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Abstract

We find an explicit formula for the weighted extremal function of Rn ⊂ Cn with
weight (1 + x21 + · · ·+ x2n)−1/2 as well as its Monge-Ampère measure. As a corollary,
we compute the Alexander capacity of RPn.

1 Introduction

For K ⊂ Cn compact, define the usual Siciak-Zaharjuta extremal function

VK(z) = sup{u(z) : u ∈ L(Cn), u ≤ 0 on K}

where L(Cn) is the Lelong class of all plurisubharmonic (psh) functions u on Cn with the
property that u(z)− log |z| = 0(1), |z| → ∞. Define

L+(Cn) := {u ∈ L(Cn) : u(z) ≥ log+ |z|+ C}

where C is a constant depending on u. We have

VK(z) := max

{
0, sup

p

{
1

deg(p)
log |p(z)| : p poly., ||p||K := max

z∈K
|p(z)| ≤ 1

}}
, (1.1)

where the supremum is taken over (non-constant) holomorphic polynomials p. Letting
V ∗K(z) := lim supζ→z VK(ζ) be the uppersemicontinuous (usc) regularization, either V ∗K ∈
L+(Cn) or V ∗K ≡ ∞, this latter case occurring when K is pluripolar; i.e., there exists
u 6≡ −∞ psh on a neighborhood of K with K ⊂ {u = −∞}.

If K ⊂ Cn is closed, a nonnegative usc function w : K → [0,∞) with {z ∈ K : w(z) >
0} not pluripolar is called a weight function on K and Q(z) := − logw(z) is the potential
of w. The associated weighted extremal function is

VK,Q(z) := sup{u(z) : u ∈ L(Cn), u ≤ Q on K}.
∗Supported by Simons Foundation grant No. 354549
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Note VK,0 = VK for compact K. For unbounded K, the potential Q is required to grow
at least like log |z|. If lim infz∈K, |z|→+∞

(
Q(z) − log |z|

)
> −∞, Q is weakly admissible; if

|z|w(z)→∞ as |z| → ∞, z ∈ K, Q is admissible. In the former case, the Monge-Ampère
measure (ddcV ∗K,Q)n might not have compact support. For bounded K, and for unbounded
K with admissible Q (or even weakly admissble Q if VK,Q is continuous),

VK,Q(z) = sup{ 1

deg(p)
log |p(z)| : p poly., ||pe−deg(p)Q||K ≤ 1}.

If we let X = Pn with the usual Kähler form ω normalized so that
∫
Pn ω

n = 1, we can
define the class of ω−psh functions (cf., [9])

PSH(X,ω) := {φ ∈ L1(X) : φ usc, ddcφ+ ω ≥ 0}.

Let z := [z0 : z1 : · · · : zn] be homogeneous coordinates on X = Pn. Identifying Cn with the
affine subset of Pn given by {[1 : z1 : · · · : zn]}, we can identify the ω−psh functions with
the Lelong class L(Cn), i.e., PSH(X,ω) ≈ L(Cn), and the bounded (from below) ω−psh
functions coincide with the subclass L+(Cn). For example, if φ ∈ PSH(X,ω), then

u(z) = u(z1, ..., zn) := φ([1 : z1 : · · · : zn]) +
1

2
log(1 + |z|2) ∈ L(Cn).

Abusing notation, we write u = φ+u0 where u0(z) := 1
2

log(1+ |z|2). Given a closed subset
K ⊂ Pn and a function q on K, we can define a weighted ω−psh extremal function

vK,q(z) := sup{φ(z) : φ ∈ PSH(X,ω), φ ≤ q on K}.

Thus if K ⊂ Cn ⊂ Pn, for [1 : z1 : · · · : zn] = [1 : z] ∈ Cn we have

vK,q([1 : z]) = sup{u(z) : u ∈ L(Cn), u ≤ u0+q on K}−u0(z) = VK,u0+q(z)−u0(z). (1.2)

If q = 0, the Alexander capacity Tω(K) of K ⊂ Pn was defined in [9] as

Tω(K) := exp [− sup
Pn

vK,0].

This notion has applications in complex dynamics; cf., [8].
These extremal psh and ω−psh functions VK , VK,Q and vK,0, vK,q, as well as the homo-

geneous extremal psh function HE of E ⊂ Cn (section 4), are very difficult to compute
explicitly. Even when an explicit formula exists, computation of the associated Monge-
Ampère measure is problematic. Our main goal in this paper is to utilize a novel approach
to explicitly compute VK,Q and (ddcVK,Q)n for the closed set K = Rn ⊂ Cn with weakly
admissible weight w(z) = |f(z)| = | 1

(1+z2)1/2
| where z2 = z21 + · · ·+ z2n.

Theorem 1.1. For K = Rn ⊂ Cn and weight w(z) = |f(z)| = | 1
(1+z2)1/2

|,

VRn,Q(z) =
1

2
log
(
[1 + |z|2] + {[1 + |z|2]2 − |1 + z2|2}1/2

)
, z ∈ Cn and (1.3)

(ddcVRn,Q)n = n!
ωn

(1 + x2)
n+1
2

dx. (1.4)
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Here dx is Lebesgue measure on Rn and ωn denotes the volume of the Euclidean unit ball
in Rn. Note that for n = 1, it is easy to see that

VRn,Q(z) = max[log |z − i|, log |z + i|] (1.5)

which agrees with formula (1.3). We remark that VRn,Q(z) = VLn+1(1, z) where Ln+1 is the
Lie ball in Cn+1 (see (2.1)).

