducibility was needed in the above definition will

become clear in the proof the next proposition.

Proposition 3.1.6. Let X,A 2 2!. If X is an A�porosity point, then there
exists an oracle martingale M such that MA succeeds on X.

Proof. Let C and H be as in Definition 3.1.5. Let ⇢ = por
2

(X,C). MA bets in

the following way. Given � 2 2<!, if there is ⌧ 2 H with |⌧ | = |�| + ⇢ and ⌧ � �

(MA is able to perform such checks, since H is truth-table reducible to A), then

MA bets against it. Otherwise MA doesn’t bet. (That is, we let MA(⌧) = 0 and

MA(⌧̂) = 2

⇢

2

⇢�1

MA(�) for all ⌧̂ � � with ⌧̂ 6= ⌧ and |⌧̂ | = |�|+ ⇢.) Since X is a dyadic

porosity point of C, MA succeeds on X.
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3.1.3 Computable monotone functions are di↵erentiable at
computably random reals

In this section we will prove the ) implication of the following result from [BMN16]:

z 2 [0, 1] is computably random i↵ every computable monotone f : [0, 1] ! R is

di↵erentiable at z. The proof presented here follows ideas from [Nie14], where an

analogous result has been shown for polynomial time computable functions.

We require the following two lemmata from [Nie14]:

Lemma 3.1.7 (Lemma 11, [Nie14]). Suppose f : [0, 1] ! R is a nondecreasing
function. Suppose for a real z 2 [0, 1], with binary representation z = 0.Z, there
is a rational p such that

D
2

f(z) < p < Df(z).

Let �⇤ � Z be any string such that 8� [�⇤ � � � Z ) Sf (�)  p]. Then the
closed set

C = [�⇤] \
[

�⌫�⇤

{[�] | Sf (�) > p}, (3.1)

which contains z, is porous at z.

Lemma 3.1.8 (Lemma 12, [Nie14]). Suppose f : [0, 1] ! R is a nondecreasing
function. Suppose for a real z 2 [0, 1], with binary representation z = 0.Z, there
is a rational q such that

Df(z) < q < D
2

f(z).

Let �⇤ � Z be any string such that 8� [�⇤ � � � Z ) Sf (�) � q]. Then the
closed set

C = [�⇤] \
[

�⌫�⇤

{[�] | Sf (�) < q}, (3.2)

which contains z, is porous at z.

Our formulation of the lemmata is slightly di↵erent from the one in [Nie14]. Both

formulations are equivalent, however. The original lemmata were formulated in terms

of pseudo-derivatives. However, as it is explained in a remark that follows the proof of

Fact 10 in [Nie14], “for continuous functions with domain [0, 1], the lower and upper

pseudo-derivatives of f coincide with the usual lower and upper derivatives.” Also,

please note that our notation for basic dyadic intervals is slightly di↵erent (our [�]

denotes an open interval).

Theorem 3.1.9. Let f : 2!⇥[0, 1] ! R be a computable function such that fA(x) = f(A, x)

is monotone for every A 2 2!. Let z 2 [0, 1] and let A 2 2!. If fA is not di↵erentiable

at z, then there exists an oracle martingale M such that MA diverges on Z, the binary

expansion of z.
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Proof. Consider the oracle martingaleMf . IfMA
f diverges on Z, we are done. Suppose

MA
f converges on Z. This means thatD

2

fA(z) exists (sinceD
2

fA(z) = limi!1 MA
f (Z�i))

while DfA(z), by our assumptions, does not. In this case we will show Z is an

A�porosity point.

Since D
2

fA(z) exists but DfA(z) does not, for some positive p, q 2 Q,

D
2

fA(z) < p < q < DfA(z) or DfA(z) < p < q < D
2

fA(z).

Suppose D
2

fA(z) < p < q < DfA(z). Choose �⇤ and C as in Lemma 3.1.7 so that

D
2

f(z) < p < Df(z).

Pick s 2 N such that 2�s < q�p
2

. Define

HA =

⇢

� | � ⌫ �⇤ ^
✓

SfA(�)� p+ q

2

◆

s

� 0

�

.

Observe thatHA is truth-table reducible to A. Moreover, the set CA = [�⇤]\
S

�2HA

[�]

is contained in C and hence it is porous at z.

Define eCA ⇢ 2! by eCA = [�⇤] \
S

�2HA

[�]. Let Z be the binary expansion of z. By

Lemma 2.4.3 every interval in R contains a relatively large basic dyadic interval and

hence Z is also a dyadic porosity point of eCA.

The case when DfA(z) < q < D
2

fA(z) can be dealt with in a similar manner,

using Lemma 3.1.8.

We have shown that Z is an A�porosity point. By Proposition 3.1.6, there exists

an oracle martingale M such that MA succeeds (and hence diverges) on Z.

3.2 Zahorski’s construction on the real line

All known proofs of ( directions of Theorem 1.6.1 and Theorem 1.6.2 rely on an

e↵ectivization of a particular construction found in the seminal paper by Zahorski

[Zah46].

Zahorski characterized non-di↵erentiability sets of continuous real-valued func-

tions on the real line. A crucial part of his argument was constructing a monotone

Lipschitz function not di↵erentiable at a given G� null set. For the purposes of this

thesis we will call this part the Zahorski construction, even if Zahorski’s argument

was more complicated and included other important constructions. A modern version

of that part of Zahorski’s argument can be seen in [FP09]. It should be noted that

while Zahorski was the first to fully characterize non-di↵erentiability sets of continu-

ous real-valued functions on the real line, constructions similar to the one we have in

mind, had been known before.

We are particularly interested in how this construction can be used to prove results

of the following kind: given a non-random point z, exhibit an e↵ective function

f : R ! R not di↵erentiable at z.
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Below we briefly review the construction itself and its e↵ective version. Reproving

known results is not the purpose of this section, hence all proofs in this section are

sketches.

3.2.1 Classical argument

Let A ⇢ R be a G� null-set. For the sake of simplicity, suppose it is a subset

of the unit interval. The goal is to construct a monotone Lipschitz function not

di↵erentiable precisely at elements of A. The basic idea is to exploit the very close

relationship between approximate continuity of a bounded measurable function and

di↵erentiability of its integral. Recall Theorem 2.6.13: if f : R ! R is bounded,

measurable and approximately continuous at z 2 (0, 1), then g(x) =
R x

0

f(t) dt is

di↵erentiable at z. Furthermore, the following simple fact is known:

Fact 3.2.1. Let f : R ! R be a locally integrable non-negative function. Let
z 2 (0, 1). If the map g(x) =

R x

0

f(t) dt is di↵erentiable at z, then the following
limit exists:

lim
r!0

1

� ((z � r, z + r))

Z z+r

z�r

f(t) dt. (3.3)

Proof. Follows from Theorem 7.24 in [Rud87].

With the above facts in mind, consider a bounded non-negative and locally integrable

function f : R ! R with the following properties:

1. f is approximately continuous at all points of R \ A and

2. for every x 2 A, the limit in Eq. (3.3) does not exist.

Define g(x) =
R x

0

f(t) dt. Then the non-di↵erentiability set of g, Ng, is equal to A.

Moreover, g|[0,1] is a monotone Lipschitz function. The main point of this idea is

to convert the question about di↵erentiability into a relatively easier question about

approximate continuity.

Now let us overview the e↵ectivization of this idea from [BMN16].

3.2.2 E↵ective version

The starting point of the e↵ective construction is slightly di↵erent. Let M be a

computable martingale with the saving property. Instead of an arbitrary G� null-set,

we have an e↵ective null-set A of a particular shape — the set of reals x such that M

diverges on the binary expansion of x. We are interested in exhibiting a computable

monotone function that is not di↵erentiable at all elements of A. Observe that this is
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a somewhat weaker property than in the previously discussed classical construction,

as we are interested in a computable monotone function whose non-di↵erentiability

set contains A and not necessarily is equal to A.

Since M is computable and has the saving property, µM is a computable absolutely

continuous (w.r.t. �) measure on R. Define g : R ! R by

g(x) = µM((�1, x)) =

Z x

�1
D�µM(t) dt.

Then g is a computable monotone function that is not di↵erentiable at any z 2 [0, 1]

whose binary expansion belongs to A. Moreover, g can be made Lipschitz by assuming

M is bounded (for details, please see the proof of Theorem 4.2 in [FKHNS14]).

Remark 3.2.2. In this thesis we say a measure is absolutely continuous if it is
absolutely continuous w.r.t. the Lebesgue measure.

An obstacle in higher dimensions

The main idea in the above construction is that approximate discontinuities of
D�µM are translated into non-di↵erentibility points of g, the antiderivative of
D�µM . It is easy to see at least one major di�culty in generalizing this approach
to higher dimensions: where as on the real line Lebesgue integration provides
an easy way to obtain antiderivatives, in higher dimensions this is no longer the
case.

We will generalize this construction in Chapter 6. In particular, Section 6.1 dis-

cusses how to overcome the mentioned di�culty in higher dimensions.

3.3 Convex functions, their derivatives and prob-

ability measures

In this section we mainly study di↵erentiability of computable convex functions of

one variable. Monotone functions and probability measures also feature prominently

in this section.

Convex functions are very well behaved and play an important role in such areas

as optimization, control theory and variational analysis. This class has been studied

both in the classical and in the e↵ective context.

Derivatives of computable convex functions of one variable have been studied in

Ding-Zhu and Ko [DK89]. In particular, Du and Ko noticed that the derivative is

(uniformly) computable on the set of points where it does exist. The second and

higher derivatives of computable real functions of one variable were considered for

example in Zhong [Zho98].
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As described in Section 2.7, convex functions are very closely related to monotone

functions. Most of results in this section rely on this fact.

3.3.1 Non-di↵erentiability sets of computable convex func-
tions

Recall from Section 2.7.1 that non-di↵erentiability sets of convex real-valued functions

on the real line are exactly the countable subsets of R. When f is computable,

it is relatively easy to show (and we will do so in this subsection) that all non-

di↵erentiability points are computable. However, not all countable sets of computable

real numbers are sets of non-di↵erentiability of computable convex functions.

Definition 3.3.1. We sayA ⇢ R is a cnd set (cnd for convex non-di↵erentiability)
if there exists a computable convex function f : R ! R such that Nf = A.

The next two results provide two useful characterizations of cnd sets.

Proposition 3.3.2. Let A ⇢ R be a set. The following two are equivalent:

1. there exists a computable sequence of real numbers (qi)i2N and a c.e. set
W ✓ N such that

A = {qi : i 62 W}.

2. there exists a sequence of uniformly ⇧0

1

sets (Pi)i2N and a computable
sequence of positive reals (ri)i2N such that A =

S

i Pi and for every i,
#(Pi)  1 and Pi ✓ [�ri, ri].

Proof (1) ) (2). Let (qi)i2N and W be as in the statement of the theorem. For every

i 2 N, let Si = {qi} when i 62 W and let Si = ; otherwise. Then
S

i Si = A,

(Si)i2N is the required sequence of ⇧0

1

classes and (|qi|)i2N is the required sequence of

computable reals.

Proof (1) ( (2). The following procedure for a given k 2 N, computes a real number

pk that is contained in Pk when Pk is not empty.

Fix k 2 N and consider S = Pk. Let i 2 N. Enumerate open intervals Oj with

dyadic endpoints belonging to the complement of S until [�ri, ri] \[jOj is contained

in a closed interval Si with � (Si)  2�i. We may assume Si+1

✓ Si for all i and S
1

is

not empty. To compute pk,i, an approximation of pk at stage i, we let pk,i to be the

leftmost endpoint of Si if Si is not empty and let pi = pi�1

otherwise.

Finally, define W = {i : N|Pi = ;}. Then
S

i Pi = {pi|i 62 W}.
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Theorem 3.3.3. A ⇢ R is a cnd set i↵ there exists a computable sequence of
real numbers (qi)i2N and a c.e. set W ✓ N such that

A = {qi : i 62 W}.

Proof (. Let f : R ! R be a computable convex function such that Nf = A.

Recall our notation for slopes. For every i 2 Z, define

Pi =
\

h2Q

�

x : Sf (x, x+ h)� Sf (x� h, x) � 2�i
 

.

From Theorem 2.7.6 it follows that f is not di↵erentiable at x if and only if left

and right derivatives of f at x di↵er, that is D
+

f(x)�D�f(x) > 0. Hence every point

of Nf is contained in some Pi. By monotonicity of D
+

f and D�f , for any interval

[a, b],

if #([a, b] \ Pi) � m, then D
+

f(b)�D�f(a) � 2�im. (3.4)

Thus, every Pi is a discrete subset of Nf .

Since we need to find ⇧0

1

sets containing at most one element, we need to “split”

Pi sets. This can be done by intersecting Pi sets with su�ciently short intervals. The

details follow.

For every j 2 Z, let (Dj
i )i2N be a computable enumeration of all closed intervals

with dyadic endpoints [a, b] such that

�

�Sf (b, b+ 2�j)� Sf (a� 2�j, a)
�

� <
4

3
· 2�j.

Observe that
S

j(D
j
i )i2N covers

S

j Pj. Furthermore, via (3.4), for every i, #
�

Dj
i \ Pj

�

 1.

For all i 2 N, j 2 Z, define Pi,j = Dj
i \ Pj so that # (Pi,j)  1 and let pi,j

be the right endpoint of Dj
i so that Pi,j ⇢ [�pi,j, pi,j]. Every Pi,j is a ⇧0

1

set and

Nf = [i2N,j2ZPi,j.

Now we can apply Proposition 3.3.2 to (Pi,j)i,j2N and (pi,j)i,j2N to get the required

result.

Proof ). Let (qi)i2N and W ✓ N be as in the statement of the theorem. We will

exhibit a computable convex function F : R ! R such that NF = A.

For s 2 N, let Ws denote an approximation of W at stage s, so that Ws ✓ W and

W = [Ws.

For every i, let (qi,s)s2N be a computable Cauchy name for qi.

For a given i, we define (a sequence of functions from R to R) (gi,s)s2N in the following

way. Fix s 2 N. Let as = qi,s+2�s and bs = qi,s+2�s+1. If i 2 Ws, then let gi,s = gi,s�1
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if gi,s�1

has been defined and let gi,s = 0 otherwise. If i 62 Ws, then define gi,s : R ! R
as

gi,s(x) =

8

>

<

>

:

0, when x < as,

2s�i(x� as), when x 2 [as, bs),

2�i, when x � bs.

For all i 2 N and x 2 R, define

gi(x) = lim
s!1

gi,s(x),

fi(x) =

Z x

0

gi(t) dt.

Finally, define

F
1

(x) =
X

i2W

fi(x),

F
2

(x) =
X

i/2W

fi(x),

F (x) = F
1

(x) + F
2

(x).

The following two claims complete the proof.

Claim 3.3.4. F is a computable convex function.

Convexity of F follows from Proposition 2.7.24, because F is a countable sum of

convex functions.

To show computability of F , let x 2 R and s 2 N.
Since gi  2�i, we can find j 2 N such that

Z x

0

X

i�j

gi(t) dt  2�s�1.

Note that every fi is a computable (uniformly in i) function. Hence y =
P

i<j fi(x)

can be computed from x, s. Let (yi)i2N be a Cauchy name for y. Then

|F (x)� ys+1

|  2�s�1 + |F (x)� y| = 2�s�1 +

�

�

�

�

�

X

i�j

fi(x)

�

�

�

�

�

 2�s.

It follows that F is a computable function.

Claim 3.3.5. NF = A.
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Observe that when i 2 W , then gi is a continuous function. Moreover, G
1

=
P

i2W gi
is also a continuous bounded function. Then

F
1

(x) =
X

i2W

Z x

0

gi(t) dt =

Z x

0

X

i2W

gi(t) dt =

Z x

0

G
1

(t) dt.

By Theorem 2.6.13, F
1

is a C1 function.

When i /2 W , gi is a lower semi-continuous function discontinuous precisely at qi.

Then G
2

=
P

i/2W gi is a non-decreasing function discontinuous precisely at elements

of A. Since F
2

(x) =
R x

0

G
2

(t) dt, by Proposition 2.7.25, NF2 = A. The claim follows.

From the proof of the previous proposition, we can extract the following useful

lemma:

Lemma 3.3.6. If A ✓ R is a cnd set, then there is a computable convex function
u : R ! R such that Nu = A, and supx,y2R |Du(x)�Du(y)| = 1.

Remark 3.3.7. While there is no computable convex function non-di↵erentiable
at all computable reals, for any computable sequence of real numbers, there ex-
ists a computable convex function non-di↵erentiable precisely at elements of the
sequence. In particular, there is a computable convex function non-di↵erentiable
at all rationals. However, the following proposition shows that every computable
convex function is di↵erentiable on a dense computable sequence of reals.

Proposition 3.3.8. Let f : R ! R be a computable convex function. There
exists a computable r 2 R such that f is di↵erentiable on r +Q.

Proof. Let (qi)i2N be a computable sequence of real numbers and let W ✓ N be a c.e.

set such that Nf = {qi : i 62 W}.
Let (pi)i2N be a computable sequence of real numbers that enumerates all real

numbers of the form qi + q for all i 2 N and all q 2 Q.

Via Proposition 2.1.4, there exists a computable irrational real number r that is

not an element of (pi)i2N. Then {r + q : q 2 Q} \ {pi : i 2 N} = ; and hence

{r + q : q 2 Q} \Nf = ;.

3.3.2 Derivatives of computable convex functions

Monotone real-valued functions on the real line correspond to derivatives of convex

real-valued functions on R in the following sense. If f : R ! R is convex, both

its left and right derivatives are defined everywhere and are non-decreasing (recall

Theorem 2.7.6). In this case Nf is precisely the set of discontinuity points of both
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its left and right derivatives. Conversely, if g : R ! R is non-decreasing, then

f(x) =
R x

0

g(t) dt is convex and Nf is the set of discontinuity points of g. In this

subsection we show an analogous characterization in the e↵ective setting.

Let f : R ! R be a computable convex function. We know that Df is monotone

and it is defined outside of some cnd set. However, Df can be discontinuous and

thus not computable in the sense of Grzegorczyk-Lacombe (not even relative to any

oracle).

The following fact (stated in [DK89]) shows Df(x) is computable (from x) where

it is defined.

Fact 3.3.9. Let f : R ! R be a computable convex function and define g(x) = Df(x).
Then g is computable on its set of continuity.

Proof. By convexity of f , we get that Sf (x � t, x)  Df(x)  Sf (x, x + t) for all

t > 0. Moreover, whenever Df(x) exists, limt!0

Sf (x, x+ t)� Sf (x� t, x) = 0.

Suppose Df(x) exists. For every s 2 N we can find a rational ts such that

Sf (x, x+ ts)� Sf (x� ts, x) < 2�s�1.

Then |Df(x)� Sf (x� ts, x)| < 2�s.

Fact 3.3.9 justifies the following definition.

Definition 3.3.10. We say a monotone function f : R ! R is weakly computable
if it is computable on its set of continuity.

Our notion of weak computability is closely related to several other natural notions

of e↵ectiveness when restricted to monotone functions. One of them is the notion of

almost everywhere computable functions (see Subsections 7.1 and 7.2 in [Rut16]). We

say a function f : Rn ! Rm is almost everywhere computable if it is computable on

a subset of full measure.