The potential Q(z) in this case is the standard Kähler potential u0(z) restricted to Rn.
Using (1.2) and the fact that RPn \ Rn is (locally) pluripolar in Pn, for z ∈ Cn we have

VRn,Q(z) = u0(z) + vRn,0([1 : z]) = u0(z) + vRPn,0([1 : z]).

As an application of (1.3) we can calculate the Alexander capacity Tω(RPn) of RPn.

Corollary 1.2. The unweighted ω−psh extremal function of RPn is given by

vRPn,0([1 : z]) =
1

2
log
(
[1 + |z|2] + {[1 + |z|2]2 − |1 + z2|2}1/2

)
− u0(z)

=
1

2
log
(
1 + [1− |1 + z2|2

(1 + |z|2)2
]1/2
)

(1.6)

for [1 : z] ∈ Cn and

vRPn,0([0 : z]) = lim sup
|t|→∞

[1
2

log
(
1+[1− |1 + (tz)2|2

(1 + |tz|2)2
]1/2
)]

=
1

2
log
(
1+[1− |z

2|2

(|z|2)2
]1/2
)
. (1.7)

Thus the exact value of the Alexander capacity Tω(RPn) is 1/
√

2.

The proofs of (1.3) and (1.4) are in sections 2 and 3. The proof of (1.3) in section 2
is by nature a verification of a formula found by other means. It is the purpose of section
6, based on the results in section 5, to provide readers interested in deriving formulas for
other examples of K and Q an alternative, deductive proof of (1.3) from which this formula
was originally discovered. It is our hope (and indeed expectation) that these techniques
can be used in other cases. We would like to thank Ragnar Sigurdsson for many helpful
suggestions, in particular, for the main calculation in the next section.

2 Relation with Lie ball and maximality of VRn,Q

In this section we prove (1.3) of Theorem 1.1 as well as Corollary 1.2. Writing Z :=
(z0, z) = (z0, z1, ..., zn) ∈ Cn+1, define the Lie ball

Ln+1 = {Z ∈ Cn+1 : |Z|2 + {|Z|4 − |Z2|2}1/2 ≤ 1}. (2.1)

The extremal function of this circled set (Z ∈ Ln+1 ⇐⇒ eiθZ ∈ Ln+1) is

VLn+1(Z) =
1

2
log+

(
|Z|2 + {|Z|4 − |Z2|2}1/2

)
; thus
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V (z) := VLn+1(1, z) =
1

2
log
(
[1 + |z|2] + {[1 + |z|2]2 − |1 + z2|2}1/2

)
(2.2)

agrees with formula (1.3). The function VLn+1(Z) in Cn+1 is maximal outside Ln+1, i.e.,
(ddcVLn+1)

n+1 = 0 there. We show: our candidate function V : Cn → R in (2.2) for
VK,Q in (1.3), where K = Rn ⊂ Cn and Q(x) = 1

2
log(1 + x2), is maximal in Cn \ Rn.

Note for x ∈ Rn, |x|2 = x2 and V (x) = Q(x). Let ‖ · ‖c denote the Lie norm on Cn+1:

‖z‖2c = |z|2 +
(
|z|4 − |z2|2

) 1
2 , z ∈ Cn+1. This is a norm on Cn+1 and V (z) = log ‖(1, z)‖c.

For a C2 function u on a domain D in Cn+1 of the form u = log v we write the Levi
form of u at Z ∈ D applied to w ∈ Cn+1 as

Lu(Z;w) =
1

v(Z)

(
Lv(Z;w)− 1

v(Z)

∣∣〈∇v(Z), w〉
∣∣2) (2.3)

where ∇v = (∂v/∂Z1, . . . , ∂v/∂Zn+1) and 〈a, b〉 =
∑n+1

j=1 ajbj.

Consider v(Z) = ‖Z‖2c = |Z|2 + ϕ(Z)
1
2 where ϕ(Z) = |Z|4 − |Z2|2. Note |Z|2 = |Z2| if

and only if Z ∈ C ·Rn+1. This occurs precisely when ReZ is a real multiple of ImZ. Hence
v ∈ C∞(Cn+1 \ C · Rn+1). Working on Cn+1 \ C · Rn+1, we have

∂v

∂Zj
= Z̄j + 1

2
ϕ(Z)−

1
2
∂ϕ

∂Zj
so that

∂2v

∂Zj∂Z̄k
= δjk + 1

2
ϕ(Z)−

1
2

∂2ϕ

∂Zj∂Z̄k
− 1

4
ϕ(Z)−

3
2
∂ϕ

∂Zj

∂ϕ

∂Z̄k
.

The formula (2.3) for the Levi form of u becomes

Lu(Z;w) =
1

v(Z)

(
|w|2 + 1

2
ϕ(Z)−

1
2Lϕ(Z;w)− 1

4
ϕ(Z)−

3
2

∣∣〈∇ϕ(Z), w〉
∣∣2

− 1

v(Z)

∣∣〈Z̄, w〉+ 1
2
ϕ(Z)−

1
2 〈∇ϕ(Z), w〉

∣∣2).
We have the formulas

∂ϕ

∂Zj
= 2|Z|2Z̄j − 2Zj

(
Z̄2
)

and
∂2ϕ

∂Zj∂Z̄k
= 2|Z|2δjk + 2Z̄jZk − 4ZjZ̄k

yielding
〈∇ϕ(Z), w〉 = 2

(
|Z|2〈Z̄, w〉 −

(
Z̄2
)
〈Z,w〉

)
and

Lϕ(Z;w) = 2|Z|2|w|2 + 2|〈Z̄, w〉|2 − 4|〈Z,w〉|2.

In particular, 〈∇ϕ(Z), Z̄〉 = 0 and Lϕ(Z; Z̄) = −2ϕ(Z). Moreover, since u(λZ) = log |λ|+
u(Z) for λ ∈ C \ {0}, Lu(Z;Z) = 0. Hence

Lu(Z; Z̄) =
1

v(Z)

(
|Z|2 + 1

2
ϕ(Z)−

1
2 (−2ϕ(Z))− |Z

2|2

v(Z)

)
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=
1

v(Z)2

((
|Z|2 + ϕ(Z)

1
2

)(
|Z|2 − ϕ(Z)

1
2

)
− |Z2|2

)
=

1

v(Z)2

(
|Z|4 − ϕ(Z)− |Z2|2

)
= 0.

Since u = 2 log ‖Z‖c and ‖·‖c is a complex norm on Cn+1 the function u is plurisubharmonic
and w 7→ Lu(Z;w) is positive semi-definite. The vectors Z and Z̄ are linearly independent
if and only if Z ∈ Cn+1 \ C · Rn+1, so we have proved that the eigenspace at such Z
corresponding to the eigenvalue 0 has dimension at least two and includes ImZ.

For V (z) = log ‖(1, z)‖c in (2.2) the vector (1, z) is in C ·Rn+1 if and only if z ∈ Rn, so
V ∈ C∞(Cn \ Rn). We write V = 1

2
u(1, z) where z ∈ Cn. For z 6∈ Rn,

LV (z; Im z) = 1
2
Lu((1, z); (0, Im z)) = 1

2
Lu((1, z); Im (1, z)) = 0.

Thus V is maximal on Cn \ Rn, and since V = Q on Rn, we have V = VRn,Q in (1.3).
For the proof of Corollary 1.2, the formulas for vRPn,0 follow immediately and it remains

to get the value of Tω(RPn) (see Example 5.12 of [9]). Since |1 + z2| ≤ 1 + |z|2 (and
|z2| ≤ |z|2), upon taking z = i(1/

√
n, ..., 1/

√
n) in (1.6) or letting z → 0 in (1.7),

sup
z∈Pn

vRPn,0(z) =
1

2
log 2.

Thus Tω(RPn) = exp[− supPn vRPn,0] = 1/
√

2. We remark that Dinh and Sibony had observed
that the value of Tω(RPn) was independent of n (Proposition A.6 in [8]).

3 Calculation of (ddcVRn,Q)
n with VRn,Q in (1.3)

In this section we prove (1.4). First some background. Let δ(x; y) be a Finsler metric
where x ∈ Rn and y ∈ Rn is a tangent vector at x; i.e., y → δ(x; y) is a norm on Rn

varying smoothly in x. We write Bx := {y : δ(x; y) ≤ 1} for the associated unit ball about
x and

B∗x := {y : δ(x; y) ≤ 1}∗ = {a : a · y = aty ≤ 1 for all y ∈ Bx}
for the dual unit ball (at denotes transpose of the vector a). Finsler metrics arise in
pluripotential theory in the following setting: if K = Ω̄ where Ω is a bounded domain in
Rn ⊂ Cn, the quantity

δB(x; y) := lim sup
t→0+

VK(x+ ity)

t
= lim sup

t→0+

VK(x+ ity)− VK(x)

t
(3.1)

for x ∈ K and y ∈ Rn defines a Finsler metric called the Baran pseudometric (cf., [5]). It
is generally not Riemannian: such a situation yields more information on volumes of Bx

and B∗x. Recall ωn denotes the volume of the Euclidean unit ball in Rn.

Proposition 3.1. Suppose
δ(x; y)2 = ytG(x)y

is a Riemannian metric; i.e., G(x) is a symmetric, positive definite matrix. Then

vol(B∗x) · vol(Bx) = ω2
n and vol(B∗x) = ωn

√
detG(x).
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Proof. Writing G(x) = H t(x)H(x), we have

δ(x; y)2 = ytG(x)y = ytH t(x)H(x)y.

Letting || · ||2 denote the standard Euclidean (l2) norm, we then have

Bx = {y ∈ RN : ||H(x)y||2 ≤ 1} = H−1(x)
(
unit ball in l2−norm)

and
B∗x = H(x)t

(
unit ball in l2−norm).

Hence vol(B∗x) · vol(Bx) = ω2
n and

vol
(
{y : δ(x; y) ≤ 1}∗

)
= vol(B∗x) = ωn detH(x) = ωn

√
detG(x).

Motivated by (3.1) and Theorem 3.2 below, for u(z) = VRn,Q(z) in (1.3), we show

δu(x; y) := lim
t→0+

u(x+ ity)− u(x)

t

exists. Fixing x ∈ Rn and y ∈ Rn, let

F (t) := u(x+ ity) =
1

2
log{(1 + x2 + t2y2) + 2[t2y2 + t2x2y2 − (x · ty)2]1/2}

=
1

2
log{(1 + x2 + t2y2) + 2t[y2 + x2y2 − (x · y)2]1/2}.