The other notion is that of computability on IQ = [0, 1] \Q (see Section 7 in the

arXiv version of [BMN16]). A partial function f : [0, 1] ! R is said to be computable

on IQ if its domain contains IQ and f(q) is computable uniformly in q 2 Q.

Proposition 3.3.11. Let f : R ! R be an a.e. computable monotone function.
Define u = (f+I)�1, where f is the maximal extension of f and I is the identity
function. Then u is a computable 1-Lipschitz function.

Proof. From Proposition 2.7.22 we know u is a 1�Lipschitz function, let us show

that it is computable. Since it is Lipschitz, we are only required to show that it

is computable uniformly on rationals. Define f̂ = f + I. Clearly, it is also an a.e.
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computable function. It is a known fact (for example, see Proposition 7.2 in [Rut16])

that every a.e. computable function is computable on some dense ⇧0

2

subset. Hence

there is a dense ⇧0

2

set A ✓ R such that f̂ is computable on A. Via Theorem 2.1.5,

let (xi)i2N be a dense computable sequence of elements belonging to A.

Let y 2 Q, let s 2 N. To compute (u(y))s, find i, j 2 N such that f̂(xi) < y, f̂(xj) > y

and |f(xi)� f(xj)|  2�s; declare u(y) at stage s to be xi.

Proposition 3.3.12. Let f : R ! R be an a.e. computable monotone function
and let C ✓ R be its set of continuity. There exists a computable convex function
g : R ! R such that Dg = f |C.

Proof. Define g(x) =
R x

0

f(t) dt. From Proposition 2.7.25 we know Dg = f |C . Let us
show that g is computable.

Firstly, suppose f(0) = 0. Define u = (f+I)�1, where f is the maximal extension

of f . It is a computable 1-Lipschitz function. Define

F (x) =

Z x

0

(f(t) + t) dt.

Suppose f is computable at x 2 R (and hence x 2 C). Then we have

x(f(x) + x) = xu�1(x) =

Z x

0

u�1(t) dt+

Z u�1
(x)

0

u(t) dt =

Z x

0

(f(t) + t) dt+

Z f(x)+x

0

u(t) dt = F (x) +

Z f(x)+x

0

u(t) dt.

And hence

F (x) = x(f(x) + x)�
Z f(x)+x

0

u(t) dt.

This means that F (x) is computable whenever f(x) is computable. Thus F is a

convex function that is a.e. computable. Moreover, by Theorem 2.7.6 it is locally Lip-

schitz and the Lipschitz constant for a given interval can be e↵ectively approximated

from above (since t 7! f(t)+ t is a.e. computable). Using this and Theorem 2.1.5, we

can calculate F (x) from x. Thus F is computable. It follows that

g(x) =

Z x

0

f(t) dt = F (x)�
Z x

0

t dt

is a computable convex function such that Dg = f |C .
Now suppose f(0) 6= 0. Let u be defined as previously and let z = u(0). Note that

z is computable. Define f̂(x) = f(x+ z) + z so that f̂(0) = 0. Let ĝ(x) =
R x

0

f̂(t) dt.
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It is a computable convex function with Dĝ = f̂ |
ˆC where Ĉ = C � z is the set of

continuity of f̂ . Observe that for all x 2 R,

ĝ(x� z)� z(x� z) =

Z x

z

f(t) dt.

Then g(x) = ĝ(x� z)� z(x� z) is a computable convex function with Dg = f |C .

Now we can prove equivalence between several notions of e↵ectiveness for mono-

tone functions.

Proposition 3.3.13. Let f : R ! R be a monotone function. The following
are equivalent:

1. f is weakly computable,

2. f is computable on a dense computable sequence of reals,

3. f is computable on r +Q for some computable r,

4. f is a.e. computable, and

5. the graph of its maximal extension is a ⇧0

1

class.

Proof. 1. ) 4. holds since monotone functions are a.e. continuous.

4. ) 3. follows from Proposition 3.3.8 and Proposition 3.3.12.

3. ) 2. is trivial.

2. ) 1. follows from the fact that f(x) can be e↵ectively approximated from above

and from below when f is continuous at x.

1. ) 5. Let f be the maximal extension of f . By Proposition 3.3.11, (f + I)�1 is

a computable Lipschitz function, hence, by Theorem 2.1.9, its graph is a ⇧0

1

set. It

follows that the graph of (f + I) is a ⇧0

1

set as well and hence the graph of f is a ⇧0

1

class too.

5. ) 1. If the graph of the maximal extension of f , f , is ⇧0

1

, then the graph

of g = (f + I)�1 is also ⇧0

1

. Since g is a Lipschitz function with a ⇧0

1

graph, it

must be computable (via Theorem 2.1.9). This means that whenever (f + I) = g�1

is continuous at x, we can compute (f + I)(x) (for every s we can find y
0

, y
1

with

x 2 [g(y
0

), g(y
1

)] and |y
0

� y
1

|  2�s ). This means (f + I) is weakly computable and

hence f must be weakly computable too.

With Proposition 3.3.8 and Proposition 3.3.13 in mind, while a monotone weakly

computable function f : R ! R is not necessarily computable on IQ, there exists a

computable real r such that x 7! f(x+ r) is computable on IQ.

48



Remark 3.3.14. Fact 3.3.9 and Proposition 3.3.12 show that in a precise sense,
monotone weakly computable functions correspond to derivatives of computable
convex functions. Both left and right derivatives of a computable convex func-
tion are monotone weakly computable functions and every monotone weakly
computable function restricted to its set of continuity is a derivative of some
computable convex function.

Finally, note that just like every continuous monotone real function of one
variable is computable relative to some oracle, every monotone function is a
weakly computable function relative to some oracle. This suggests that the class
of monotone weakly computable functions is an appropriate class for studying
monotone but not necessarily continuous functions in the context of computable
analysis.

3.3.3 Di↵erentiability of monotone weakly computable func-
tions

The following proposition is a stronger version of the ) direction of Theorem 1.6.1.

The original proof of Theorem 1.6.1 could not be easily extended to prove our result,

since that proof relied on the fact that the martingale defined using slopes of f is

computable. Now that f is no longer computable on the whole domain, this approach

does not work. However, using Minty’s correspondence (see Section 2.7.4), we can

reduce the new problem to the previous one.

Proposition 3.3.15. Let f : R ! R be a monotone weakly computable function.
If z 2 R is computably random, then f is di↵erentiable at z.

Proof. Let z 2 R be computably random. By Proposition 3.3.13, there exists a com-

putable real number r such that x 7! f(x+ r) is computable (and hence continuous)

at dyadic rationals. Since z is computably random i↵ z+r is computably random, we

may assume f is continuous at dyadic rationals. Similarly, we may assume z 2 [0, 1].

By Proposition 3.3.13 f is a.e. computable and hence by Proposition 3.3.11

u = (f + I)�1 is a computable 1-Lipschitz function. By Proposition 2.7.23, f is

di↵erentiable at z i↵ u is di↵erentiable at f(z) + z and Du(f(z) + z) 6= 0.

Claim 3.3.16. u is di↵erentiable at f(z) + z.

Proof. It is su�cient to prove that ẑ = f(z) + z is computably random. Assume

otherwise. Note that u(ẑ) = z. We may assume ẑ is not a dyadic rational, for

otherwise u(ẑ) is computable and hence not computably random.

Let (Vi)i2N be a bounded Martin-Löf test with ẑ 2 \Vi and let ⌫ : 2<! ! R be

as in Definition 2.5.13 (so that � (Vi \ [�])  2�i⌫(�) for all i, �). We extend ⌫ to a

computable absolutely continuous probability measure on R which we also denote by
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⌫. Let (ai,j)i,j2N , (bi,j)i,j2N be double computable sequences of dyadic rationals such

that Vi =
S

j(ai,j, bi,j) for all i.

For every i, define Ui =
S

j(u(ai,j), u(bi,j)). Observe that since u is monotone, for

all a, b 2 R, the interior of u((a, b)) is equal to (u(a), u(b)). Since u is 1-Lipschitz and

computable, (Ui)i2N is a Martin-Löf test. Moreover, since ẑ is not a dyadic rational,

z = u(ẑ) belongs to \Ui. Define ⌫u : 2<! ! R by letting ⌫u(�) = ⌫(u�1((�))) for all

�. Since u�1 is continuous on dyadic rationals, ⌫u is computable and well-defined.

� (Ui \ [�]) = �
�

u(Vi \ u�1([�]))
�


�
�

Vi \ u�1([�])
�

= �
�

Vi \ u�1((�))
�

 2�i⌫(u�1((�)) = 2i⌫u(�).

Hence (Ui)i2N is a bounded Martin-Löf test and z is not computably random.

Claim 3.3.17. Du(f(z) + z) 6= 0.

Proof. Let Z be the binary expansion of z. Suppose Du(f(z) + z) = 0, we will show

z is not computably random. Note that u(f(z) + z) = u(u�1(z)) = z and since

Du(u�1(z)) = Du(f(z) + z) = 0, Du�1(z) = +1 and then we have

lim sup
��Z

Su�1(�) = +1.

Since u�1 is a monotone function, M(�) = Su�1(�) is a martingale that succeeds on

Z. Since u�1 computable on dyadic rationals, M is a computable martingale.

3.3.4 New characterisations of computable randomness

The following result shows two new characterisations of computable randomness on

R: in terms of di↵erentiability of monotone weakly computable functions and in

terms of twice di↵erentiability of computable convex functions. The result about

monotone weakly computable functions generalizes a known theorem from [BMN16]

to discontinuous monotone functions. The other result can be seen as a bi-directional

e↵ective version of Aleksandrov’s Theorem on the real line. To our knowledge it is the

first result that characterises a randomness notion in terms of twice di↵erentiability.

Theorem 3.3.18. Let z 2 R. The following are equivalent:

(1) z is computably random,

(2) all monotone weakly computable functions from R to R are di↵erentiable
at z,

(3) all computable convex functions from R to R are twice-di↵erentiable at z.
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(1) () (2). For the (2) =) (1) implication, suppose z is not computably random.

Then there is a computable monotone function g : R ! R not di↵erentiable at z.

The other direction follows from Proposition 3.3.15.

(1) () (3). For the (3) =) (1) implication, suppose z is not computably random.

Then there is a computable monotone function g : R ! R not di↵erentiable at z.

Define f(x) =
R x

0

g(t) dt, then f is a computable convex function such that Df = g.

Hence f is not twice di↵erentiable at z.

The other direction follows from Proposition 3.3.15 and the fact that derivatives

of computable convex functions are weakly computable (via Fact 3.3.9).

3.3.5 Atoms and di↵erentiability of computable probability
measures on the real line

Recall Monge-Ampère measures introduced in Section 2.7.7. Below we show that

computable measures on the real line are, in some specific sense, Monge-Ampère

measures of computable convex functions.

Proposition 3.3.19. Let u : R ! R be a computable convex function. If

sup
y,x2R

|Du(x)�Du(y)| = 1, (3.5)

then the Monge-Ampère measure, Mu, is a computable probability measure on
R.

Proof. Since supy,x2R |Du(x)�Du(y)| = 1 and Du is monotone, Du(R) is an interval

of measure 1 and thus Mu is a probability measure. To show it is computable, by

Proposition 2.3.3, it is su�cient to show that Mu((q, p)) is left-c.e. uniformly in

q, p 2 Q. To this end, fix q, p 2 Q with q < p.

Let f = Du and let r be a computable real number such that f is computable on

Q+ r. Let (qi)i2N and (pi)i2N be two computable sequences of elements in Q+ r such

that q  qi+1

 qi < pi  pi+1

 p for all i. Then @u((q, p)) =
S

i @u((qi, pi)). Since

Mu is countably additive, by Proposition 1.3.3 in [Bog07],

Mu((q, p)) = �(@u(q, p)) = lim
i!1

�(@u((qi, pi))) = lim
i!1

f(pi)� f(qi).

Clearly, limi!1 f(pi)� f(qi) is left-c.e. uniformly in q, p.
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Proposition 3.3.20. Let µ be a computable probability measure on the real line.
Then f(x) = µ((�1, x)) is a monotone weakly computable function with

sup
y,x2R

|f(x)� f(y)| = 1.

Proof. Observe that when x is not an atom of µ, 1 = µ(�1, x)+µ(x,+1) and then

both µ(�1, x) and µ(x,+1) are computable from x. The claim follows.

Notation 3.3.21.
Let µ be a measure. By A (µ) we denote the set of atoms of µ.

We have the following important consequence:

Proposition 3.3.22. A ⇢ R is a cnd set if and only if there exists a computable
probability measure µ on R with A (µ) = A.

Proof. Suppose A ⇢ R is a cnd set. Via Lemma 3.3.6, there exists a computable con-

vex function u : R ! R such that Eq. (3.5) holds and Nu = A. By Proposition 3.3.19,

µ = Mu is a computable probability measure. Moreover, A (µ) = A since A (µ) is

precisely the set of discontinuities of Du.

For the other direction, suppose µ is a computable probability measure on R.
Then, by Proposition 3.3.20, f(x) = µ((�1, x)) is a monotone weakly computable

function. We know that A (µ) is the set of discontinuities of f , which is a cnd set.

The following notion will play an important role in Chapter 4.

Definition 3.3.23. Let µ be a probability measure on Rn. We say µ admits a
computable dyadic pre-measure if µ([�] + p) is computable uniformly in � 2 2<!

and p 2 Zn.

Proposition 3.3.24. Let µ be a computable probability measure on R. There
exists a computable real number r such that for every q 2 Q, the measure µr,q,
defined by µr,q(A) = µ(A+ r + q), admits a computable dyadic pre-measure.

Proof. By Proposition 3.3.22 and Proposition 3.3.8, there is a computable real r such

that Q � r \ A (µ) = ;. We may assume r is irrational, for otherwise µ does not

have rational atoms and then for every q 2 Q, µ
0,q admits a computable dyadic

pre-measure. Fix q 2 Q. Define a measure µr,q by µr,q(A) = µ(A + r + q) so that
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A (µr,q) = A (µ) + r + q. Since Q� q = Q, we have Q� r � q = Q� r and then

; = Q� r \A (µ) = Q� r � q \A (µ) = Q \A (µ) + r + q = Q \A (µr,q) .

Since µr,q is computable and does not have rational atoms, it follows that µr,q([�]+p)

is computable uniformly in � 2 2<! and p 2 Z.

Theorem 3.3.25. Let z 2 R and let Z 2 2! be its binary expansion. The
following are pairwise equivalent:

1. z is computably random,

2. all computable probability measures are di↵erentiable at z, and

3. all computable absolutely continuous probability measures are di↵erentiable
at z.

(1) =) (2). Suppose µ is a computable probability measure on R which is not dif-

ferentiable at z. Define f(x) = µ((�1, x)) so that by Proposition 3.3.20 f is a

monotone weakly computable function. It is easy to check that f is not di↵erentiable

at z. It follows that z is not computably random.

(2) =) (3). Trivial.

(3) =) (1). Suppose z 2 R is not computably random. Let Z be the binary expan-

sion of z.

Without loss of generality, we may assume z 2 [0, 1] \ Q, for otherwise it would

be su�cient to consider a computable shift of z by a suitable irrational number.

LetM be a computable martingale with the saving property such thatM succeeds

on Z. Then the corresponding probability measure µM is computable and absolutely

continuous. Furthermore, D
2

µM(z) = +1 and thus µM is not di↵erentiable at z.
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Chapter 4

Computable randomness and
di↵erentiability in Rn

The main purpose of this chapter and Chapter 6 is to generalize to Rn results from

Chapter 3 that relate computable randomness to various di↵erentiability properties

of e↵ective functions on Rn. The material is split in two chapters: forward results, i.e.

results of the form “computable randomness at a given point implies a di↵erentiability

property X at this point for a given class of e↵ective functions”, are dealt with in this

chapter, while the converse results are left for Chapter 6. The reason for splitting

forward and converse results over two separate chapters is that proving techniques

required for the former are very di↵erent to those needed for the latter.

Most (forward) results in this chapter generalize those in Chapter 3 and represent

e↵ective versions of known theorems from analysis. In particular, we prove generaliza-

tions of the forward directions of Theorem 1.6.1, Theorem 1.6.2 and Theorem 3.3.18,

and these generalizations correspond to classical results from analysis which we state

below.

Theorem 4.0.1 (Rademacher [Rad19], 1919). If f : Rn ! Rm is a Lipschitz
function, then it is di↵erentiable almost everywhere on Rn.

Theorem 4.0.2 (Mignot [Mig76], 1976). If f : Rn ! Rn is a monotone func-
tion, then it is di↵erentiable almost everywhere on Rn.

Theorem 4.0.3 (Aleksandrov [Ale39], 1939). If f : Rn ! R is a convex func-
tion, then it is twice-di↵erentiable almost everywhere on Rn.

It is worth mentioning that results in this chapter generalize some of the results

from [BMN16] and [FKHNS14], while our e↵ective version of Rademacher’s theorem

answers a question formulated in [FKHNS14].
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As in Chapter 3, we focus on three particular classes of functions: Lipschitz,

monotone and convex. These classes are closely related. As we saw in Chapter 3,

computable randomness and di↵erentiability of e↵ective members of those classes

are related too. When we say that Lipschitz, monotone and convex functions are

closely related, we have in mind two particular mathematical facts. In 1962, Minty

[Min62] discovered that there is a 1-1 correspondence between graphs of Lipschitz

functions from Rn to Rn and graphs of monotone functions on Rn. Several years

later, Rockafellar [Roc66, Roc70] proved that subdi↵erentials of convex functions

form a proper subclass of monotone functions. A good exposition of classical results

related to this area can be found in Alberti and Ambrosio [AA99] and in the Chapter

12 of (the book of) Rockafellar and Wets [RW97].

Historically, Rademacher’s theorem and Aleksandrov’s theorem had been proven

before the mentioned connections (between Lipschitz, monotone and convex functions

on Rn) were discovered. On the other hand, Mignot’s proof of his result utilized the

correspondence discovered by Minty and Rademacher’s theorem.

Our approach is to make full use of the results of Minty and Rockafellar. That

is, we will base our result about e↵ective monotone functions on our results about

e↵ective Lipschitz functions and then our results about monotone functions will be

used to prove our e↵ective form of Aleksandrov’s theorem.

In fact, the majority of this chapter is devoted to showing the following three

results about interactions between di↵erentiability of computable Lipschitz functions

on Rn and computable randomness:

• We will start by proving an e↵ective version of Rademacher’s theorem. It is

a natural starting point of our developments, since Lipschitz functions enjoy

properties that make it possible to deduce an e↵ective version of Rademacher’s

theorem from a one-dimensional result proven in Chapter 3 and known preser-

vation properties of computable randomness.

• Next, we turn our attention to the question of whether computable monotone

Lipschitz functions preserve the property of not being computably random. We

will show that when z 2 Rn is not computably random, f(z) is not computably

random either, for every computable monotone Lipschitz function f : Rn ! Rn.

• Finally, we will prove an e↵ective version of Sard’s theorem for monotone Lip-

schitz functions.

Our results about monotone and convex functions will follow from results about

Lipschitz functions relatively easily.
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4.1 E↵ective Rademacher theorem

In this section we prove the following e↵ective version of Rademacher’s theorem.

Theorem 4.1.1. Let f : Rn ! R be a computable Lipschitz function and let
z 2 [0, 1]n be computably random. Then f is di↵erentiable at z.

As an immediate consequence of Theorem 4.1.1 we get the following corollary:

Corollary 4.1.2. Let f : Rn ! Rm be a computable Lipschitz function and let
z 2 Rn be computably random. Then f is di↵erentiable at z.

Before proceeding to the proof, we need to recall the following known fact about

di↵erentiability of Lipschitz functions on Rn.

Lemma 4.1.3. Suppose f : Rn ! R is Lipschitz and let x 2 Rn. Let A be a
dense subset of Sn�1. If v 7! Df (x; v) is defined and is linear on A, then f is
di↵erentiable at x.

Proof. Let T be such that Df (x; v) = hT, vi for all v 2 A. In what follows we show

that T is the derivative of f at x.

For all v 2 A and h > 0, define

D(v, h) =
f(x+ hv)� f(x)

h
� hT, vi.

We will show that for every ✏ > 0, there exists � > 0 such that

|D(v, h)| < ✏ whenever 0 < h < �, v 2 Sn�1.

Let L = Lip(f). For any v, v0 2 Sn�1 and h > 0 we get

|D(v, h)�D(v0, h)|  (L+ |T |)|v � v0|. (4.1)

By density of A and compactness of Sn�1, we can find v
1

, . . . , vp 2 A so that for every

v 2 Sn�1, there exists vk with 1  k  p such that

|v � vk| 
✏

2(L+ |T |) . (4.2)

By the definition of the directional derivative, we get

lim
h!0

+
D(v, h) = 0 for all v 2 A. (4.3)

From (4.3), we get that there is � > 0 such that

D(vi, h) < ✏/2 whenever 0 < h < � and 1  i  p.
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Finally, for v 2 Sn�1 and 0 < h < �, let vk be such that (4.2) holds and then we have

|D(v, h)|  |D(vk, h)|+ |D(v, h)�D(vk, h)|  ✏/2 + (L+ |T |)|v � vk| < ✏.

Overview of the proof

Let f : Rn ! R be a computable Lipschitz function. Suppose z 2 R is com-
putably random.

Firstly observe that computable elements of Sn�1 are dense. Thus, via Lemma
4.1.3, it is su�cient to show that D

+

f (z; v) exists and is linear on the set of all
computable unit vectors v 2 Rn. This is demonstrated in three distinct steps:

(1) We show that all partial derivatives of f at z exist. This follows from
Theorem 3.1.9.

(2) We show the existence of all one-sided directional derivatives of f at z
for computable directions. This follows from the previous step and relies on
preservation properties of computable randomness.

(3) Finally, we show that the function T (v) = D
+

f (z; v) is linear on the set
of computable directions. More specifically, we prove that any point x where the
directional derivative is not linear and the failure of linearity is witnessed by a
computable direction, belongs to a ⇧0

1

null set and thus is not weakly random.
Since z is computably random, this completes the proof.

In the three following subsections we prove results corresponding to the out-
lined steps.

4.1.1 Existence of partial derivatives

We will rely on the following result from Chapter 3:

Theorem 3.1.9. Let f : 2!⇥[0, 1] ! R be a computable function such that fA(x) = f(A, x)

is monotone for every A 2 2!. Let z 2 [0, 1] and let A 2 2!. If fA is not di↵erentiable

at z, then there exists an oracle martingale M such that MA diverges on Z, the binary

expansion of z.

Lemma 4.1.4. Let f : Rn ! R be a computable Lipschitz function and let
z 2 Rn be computably random. All partial derivatives of f at z exist.

Proof. Fix i  n. Suppose Dif(z) does not exist. We may assume no component of

z is a dyadic rational. Let Z be the binary expansion of z.

Let L � Lip(f) be rational and define M = (L, . . . , L) 2 Rn. Let g : Rn ! R be the

function defined by

g(x) = f(x) + hM,xi.
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g is a cone-monotone computable function. That is, for every j  n and all x 2 Rn,

g(x+ hej) � g(x) whenever 0  h.

Moreover, the non-di↵erentiability sets of f and g coincide. Hence, Dig(z) does not

exist.

Let y 2 Rn�1 be an element such that yj = zj for all j < i and yj = zj+1

for all j > i.

Let Y be the binary expansion of y.

Recall the following notation. For j 2 N with 0  j  n� 1 and Z 2 2!, let

pnj (Z) = {Z(kn+ j) : k 2 N}.

For all X 2 2!, define ti(X) to be x 2 Rn such that xj = 0.pnj (X) for all j < i, xi = 0

and xj+1

= 0.pnj (X) for all j > i.

Define ĝ : 2! ⇥ [0, 1] ! R by

ĝ(X, h) = g(ti(X) + hei)

and let gy = ĝ(Y, ·). Then ĝ satisfies all relevant assumptions of Theorem 3.1.9 and

Dgy(zi) exists if and only if Dig(z) exists. By our assumptions, Dgy(zi) does not

exist. By Theorem 3.1.9, there exists an oracle martingale M such that MY does

not converge on Zi, the binary expansion of zi. This means Zi is not computably

random uniformly relative to Y . Theorem 2.5.6 implies Y � Zi is not computably

random. Since Y �Zi is a computable permutation of Z, Z is not computably random

either.

4.1.2 Existence of directional derivatives

Now that we’ve proven existence of partial derivatives, existence of directional deriva-

tives (for computable directions) follows from preservation properties of computable

randomness. The details are below.

For any two distinct computable unit vectors u, v 2 Rn, fix (say, via the Gram-

Schmidt process) two orthonormal bases Bu, Bv of Rn with v 2 Bv and u 2 Bu. Let

⇥u!v : Rn ! Rn denote the change of basis map (that takes Bu to Bv) such that

⇥u!v(u) = v. This function is computable, linear and invertible, and thus it does

preserve computable randomness (see [Rut16]).

Lemma 4.1.5. Let u, v 2 Rn be distinct unit vectors, let x 2 Rn and let
⇥ = ⇥v!u. Then Df (x; u) exists if and only if Dg (y; v) exists, where g = f �⇥
and y = ⇥�1(x).
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Proof.

For any t 6= 0 we have

g(y + tv)� g(y)

t
=

f(⇥(y + tv))� f(⇥(y))

t
=

f(x+ tu)� f(x)

t
.

By taking the limits of both sides we get the required result.

Lemma 4.1.6. Let f : Rn ! R be a computable Lipschitz function and let
z 2 Rn be computably random. If u 2 Rn is a computable unit vector, then
Df (z; u) exists.

Proof. Let u be a computable unit vector in Rn and let v = e
1

. We apply Lemma

4.1.5 to f, v, u and z, so that Df (z; u) exists whenever Dg (y; v) exists, where g is a

computable Lipschitz function and y 2 Rn is the image of z under a computable linear

and invertible map. Hence y is computably random (again, we use the result from

[Rut16] that computable randomness is preserved by a.e. computable isomorphisms).

The required result follows from the fact that Dg (y; v) exists i↵ D
1

g(y) exists (and

we know D
1

g(y) exists).

4.1.3 Linearity of directional derivatives

In the last step of the proof, we need to show that Df (z; ·) is linear on computable

elements of Sn�1. Suppose this is not the case. We will show that in this case z

belongs to a ⇧0

1

null set. This will get us the required result, since this would mean

z is not weakly random.

For u 2 Rn, define

Ku = {z | D
+

f (z; u) exists}.

For q 2 Q+ and u, v 2 Rn, define Lu,v,q to be the set of points where linearity of

Df (z; ·) fails and the failure is witnessed by u, v and q. More formally, let

Lu,v,q = Ku \Kv \Ku+v \ {z | |D
+

f (z; u+ v)�D
+

f (z; u)�D
+

f (z; v) | � q}.

We also need the following notation for directional slopes:

Notation 4.1.7. Let f : Rn ! R be a function, let x 2 Rn, let v 2 Sn�1 and
let h > 0. Define

�vf (x, h) =
f(x+ hv)� f(x)

h
.
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Lemma 4.1.8. Let q 2 Q+. Suppose v, u 2 Rn are computable. If z 2 Lv,u,q,
then there is a ⇧0

1

null-set containing z.

Proof. Since D
+

f (z; v) , D
+

f (z; u) and D
+

f (z; v + u) exist, there is p > 0 such that
�

��vf (z, h) + �uf (z, h)� �v+u
f (z, h)

�

� � q for all h  p. Hence the set of all x such that

8h
�

h  p =)
�

��vf (x, h) + �uf (x, h)� �v+u
f (x, h)

�

� � q
�

,

where h range over positive rationals, contains z. It is clearly a ⇧0

1

set and it is a

null set, since its complement contains all points of di↵erentiability of f and by the

classical Rademacher’s theorem f is a.e. di↵erentiable.

4.1.4 The proof

Proof of Theorem 4.1.1.

Let f : Rn ! R be a computable Lipschitz function and let z 2 [0, 1]n be computably

random. Via Lemma 4.1.6, all directional derivatives Df(z; v) exists whenever v is

computable. From Lemma 4.1.8 we know that Df(z; v) is linear on all computable

v. The required result follows from Lemma 4.1.3.
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4.2 Computable monotone Lipschitz functions pre-

serve non-randomness

Before we proceed to study di↵erentiability properties of e↵ective monotone func-

tions, we need to prove one property of computable monotone Lipschitz functions

of independent interest. In this section we will show that computable monotone

Lipschitz functions from Rn to Rn preserve (computable) non-randomness. That is,

if f : Rn ! Rn is a computable monotone Lipschitz function and z 2 Rn is not

computably random, then f(z) is not computably random either.

Lemma 4.2.1. Let f : Rn ! Rn be a computable Lipschitz function. If A ⇢ Rn

is a compact ⇧0

1

null-set, then f(A) is contained in a compact ⇧0

1

null-set.

Proof. Without loss of generality we may assume f is a 1-Lipschitz function. Otherwise,

if f is not 1-Lipschitz, we can consider g = f/K (where K � Lip(f) is some fixed

computable real number) which is 1-Lipschitz.

For every i, we can e↵ectively (uniformly in i) find a finite cover of A by the closed

balls B(xi
1

, 2�i), . . . , B(xi
m

i

, 2�i), such that limi!1
P

jm
i

�
�

B(xi
j, 2

�i)
�

= 0.

Define Bi as the union of closed balls: B(f(xi
1

), 2�i), . . . B(f(xi
m

i

), 2�i). It is clear

that \iBi is a compact ⇧0

1

null-set containing f(A).

Lemma 4.2.2. Let f : Rn ! Rn be a computable Lipschitz function such that
f�1(C) is connected whenever C is a connected open set. Let x 2 Qn and r 2 Q.
Then the interior of f(B(x, r)) is a ⌃0

1

set (uniformly in x, r).

Proof. Again, we may assume f is 1-Lipschitz. Let A = B(x, r). Denote the interior

of f(A) by Ã and the complement of A by ¬A. Let (xi,j)i,j2N be a computable double

sequence of elements belonging to @A and let p : N ! N be a computable function

such that @A ✓
S

jp(i) B(xi,j, 2�i) for every i.

For every i 2 N, define

f [@iA] =
[

jp(i)

B(f(xi,j), 2
�i+2),

f [A�
i ] =

[

q2Qn^|x�q|<r�2

�i

B(f(q), 2�i),

Ãi = f [A�
i ] \ f [@iA].

Observe, that Ãi is a ⌃0

1

set uniformly in x, r and i. Define Af =
S

i Ãi. Then Af is

a ⌃0

1

set uniformly in x, r. Let us show Af = Ã.

Claim 4.2.3. Af ✓ Ã.
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Proof. Fix i. We will show Ãi ✓ Ã by demonstrating y 2 f [A�
i ] \ Ã =) y 2 f [@iA].

Suppose y 2 f [A�
i ] \ Ã. There exists q 2 A such that y 2 B = B (f(q), 2�i). Let

F = f�1(B). Since y 62 Ã, B 6✓ Ã and there is a point ŷ 2 B which is not in the

closure of Ã. Thus f�1(ŷ) \ ¬A 6= ;. Since F is a connected open set (and hence a

path-connected open set) that intersects both A and ¬A, F intersects the boundary

of A. Pick a point z 2 F \ @A. There exists j such that |z � xi,j|  2�i. Then

|f(z)� f(xi,j)|  2�i and hence B ✓ f [@iA].

Claim 4.2.4. Ã ✓ Af .

Proof. Let x̃ 2 Ã. PickN 2 N such that 2�N > d(x̃, @Ã). Then d(f�1({x̃}), @A) > 2�N .

Hence f�1({x̃}) \ @iA = ; for all i > N . It follows that x̃ 62 f [@iA] and x̃ 2 f [A�
i ] for

i > N and thus x̃ 2 Af .

Lemma 4.2.5. Let f : Rn ! Rn be a computable Lipschitz function such that
f�1(A) is connected whenever A is a connected open set. Let (Vi)i2N be a com-
putable sequence of ⌃0

1

sets with � (Vi)  2�i and Vi+1

✓ Vi for all i. There exists
a computable sequence of ⌃0

1

sets (V f
i )i2N such that for all i, f�1(V f

i ) ✓ Vi and

�
⇣

V f
i

⌘

 2�i. Moreover, for all z, if z 2 \iVi and f(z) is not weakly random,

then f(z) 2 \iV
f
i .

Proof. Let (Bi,j)i,j2N be a computable double sequence of basic open balls such that

Vi = [jBi,j for all i. For all i, j, define B
f
i,j as the interior of f(Bi,j). By Lemma 4.2.2,

�

Bf
i,j

�

i,j2N is a computable double sequence. Since f is Lipschitz, by Theorem 2.7.2,

there exists a constant k 2 N such that � (f(Vi))  2k� (Vi) for all i.

For all i, define V f
i = [jB

f
i+k,j. Then for all i,

f�1

⇣

V f
i

⌘

✓ Vi+k ✓ Vi

and

�
⇣

V f
i

⌘

 � (f(Vi+k))  2k� (Vi+k)  2�i.

Finally, let z 2 \iVi be such that f(z) is not weakly random. Since f(z) is not

weakly random, by Lemma 4.2.1, f(z) belongs to the interior of f(B) whenever B is

a computable basic open ball containing z. It follows that f(z) 2 \iV
f
i .
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Remark 4.2.6. The above lemma is applicable to the class of computable Lips-
chitz functions from Rn to Rn for which preimages of connected open sets are
connected. In particular, this class includes injective (computable Lipschitz)
maps and monotone (computable Lipschitz) maps. To see the latter, let f be
a monotone Lipschitz map. The generalized inverse of f , f�1, is a maximal
monotone function. By the result of Veselý (Theorem 1 in [Ves92]), f�1 maps
connected open sets to path-connected sets.

Recall that a probability measure µ on Rn is said to admit a computable dyadic

pre-measure if µ([�]p) is computable uniformly in � 2 2<! and p 2 Zn. In Chapter 3

we have shown that every computable probability measure on the real line can be

“shifted” by a computable number so that the new probability measure admits a

computable pre-measure. Below we generalize this result to all computable probabil-

ity measures on Rn.

Proposition 4.2.7. Let µ be a computable probability measure on Rn. There
exists a computable r 2 Rn such that for every q 2 Qn, the measure µr,q, defined
by µr,q(A) = µ(A+ r + q), admits a computable dyadic pre-measure.

Proof. Fix i 2 N with 1  i  n. For all Borel A ✓ R, define

µi(A) = µ({x 2 Rn : xi 2 A}).

µi is clearly a computable probability measure on the real line. Via Proposition 3.3.24,

let ri be a computable real number such that for every p 2 Q, the measure µi,r
i

,p,

defined by

µi,r
i

,p(A) = µi(A+ ri + p),

admits a computable dyadic pre-measure and does not have rational atoms.

Observe that Pi = {x 2 Rn | xi 2 (Q+ ri)} is a null-set with respect to µ, that is

µ(Pi) = 0.

Define r 2 Rn by r =
P

1in eiri. r is computable and it is easy to see that for

every q 2 Qn, boundaries of cubes of the form [�] + r + q are contained in
S

i Pi and

hence are µ-null-sets. It follows that for every q 2 Qn, µ([�] + r + q) is computable

uniformly in �.

Using the above proposition we can prove the following generalization of Proposi-

tion 2.5.14.
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Theorem 4.2.8. Let z 2 Rn with no dyadic components. The following are
equivalent:

1. z is not computably random, and

2. there exists a Martin-Löf test (Vi)i2N covering z and a computable proba-
bility measure ⌫ on Rn such that

� (Vi \ [�]p)  2�i⌫([�]p),

for all i, � 2 2<! and p 2 Zn.

Proof (1) =) (2). We may assume z 2 [0, 1]n.

This direction follows directly from Proposition 2.5.14 and the fact that every

computable pre-measure ⌫ : 2<! ! R can be extended to a computable probability

measure on Rn.

Proof (2) =) (1). Let (Vi)i2N and ⌫ be as in the statement of the theorem. By

Proposition 4.2.7, let r 2 R be a computable real such that ⌫r, defined by ⌫r(A) = ⌫(A+r),

admits a computable dyadic pre-measure. For every i, define V̂i = Vi � r, so that

(V̂i)i2N is a Martin-Löf test with z � r 2 \iVi. For every � 2 2<! and i 2 N, we have

�
⇣

V̂i \ [�]
⌘

= � (Vi \ ([�] + r))  2�i⌫r([�]).

Since ⌫r admits a computable dyadic pre-measure, from Proposition 2.5.14 it follows

that z� r is not computably random. Hence z is not computably random either.

Theorem 4.2.9. Let f : Rn ! Rn be a computable monotone Lipschitz function
and suppose z 2 Rn is not computably random. Then f(z) is not computably
random either.

Proof. Before we proceed further, we will make the following two assumptions that

won’t a↵ect the generality of our proof:

(a1) we may assume that neither z, nor f(z) belongs to a compact ⇧0

1

null-set, for

otherwise, by Lemma 4.2.1, f(z) would not be weakly random;

(a2) since computable randomness is invariant under invertible computable linear

transformations, we may assume z 2 (0, 1)n and f(z) 2 (0, 1)n.

Let (Vi)i2N be a bounded Martin-Löf test that covers z and let ⌫ : 2<! ! R be a

computable pre-measure with � (Vi \ [�])  2�i⌫(�) for all i, �. We can extend ⌫ to a

computable probability measure on [0, 1]n (with its support contained in [0, 1]n) which
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we will call ⌫̂. Define a computable probability measure µ on Rn by µ(A) = ⌫̂(f�1(A))

for all Borel A.

We can apply Lemma 4.2.5 to f, z and (Vi)i2N. Let (V f
i )i2N be as in the conclusion

of Lemma 4.2.5. Since f(z) is not weakly random, (V f
i )i2N is a Martin-Löf test that

covers f(z). For every i, � 2 2<! and p 2 Zn we have

�
⇣

V f
i \ [�]p

⌘

 �
�

f(Vi \ f�1([�]p))
�

 Lipf · �
�

Vi \ f�1([�]p)
�

 Lipf · 2�iµ([�]p).