It follows that

δu(x; y) = F ′(0) =
1

2

2[y2 + x2y2 − (x · y)2]1/2

1 + x2
=

[y2 + x2y2 − (x · y)2]1/2

1 + x2
.

We write

δ2u(x; y) =
y2 + x2y2 − (x · y)2

(1 + x2)2
= ytG(x)y where G(x) :=

(1 + x2)I − xxt

(1 + x2)2
.

Since this matrix is symmetric and positive definite, δu(x; y) defines a Riemannian metric.
The eigenvalues of the rank one matrix xxt ∈ Rn×n are x2, 0, . . . , 0 for (xxt)x = x(xtx) =

x2 · x; and clearly v ⊥ x implies (xxt)v = x(xtv) = 0. The eigenvalues of (1 + x2)I − xxt
are then

(1 + x2)− x2, (1 + x2)− 0, . . . , (1 + x2)− 0 = 1, 1 + x2, . . . , 1 + x2

and the eigenvalues of G(x) are 1
(1+x2)2

, 1
1+x2

, . . . , 1
1+x2

. This shows detG(x) = 1
(1+x2)n+1 .

From Proposition 3.1, for δu(x; y),

vol(B∗x) = ωn
√

detG(x) =
ωn

(1 + x2)
n+1
2

=
ω2
n

vol(Bx)
. (3.2)
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Note from (1.5) this agrees with the density of ∆VRn,Q with respect to Lebesgue measure
dx on R if n = 1 and this will be the case for the density of (ddcVRn,Q)n with respect to
Lebesgue measure dx on Rn for n > 1 as well. For motivation, we recall the main result of
[7] (see [2] for the symmetric case K = −K):

Theorem 3.2. Let K ⊂ Rn be a convex body; i.e., K is compact, convex and intRnK 6= ∅.
Let VK be its Siciak-Zaharjuta extremal function. The limit

δ(x; y) := lim
t→0+

VK(x+ ity)

t
(3.3)

exists for each x ∈ intRnK and y ∈ Rn and

(ddcVK)n = λ(x)dx where λ(x) = n!vol({y : δ(x; y) ≤ 1}∗) = n!vol(B∗x). (3.4)

The conclusion of Theorem 3.2 required Proposition 4.4 of [7]:

Proposition 3.3. Let D ⊂ Cn and let Ω := D∩Rn. Let v be a nonnegative locally bounded
psh function on D which satisfies Ω = {v = 0}; (ddcv)n = 0 on D \ Ω; (ddcv)n = λ(x)dx
on Ω; for all x ∈ Ω, y ∈ Rn, the limit

h(x, y) := lim
t→0+

v(x+ ity)

t
exists and is continuous on Ω× iRn;

and for all x ∈ Ω, y → h(x, y) is a norm. Then λ(x) = n!vol{y : h(x, y) ≤ 1}∗.

We now give the proof of (1.4):

Proof. It will be useful to extend Q(x) = 1
2

log(1 + x2) on Rn to all of Cn as

Q(z) =
1

2
log |1 + z2| ∈ L(Cn).

With this extension of Q, and writing u := VRn,Q, we claim

1. Q is pluriharmonic on Cn \ S where S = {z ∈ Cn : 1 + z2 = 0};

2. u−Q ≥ 0 in Cn; and Rn = {z ∈ Cn : u(z)−Q(z) = 0};

3. for each x, y ∈ Rn

lim
t→0+

Q(x+ ity)−Q(x)

t
= 0.

Item 1. is clear; 2. may be verified by direct calculation (the inequality also follows from
the observation that Q ∈ L(Cn) and Q equals u on Rn); and for 3., observe that

|1 + (x+ ity)2|2 = (1 + x2 − t2y2)2 + 4t2(x · y)2 = (1 + x2)2 + 0(t2)
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so that

Q(x+ ity)−Q(x) =
1

2
log |1 + (x+ ity)2| − 1

2
log(1 + x2)

=
1

4
log

(1 + x2)2 + 0(t2)

(1 + x2)2
≈ 1

4

0(t2)

(1 + x2)2
as t→ 0.

Thus 1. and 2. imply that v := u−Q defines a nonnegative plurisubharmonic function in
Cn \ S, in particular, on a neighborhood D ⊂ Cn of Rn; from 1.,

(ddcv)n = (ddcu)n on D; (3.5)

and from 3., for each x, y ∈ Rn

lim
t→0+

v(x+ ity)− v(x)

t
= lim

t→0+

u(x+ ity)−Q(x+ ity)− u(x) +Q(x)

t

= lim
t→0+

u(x+ ity)− u(x)

t
− lim

t→0+

Q(x+ ity)−Q(x)

t
= δu(x; y).

Then (3.5), (3.2) and Proposition 3.3 give (1.4).

This completes the proof of Theorem 1.1.

4 Known results on extremal functions

We list some results on extremal functions used in the sequel. We know much information
about VK is when K is a convex body in Rn. Through every point z ∈ Cn \ K there is
either a complex ellipse or a complex line L with z ∈ L such that VK restricted to L is
harmonic on L \ K (cf., [1], [6]). For K = Bn, the real unit ball in Rn ⊂ Cn, the real
ellipses and lines L ∩ Bn are symmetric with respect to the origin and, other than great
circles in the real boundary of Bn, each L∩Bn hits this boundary at exactly two antipodal
points. Lundin proved [11], [1] that

VBn(z) =
1

2
log h(|z|2 + |z2 − 1|), (4.1)

where h is the inverse Joukowski map h(1
2
(t+ 1

t
)) = t for 1 ≤ t ∈ R. Moreover,

(ddcVBn)n = n! vol(Bn)
dx

(1− |x|2) 1
2

= n!
ωn

(1− |x|2) 1
2

dx.