Then, by Theorem 4.2.8 applied to
⇣

V f
i+k

⌘

i2N
with a suitably chosen k, f(z) is not

computably random.
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4.3 An e↵ective version of Sard’s theorem for mono-

tone Lipschitz functions

Let f : Rn ! Rm. Recall that z 2 Rn is said to be a critical point of f if either f

is not di↵erentiable at z, or detDf(z) = 0 (which means that Df(z), as a matrix, is

singular). If z is a critical point of f , then f(z) is said to be a critical value of f .

The main result in this subsection, Theorem 4.3.2, can be seen as an e↵ective

version of Sard’s theorem for monotone Lipschitz function. Its classical version (for

all Lipschitz functions), proven by Mignot ([Mig76], also see Theorem 9.65 in [RW97]),

states that for a Lipschitz function f : Rn ! Rn, the set of its critical values is a

null-set.

When a linear map T : Rn ! Rn is not invertible, it is neither surjective nor in-

jective and T (Rn) is a proper subspace of Rn. When f is a Lipschitz function and

Df(z) is singular, f , intuitively, “collapses the mass” around z. The following lemma

formalizes this intuition:

Lemma 4.3.1. Let f : Rn ! Rn be a Lipschitz function. Suppose z 2 Rn is
such that Df(z) is singular. Then for every ✏ > 0, there exists a basic open ball
O✏ = B(x✏, r✏) containing z, such that � (f(O✏))  ✏� (O✏).

Proof. Fix ✏ > 0 and let k = Lip(f). Let V = B(0, 1/2) ⇢ Rn and define � = 1

�(V )

(so that for any ball B ✓ Rn of diameter d and any cube C ✓ Rn of side length d,

� = �(C)

�(B)

).

Define ✏0 = ✏
�kn�1

2

n

(

p
n)n . Since f is di↵erentiable at z, there exists � > 0 such that

|f(x)� f(z)�Df(z)(x� z)|  ✏0|x� z| (4.4)

for all x 2 Rn with |x� z|  �. There is an open n-cube C with side length equal to

s = �p
n such that

• its center, c 2 Rn, has rational components, and

• |z � c|  �
4

p
n and (4.4) holds for all x 2 C.

Let L be the mapping defined by L(x) = f(z)+Df(z)(x�z). Since Df(z) is singular,

L is not onto and its range is contained in some hyperplane H.

As a consequence of (4.4) we have |f(x)� L(x)|  ✏0� for all x 2 C. Thus,

f(C) ✓ L(C)+ [�✏0�, ✏0�]n. Since L is a k-Lipschitz mapping, the image of C under L

lies in the intersection of H with a closed ball with radius k� centered at f(z). Then

L(C) is contained in a rotated (n� 1)-dimensional cube of side 2k�. This shows that

f(C) lies in a rotated box Ĉ with

�
⇣

Ĉ
⌘

= (2k�)n�12✏0� = 2(2k)n�1✏0(
p
n)n

✓

�p
n

◆n

= ��1✏ · � (C) .
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Finally, define O✏ = B(c, �
2

p
n) so that O✏ ⇢ C, z 2 O✏ and � = �(C)

�(O
✏

)

. Then

� (f(O✏))  � (f(C))  �
⇣

Ĉ
⌘

= ��1✏ · � (C) = ✏ · � (O✏) .

Theorem 4.3.2. Let f : Rn ! Rn be a computable monotone Lipschitz function
and let z 2 Rn. If f(z) is computably random, then it is not a critical value of
f .

Proof. As in the proofs of Lemma 4.2.1 and Theorem 4.2.9, we may assume the

following:

(a1) z and f(z) do not belong to a compact ⇧0

1

null-set;

(a2) both z and f(z) belong to the interior of [0, 1]n;

(a3) f is 1-Lipschitz.

The proof is by contraposition. If f is not di↵erentiable at z, then, by Theorem 4.1.1,

z is not computably random. Therefore, by Theorem 4.2.9, f(z) is not computably

random too.

Suppose f is di↵erentiable at z andDf(z) is singular. Via Lemma 4.3.1, let (Bi)i2N be

a sequence of basic open balls in Rn such that for all i, z 2 Bi and � (f(Bi))  2�i� (Bi) .

For all Borel A ✓ Rn, define

⌫(A) = �(f�1(A) \ (0, 1)n).

Then ⌫ is a computable probability measure on Rn.

For every i 2 N, define Vi ✓ [0, 1]n as the union of all basic open balls B such that

� (B)  2�i⌫(B). Then Vi a ⌃0

1

set uniformly in i. Moreover, for all i, � (Vi)  2�i

and Bi ✓ Vi. Hence (Vi)i2N is a Martin-Löf test that covers f(z).

Fix i and ⌧ . Then � (Vi \ [⌧ ])  2�i⌫(⌧). Hence, by Theorem 4.2.8, f(z) is not

computably random.
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4.4 Di↵erentiability of monotone functions on Rn

The fact that monotone functions from Rn to Rn are a.e. di↵erentiable has been proven

by Mignot [Mig76]. Mignot used Rademacher’s theorem and Minty’s correspondence

(see Section 2.7.4).

In this section we will show that computable randomness implies di↵erentiability

of computable monotone functions on Rn. Our proof follows a path similar to the one

taken by Mignot: we use Theorem 4.1.1 and the correspondence observed by Minty.

However, we also use the preservation property we showed in Section 4.2.

Theorem 4.4.1. Let f : Rn ! Rn be a computable monotone function and let
z 2 Rn be computably random. Then f is di↵erentiable at z.

Proof. Define g = (f + I)�1, so that g is a computable Lipschitz function.

Let y = f(z) + z so that g(y) = z. By Theorem 4.2.9, y is computably random and

hence g is di↵erentiable at y and by Theorem 4.3.2 Dg(y) is invertible. Hence, by

Proposition 2.7.23, f is di↵erentiable at z.

4.5 Convex functions on Rn

Proposition 4.5.1. If u : Rn ! R is a computable convex function, then ru is
an a.e. computable monotone function.

Proof. Fix i 2 N with 1  i  n. It is su�cient to show thatDiu is an a.e. computable

function.

For all x 2 Rn define ui
x : R ! R by ui

x(h) = u(x + hei). Observe that all ux

are convex. Moreover, whenever Diu(x) exists, it is equal to Dui
x(0). When Dui

x(0)

exists, it can be computed from x by an algorithm analogous to the one in the proof

of Fact 3.3.9. Since Diu(x) exists almost everywhere, the required result follows.

If u : Rn ! R is convex, then @u is a maximal monotone function that extends ru.

The following proposition shows that the graph of @u is a ⇧0

1

set.

Proposition 4.5.2. If u : Rn ! R is a computable convex function, then the
graph of @u is a ⇧0

1

set.

Proof. Rewriting the definition of the subdi↵erential of u, we have

�(@u) = {(x, y) : y 2 @u(x)} =
\

z2Rn

{(x, y) : u(z) � u(x) + hy, (z � x)i}.
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By continuity of u, we get

�(@u) =
\

q2Qn

{(x, y) : u(q) � u(x) + hy, (q � x)i}.

Clearly, �(@u) is a ⇧0

1

set.

Proposition 4.5.3. Let u : Rn ! R be a computable convex function. If the
generalized inverse of @u, (@u)�1, is continuous (that is, single-valued every-
where), then it is a computable function.

Proof. This is consequence of Proposition 4.5.2 and Corollary 9.4 from [Bra08]: Propo-

sition 4.5.2 implies that �((@u)�1) is a ⇧0

1

set, while Corollary 9.4 from [Bra08] implies

that a continuous function f : Rn ! Rn is computable i↵ its graph is a ⇧0

1

set.

Proposition 4.5.4. Let f : Rn ! R be a computable convex function. If z 2 Rn

is computably random, then rf is di↵erentiable at z.

Proof. Let z 2 Rn be computably random.

Define u(x) = f(x) + 1

2

hx, xi. It is a computable convex function and its subdi↵er-

ential, g = @u, is equal to @f + I. Then, by Proposition 2.7.22, g�1 is Lipschitz and,

by Proposition 4.5.3, it is computable. Furthermore, ru is di↵erentiable at z i↵ rf

is di↵erentiable at z.

By Theorem 4.2.9, y = g(z) is computably random. Theorem 4.1.1 implies that

g�1 is di↵erentiable at y and, by Theorem 4.3.2, D(g�1)(y) is invertible. Hence, by

Proposition 2.7.23, g is di↵erentiable at z.

The following e↵ective version of Aleksandrov’s theorem is a trivial corollary to Propo-

sition 4.5.4.

Theorem 4.5.5. Let f : Rn ! R be a computable convex function. If z 2 Rn

is computably random, then f is twice-di↵erentiable at z.

Proof. Follows from Proposition 4.5.4.

4.6 Almost everywhere computable monotone func-

tions on Rn

In the previous section we have shown that gradients of computable convex functions

are di↵erentiable at computably random elements of Rn. In this section, we will

extend this result to a.e. computable monotone functions. Note that the proof of
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Proposition 4.5.4 would work for a.e. computable monotone functions as well, if we

could show that an analog of Proposition 4.5.3 holds for a.e. computable monotone

functions and not just for subdi↵erentials of computable convex functions. That is, we

would have to show that whenever the generalized inverse f�1 of an a.e. computable

maximal monotone function f is continuous, it is also computable. To prove this,

we need to show that graphs of maximal extensions of a.e. computable monotone

functions are ⇧0

1

sets.

Recall that the convex hull of A ✓ Rn is the intersection of all the convex sets con-

taining A. This set is always convex and it is also the smallest convex set containing

A.

Given a monotone (set-valued, partial) function f : Rn ! Rn, we know that a

maximal extension always exists. In general, this extension is not unique. Moreover,

classical proofs of this existence statement usually depend on the Axiom of Choice

(for example, see the proof of Proposition 12.6 in [RW97]). However, it is known that

a monotone function f such that the interior of the convex hull of its domain is not

empty and the closure of its domain is convex, has a maximal extension that is unique

within the closure of the convex hull of the domain of f . Liqun Qi [Qi83] attributes

this result to Philippe Benilan. A similar result has been re-proven in the paper by

Crouzeix, Anaya and Sandoval [CAS07]. Below we state the precise statement of the

result of interest.

Theorem 4.6.1 (see Theorem 2.6 in [CAS07], also see [Qi83]). Let f ✓ Rn ! Rn

be a set-valued partial function monotone on its domain. Let C be the closed con-
vex hull of the domain of f . Suppose the interior of C is not empty. Let V ⇢ C
be open, convex and such that V = V \ S for some S ✓ Dm f . Define

� = {(x, x⇤) 2 Rn ⇥ Rn | hx⇤ � y⇤, x� yi � 0 for all y and all y⇤ 2 f(y)}.

If f is a maximal extension of f , then the graph of f coincides with � on V .
That is, for all x 2 V ,

f(x) = {y 2 Rn | (x, y) 2 �}.

The above theorem gives us the following fact: if f : Rn ! Rn is a monotone

function and its domain is dense in Rn, then there is a unique maximal extension of

f and the graph of this extension is equal to

� = {(x, x⇤) 2 Rn ⇥ Rn | hx⇤ � y⇤, x� yi � 0 for all y and all y⇤ 2 f(y)}.

Proposition 4.6.2. Let f : Rn ! Rn be an a.e. computable monotone function.
The graph of its maximal extension is a ⇧0

1

subset of R2n.
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Proof. Let (xi)i2N be a computable sequence of elements of Rn such that it is dense

in Rn and f(xi) is computable uniformly in i. Existence of such a sequence follows

from Theorem 2.1.5.

Define

V =
\

i

{(x̂, x) : hx̂� f(xi), x� xii � 0}.

V is, clearly, a ⇧0

1

subset of R2n. By Theorem 4.6.1, V is the graph of the maximal

monotone extension of f .

Theorem 4.6.3. Let f : Rn ! Rn be an a.e. computable monotone function. If
z 2 Rn is computably random, then f is di↵erentiable at z.

Proof. Let z 2 Rn be computably random.

Define g : Rn ! Rn by g = f + I, where f is the maximal extension of f , so that g is

an a.e. computable monotone function and g�1 is Lipschitz. Since g�1 is Lipschitz, it

is maximal and hence g is maximal as well. By Proposition 4.6.2 we know that the

graph of g is a ⇧0

1

set and hence g�1, by Theorem 2.1.9, is a computable Lipschitz

function. Furthermore, g is di↵erentiable at z i↵ f is di↵erentiable at z.

By Theorem 4.2.9, y = g(z) is computably random. It follows that g�1 is di↵er-

entiable at y and, by Theorem 4.3.2, D(g�1)(y) is invertible. Hence, by Proposition

Proposition 2.7.23, g is di↵erentiable at z.
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Chapter 5

E↵ective Brenier theorem

The goal of this chapter is to prove an e↵ective version of an important result from

optimal transport theory, the so called Brenier’s theorem. This result will be used

in the next chapter to prove a number of converse results which require exhibiting

objects with prescribed non-di↵erentiability properties.

Our interest in optimal transport is mainly because this theory deals with transport

maps :

Definition 5.0.1. Let T : Rn ! Rn be a map. We say T is a transport map
from µ 2 P (Rn) to ⌫ 2 P (Rn), or that T transports µ onto ⌫ (in symbols,
⌫ = T#µ), if for all measurable A,

⌫(A) = µ(T�1(A)).

Our main theorem is the following (the notion of Brenier maps mentioned in the

theorem will be defined later, in Theorem 5.1.2):

Theorem 5.0.2 (E↵ective Brenier theorem). Let µ, ⌫ be absolutely continuous

computable probability measures on Rn such that supp (µ) = [0, 1]n and the support of

⌫ is bounded. There exists a computable convex function � : [0, 1]n ! R such that r�
transports µ onto ⌫. Moreover, r� is the restriction of the Brenier map to [0, 1]n.

In the next section we provide a very brief introduction to the theory of optimal

transport — just enough to formulate the original (non-e↵ective) version of Brenier’s

result and later to prove our version.

After the introduction to optimal transport, in Section 5.2, we proceed with the

proof of Theorem 5.0.2. The proof itself relies on two intermediate results, whose

proofs are given later, in Section 5.3 and Section 5.4. One of those intermediate results

is of independent interest: we will show that a K�Lipschitz function f : [0, 1]n ! R
is computable i↵ {f} is a ⇧0

1

subset of a space of uniformly bounded K�Lipschitz

functions.
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5.1 Optimal transport

The history of optimal transport history started in 1781 when the French mathemati-

cian Gaspard Monge formulated the problem of déblais (a hole in the ground) and

remblais (a heap of soil). Given the shapes of déblais and remblais, there are many

ways of matching the elements (of soil) from their initial positions in the remblais

to their final positions in the déblais. The cost (for example, in terms of energy) of

moving an element from remblais to déblais depends on both its initial position and

on its final position. Monge’s problem is: to find an optimal (with respect to some

cost function) transference plan of elements from remblais to déblais.

In the 1940s, the Soviet mathematician Leonid Kantorovich reformulated and ex-

tended the original Monge problem. In the more modern formulation, both déblais

and remblais are modelled as probability measures µ and ⌫ on some topological spaces

X and Y , while the cost of moving is modelled as some function c : X ⇥ Y ! R.
The Monge-Kantorovich problem is to find a probability measure ⇡ on X ⇥ Y with

marginals µ and ⌫ minimizing the total cost
R

X⇥Y c(x, y) d⇡(x, y). This is a relaxation

of the original Monge problem, as the transference plan is modeled by a probability

measure, not a map from X to Y . For several decades the theory of optimal trans-

port has been used in many problems arising in probability theory, economics and

statistical mechanics.

Relatively recently the field of optimal transport gained a new popularity, often

due to numerous (new) discoveries of connections to other areas of mathematics.

According to Villani [Vil03], this new popularity can be traced to a single short note

by Yann Brenier [Bre87]. What is now known as Brenier’s theorem (a result to

which several other mathematicians made significant contributions) states that for a

quadratic cost function and under some mild assumptions on µ and ⌫, an optimal

transport map exists, is, in some specific way, unique, and is monotone.

In this section we present the bare minimum needed for this chapter. Since we are

only interested in Rn, our presentation is simplified in this regard. For more informa-

tion, please consult any of the recent books available on this subject. In particular,

we recommend two books by Villani [Vil03, Vil09], lecture notes by Ambrosio and

Gigli [AG13] and another book by Santambrogio [San15]. Our presentation mostly

follows [Vil03].

5.1.1 Kantorovich’s optimal transportation problem

Let X and Y be some Borel subsets of Rn. For a given pair of probability mea-

sures µ 2 P (X), ⌫ 2 P (Y ), an admissible transference plan is a probability measure

⇡ 2 P (X ⇥ Y ) such that

⇡(A⇥ Y ) = µ(A), ⇡(X ⇥ B) = ⌫(B) (5.1)
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holds for all measurable subsets A of X and B of Y .

By ⇧(µ, ⌫) we denote the set of all admissible transference plans:

⇧(µ, ⌫) = {⇡ 2 P (X ⇥ Y ) | Eq. (5.1) holds for all measurable A,B} .

For a given cost function c : X ⇥ Y ! R, Kantorovich’s optimal transportation

problem is to find ⇡ 2 ⇧(µ, ⌫) that minimizes

Ic[⇡] =

Z

X⇥Y

c(x, y) d⇡(x, y). (5.2)

The quantity Ic[⇡] is called the total transportation cost associated with ⇡. The total

transportation cost between µ and ⌫ is the value

Ic(µ, ⌫) = inf
⇡2⇧(µ,⌫)

Ic[⇡].

A transference plan ⇡ 2 ⇧(µ, ⌫) is said to be optimal when Ic[⇡] = Ic(µ, ⌫).

5.1.2 Monge’s optimal transportation problem

We are interested in transference plans induced by transport maps, that is, plans of

the form ⇡T = (I ⇥ T )#µ 2 ⇧(µ, ⌫) where T is some transport map and I is the

identity map on Rn. The total transportation cost associated with a transport map

T is

Ic[T ] = Ic[⇡T ] =

Z

Rn

c(x, T (x))dµ(x). (5.3)

A transport map T for which the cost is optimal, that is for which Ic[⇡T ] = Ic(µ, ⌫), is
called an optimal transport map. The problem of minimizing Ic[T ] over the set of all

transport maps is known as the Monge optimal transportation problem. In general,

such a map is not guaranteed to exist. However, under some assumptions on µ, ⌫ and

c, it does exist.

5.1.3 Optimal transportation theorem for quadratic cost

Notation 5.1.1. Let µ, ⌫ be Borel measures on Rn. Define M
2

(µ, ⌫) by

M
2

(µ, ⌫) =

Z

Rn

|x|2

2
dµ(x) +

Z

Rn

|x|2

2
d⌫(x).

For all f, g : Rn ! R with f 2 L1(µ) and g 2 L1(⌫), define

Jµ,⌫(f, g) =

Z

Rn

f dµ+

Z

Rn

g d⌫.

When µ and ⌫ are fixed, we omit the subscript and write J(f, g) instead of
Jµ,⌫(f, g).
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The theorem stated below is the one we need to e↵ectivize. It contains two

statements. The first one says that a transference plan is optimal if and only if it

is concentrated on the graph of the subdi↵erential of a convex lower-semicontinuous

function �. And then (�,�⇤), inevitably, is a minimizer of the Eq. (5.5) problem. From

our point of view, it is the second part that is important. Later, it will enable us to

show that under some conditions on measures, � may be assumed to be computable.

The second statement is the mentioned earlier Brenier’s theorem. It says that

when measures are su�ciently “nice”, r� is actually the unique solution to the Monge

transportation problem. It is this statement that supplies the transport map to our

generalized Zahorski construction.

Theorem 5.1.2 (cf Theorem 2.12 [Vil03] and Theorem 5.10 [Vil09]).
Let µ, ⌫ be probability measures on Rn, with M

2

(µ, ⌫) < +1. We consider the
Monge-Kantorovich transportation problem associated with the quadratic cost
function c(x, y) = |x� y|2. Then,

1. (Knot-Smith optimality criterion) ⇡ 2 ⇧(µ, ⌫) is optimal if and only
if there exists a convex lower-semicontinuous function � such that

supp (⇡) ✓ �(@�). (5.4)

Furthermore, a pair (�,�⇤) of lower-semicontinuous proper conjugate con-
vex functions on Rn is a minimizer in the problem

inf {J(�, ) | 8(x, y) hx, yi  �(x) +  (y)} (5.5)

if and only if � satisfies Eq. (5.4) for some ⇡ 2 ⇧(µ, ⌫).

2. (Brenier’s theorem) If µ is absolutely continuous, then there is a unique
optimal ⇡, which is

⇡ = (I ⇥r�)#µ,

where r� is the unique (i.e. uniquely determined µ�almost everywhere)
gradient of a convex function such that ⌫ = r�#µ and thus supp (⇡) ✓ �(@�).
Moreover r� is the unique solution to the Monge transportation problem.
We call r� the Brenier map transporting µ onto ⌫.

Remark 5.1.3. Please note that our e↵ective version of the above statement,
that is our Theorem 5.0.2, merely states that under certain conditions on both
measures, the resulting Brenier map is the gradient of a computable convex
function.
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5.1.4 Kantorovich duality

A well-known phenomenon in optimization is that some minimization problems, like

Kantorovich’s optimal transportation problem, admit dual formulations. In the con-

text of optimal transport, the following result is known:

Theorem 5.1.4 (Kantorovich duality).
Let X and Y be Polish spaces. Let µ 2 P (X) and ⌫ 2 P (Y ), and let
c : X ⇥ Y ! R

+

[ {+1} be a lower-semicontinuous cost function.
Define �c to be the set of all pairs of measurable functions � 2 L1(µ) and
 2 L1(⌫) satisfying

�(x) +  (y)  c(x, y) (5.6)

for µ�almost all x 2 X and ⌫�almost all y 2 Y .
Then

inf
⇡2⇧(µ,⌫)

Ic[⇡] = sup
(�, )2�

c

J(�, ). (5.7)

Moreover, the infimum on the left-hand side of Eq. (5.7) is attained. Further-
more, it does not change the value of the supremum in the right-hand side of
Eq. (5.7) if one restricts the definition of �c to bounded and continuous func-
tions.

The left side of Eq. (5.7) in this context is called the primal problem and it corre-

sponds to the usual Kantorovich’s optimal transportation problem. The right hand

side of Eq. (5.7) is called the dual problem.

In order to prove our e↵ective version of Brenier’s theorem, we will have to demon-

strate that the value of the infimum in Eq. (5.5) under certain conditions is com-

putable. The following known fact, in conjunction with Theorem 5.1.4, will be used

to show this.

Lemma 5.1.5. Let µ and ⌫ be two absolutely continuous probability measures
on Rn with M

2

(µ, ⌫) < +1. Then

inf {J(�, ) | 8(x, y) hx, yi  �(x) +  (y)} = M
2

(µ, ⌫)� sup
(�, )2�

c

J(�, ).

(5.8)

Moreover, if (�(x), (y)) is a minimizer for the left-hand side of Eq. (5.8), then
⇣

|x|2
2

� �(x), |y|
2

2

�  (y)
⌘

is a maximizer for the dual problem, that is

J

✓

|x|2

2
� �(x),

|y|2

2
�  (y)

◆

= sup
(�, )2�

c

J(�, ).
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A proof of this fact can be found in Subsection 2.1.2 in [Vil03].

5.2 Proof of the E↵ective Brenier theorem

Before proving Theorem 5.0.2, we need three additional ingredients: a simple lemma

which will be stated and proven here, and two theorems whose proofs will be given

in Section 5.3 and Section 5.4. Let us start with explaining those two theorems.

Fix K 2 D1

⇤ and n 2 N with K > 0 and n � 1. Define

LK = {f 2 C([0, 1]n,R) : Lipf  K and |f |  K}.

In Section 5.3 we will show that each LK is a computable metric space (which will

be denoted by LK). Moreover, our Theorem 5.3.14 states that if {f} ✓ LK is a ⇧0

1

set in LK , then f is a computable function.

The second result, proven in Section 5.4, is Corollary 5.4.3 which says that

(µ, ⌫) 7! Ip(µ, ⌫) (where Ip(µ, ⌫) is the optimal cost w.r.t. the cost function cp(x, y) = d(x, y)p)

is computable.

Finally, the following known fact is the third bit required to prove our e↵ective version

of Brenier’s theorem:

Lemma 5.2.1 (Potentials are unique up to an additive constant). Let µ, ⌫ be
absolutely continuous probability measures on Rn.

Suppose supp (µ) = [0, 1]n and supp (⌫) is bounded. If �,�0 are convex func-
tions such that r� = r�0 (on [0, 1]n) is the Brenier map (transporting µ onto
⌫), then �,�0 are Lipschitz on [0, 1]n and �� �0 is constant on [0, 1]n.

Proof. To see that � is Lipschitz on [0, 1]n, observe that all partial derivatives of �

are uniformly bounded a.e. on [0, 1]n (since supp (⌫) is bounded). Let A ✓ [0, 1]n be

the set of points in [0, 1]n where � is di↵erentiable. Then �|A is K-Lipschitz for some

K and hence � must be K-Lipschitz (on [0, 1]n) as well.

Since [0, 1]n is the closure of a connected open set, this means that the di↵erence

�� �0 is constant on [0, 1]n (this is a known fact, for example see Problem 5.10.10 in

[Eva98]) and this concludes the proof.

Below we prove that under certain conditions, the Brenier map is an a.e. computable

monotone map.

Theorem 5.0.2 (E↵ective Brenier theorem). Let µ, ⌫ be absolutely continuous

computable probability measures on Rn such that supp (µ) = [0, 1]n and the support of

⌫ is bounded. There exists a computable convex function � : [0, 1]n ! R such that r�
transports µ onto ⌫. Moreover, r� is the restriction of the Brenier map to [0, 1]n.

Proof. In this proof we will use the following custom notation:
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Notation 5.2.2. For every  : [0, 1]n ! R, define  1 : Rn ! R [ {+1} by

 1(x) =

(

 (x), if x 2 [0, 1]n,

+1, otherwise.

For every � : Rn ! R, define �
[0,1]n : [0, 1]n ! R as the restriction of � to [0, 1]n.

Lastly, define �1 as (�
[0,1]n)1.

From Lemma 5.2.1 we know that whenever � is a convex function such that r� is

the Brenier map transporting µ onto ⌫, � is K�Lipschitz for some integer K.

Consider the following set

S = {� 2 LK : �(0) = 0, � is convex and J(�1,�⇤
1) = M

2

(µ, ⌫)� I
2

(µ, ⌫)} .

Below, in a series of claims, we establish that S is a ⇧0

1

singleton that contains the

restriction �
[0,1]n of a convex function � such that r� is the Brenier map transporting

µ onto ⌫. Theorem 5.3.14 implies that �
[0,1]n is computable.

Claim 5.2.3. If (�,�⇤) is a pair of lower-semicontinuous proper conjugate convex

functions on Rn, then J(�1,�⇤
1)  J(�,�⇤).

Since supp (µ) = [0, 1]n, we have
Z

Rn

�1 dµ =

Z

[0,1]n
�1 dµ =

Z

[0,1]n
� dµ =

Z

Rn

� dµ.

Furthermore,
Z

Rn

�⇤
1 d⌫ =

Z

Rn

sup
x2Rn

(hx, yi � �1(x)) d⌫(y) 
Z

Rn

sup
x2Rn

(hx, yi � �(x)) d⌫(y) =

Z

Rn

�⇤ d⌫.

The required claim follows.

Claim 5.2.4. If (�,�⇤) is a pair of lower-semicontinuous proper conjugate convex

functions on Rn which is a minimizer for Eq. (5.5) and �(0) = 0, then �
[0,1]n belongs

to S.

By Lemma 5.1.5 we know that the value of (5.5) (that is, inf J) is equal to

M
2

(µ, ⌫)� sup
(�, )2�

c

J(�, )

where c is the quadratic cost. By Theorem 5.1.4 we have

sup
(�, )2�

c

J(�, ) = inf
⇡2⇧(µ,⌫)

Ic[⇡] = I
2

(µ, ⌫)
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(where I
2

(µ, ⌫) is the optimal cost w.r.t. the quadratic cost) and hence the value of

(5.5) is equal to M
2

(µ, ⌫)� I
2

(µ, ⌫).

Suppose (�,�⇤) is a pair of lower-semicontinuous proper conjugate convex functions

on Rn with

J(�,�⇤) = M
2

(µ, ⌫)� I
2

(µ, ⌫).

Observe that (�1,�⇤
1) is (also) a pair of lower-semicontinuous proper conjugate con-

vex functions on Rn. From Claim 5.2.3, we know that

J(�1,�⇤
1)  M

2

(µ, ⌫)� I
2

(µ, ⌫),

and hence

J(�1,�⇤
1) = M

2

(µ, ⌫)� I
2

(µ, ⌫).

Thus, �
[0,1]n 2 S.

Claim 5.2.5. #S = 1.

Since Eq. (5.5) admits a minimizing pair of convex functions, S is not empty. Indeed,

if ( , ⇤) is a pair of lower-semicontinuous proper conjugate convex functions, then

( �  (0), ⇤ +  (0)) is also a pair of lower-semicontinuous proper conjugate convex

functions. Moreover J( , ⇤) = J( �  (0), ⇤ +  (0)). Hence by Claim 5.2.4, S is

not empty.

Suppose � and  belong to S. Then (�1,�⇤
1) and ( 1, ⇤

1) are minimizers for

Eq. (5.5). From Theorem 5.1.2 we know that r�1 = r 1 on [0, 1]n and from

Lemma 5.2.1 we infer that  1 � �1 is constant on [0, 1]n. Since �(0) =  (0), we

conclude  = �. The claim follows.

Claim 5.2.6. S is a ⇧0

1

set.

Let (xi)i2N be a computable dense sequence of elements of [0, 1]n. Define C
0

✓ LK as

C
0

=
\

i,j2N,t2Q\[0,1]

{� : �(0) = 0, �(txi + (1� t)xj)  t�(xi) + (1� t)�(xj)} .

Clearly C
0

is a ⇧0

1

subset of LK . Moreover, by continuity, C
0

is the set of convex

functions f belonging to LK with f(0) = 0.

Define M ✓ LK by

M = {� 2 LK : J(�1,�⇤
1) = M

2

(µ, ⌫)� I
2

(µ, ⌫)} .

Let us show M is ⇧0

1

. By Corollary 5.4.3, I
2

(µ, ⌫) is a computable real number. Since

supports of µ and ⌫ are bounded, by Theorem 2.3.5, M
2

(µ, ⌫) is a computable real

number too. Thus,

M
2

(µ, ⌫)� I
2

(µ, ⌫)

is a computable real number.
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Observe that for y 2 Rn,

�⇤
1(y) = sup

x2Rn

{hx, yi � �1(x)} = sup
x2[0,1]n

{hx, yi � �1(x)} =

sup
x2[0,1]n

{hx, yi � �(x)} = max
x2[0,1]n

{hx, yi � �(x)}.

The function x 7! hx, yi � �(x) is a computable (uniformly in y 2 Qn \ [0, 1]n)

real-valued Lipschitz function on [0, 1]n. This means �⇤
1 is a computable function

whenever � is computable. Therefore,

J(�1,�⇤
1) =

Z

Rn

�1 dµ+

Z

Rn

�⇤
1 d⌫ =

Z

[0,1]n
� dµ+

Z

Rn

�⇤
1 d⌫

is computable uniformly in �. Hence M is ⇧0

1

.

Since S = C
0

\M, S is a ⇧0

1

subset of LK .

5.3 Subspaces of Lipschitz functions

The main goal of this subsection is to prove that when a Lipschitz function f : [0, 1]n ! R
is such that {f} is a singleton ⇧0

1

subset of a suitably defined metric space, then f is

a computable function (in the Grzegorczyk-Lacombe sense).

Fix K 2 D1

⇤ and n 2 N with K > 0 and n � 1. Define

LK = {f 2 C([0, 1]n,R) : Lipf  K and |f |  K}.

Since elements of LK are uniformly bounded and equicontinuous, by Ascoli’s the-

orem, LK is a compact closed subspace of C([0, 1]n,R) (the space of real valued

continuous functions on [0, 1]n endowed with the supremum norm k · k1).

Definition 5.3.1. We say a computable metric space (X, d, (↵i)i2N) is e↵ectively
compact if there is a computable function ⌫ : N ! N such that

X =
[

j⌫(i)

B(↵j, 2
�i) for all i.

Let d1 be the metric on LK corresponding to the supremum norm. We will show

that (LK , d1) with a suitably chosen dense sequence of elements is an e↵ectively

compact computable metric space.

Before we can show that LK is e↵ectively compact, we need to choose a sequence

of its elements that is dense. For this purpose we will select a particular sequence of

piecewise a�ne functions.
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Definition 5.3.2. A function f : Rn ! R is called piecewise a�ne if for some
k 2 N, there exists a finite set of a�ne functions fi(x) = Aix + bi, i = 1, . . . , k
such that the inclusion f(x) 2 {fi(x), . . . , fk(x)} holds for all x. The functions
fi are called selection functions. The set of pairs (Ai, bi) is called a collection of
matrix-vector pairs corresponding to f .

It is known that piecewise a�ne functions are dense in LK (it will become clear

from Lemma 5.3.4 and Lemma 5.3.5).

Definition 5.3.3. Let A ⇢ [0, 1]n be a finite set. Let f : A ! [�K,K] be a
function. Define the lower interpolant of f , f , by

f(x) = max{max
y2A

(f(y)�K|x� y|),�K}.

Observe that lower interpolants are piecewise a�ne functions. The following

Lemma is a simple modification of Proposition 3.1 from [Bel07].

Lemma 5.3.4. Let f ⇢ [0, 1]n ! [�K,K] be a partial function with a finite
domain. The following are equivalent:

1. Lip(f)  K, and

2. f extends f and belongs to LK.

Proof. For the 1 =) 2 implication, let A be the domain of f .

Since x 7! (f(y)�K|x�y|) isK�Lipschitz for every y, A is finite and�K  f  K,

we have f 2 LK .

Let x 2 A. Since Lip(f) = K, for every y 2 A, we get f(x) � f(y) �K|x � y|.
Then f(x) = max{maxy2A(f(y)�K|x�y|),�K} = f(x) and hence f is an extension

of f belonging to LK .

For the 2 =) 1 direction, observe that Lip(f) > K implies that any extension

of f can not be K�Lipschitz.

Lemma 5.3.5. Let f 2 LK and let i 2 N. Let fi be the restriction of f to
Dn,[0,1]

i . Then
kf � fik1  K

p
n2�i.

Proof. Let x 2 [0, 1]n. For any y 2 Dn,[0,1]
i we have

�

�

�

f(x)� f
i
(x)

�

�

�

 |f(x)� f(y)� fi(x) + fi(y)|  |f(x)� f(y)|+ |fi(x)� fi(y)|,
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and therefore
�

�

�

f(x)� f
i
(x)

�

�

�

 min
y2Dn,[0,1]

i

�

|f(x)� f(y)|+ |fi(x)� fi(y)|
�



2K min
y2Dn,[0,1]

i

|x� y| = 2K · d
⇣

x, Dn,[0,1]
i

⌘

 K
p
n2�i.

The above fact justifies the following definition.

Definition 5.3.6. Fix a computable enumeration (�i)i2N of K�Lipschitz func-
tions

� : Dn,[0,1]
⇤ ! D1,[�K,K]

⇤

such that the domain of � is finite. Let (�̂i)i2N be the (computable) sequence of
lower interpolants of (functions from) (�i)i2N.

Proposition 5.3.7. LK = (LK , d1, (�̂i)i2N) is an e↵ectively compact computable
Polish space.

Proof. Firstly note that (i, j) 7! d1(�̂i, �̂j) is computable uniformly in i, j. This

implies that LK is a computable Polish metric space.

For every i 2 N, define r(i) = #Dn,[0,1]
i . Let

�

yij
�

i,j
be a computable double sequence

enumerating elements of Dn,[0,1]
i (that is, yij is the j�th element of Dn,[0,1]

i ).

Fix s 2 N. To show the required result, we will demonstrate how to compute (uni-

formly in s) a finite set Is ⇢ N so that

LK =
[

j2I
s

B(�̂j, 2
�s).

Let k 2 N be such that ✏ = 2�k  2

�s

3K
p
n+1

. Define

Sk =
�

x 2 [�K,K]r(k) : 8(i, j  r(k)) |xi � xj|  K
�

�yki � ykj
�

�

 

.

Since K > 0, Sk is a convex body, that is, a compact convex set with non-empty

interior. It follows that Dr(k),[�K,K]

⇤ is dense in Sk. Since conditions of the form

|xi � xj|  K
�

�yki � ykj
�

� are decidable when xi, xj, yki , y
k
j and K are dyadic, we can

e↵ectively enumerate elements of Sk \ Dr(k),[�K,K]

⇤ . Clearly, Sk is a ⇧0

1

set (uniformly

in k). Furthermore, the boundary of Sk is also a ⇧0

1

set (uniformly in k), since it can

be written as

@Sk =
�

x 2 [�K,K]r(k) : 8(i, j  r(k)) |xi � xj| = K
�

�yki � ykj
�

�

 

.
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Since both Sk and @Sk are ⇧0

1

sets (uniformly in k) and Sk, as a convex body, is

homeomorphic to the unit ball in Rr(k), the distance function x 7! d(x, Sk) is a

computable (uniformly in k) function (this is a straight consequence of Corollary 2.3

from Miller [Mil02]).

For every z 2 Sk, define fz : Dn,[0,1]
k ! [�K,K] by setting fz(yki ) = zi for all i  r(k).

Let f 2 LK . Define z 2 Rr(k) by letting zi = f(yki ) for all i  r(k). Clearly z 2 Sk

and fz is the restriction of f to Dn,[0,1]
k . By Lemma 5.3.4, f

z
2 LK . By Lemma 5.3.5

we have d1(f, fz)  K
p
n✏. It follows that for every f 2 LK , there is x 2 Sk such

that fx is the restriction of f to Dn,[0,1]
k , fx 2 LK and d1(f, fx)  K

p
n✏. Thus

LK =
[

x2S
k

B(fx, K
p
n✏).