We may consider the class of logarithmically homogeneous psh functions

H := {u ∈ L(Cn) : u(tz) = log |t|+ u(z), t ∈ C, z ∈ Cn}

and, for E ⊂ Cn, the homogeneous extremal function of E, denoted H∗E, where

HE(z) := max[0, sup{u(z) : u ∈ H, u ≤ 0 on E}].

8



Note that HE(z) ≤ VE(z). If E is compact, we have

HE(z) = max[0, sup{ 1

deg(h)
log |h(z)| : h homogeneous polynomial, ||h||E ≤ 1}]. (4.2)

Finally, we mention the following beautiful result of Sadullaev [12].

Theorem 4.1. Let A be a pure m−dimensional, irreducible analytic subvariety of Cn where
1 ≤ m ≤ n − 1. Then A is algebraic if and only if for some (all) K ⊂ A compact and
nonpluripolar in A, VK in (1.1) is locally bounded on A.

Note that A and hence K is pluripolar in Cn so V ∗K ≡ ∞; moreover, VK =∞ on Cn \A. In
this setting, VK |A (precisely, its usc regularization in A) is maximal on the regular points
Areg of A outside of K; i.e., (ddcVK |A)m = 0 there, and VK |A ∈ L(A). Here L(A) is the
set of psh functions u on A (u is psh on Areg and locally bounded above on A) with the
property that u(z)− log |z| = 0(1) as |z| → ∞ through points in A, see [12].

5 Relating extremal functions

Let K ⊂ Cn be closed and let f be holomorphic on a neighborhood Ω of K. We define
F : Ω ⊂ Cn → Cn+1 as

F (z) := (f(z), zf(z)) = W = (W0,W
′) = (W0,W1, ...,Wn)

where W ′ = (W1, ...,Wn). Thus

W0 = f(z), W1 = z1f(z), ..., Wn = znf(z).

Moreover we assume there exists a polynomial P = P (z0, z) in Cn+1 with P (f(z), z) = 0
for z ∈ Ω; i.e., f is algebraic. Taking such a polynomial P of minimal degree, let

A := {W ∈ Cn+1 : P (W0,W
′/W0) = P (W0,W1/W0, ...,Wn/W0) = 0}. (5.1)

Note that writing P (W0,W
′/W0) = P̃ (W0,W

′)/W s
0 where P̃ is a polynomial in Cn+1 and

s is the degree of P (z0, z) in z we see that A differs from the algebraic variety

Ã := {W ∈ Cn+1 : P̃ (W0,W
′) = 0}

by at most the set of points in A where W0 = 0, which is pluripolar in A. Thus we can
apply Sadullaev’s Theorem 4.1 to nonpluripolar subsets of A. Now P (f(z), z) = 0 for
z ∈ Ω says that

F (Ω) = {(f(z), zf(z)) : z ∈ Ω} ⊂ A.

We can define a weight function w(z) := |f(z)| which is well defined on all of Ω and in
particular on K; as usual, we set

Q(z) := − logw(z) = − log |f(z)|. (5.2)
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We will need our potentials defined in (5.2) to satisfy

Q(z) := max{− log |W0| : W ∈ A, W ′/W0 = z} (5.3)

and we mention that (5.3) can give an a priori definition of a potential for those z ∈ Cn at
which there exist W ∈ A with W ′/W0 = z.

We observe that for K ⊂ Ω, we have two natural associated subsets of A:

1. K̃ := {W ∈ A : W ′/W0 ∈ K} and

2. F (K) = {W = F (z) ∈ A : z ∈ K}.

Note that F (K) ⊂ K̃ and the inclusion can be strict.

Proposition 5.1. Let K ⊂ Cn be closed with Q in (5.2) satisfying (5.3). If F (K) is
nonpluripolar in A,

VK,Q(z)−Q(z) ≤ HF (K)(W ) for z ∈ Ω with f(z) 6= 0

where the inequality is valid for W = F (z) ∈ F (Ω).

In general, Proposition 5.1 only gives estimates for VK,Q(z) if z ∈ Ω and f(z) 6= 0.
We use this and Proposition 5.4 in the next section to get formula (1.3) for VRn,Q(z) with
weight w(z) = |f(z)| = | 1

(1+z2)1/2
| for z in a neighborhood Ω of Rn.

Proof. First note that for z ∈ K and W = F (z) ∈ F (K), given a polynomial p in Cn,

|w(z)deg(p)p(z)| = |f(z)|deg(p)|p(z)| = |W deg(p)
0 p(W ′/W0)| = |p̃(W )| (5.4)

where p̃ is the homogenization of p. Thus ||wdeg(p)p||K ≤ 1 implies |p̃| ≤ 1 on F (K).
Now fix z ∈ Ω at which f(z) 6= 0 (so Q(z) < ∞) and fix ε > 0. Choose a polynomial

p = p(z) with ||wdeg(p)p||K ≤ 1 and

1

deg(p)
log |p(z)| ≥ VK,Q(z)− ε.