Suppose there exists a finite subset Ck ✓ Dr(k),[�K,K]

⇤ with Ck ⇢ Sk such that

Sk ✓
[

x2C
k

B(x, ✏). (5.9)

Let x 2 Sk. Let y 2 Ck be such that |x� y|  ✏. Then d1(fx, fy)  |x� y|  ✏ and

hence d1(fx, fy)  ✏+ 2K
p
n✏. Then

B(fx, K
p
n✏) ✓ B(fy, ✏+ 3K

p
n✏),

and hence, since ✏3K
p
n+ ✏  2�s,

LK ✓
[

z2C
k

B
�

fz, ✏+ 3K
p
n✏
�

✓
[

z2C
k

B
�

fz, 2
�s
�

.

Since for any x 2 Dr(k),[�K,K]

⇤ , we can calculate jx, so that fx = �̂j
x

, this is su�cient

to prove the proposition, provided we can show how to compute Ck. This is done

below.

Find m 2 N such that
p

r(k)2�m + 4 · 2�m  2�s. Let

Dk =

⇢

x 2 Dr(k),[�K,K]

m |
✓

d(x, Sk)�
1

2

p

r(k)2�m

◆

m

 2�m

�

,

so that
⇢

x 2 Dr(k),[�K,K]

m | d(x, Sk) 
1

2

p

r(k)2�m

�

✓ Dk and (5.10)

Dk ✓
⇢

x 2 Dr(k),[�K,K]

m | d(x, Sk) 
1

2

p

r(k)2�m + 2�m+1

�

. (5.11)

Dk is a finite subset of Dr(k),[�K,K]

m and it is computable uniformly in k.
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Since Sk is closed and (5.11) holds, for every x 2 Dk, there exits xS 2 Sk with

d(x, xS) 
p

r(k)2�m + 2�m+1.

Since Dr(k),[�K,K]

⇤ is dense in Sk and Dr(k),[�K,K]

⇤ \ Sk is computably enumerable, for

every x 2 Dk we can find x̂ 2 Dr(k),[�K,K]

⇤ \ Sk such that

✓

d(x, x̂)� 1

2

p

r(k)2�m

◆

m

 3 · 2�m.

Let D̃k be the set of such x̂’s. Note that D̃k is computable uniformly in k.

Let y 2 Sk. Via (5.10), there exists x 2 Dk such that

|y � x|  1

2

p

r(k)2�m.

Then there exists x̃ 2 D̃k with |x� x̃|  1

2

p

r(k)2�m + 4 · 2�m. We have

|x̃� y| 
p

r(k)2�m + 4 · 2�m  2�s.

Let Ck = D̃k. It is easy to see that (5.9) holds. This concludes the proof.

The following proposition seems to be a generally known fact. However, we could

not find a proof of it in the literature, hence we prove it here.

Proposition 5.3.8. Let (X, d, (↵i)i2N) be an e↵ectively compact computable
metric space. There is a computable surjection F̃ : 2! ! X.

Proof idea

The idea is very straightforward: using e↵ective compactness, we compute a tree
of open balls and map the Cantor space onto that tree. The (somewhat technical)
details are below.

Proof. Let ⌫ be the computable function from Definition 5.3.1. Without loss of gen-

erality, we may assume X is infinite and ⌫ is unbounded, so that for every j 2 N,
there exists i 2 N such that j  ⌫(i).

Define

P =
Y

i2N

{1, . . . , ⌫(i+ 2)}.

P , obviously, is a computable image of the Cantor space. Fix a computable surjection

c : 2! ! P . Suppose there exists a computable function F : P ⇥ N ! N with the

following properties:

d
�

↵F (A,i),↵F (A,i+1)

�

 2�i+1 for all A 2 P, i 2 N, (5.12)
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⇢

lim
i!+1

↵F (A,i) | A 2 P

�

is dense in X. (5.13)

Define F̃ : 2! ! X by

F̃ (A) = lim
i!+1

↵F (c(A),i).

The (5.12) property and the fact that c is computable ensure that F̃ is a computable

function, while (5.13) and surjectivity of c imply that the range of F̃ is dense in X.

Since F̃ (2!) is closed in X and dense, it must be equal to X and thus F̃ is a surjection.

Let us show that such a function F exists.

Definition of F

Let A 2 P . Define F (A, 1) = A(1). Fix j 2 N. Suppose F (A, j) = m and we
wish to compute F (A, j + 1). Define

C(m, j) =
n

i  ⌫(j + 1) : (d (↵m,↵i))j+1

 2�j + 2�j�1

o

.

This set is finite, non-empty, and computable uniformly in m, j. Furthermore,

d (↵m,↵i)  2�j+1 for all i 2 C(m, j) (5.14)

and

{i  ⌫(j + 1) : d (↵m,↵i)  2�j} ✓ C(m, j). (5.15)

Define F (A, j + 1) to be the k�th lowest element in C(m, j), where

k = A(j + 1) mod #(C(m, j)).

Clearly F is a computable function. The (5.12) property follows from (5.14).

The four claims below establish (5.13).

Claim 5.3.9. If F (A, j) = m, then F (P, j + 1) contains C(m, j).

This is a straightforward consequence of our definitions of F and P .

Claim 5.3.10. [1, ⌫(j + 1)] ✓
S

m⌫(j) C(m, j).

This is a consequence of (5.15). In particular, we have
[

m⌫(j)

{i  ⌫(j + 1) : d (↵m,↵i)  2�j} ✓
[

m⌫(j)

C(m, j).

Since for every i  ⌫(j +1), there exists m  ⌫(j) such that d (↵m,↵i)  2�j, the

claim follows.
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Claim 5.3.11. For all j, [1, ⌫(j)] ✓ F (P, j).

The proof is by induction on j. By our construction, [1, ⌫(1)] ✓ F (P, 1).

Let j 2 N and suppose [1, ⌫(j)] ✓ F (P, j). Then, by Claim 5.3.9, F (P, j+1) contains
S

m⌫(j) C(m, j). Hence, by Claim 5.3.10, [1, ⌫(j + 1)] ✓ F (P, j + 1).

Claim 5.3.12. For every i 2 N, there exists Ai 2 P such that limj!1 F (Ai, j) = i.

Let i 2 N. Let A and j be such that F (A, j) = i. Such j exists by Claim 5.3.11

combined with the fact that by our assumptions ⌫ is unbounded. Moreover, we may

assume j  ⌫(i). Since for all ĵ � j, i 2 C(i, ĵ), there exists Ai 2 P such that

Ai(k) = i for all k � j. This establishes the claim and completes the proof of the

proposition.

Proposition 5.3.13. If f 2 LK is computable in LK, then it is a computable
(in the sense of Grzegorczyk-Lacombe) function.

Proof. Firstly observe that (�̂i)i2N is a (computable) sequence of computable (in the

sense of Grzegorczyk-Lacombe) functions.

Let s 2 N. Since f 2 LK is computable in LK , we can find �̂j
s

so that kf��̂j
s

k1  2�s�1.

Then
�

�(�̂j
s

(x))s+1

� f(x)
�

�  2�s,

for all x 2 [0, 1]n.

Theorem 5.3.14. If {f} ✓ LK is a ⇧0

1

set in LK, then f is a computable (in
the sense of Grzegorczyk-Lacombe) function.

Proof. From Proposition 5.3.8 we know that there exists a computable surjection

FK : 2! ! LK . Using this surjection, it is possible to enumerate all basic closed balls

that intersect {f}. This implies that f is a computable point in LK and hence, by

Proposition 5.3.13, it is a computable function.

5.4 Optimal cost is computable

Definition 5.4.1 (Wasserstein metrics). Let (X, d) be a Polish metric space.
For p 2 N with p � 1, define a cost function cp by cp(x, y) = d(x, y)p. For
µ, ⌫ 2 P (X), define the Wasserstein metric of order p by

Wp(µ, ⌫) = Ip(µ, ⌫)1/p

where Ip is the optimal transport cost between µ and ⌫ with respect to cp.
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It is known that when d is bounded, Wp metrizes the weak topology on P (X).

Furthermore, by Theorem 4.1.1 in [HR09], W
1

is computable and it is computably

equivalent to the Prokhorov metric ⇡ (see the Definition 2.3.2). That is, given a

Cauchy name of µ with respect to ⇡, we can compute a Cauchy name of µ with

respect to W
1

and vice versa. Since we are mainly concerned with the quadratic cost,

we need to prove an analogous result for p > 1.

Recall that (�i)i2N is a computable sequence of basic points in P (X) - those el-

ements of P (X) which are concentrated on finite subsets of basic points of X and

assign rational values to them.

Proposition 5.4.2 (Wasserstein metrics are computable). Let (X, d, (↵i)i2N) be
a computable metric space where d is bounded. Then (P (X),Wp, (�i)i2N) is a
computable metric space and Wp computably equivalent to W

1

(and hence to ⇡).

Proof. Without loss of generality we may assume p > 1. Let us show Wp(�i, �j) is

computable uniformly in i, j. Let µ = �i1 and ⌫ = �i2 for some i
1

, i
2

2 N. Suppose µ

is concentrated on a
1

, . . . , an 2 X and ⌫ is concentrated on b
1

, . . . , bm 2 X. For all

i  n, j  m, define zi,j = (ai, bj) and pi,j = d(ai, bj)p. Then ⇡ 2 ⇧(µ, ⌫) if and only

if ⇡ is concentrated on all zi,j and for all i, j,

X

ˆin

⇡(z
ˆi,j) = ⌫(bj), and

X

ˆjm

⇡(zi,ˆj) = µ(ai).

Define F : Rnm ! R by

F (x
1,1, . . . , xn,m) =

X

in,jm

pi,jxi,j.

Then we have

Idp [⇡] = F (⇡(z
1,1), . . . , ⇡(zn,m)) .

And then

Ip(µ, ⌫) = minF (x
1,1, . . . , xn,m),

subject to
X

ˆin

x
ˆi,j = ⌫(bj), and

X

ˆjm

xi,ˆj = µ(ai) for all i, j.

This is a linear optimization problem (over variables x
1,1, . . . , xn,m) and thus it

can be solved uniformly in µ and ⌫ (that is, uniformly in i
1

and i
2

). This shows that

(P (X),Wp, (�i)i2N) is a computable metric space.
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To show thatWp is computably equivalent toW
1

, we will use the following inequalities

(see 7.1.2 in [Vil03]):

W
1

 Wp  W 1/p
1

diam(X)1�1/p. (5.16)

Fix integer D with D � diam(X). Let (µi)i2N be a Cauchy name of µ 2 P (X)

with respect to ⇡. Since W
1

is computable and W
1

(µ, µi) ! 0, given j 2 N, we can

e↵ectively find k(j) 2 N such that

W
1

(µ, µk(j))  2�jpD�p.

Then, via (5.16), for every j,

Wp(µ, µk(j))  2�j.

Hence
�

µk(i)

�

i2N is a Cauchy name of µ with respect to Wp.

The other direction is trivial since W
1

 Wp.

Corollary 5.4.3 (Optimal cost is computable). Let (X, d, (↵i)i2N) be a com-
putable metric space where d is bounded. Then (µ, ⌫) 7! Ip(µ, ⌫) is computable.

88



Chapter 6

Controlling non-di↵erentiability in
Rn

In Chapter 3 we have shown several characterizations of computable randomness on

the real line in terms of di↵erentiability properties of certain classes of functions and

measures. Every such result has two directions: the ) direction that asserts com-

putable randomness is su�cient for some property to hold and the converse direction

stating that computable randomness is necessary. In Chapter 4 we have generalized

some of the mentioned ) results to Rn. In this chapter we focus on proving the

converses.

All the converse results on the unit interval that we have in mind rely on the

e↵ective version of the Zahorski construction described briefly in Section 3.2.1. The

main insight of this chapter is that the Zahorski construction can be generalized to

Rn using Brenier’s theorem. This construction then can be e↵ectivized using the

computable version of Brenier’s theorem proven in Chapter 5.

The main result of this chapter is the following theorem:

Theorem 6.0.1 (Main theorem).

Let z 2 [0, 1]n be not computably random. There exists a computable convex function

u : [0, 1]n ! R and a computable function g : [0, 1]n ! Rn such that

• ru = g on (0, 1)n and,

• ru is not di↵erentiable at z.

The above theorem can be seen as the converse result for three theorems from

Chapter 4: Theorem 4.5.5, Theorem 4.4.1 and Theorem 4.6.3. Using it, we will

generalize to Rn some of the results from Chapter 3, in particular, Theorem 3.3.18

and Theorem 3.3.25.

The structure of this chapter is following:
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• We start by describing how the Zahorski construction can be reinterpreted in

terms of transport maps and how the theory of optimal transport is relevant in

this context. The whole of Section 6.1 is devoted to this issue.

• Section 6.2 is where all the details needed for the ideas outlined in Section 6.1

are filled in. This section contains the proof of Theorem 6.0.1 and all the

intermediate results.

• Finally, in the last section, we use Theorem 6.0.1 to show several new charac-

terizations of computable randomness in Rn.

6.1 Reinterpreting the e↵ective Zahorski construc-

tion

Let us recall the e↵ective version of Zahorski’s construction from [BMN16]. Suppose

z 2 (0, 1) is not computably random and let Z 2 2! be its binary expansion. Our

goal is to exhibit a computable monotone function on the unit interval that is not

di↵erentiable at z.

Let M be a computable martingale with the saving property diverging on Z. Since M

is atomless, the corresponding measure µM is computable and absolutely continuous.

Define f : [0, 1] ! R by

f(x) = µM((0, x)) =

Z x

0

D�µM(t) dt. (6.1)

Then f is a computable monotone function not di↵erentiable at z. As it was

explained in the first chapters of this thesis, points of approximate discontinuity of

D�µM become points where f is not di↵erentiable.

We can summarize this approach in the following way:

The Zahorski construction on R via integration

Obtain an absolutely continuous measure µ not di↵erentiable at z 2 (0, 1). Then
D�µ is not approximately continuous at z and x 7!

R x

0

D�µ(t) dt is a monotone
function not di↵erentiable at z.

A key role in this approach is played by the very close relationship between inte-

grals and antiderivatives that is well known for real-valued functions of one variable.

The major obstacle in generalizing this idea to higher dimensions is that in Rn (n > 1),

this elegant relation is lost. In order to generalize, we would have to reinterpret this

construction without relying on integration as a mean of obtaining antiderivatives.

Instead of integration, we will rely on the notion of transport maps.
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It can be shown that the function f defined in (6.1) is a transport map from

µM to �
1

. That is, �
1

= f#µM . Intuitively, a transport map f from µM to �
1

turns oscillations of µ
M

(B
r

(z))
�(B

r

(z)) into oscillations of f ’s slopes at z, thus turning non-

di↵erentiability of µM at z into non-di↵erentiability of f at z.

In fact, any transport map f from µM to �
1

that maps intervals to intervals, is not

di↵erentiable at z. For any such function f , for any z 2 R and r > 0, we have

µM(B(z, r))

� (B(z, r))
=
� (f(B(z, r)))

� (B(z, r))
=

f(z + r)� f(z � r)

2r
.

If D�µM(z) does not exist, then limr!0

f(z+r)�f(z�r)
2r does not exist either. On the

other hand, when f is di↵erentiable at z, then limr!0

f(z+r)�f(z�r)
2r exists. Thus if µ

is not di↵erentiable at z, then f is not di↵erentiable at z.

Remark 6.1.1. As we know from Brenier’s theorem, f is the unique optimal
transport map from µM onto �

1

. While Brenier’s theorem shows existence and
uniqueness of the optimal map, it does not provide an explicit formula for the
map. On the other hand, we gave an explicit formula for the transport map f .
In fact, in the case of measures on R, optimal maps (with respect to quadratic
cost) have a known form:

Proposition 6.1.2. Let µ and ⌫ be probability measures on R. Suppose
µ is atomless. Let F and G be their respective cumulative distribution
functions. Then T = G�1 � F is the (optimal) monotone transport map
from µ onto ⌫.

For more information about the one-dimensional optimal transport problem,
please see Section 2.2 in [Vil03].

The above considerations make it possible to rephrase the Zahorski construction in

the following way:

The Zahorski construction on R via transport maps

Obtain an absolutely continuous measure µ not di↵erentiable at z 2 (0, 1). Then
the monotone transport map from µ to �

1

is not di↵erentiable at z.

In this reformulation we rely on the fact that di↵erentiability of the source measure

µ a↵ects di↵erentiability of the transport map in the way that suits us (see Fact 3.2.1).

And this particular phenomenon is known in higher dimensions too. Consider the

following theorem:
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Theorem 6.1.3 (see Theorem 7.24 in [Rud87]). If

(a) V is open in Rn,

(b) T : V ! Rn is continuous, and

(c) T is di↵erentiable at some point z 2 V , then

lim
r!0

� (T (B(z, r))))

� (B(z, r))
= |detDT (z)| . (6.2)

This theorem can be seen as a generalization of Fact 3.2.1. In order to see

this, suppose T is from R to R and of the form considered in Fact 3.2.1. That is

T (x) =
R x

0

f(t) dt. Then the limit (6.2) from Theorem 6.1.3 can be rewritten to

match the limit (3.3) from Fact 3.2.1:

lim
r!0

� (T (B(z, r))))

� (B(z, r))
= lim

r!0

T (z + r)� T (z � r)

� ((z � r, z + r))
= lim

r!0

1

� ((z � r, z + r))

Z z+r

z�r

f(t) dt.

Suppose T : Rn ! Rn is a continuous transport map from µ to �n, where µ is some

absolutely continuous probability measure on Rn. Then the limit in (6.2), assuming

x 2 (0, 1)n, can be rewritten as

lim
r!0

� (T (B(x, r))))

� (B(x, r))
= lim

r!0

µ(B(x, r))

� (B(x, r))
= D�µ(x).

Hence, if µ is not di↵erentiable at some point x, then T is not di↵erentiable at x

either. The remaining two questions are:

1. is there always a monotone transport map T : Rn ! Rn from µ onto �n and

2. under what conditions can T be assumed to be computable.

Brenier’s theorem provides an answer to the first question: if µ is regular enough,

then the answer is positive. The second question will be answered with the help of the

E↵ective Brenier Theorem from our previous chapter and a regularity result which

will be discussed later.

With the above in mind, we can formulate a provisional generalization of the

Zahorski construction to Rn:

The Zahorski construction on Rn via transport maps

Obtain an absolutely continuous measure µ not di↵erentiable at z 2 (0, 1)n. Then
the monotone transport map from µ onto �n is not di↵erentiable at z.
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It is worth making it clear, that when we write about the e↵ective Zahorski con-

struction on Rn, we actually mean the part of the proof of Theorem 6.0.1 where

we exhibit a computable monotone transport map not di↵erentiable at a given (not

computably random) point.

6.2 E↵ective Zahorski construction on Rn

The proof of the main result is a short one, but it does rely on three other results:

the e↵ective Brenier theorem from Chapter 5, and two other results which will be

discussed later in this section. The e↵ective Brenier theorem gives us an a.e. com-

putable monotone transport map. The other two results will ensure the transport

map is actually Hölder continuous and hence computable.

Theorem 6.0.1 (Main theorem).

Let z 2 [0, 1]n be not computably random. There exists a computable convex function

u : [0, 1]n ! R and a computable function g : [0, 1]n ! Rn such that

• ru = g on (0, 1)n and,

• ru is not di↵erentiable at z.

Proof. Let z 2 [0, 1]n be not computably random. We may assume it lies in the

interior of [0, 1]n.

By Proposition 6.2.6, there exists a computable absolutely continuous probability

measure µ on Rn such that its support is equal to [0, 1]n, its density is bounded away

from 0 and +1 and it is not di↵erentiable at z.

By Theorem 5.0.2, there exists a computable convex function � : [0, 1]n ! R such

that r� transports µ onto �n.

By Theorem 6.2.5, we know that r� : (0, 1)n ! Rn is Hölder continuous.

There is a unique Hölder continuous extension of r� to [0, 1]n, which we will call

g : [0, 1]n ! Rn. Since � is a computable convex function, g is a.e. computable.

Since g is Hölder continuous and a.e. computable, it must be computable.

Since r�(Br(z)) ⇢ [0, 1]n for su�ciently small r, we have

lim
r!0

� (r�(B(z, r)))

� (B(z, r))
= lim

r!0

�n (r�(B(z, r)))

� (B(z, r))
= lim

r!0

µ(B(z, r))

� (B(z, r))
= D�µ(z).

We know that D�µ(z) does not exists. Thus, by Theorem 6.1.3, r� is not di↵eren-

tiable at z.
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6.2.1 The Monge-Ampère equation and regularity of optimal
transport

The Monge-Ampère equation is a famous fully nonlinear elliptic partial di↵erential

equation of the following form:

detD2�(x) = F (x,�(x),r�(x)), (6.3)

where by D2� we denote the second derivative of � (that is, Dr�, when � is convex).

In order to ensure this equation is elliptic (so that the theory of uniformly elliptic

equations is applicable), Eq. (6.3) is restricted to the set of convex �’s. Note that

when � is convex, detD2�(x) is an L1 function defined almost everywhere. In order

for � to satisfy Eq. (6.3) for all x 2 Rn, � would have to be twice-di↵erentiable.

Such functions are called classical solutions of Eq. (6.3). Since we have no interest

in twice-di↵erentiable functions in this chapter, we will consider weak solutions of

Eq. (6.3) of a particular type.

Definition 6.2.1. We say � is an Aleksandrov solution of Eq. (6.3), if the
Monge-Ampère measure M� is absolutely continuous and its density coincides
with the right-hand side of Eq. (6.3) almost everywhere.

It is known that the following particular type of the Monge-Ampére equation is

closely related to the theory of optimal transport:

detD2�(x) =
f(x)

g(r�(x)) . (6.4)

It can be shown (see Section 1.7.6 in [San15]) that when � is C2, f is the density

of µ and g is the density of ⌫, (6.4) is equivalent to

⌫ = r�#µ.

This motivates the following notion of weak solutions:

Definition 6.2.2. Let µ and ⌫ be two probability measures on Rn. A convex
function � : Rn ! R is said to be a Brenier solution of Eq. (6.4) if

1. ⌫ = r�#µ, and

2. f is the density of µ and g is the density of ⌫.

This notion of weak solutions is strictly weaker than the notion of Aleksandrov

solutions — a Brenier solution is not necessarily an Aleksandrov solution.
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In order to prove Theorem 6.0.1 we needed to show that the Brenier map (r�
from the proof) is Hölder continuous. In general, Brenier maps are not necessarily

continuous. This leads us to the following question of regularity of optimal maps:

under what conditions on the measures µ and ⌫, is the Brenier map Hölder continu-

ous? There is a regularity theory developed by Ca↵arelli and Urbas for (solutions of)

the Monge-Ampère equation which naturally provides regularity results for Brenier

maps. Below we present the only two results (relating the Monge-Ampère equation

to the theory of optimal transport) needed in this thesis. For more information on

the Monge-Ampère equation, please consult Chapter 4 in [Vil03], a book by Gutiérrez

[Gut01] and lecture notes by Urbas [Urb97].

The following result by Ca↵arelli shows that under certain conditions on µ and ⌫,

Brenier maps (and hence, Brenier solutions) are Aleksandrov solutions of Eq. (6.4).

Theorem 6.2.3 (cf. Theorem 4.10 in [Vil03]). Let µ and ⌫ be two absolutely
continuous probability measures on Rn. Let f and g be their respective densities,
and let X and Y be their respective supports. Let � be a convex function such
that ⌫ = r�#µ. Assume that Y is convex and that g is positive a.e. on Y . Then
M� has no singular part on X. In particular, � is an Aleksandrov solution of
Eq. (6.4).

Remark 6.2.4. Maximizers for the dual problem are called Kantorovich poten-
tials. Theorem 5.1.2, Lemma 5.1.5 and Theorem 5.1.4 imply that Kantorovich
potentials are as regular as corresponding Brenier solutions (which, under condi-
tions of Theorem 6.2.3, are also Aleksandrov solutions). This allows us to apply
Ca↵arelli’s regularity theory to Brenier maps. In particular, we will require the
following regularity result:

Theorem 6.2.5 (cf. Theorem 12.50 in [Vil09]). Let ⌦,� be connected bounded
open subsets of Rn. Let f, g be probability densities on ⌦ and � respectively,
with f and g bounded from above and below. Let � be a convex function such
that its gradient is the Brenier map between measures corresponding to f and g.
If � is convex, then �|⌦ 2 C1,↵(⌦) for some ↵ 2 (0, 1).

6.2.2 Exhibiting a non-di↵erentiable computable measure

In this section we will prove the following result.
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Proposition 6.2.6. Suppose z 2 [0, 1]n is not computably random. There exists
an absolutely continuous computable probability measure µ on Rn such that:

1. its support is equal to [0, 1]n,

2. its density, h : [0, 1]n ! R, is bounded away from 0 and +1, that is

0 < C
1

< h < C
2

for some C
1

, C
2

2 R and

3. D�µ(z) does not exist.

Notation 6.2.7. For a given computable martingale M , we define the corre-
sponding computable probability measure µn

M on [0, 1]n by

µn
M([�]) = �([�]) ·M(�)/M(;), for all � 2 2<!.

When the dimension n is clear from the context, we may omit the superscript
and write µM instead of µn

M .

A proof of a one-dimensional (weaker) variant of this Lemma is contained in the

proof of Theorem 4.2 in [FKHNS14]. Below we summarize the relevant construction

and then discuss how it can be adjusted so that it is useful in our proof of Proposi-

tion 6.2.6.

The main idea of the proof of Theorem 4.2 in [FKHNS14] is that it is possible to

turn the success of one martingale into oscillations of another bounded martingale.

In particular, let z 2 [0, 1] be not computably random and let Z 2 2! be its binary

expansion. There is a computable martingale B succeeding on Z. Freer et al. defined

a computable martingale M , based on B, which repeats the following pattern of bet-

ting: M adds the capital that B risks, until its capital reaches 3, then M subtracts the

capital that B risks, until its capital reaches 2, and so on. The resulting computable

martingale is bounded from above and its value “oscillates” infinitely often along Z.

That is, the following two conditions hold:

1. 1  M(�)  4 for all � 2 2<!, and

2. lim infM(Z�i)  2 and lim supM(Z�i) � 3.

It is not di�cult to see that the corresponding measure µ1

M on the unit interval

satisfies the first two properties listed in Proposition 6.2.6. However, the third prop-

erty (being not di↵erentiable at z), does not necessarily hold. Consider quotients of

the form
µ1
M

(A)

�(A)

, where A ✓ R is Borel. The dyadic derivative of µ1

M at z is defined
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as the limit of quotients
µ1
M

(A)

�(A)

, where A ranges over the family of basic dyadic cubes

containing z. This limit, clearly, does not exists. On the other hand, the symmet-

ric derivative of µ1

M at z is defined as the limit of quotients
µ1
M

(A)

�(A)

, where A ranges

over the family of (non-degenerate) balls centered at z. This limit might exist and

therefore µ1

M , as defined, satisfies only a weaker form of the third property: its dyadic

derivative at z does not exist.

Now suppose z 2 [0, 1]n and let Z 2 2! be its binary expansion. Using the

described construction from [FKHNS14], we can obtain a computable martingale M

oscillating on Z and use it to define the corresponding probability measure µn
M . The

measure µn
M has the same issue as µ1

M — it could be di↵erentiable at z.

Remark 6.2.8. Using the notion of nicely shrinking sets and Theorem 7.10 (see
Section 7.9 in [Rud87]), it can be shown that z is not a Lebesgue point of
the density of µn

M . However, this property is also not strong enough for our
purposes.

In order to see how to fix this problem, consider what happens to µn
M when M

does not bet for some stretch of Z. That is, M(Z�i) = q for i ranging between j

and j + k for some j, k. Suppose d(z, @[Z�j]) = ✏ > 0. If k is large enough, then

(the value of)
µn

M

(B(z,✏))
�(B(z,✏)) can not be too di↵erent from (the value of)

µn

M

([Z�
j

])

�([Z�
j

])

. The

precise meaning of “not too di↵erent” will be given in the proof of Proposition 6.2.6.

This observation suggests a conceptually straightforward fix: from time to time, M

should stop betting and wait until
µn

M

([Z�
j

])

�([Z�
j

])

is not too di↵erent from
µn

M

(B(z,✏))
�(B(z,✏)) for some

✏ 2 (0, 2�j]. We describe the formal details below.

Suppose z 2 [0, 1]n is contained in a basic dyadic cube D. If z is relatively far

from the boundary of D, then there is a relatively large ball B centered at z also

contained in D. In the following two proofs we will be interested in situations like

that. For this reason we need to introduce a special notation, which we define below.
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Notation 6.2.9. Fix n. Let z 2 [0, 1]n be an element with no dyadic components
and let Z 2 2! be its binary expansion. For every i 2 N, define

dZ,i = 2i · d (z, @[Z�ni]) .

@[Z�ni] is the boundary of the basic dyadic cube containing z with its side length
equal to 2�i. Thus dZ,i measures relative closeness of z to @[Z�ni].
For every ✏ 2 R, define

lZ,✏ = {n · j | dZ,j > ✏}.

Similarly, for all � 2 2<! and all i 2 N with 0  ni  |�|, define

d�,i = 2i · d ([�], @[��ni]) ,
l�,✏ = {n · j | n · j  |�| and d�,j > ✏}.

Observe that when ✏ is rational, the function � 7! l�,✏ is computable. Moreover,
lZ,✏ = [ilZ�

i

,✏ for all Z 2 2!.

Proof of Proposition 6.2.6. Suppose z 2 [0, 1]n is not computably random. Let (Bi)i2N
be a sequence of open balls defined by Bj = B(z, 2�j). By Proposition 2.4.2, there

exists t̂ 2 {0, 1/3, 2/3}n and an infinite subsequence of (Bi)i2N such that whenever Bi

is an element of this subsequence, Bi� t̂ is contained in a basic dyadic cube belonging

to Dn(ki) for some ki with 2�k
i  12 · 2�i.

For every t 2 {0, 1/3, 2/3}n, define ⌫t : [0, 1]n ! [0, 1]n by

⌫t(x) = ({(x� t)
1

}, . . . , {(x� t)n}), where {·} denotes the fractional part.

Note that ⌫t is an a.e. computable isomorphism.

Fix t 2 {0, 1/3, 2/3}n and consider ẑ = ⌫t(z). Suppose Proposition 6.2.6 holds for

ẑ. That is, there exists a computable, absolutely continuous probability measure µt

such that (1)-(3) hold. Define a measure µ by

µ(A) = µt(⌫t(A)) for all Borel A ✓ [0, 1]n.

Then µ is a computable, absolutely continuous probability measure on [0, 1]n with its

support equal to [0, 1]n. Furthermore, µ is not di↵erentiable at z. Therefore, Propo-

sition 6.2.6 holds for z if it holds for ⌫t(z) for any t 2 {0, 1/3, 2/3}n. In particular, it

is su�cient to prove Proposition 6.2.6 for ⌫
ˆt(z) instead of z.

Let ẑ = ⌫
ˆt(z) and let Ẑ be its binary expansion. Via considerations from the first

paragraph of this proof, there exists a sequence of basic balls (B̂i)i2N centered at ẑ

such that for every i, B̂i is contained in a basic dyadic cube belonging to Dn(ki) with

2�k
i  12 · ri, where ri is the radius of B̂i. It follows that l ˆZ = l

ˆZ,2�4 is infinite.

Pick k 2 N such that 2k�4 > 5
p
n and define q = 2kn+2. Let Vn be the volume of the

unit ball in Rn, so that � (B(x, r)) = Vnrn for all x 2 Rn and r � 0.

Suppose there exists a computable martingale M with the following properties:

98



(A1) M(;) = 2 and for all � 2 2<!, 1  M(�)  q + 1,

(A2) for infinitely many j 2 l
ˆZ ,

M(Ẑ�j)  2, and (6.5)

(A3) for infinitely many j 2 l
ˆZ ,

M(Ẑ�j+i) � q for all i with 0  i  k · n. (6.6)

Let µ = µM be the corresponding probability measure. Clearly, it is computable

and absolutely continuous. Moreover, its support is equal to [0, 1]n and its density is

bounded away from 0 and from 1.

Let j 2 l
ˆZ be such that (6.5) holds. Define B = B(ẑ, 2�j/n�4) and D = [Ẑ�j], so that

B ⇢ D. Then

µ(B)

� (B)
 � (D)

� (B)

µ(D)

� (D)
=
� (D)

� (B)
M(Ẑ�j)  2

2�j

Vn(2�j/n�4)n
=

2

Vn
(16)n.

Let j 2 l
ˆZ be such that (6.6) holds. Define B = B(ẑ, 2�j/n�4) and D = [Ẑ�j], so that

B ⇢ D. By Lemma 2.4.3, B contains a basic dyadic cubeDB with l(DB) � 2

�j/n�4

5

p
n > 2�j/n�k

and ẑ 2 DB. Then DB = [Ẑ�j+k1n] for some k
1

with 0  k
1

 k. We get

µ(B)

� (B)
� µ(DB)

� (B)
=
� (DB)

� (B)

µ(DB)

� (DB)
� 2�j�k1n

Vn(2�j/n�4)n
M(Ẑ�j+k1n) �

2(4�k)nq

Vn
=

2(4�k)n2kn+2

Vn
=

4

Vn
(16)n.

It follows that µ is not di↵erentiable at ẑ. In order to complete the proof, we need to

show that a computable martingaleM satisfying (A1)-(A3) exists. Proposition 6.2.10,

below, shows this.

Proposition 6.2.10. Let z 2 [0, 1]n be an element with no dyadic components
and let Z 2 2! be its binary expansion. Let ✏ be a positive rational number.
Suppose z is not computably random and lZ = lZ,✏ is infinite. Let q be a dyadic
rational with 2 < q and let k 2 N. There exists a computable martingale Mq,k

such that:

1. for all � 2 2<!, 1  Mq,k(�)  q + 1,

2. for infinitely many j 2 lZ, for all i 2 N with 0  i < k, Mq,k(Z�j+i)  2,
and

3. for infinitely many j 2 lZ, for all i 2 N with 0  i < k, Mq,k(Z�j+i) � q.
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Proof. Since z is not computably random, some computable martingale M succeeds

on Z. We build Mq,k from M .

As mentioned in Remark 2.5.4, we may assume thatM only takes positive rational

values which can be computed in a single output from the input string. We may also

assume that M has the savings property

M(�⌘) � M(�)� 1 for each strings �, ⌘.

The martingale Mq,k has to satisfy the three conditions from the statement of this

result. To satisfy the first condition, we turn the success of M into oscillation of Mq,k

so that the capital of Mq,k is always between 1 and q + 1. At each �, the martingale

Mq,k is in one of three possible phases. In the up phase, it adds the capital that M

risks, until its value Mq,k(�) reaches q (if this value would exceed q, Mq,k adds less in

order to ensure the value equals q). In the waiting phase, Mq,k does not bet until a

certain condition is satisfied. In the down phase, Mq,k subtracts the capital that M

risks, until the value Mq,k(�) reaches 2.

To satisfy the second (respectively, third) condition, our construction ensures that

Mq,k infinitely often is in the waiting phase with its capital fixed at 2 (respectively,

q).

The construction of Mq,k is as follows.

We will make use of the following notation. For m, i 2 N and � 2 2<!, define

l�[m, i] = {j 2 l�,✏ | m  j  i}.

Observe that l�[m, i] is computable uniformly in m, i and �.

Inductively, we show that if Mq,k is in the up phase at �, then Mq,k(�) < q, if Mq,k

is in the down phase at �, then Mq,k(�) > 2 and if it is in the waiting phase, either

Mq,k(�) = q or Mq,k(�) = 2. At the empty string ;, the martingale Mq,k is in the up

phase and Mq,k(;) = 2. Thus the inductive condition holds at the empty string.

For every � 2 2<!, let phase(�) 2 {up,wait,down} denote the phase of Mq,k at �.

By phase(�) we denote the longest prefix of � where Mq,k changed from one phase to

another:

start(�) = ��
max{i|�| | phase(��

i

) 6=phase(��
i�1)}.

Suppose now that Mq,k(�) has been defined.

Case 1: Mq,k is in the up phase at �. For all j 2 {0, 1}, let

rj = Mq,k(�) +M(�j)�M(�).

If r
0

, r
1

< q then let Mq,k(�j) = rj; stay in the up phase at both �0 and �1; let

start(�0) = start(�1) = �. Otherwise, since M is a martingale and Mq,k(�) < q, there

is a unique j such that rj � q. Let Mq,k(�j) = q and Mq,k(�(1� j)) = 2Mq,k(�)� q.
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Go into the waiting phase at �j, but stay in the up phase at �(1� j). Note that the

inductive condition is maintained at both �0 and �1.

Case 2: Mq,k(�) is in the down phase.

For all j 2 {0, 1}, let
rj = Mq,k(�)� (M(�j)�M(�)).

If r
0

, r
1

> 2 then let Mq,k(�1) = r
1

and Mq,k(�0) = r
0

; stay in the down phase at both

�0 and �1. Otherwise, since M is a martingale and Mq,k(�) > 2, there is a unique j

such that rj  2. Let Mq,k(�j) = 2 and Mq,k(�(1� j)) = 2Mq,k(�)� 2. Go into the

waiting phase at �j, but stay in the down phase at �(1� j). The inductive condition

is maintained at both �0 and �1.

Case 3: Mq,k(�) is in the waiting phase. Let � = l�[|start(�)|, |�|]. If � is not empty,

let j be its least element. If the waiting condition

W (�) = � is empty or j < |�|� k, (6.7)

is satisfied, stay in the waiting phase and don’t bet. That is, let

Mq,k(�1) = Mq,k(�0) = Mq,k(�).

Otherwise,

• if Mq,k(�) = q, then go into the down phase at �0 and �1,

• else go into the up phase at �0 and �1.