Thus for W ∈ A with W0 6= 0 and W ′/W0 = z,

VK,Q(z)−ε−Q(z) ≤ 1

deg(p)
log |p(W ′/W0)|−Q(W ′/W0) ≤

1

deg(p)
log |p(W ′/W0)|+log |W0|

with (5.3) used in the second inequality. By (5.4) and the fact that ‖p̃‖F (K) ≤ 1,

1

deg(p)
log |p(W ′/W0)|+ log |W0| =

1

deg(p̃)
log |p̃(W )| ≤ HF (K)(W ).

This shows that VK,Q(z)− ε−Q(z) ≤ HF (K)(W ). Finally, let ε→ 0.
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Next we prove a lower bound involving K̃ which will be applicable in our special case.

Definition 5.2. Let A ⊂ Cn+1 be an algebraic hypersurface. We say that A is bounded on
lines through the origin if there exists a uniform constant c ≥ 1 such that for all W ∈ A,
if αW ∈ A also holds for some α ∈ C, then |α| ≤ c.

Example 5.3. A simple example of a hypersurface bounded on lines through the origin
is one given by an equation of the form p(W ) = 1, where p is a homogeneous polynomial.
In this case, if αW ∈ A then

1 = p(αW ) = αdeg(p)p(W ) = αdeg(p),

so α must be a root of unity. Hence we may take c = 1.

Proposition 5.4. Let K ⊂ Cn and let Q(z) = − log |f(z)| with f defined and holomorphic
on Ω ⊃ K. Define A as in (5.1) and assume Q satisfies (5.3). We suppose A is bounded

on lines through the origin, K̃ is a nonpluripolar subset of A, and that Q has an extension
to Cn (which we still call Q) satisfying (5.3) such that Q ∈ L(Cn). Then given z ∈ Cn,

HK̃(W ) ≤ VK̃(W ) ≤ VK,Q(z)−Q(z)

for all W = (W0,W
′) ∈ A with W ′/W0 = z.

Proof. The left-hand inequality HK̃(W ) ≤ VK̃(W ) is immediate. For the right-hand in-

equality, we first note that VK̃(W ) ∈ L(A) if K̃ is nonpluripolar in A. Hence there exists
a constant C ∈ R such that

VK̃(W ) ≤ log |W |+ C = log |W0|+
1

2
log(1 + |W ′/W0|2) + C

for all W ∈ A with W0 6= 0.
Define the function

U(z) := max{VK̃(W ) : W ∈ A,W ′/W0 = z}+Q(z).

Note that the right-hand side is a locally finite maximum since A is an algebraic hypersur-
face. Away from the singular points Asing of A one can write VK̃(W ) as a psh function in
z by composing it with a local inverse of the map A 3 W 7→ z = W ′/W0 ∈ Cn. Hence U
is psh off the pluripolar set

{z ∈ Cn : z = W ′/W0 for some W ∈ Asing},

and hence psh everywhere since it is clearly locally bounded above on Cn. Also, since
VK̃ = 0 on K̃ it follows that U ≤ Q on K.

We now verify that U ∈ L(Cn) by checking its growth. By the definitions of U and Q
and (5.3), given z ∈ Cn there exist W,V ∈ A, with z = W ′/W0 = V ′/V0, such that

U(z) = VK̃(W ) +Q(z) and Q(z) = − log |V0|.
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Note that W = αV , and since A is uniformly bounded on lines through the origin, there
is a uniform constant c (independent of W,V ) such that |α| ≤ c. We then compute

U(z) = VK̃(W )− log |V0| ≤ VK̃(W )− log |W0|+ log c

≤ log |W |+ C − log |W0|+ log c

= log |W/W0|+ C + log c = 1
2

log(1 + |z|2) + C + log c

where C > 0 exists since VK̃ ∈ L(A). Hence U ∈ L(Cn), and since U ≤ Q on K this means
that U(z) ≤ VK,Q(z). By the definition of U ,

VK̃(W ) +Q(z) ≤ VK,Q(z)

for all W ∈ A such that W ′/W0 = z, which completes the proof.

Remark 5.5. When f ≡ 1 we have Q ≡ 0, F (z) = (1, z), and F (K) = K̃ = {1} × K.
Combining Propositions 5.1 and 5.4 yields VK(z) = H{1}×K(1, z), which is an instance of
the H-principle of Siciak that relates functions in L(Cn) to functions in H(Cn+1).

A weighted version of this equality also holds. Given K ⊂ Cn closed and w a weight
function on K (with Q = − logw), form the circled set

Z(K) := {(t, tz) ∈ Cn+1 : z ∈ K, |t| = w(z)}.

Then from Bloom (cf., [4] and [3]), HZ(K)(1, z) = VK,Q(z).

6 Theorem 1.1 revisited

Let K = Rn ⊂ Cn and w(z) = |f(z)| = | 1
(1+z2)1/2

|. Here f(z) 6= 0 and we may extend

Q(z) = − log |f(z)| to all of Cn as Q(z) = 1
2

log |1 + z2| ∈ L(Cn). We use the results of
the previous section to give our original proof of Theorem 1.1; this also shows where the
formula (1.3) arose. Since (1 + z2) · f(z)2 − 1 = 0, we take

P (z0, z) = (1 + z2)z20 − 1.