Since in the waiting phase Mq,k does not bet and Mq,k can only go into the waiting

phase when its capital is equal either to 2 or q, the inductive condition is maintained

at both �0 and �1.

Claim 6.2.11. For each string ⌧ ,

1  Mq,k(⌧)  q + 1.

If Mq,k is in the waiting phase at ⌧ , then either Mq,k(⌧) = q or Mq,k(⌧) = 2.

Suppose that Mq,k is in the up phase at ⌧ . Then Mq,k(⌧)  q. For the lower

bound on Mq,k(⌧), suppose that Mq,k entered the up phase at the string � � ⌧ with

|�|maximal. ThenMq,k(�) = 2. By the savings property we haveM(⌧)�M(�) � �1.

Therefore Mq,k(⌧) = Mq,k(�) +M(⌧)�M(�) � 1.

Next suppose that Mq,k is in the down phase at ⌧ . Then Mq,k(⌧) � 2. For the

upper bound on Mq,k(⌧), suppose that Mq,k entered the down phase at the string

� � ⌧ with |�| maximal. Then Mq,k(�) = q. By the savings property we have

Mq,k(⌧) = Mq,k(�)� (M(⌧)�M(�))  q + 1.
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Claim 6.2.12. Mq,k oscillates between up and down phases infinitely often along Z.

That is, for infinitely many j, Mq,k is in the down phase at Z�j and for infinitely

many i, Mq,k is in the up phase at Z�i.
To prove the claim, it is su�cient to demonstrate that Mq,k, along Z, does not stay

in either of the three phases indefinitely.

Firstly suppose Mq,k is in the up phase at Z�i for some i. In the up phase, Mq,k

mimics M until its capital reaches q and then goes into the waiting phase. By our

assumption, M succeeds on Z, hence for some j, Mq,k(Z�i+j) = q with Mq,k going

into the waiting phase at Z�i+j.

Next suppose Mq,k(Z�i) is in the waiting phase for some i with start(Z�i) = Z�i.
Observe that

{j 2 lZ : j � i} =
[

j2N

lZ�
i+j

[i, i+ j],

and

lZ�
i+j

[i, i+ j] ✓ lZ�
i+j+m

[i, i+ j +m] for all i,m, j.

It is easy to see that lZ�
i

[i, i] is empty and W (Z�i) is satisfied. Since lZ is infinite,

there exist the least j such that lZ�
i+j

[i, i + j] is not empty. Then for some k
1

 k,

W (Z�i+j+k1) does not hold and hence Mq,k will leave the waiting phase eventually.

Finally, suppose Mq,k(Z�i) is in the down phase for some i. In the down phase, Mq,k

subtracts the capital that M risks, until the value Mq,k(�) reaches 2 and then goes

into the waiting phase. Since M succeeds on Z, it is clear that every time Mq,k is in

the down phase at Z�i, there exists j such that, Mq,k goes into the waiting phase at

Z�i+j.

Claim 6.2.13. For infinitely many j 2 lZ, for all t 2 N with 0  t < k,

Mq,k(Z�j+t) = q.

From Claim 6.2.12 we know that Mq,k goes from the up phase into the waiting phase

infinitely often along Z. Suppose Mq,k(Z�i) is in the waiting phase for some i with

start(Z�i) = Z�i and Mq,k = q. Then Mq,k waits (with its capital fixed at q) until

lZ�
j

[i, j] is not empty for some j > i. Let j be the minimal such number and let

m = min lZ�
j

[i, j]. Then m 2 lZ ,m � i and, by our construction, for all t 2 N with

0  t < k, Mq,k(Z�m+t) = q.

By analogous considerations the following claim holds.

Claim 6.2.14. For infinitely many j 2 lZ, for all t 2 N with 0  t < k,

Mq,k(Z�j+t) = 2.

This complete the proof of Proposition 6.2.10.
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6.3 Consequences of the main theorem

6.3.1 Monotone and convex functions

We start with a result that follows straightforwardly from Theorem 6.0.1.

Theorem 6.3.1. Let z 2 Rn. The following are equivalent:

1. z is computably random,

2. every a.e. computable monotone function f : Rn ! Rn is di↵erentiable at
z, and

3. every computable convex function f : Rn ! R is twice-di↵erentiable at z.

Proof. (1) =) (2) follows from Theorem 4.6.3. (1) =) (3) follows from Theo-

rem 4.5.5.

To prove (2) =) (1) and (3) =) (1), let z 2 [0, 1]n be not computably random.

Via Theorem 6.0.1, there is a computable convex function � : [0, 1]n ! R such that

r� is not di↵erentiable at z. Moreover, the continuous extension of r� to [0, 1]n

(which, for the sake of simplicity, we will also denote by r�) is computable.

Define �̂ : Rn ! R by

�̂(x) = sup
y2[0,1]n

{�(y) + hr�(y), x� yi} = max
y2[0,1]n

{�(y) + hr�(y), x� yi}.

Let K be the Lipschitz constant of � on [0, 1]n. Then functions

x 7! �(y) + hr�(y), x� yi

are a�ne and K�Lipschitz. Hence �̂, being a sup of a family of a�ne K�Lipschitz

functions, is both convex andK�Lipschitz on Rn. Moreover, since �̂(x) is computable

uniformly in x 2 Qn and �̂ is Lipschitz, �̂ is a computable convex function. Let us

show that �̂ coincides with � on [0, 1]n. Via Proposition 5.4 [ET99], we have

�(x)� �(y) � hr�(y), x� yi for all x, y 2 [0, 1]n. (6.8)

Rewriting (6.8) we have

�(x) � max
y2[0,1]n

{�(y) + hr�(y), x� yi} for all x 2 [0, 1]n.

It follows that � � �̂ on [0, 1]n. From the definition of �̂ we also know that �  �̂

on [0, 1]n. Hence �̂ = � on [0, 1]n. This shows that �̂ : Rn ! R is a computable

convex function not twice-di↵erentiable at z. Then, by Proposition 4.5.1, r�̂ is a

monotone a.e. computable function not di↵erentiable at z.
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6.3.2 Probability measures on [0, 1]n

Theorem 6.1.3 can not be applied to arbitrary monotone functions, since those are

not necessarily continuous. However, there is an analogous result specifically for

subgradients of convex functions (it is Theorem A.2 in [McC97]):

Theorem 6.3.2 (Jacobian theorem for monotone maps). Let � be a convex
function on Rn and suppose it is twice di↵erentiable at x 2 Rn. Then

lim
r!0

� (@�(B(x, r)))

� (B(x, r))
= detD2�(x).

With the results we have proven so far, we can easily get the following character-

isation of computable randomness in [0, 1]n in terms of di↵erentiability of absolutely

continuous computable probability measures on [0, 1]n.

Theorem 6.3.3. Let z 2 [0, 1]n.

z is computably random ()

every absolutely continuous computable probability measure on [0, 1]n is
di↵erentiable at z.

Proof ). Let µ be an absolutely continuous computable probability measure on

[0, 1]n and let z 2 [0, 1]n. We may assume z belongs to the interior of [0, 1]n. Suppose

D�µ(z) does not exist.

Define a probability measure µ̂ on [0, 1]n by µ̂ = 1

2

(µ + �n). It is computable,

absolutely continuous and its support is equal to [0, 1]n. Moreover, D�µ̂(z) does not

exist.

By the e↵ective Brenier theorem, there exists a computable convex function

� : [0, 1]n ! R such that �n = r�#µ̂. Let f be the density of µ̂. By Theorem 6.2.3,

� is an Aleksandrov solution of

detD2�(x) =
f(x)

1
[0,1]n � r�(x) .

This means that the density of M� coincides with f on [0, 1]n. Hence M� coincides

with µ̂ on [0, 1]n. Since z 2 (0, 1)n, we have

lim
r!0

� (@�(B(z, r)))

� (B(z, r))
= lim

r!0

M�(B(z, r))

� (B(z, r))
= lim

r!0

µ̂(B(z, r))

� (B(z, r))
= D�µ̂(z).

We know D�µ̂(z) does not exists and thus by Theorem 6.3.2 � is not di↵erentiable at

z. Just like in the proof of Theorem 6.3.1, � can be extended to a computable convex

function on Rn and then by Theorem 4.5.5 z is not computably random.
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Proof (. Follows from Proposition 6.2.6.

Remark 6.3.4. This theorem can be reformulated as an e↵ective version of the
Lebesgue di↵erentiation theorem for functions that are densities of computable
absolutely continuous measures on [0, 1]n. It is not known if there is a more natu-
ral (from computability theory point of view) characterization of such functions.

An analogous characterisation of Schnorr randomness has been proven in
[Rut13] (for measures) and [PRS14] (for functions on Rn). In that case the
corresponding class of e↵ective functions is very natural (L1-computability),
while the class of corresponding probability measures is somewhat artificial.

6.3.3 Critical values of computable monotone Lipschitz func-
tions

Theorem 6.3.5. Let z 2 Rn. The following are equivalent:

1. z is computably random, and

2. z is not a critical value of any computable monotone Lipschitz function
f : Rn ! Rn.

Proof ). Follows from Theorem 4.3.2.

Proof (. Suppose z 2 Rn is not computably random. By Theorem 6.3.1, there is an

a.e. computable monotone function u : Rn ! Rn not di↵erentiable at z. Then

f = (u+ I)�1

is a computable Lipschitz function. Theorem 2.7.23 implies that f(u(z) + z) = z is a

critical value of f .

6.3.4 The Monge-Ampère equation

Robert McCann in [McC97] demonstrated that the Monge-Ampère equation of the

type associated with optimal transport holds true almost everywhere. The following

theorem is an e↵ective variant of this result.
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Theorem 6.3.6. Consider the following Monge-Ampère equation:

detD2� =
D�µ

1
[0,1]n � r� . (6.9)

Let z 2 [0, 1]n. The following are equivalent:

1. z is computably random, and

2. for every computable absolutely continuous probability measure µ on Rn

with supp (µ) = [0, 1]n, if � : [0, 1]n ! R is a Brenier solution of (6.9),
then the following holds:

detD2�(z) =
D�µ

1
[0,1]n � r�(z), (6.10)

3. for every computable absolutely continuous probability measure µ on Rn

with supp (µ) = [0, 1]n, if � : [0, 1]n ! R is a computable Brenier solution
of (6.9), then (6.10) holds.

Proof (1) =) (2). Let z 2 [0, 1]n. Let µ be a computable absolutely continuous

probability measure with supp (µ) = [0, 1]n. Let � be a Brenier solution of (6.9).

Suppose (6.10) doesn’t hold. We will show that z is not computably random. We

may assume z belongs to the interior of [0, 1]n.

By the e↵ective Brenier theorem and by Lemma 5.2.1, we may assume � is com-

putable on [0, 1]n. Since � is computable and convex, r� and detD2� are well

defined on all computably random elements of [0, 1]n. Hence we may assume r�(z)
and detD2�(z) are well defined. Since µ is absolutely continuous and computable, if

D�µ(z) does not exist, then by Theorem 6.3.3 z is not computably random. Suppose

it does exist.

Since � is a Brenier solution of (6.9), by Theorem 6.2.3, � is also an Aleksandrov

solution of (6.9) hence D
�

µ
1[0,1]n�r�

coincides with the density of M� on the support of

µ. Moreover, r�(supp (µ)) ✓ [0, 1]n and hence D
�

µ
1[0,1]n�r�

= D�µ and then M� = µ on

the support of µ. Then

D�µ

1
[0,1]n � r�(z) = D�µ(z) = lim

r!0

µ(B(z, r))

� (B(z, r))
= lim

r!0

M�(B(z, r))

� (B(z, r))
= lim

r!0

�(@�(B(z, r)))

� (B(z, r))
.

By our assumption,

lim
r!0

�(@�(B(z, r)))

� (B(z, r))
6= detD2�(z).

Hence, by Theorem 6.3.2, � is not twice di↵erentiable at z and thus z is not com-

putably random.
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Proof (2) =) (3). Trivial.

Proof (3) =) (1). Suppose z 2 [0, 1]n is not computably random. By Theorem 6.3.3

there exists a computable absolutely continuous probability measure µ on [0, 1]n not

di↵erentiable at z. We may assume supp (µ) = [0, 1]n. Since µ is not di↵erentiable at

z, (6.10) doesn’t hold.
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Notation index

General

2

<!
set of strings of zeros and ones

2

!
Cantor space, the space of infinite binary strings with the product topology

�⌧ concatenation of � and ⌧

�a � followed by the symbol a

� � ⌧ � is a prefix of ⌧

|�| the length of �

Z �n Z(0)Z(1) . . . Z(n� 1)

; the empty string

; the empty set

#X cardinality of the set X

A�B {2n : n 2 A} [ {2n+ 1: n 2 B}, e↵ective disjoint union

N set of natural numbers 0, 1, 2 . . .

N+

set of positive natural numbers

R set of real numbers

Q set of rational numbers

R+

0

set of non-negative real numbers

� Lebesgue measure (either on 2

!
or on Rn

)

�n restriction of the Lebesgue measure to [0, 1]

n

supp (µ) support of the measure µ

X closure of X

@X boundary of X

int(A) interior of A

B(x, r) open metric ball centered at x with radius r

B(x, r) closed metric ball centered at x with radius r

hx, yi dot product

�f the graph of function f , for monotone set-valued functions see Notation 2.7.8

|x| euclidean norm of x 2 Rn

d(x,A) distance between x 2 Rn
and A ⇢ Rn

, that is infy2A |x� y|
d(A,B) distance between two subsets of Rn

, that is infy2A,x2B |x� y|
S

n
n�sphere

e

1

, . . . , en canonical orthonormal basis of Rn

kfk1 supremum norm

1A indicator function of a set A
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Preliminaries

(x)i i�th element of a Cauchy name, see Notation 2.1.3

CNx the set of all Cauchy names for x, see Definition 2.1.1

(f(x))t approximate value of f(x), see Notation 2.1.7

P (X) set of all probability measures on X, see Notation 2.3.1

⇡(µ, ⌫) Prokhorov distance between µ and ⌫, see Definition 2.3.2

Dn
i set of points in Rn

with all coordinates of the form k2

�i
for some integer k,

see Section 2.4

Dn,S
i the set Dn

i \ S

n
, see Section 2.4

Dn
⇤ [iDn

i , see Section 2.4

Dn,S
⇤ [iDn,S

i , see Section 2.4

Dn
set of all half-open basic dyadic cubes in Rn

, see Section 2.4

l(D) side length of a cube D, see Section 2.4

Dn
(k) those cubes D in Dn

with l(D) = 2

�k
, see Section 2.4

Dn
(i, x) the unique element of Dn

(i) containing x, see Section 2.4

p

n
i (Z) binary subsequence of Z, defined as {Z(kn+ i) : k 2 N}, see Definition 2.5.9

0.Z an element of [0, 1]

n
whose binary expansion is Z, see Definition 2.5.9

[�] depending on the context, either a clopen in 2

!
,

or a finite union of dyadic cubes in [0, 1]

n
, see Notation 2.5.10

[�]p a shifted dyadic cube, that is [�] + p, see Notation 2.5.12

M

A
oracle martingale M with oracle A, see Definition 2.5.5

Df(x) derivative of f at x, see Definition 2.6.1, Definition 2.6.3 and Definition 2.6.6

Df(x) upper derivative of f at x, see Definition 2.6.2

Df(x) lower derivative of f at x, see Definition 2.6.2

D

2

f(x) upper dyadic derivative of f at x, see Definition 2.6.2

D

2

f(x) lower dyadic derivative of f at x, see Definition 2.6.2

D

+

f(x) right-sided derivative of f at x, see Definition 2.6.2

D�f(x) left-sided derivative of f at x, see Definition 2.6.2

Dif(x) ith partial derivative of f at x, see Definition 2.6.4

rf(x) gradient of f at x, see Definition 2.6.4

Df(x; v) directional derivative of f at x in the direction of v, see Definition 2.6.5

Df

+

(x; v) one-sided directional derivative of f at x in the direction of v, see Definition 2.6.5

Nf non-di↵erentiability set of f , see Notation 2.6.8

Lip(f) Lipschitz constant of f , see Definition 2.7.1

epif epigraph of f , see Definition 2.7.4

Dm u domain of a monotone function u, see Notation 2.7.8

@u subdi↵erential of u, see Definition 2.7.16

I identity function on Rn

f

⇤
Fenchel conjugate of f , see Definition 2.7.26

Mu Monge-Ampère measure associated with u, see Section 2.7.7

D�µ(x) symmetric derivative of µ, see Definition 2.7.28

D

2

µ(x) dyadic derivative of µ, see Definition 2.7.28

D

2

µ(x) upper dyadic derivative of µ, see Definition 2.7.28

D

2

µ(x) lower dyadic derivative of µ, see Definition 2.7.28
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Chapter 3

Sf (�) slope of f at the dyadic interval [�], see Notation 3.1.1

Sf (a, b) slope of f at the interval (a, b), see Notation 3.1.1

µM measure corresponding to martingale M , see Notation 3.1.2

Mµ martingale corresponding to measure µ, see Notation 3.1.2

Mf martingale corresponding to function f , see Notation 3.1.3

por

2

(A,B) dyadic porosity constant, see Definition 3.1.4

A (µ) set of atoms of measure µ, see Notation 3.3.21

Chapter 4

⇥u!v change of basis map with ⇥u!v(u) = v, see Section 4.1.2

Chapter 5

T#µ measure ⌫ defined by ⌫(A) = µ(T

�1

(A)), see Definition 5.0.1

⇧(µ, ⌫) set of all admissible transference plans between µ and ⌫, see Section 5.1.1

Ic[⇡] total transportation cost associated with measure ⇡, defined in Eq. (5.2)

Ic[T ] total transportation cost associated with map T , defined in Eq. (5.3)

Ic[µ, ⌫] total transportation cost between µ and ⌫, defined as inf⇡2⇧(µ,⌫) Ic[⇡],

see Section 5.1.1

M

2

(µ, ⌫) defined as

R

Rn

|x|2
2

dµ(x) +

R

Rn

|x|2
2

d⌫(x), see Notation 5.1.1

Jµ,⌫(f, g) defined as

R

Rn

f dµ+

R

Rn

g d⌫, see Notation 5.1.1

J(f, g) short for Jµ,⌫(f, g), see Notation 5.1.1

�c set of pairs of integrable functions �, with �(x) +  (y)  c(x, y) for almost all x, y,

defined in Theorem 5.1.4

LK {f 2 C([0, 1]

n
,R) : Lipf  K and |f |  K}, see Section 5.3

f lower interpolant of f , defined in Definition 5.3.3

(�̂i)i2N computable sequence of piecewise a�ne functions defined in Definition 5.3.6

LK computable metric space (LK , d1, (�̂i)i2N) defined in Proposition 5.3.7

Wp(µ, ⌫) Wasserstein distance between µ and ⌫, defined as Ip(µ, ⌫)1/p, see Definition 5.4.1

Chapter 6

D

2

� second derivative of �

µ

n
M probability measure on [0, 1]

n
corresponding to martingale M ,

defined by µ

n
M ([�]) = �([�]) ·M(�)/M(;), see Notation 6.2.7
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