Here,

A = {W : P (W0,W
′/W0) = (1 +W ′2/W 2

0 )W 2
0 − 1 = W 2

0 +W ′2 − 1 = 0}

is the complexified sphere in Cn+1. From Definition 5.2 and Example 5.3, A is bounded on
lines through the origin. Note that f is clearly holomorphic in a neighborhood of Rn; thus
we can take, e.g., Ω = {z = x + iy ∈ Cn : y2 = y21 + · · · + y2n < s < 1} in Propositions 5.1
and 5.4 where zj = xj + iyj. Condition (5.3) also holds for Q(z) = 1

2
log |1 + z2|: given z =

W ′/W0 for some W = (W0,W
′) ∈ A, we have W 2

0 = 1
1+z2

. Hence − log |W0| = 1
2

log |1+z2|
is the same value for all such W . We have

F (K) = {(f(z), zf(z)) : z = (z1, ..., zn) ∈ K = Rn} = {( 1

(1 + x2)1/2
,

x

(1 + x2)1/2
) : x ∈ Rn}.
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Writing uj = ReWj, we see that

F (K) = {(u0, ..., un) ∈ Rn+1 :
n∑
j=0

u2j = 1, u0 > 0}.

On the other hand,

K̃ = {W ∈ A : W ′/W0 ∈ K} = {(u0, ..., un) ∈ Rn+1 :
n∑
j=0

u2j = 1}.

Clearly K̃ is nonpluripolar in A which completes the verification that Proposition 5.4 is
applicable. We also observe that since for any homogeneous polynomial h = h(W0, ...,Wn)
we have

|h(−u0, u1, ..., un)| = |h(u0,−u1, ...,−un)|,

the homogeneous polynomial hulls of K̃ and F (K) in Cn+1 coincide so that HK̃ = HF (K)

in A (see (4.2)). Since

F (K) \ F (K) = {(u0, ..., un) ∈ Rn+1 :
n∑
j=0

u2j = 1, u0 = 0} ⊂ A ∩ {W0 = 0}

is a pluripolar subset of A,
HK̃ = HF (K) (6.1)

on A \ P where P ⊂ A is pluripolar in A. Combining (6.1) with Propositions 5.1 and 5.4,
we have

HK̃(W ) = VK̃(W ) = VK,Q(z)−Q(z) = HF (K)(W ) (6.2)

for z ∈ Ω̃ := Ω \ P̃ and W = F (z) where P̃ is pluripolar in Cn.

To compute the extremal functions in this example, we first consider VK̃ in A. Let

B := Bn+1 = {(u0, ..., un) ∈ Rn+1 :
n∑
j=0

u2j ≤ 1}

be the real (n+ 1)−ball in Cn+1.

Proposition 6.1. We have VB(W ) = VK̃(W ) for W ∈ A.

Proof. Clearly VB|A ≤ VK̃ . To show equality holds, the idea is that if we consider the

complexified extremal ellipses Lα for B whose real points Sα are great circles on K̃, the
boundary of B in Rn+1, then the union of these varieties fill out A: ∪αLα = A. Since VB|Lα
is harmonic, we must have VB|Lα ≥ VK̃ |Lα so that VB|A = VK̃ .

To see that ∪αLα = A, we first show A ⊂ ∪αLα. If W ∈ A \ K̃, then W lies on
some complexified extremal ellipse L whose real points E are an inscribed ellipse in B with
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boundary in K̃ (and VB|L is harmonic). If L 6= Lα for some α, then E ∩ K̃ consists of two
antipodal points ±p. By rotating coordinates we may assume ±p = (±1, 0, ..., 0) and

E ⊂ {(u0, ..., un) : u2 = · · · = un = 0}.

We have two cases:

1. E = {(u0, ..., un) : |u0| ≤ 1, u1 = 0, u2 = · · · = un = 0}, a real interval:

In this case
L = {(W0, 0, ..., 0) : W0 ∈ C}.

But then L∩A = {(W0, 0, ..., 0) : W0 = ±1} = {±p} ⊂ K̃, contradicting W ∈ A\ K̃.

2. E = {(u0, ..., un) : u20 + u21/r
2 = 1, u2 = · · · = un = 0} where 0 < r < 1, a

nondegenerate ellipse:

In this case,

L := {(W0, ...,Wn) : W 2
0 +W 2

1 /r
2 = 1, W2 = · · · = Wn = 0}.

But then if W ∈ L ∩ A we have

W 2
0 +W 2

1 /r
2 = 1 = W 2

0 +W 2
1

so that W1 = · · · = Wn = 0 and W 2
0 = 1; i.e., L ∩ A = {±p} ⊂ K̃ which again

contradicts W ∈ A \ K̃.

For the reverse inclusion, recall that the variety A is defined by
∑n

j=0W
2
j = 1. If

W = u+ iv with u, v ∈ Rn+1, we have

n∑
j=0

W 2
j =

n∑
j=0

[u2j − v2j ] + 2i
n∑
j=0

ujvj.

Thus for W = u+ iv ∈ A, we have
∑n

j=0[u
2
j − v2j ] = 1 and

∑n
j=0 ujvj = 0.

If we take an orthogonal transformation T on Rn+1, then, by definition, T preserves
Euclidean lengths in Rn+1; i.e.,

n∑
j=0

u2j =
n∑
j=0

(T (u)j)
2 and

n∑
j=0

v2j =
n∑
j=0

(T (v)j)
2.

Moreover, if u, v are orthogonal; i.e.,
∑n

j=0 ujvj = 0, then
∑n

j=0(T (u))j · (T (v))j = 0.

Extending T to a complex-linear map on Cn+1 via

T (W ) = T (u+ iv) := T (u) + iT (v),
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we see that if W ∈ A, then
∑n

j=0(T (u))j · (T (v))j = 0, so that

n∑
j=0

(T (W )j)
2 =

n∑
j=0

[(T (u)j)
2 − (T (v)j)

2] =
n∑
j=0

[u2j − v2j ] = 1.

Thus T preserves A.
Clearly the ellipse

L0 := {(W0, ...,Wn) : W 2
0 +W 2

1 = 1, W2 = · · · = Wn = 0}

corresponding to the great circle S0 := {(u0, ..., un) : u20 + u21 = 1, u2 = · · · = un = 0} lies
in A and any other great circle Sα can be mapped to S0 via an orthogonal transformation
Tα. From the previous paragraph, we conclude that ∪αLα ⊂ A.

We use the Lundin formula VB(W ) = 1
2

log h
(
|W |2 + |W 2 − 1|

)
in (4.1) where h(t) =

t+
√
t2 − 1 for t ∈ C\ [−1, 1]. Now the formula for VK̃ can only be valid on A; and indeed,

since W 2 = 1 on A, by the previous proposition we obtain

VK̃(W ) =
1

2
log h(|W |2), W ∈ A.

Remark 6.2. Note that since the real sphere K̃ and the complexified sphere A are invariant
under real rotations, the Monge-Ampère measure

(ddcVK̃(W ))n = (ddc
1

2
log h(|W |2))n

must be invariant under real rotations as well and hence is normalized surface area measure
on the real sphere K̃. This can also be seen as a consequence of VK̃ being the Grauert tube

function for K̃ in A as (ddcVK̃(W ))n gives the volume form dVg on K̃ corresponding to the
standard Riemannian metric g there (cf., [13]).

Getting back to the calculation of VK,Q, note that since W = ( 1
(1+z2)1/2

, z
(1+z2)1/2

),

|W |2 := |W0|2 + |W1|2 + · · ·+ |Wn|2 =
1 + |z|2

|1 + z2|
.

Plugging in to (6.2)

VK̃(W ) = VB(W ) = VK,Q(z)−Q(z) = VK,Q(z)− 1

2
log |1 + z2|

gives

VK,Q(z) =
1

2
log
(
[1 + |z|2] + {[1 + |z|2]2 − |1 + z2|2}1/2

)
for z ∈ Ω̃, agreeing with (1.3).
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A similar observation leads to another derivation of the above formula. Consider F (K)
as the upper hemisphere

S := {(u0, ..., un) ∈ Rn+1 :
n∑
j=0

u2j = 1, u0 ≥ 0}

in Rn+1 and let π : Rn+1 → Rn be the projection π(u0, ..., un) = (u1, ..., un) which we
extend to π : Cn+1 → Cn via π(W0, ...,Wn) = (W1, ...,Wn). Then

π(S) = Bn := {(u1, ..., un) ∈ Rn :
n∑
j=1

u2j ≤ 1}

is the real n−ball in Cn. Each great semicircle Cα in S – these are simply half of the Lα’s
from before – projects to half of an inscribed ellipse Eα in Bn, while the other half of Eα
is the projection of the great semicircle given by the negative u1, ..., un coordinates of Cα
(still in F (K), i.e., with u0 > 0). As before, the complexification E∗α of the ellipses Eα
correspond to complexifications of the great circles.

Proposition 6.3. We have

HF (K)(W0, ...,Wn) = VBn(π(W )) = VBn(W1, ...,Wn) = VBn(W ′) ≤ VK̃(W0, ...,Wn)

for W = (W0, ...,Wn) = (W0,W
′) ∈ A.

Proof. Clearly VBn(π(W )) ≤ VK̃(W ). For the inequality HF (K)(W ) ≤ VBn(π(W )), note
that for W ∈ A with W = (W0,W

′), we have π−1(W ′) = (±W0,W
′) ∈ A but the value of

HF (K) is the same at both of these points. Thus W ′ → HF (K)(π
−1(W ′)) is a well-defined

function of W ′ for W ∈ A which is clearly in L(Cn) (in the W ′ variables) and nonpositive
if W ′ ∈ Bn; hence HF (K)(π

−1(W ′)) ≤ VBn(W ′).

From (6.2),
HK̃(W ) = VK̃(W ) = VK,Q(z)−Q(z) = HF (K)(W )

for z ∈ Ω̃ and W = F (z) so that we have equality for such W in Proposition 6.3 and an
alternate way of computing VK,Q. From the Lundin formula, for (W0,W

′) ∈ A we have
W 2

0 +W ′2 = 1 so

VBn(W ′) =
1

2
log h

(
|W ′|2 + |W ′2 − 1|

)
=

1

2
log h(|W |2)

and we get the same formula (1.3)

VK,Q(z) =
1

2
log
(
[1 + |z|2] + {[1 + |z|2]2 − |1 + z2|2}1/2

)
=: V (z)

for z ∈ Ω̃.
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To show this formula holds on all of Cn, we know V ≤ VK,Q on Cn since V ≤ Q
on Rn. Now V ∈ L+(Cn) since, e.g., u(z) = VLn+1(1, z) and VLn+1 ∈ L+(Cn+1). Thus
VK,Q ∈ L+(Cn) as well. This implies that the total Monge-Ampere mass of V and VK,Q
are the same (cf. [10], Corollary 5.5.3). But VK,Q is maximal outside of Rn and (ddcV )n =
(ddcVK,Q)n on Ω ⊃ Rn. Thus (ddcV )n must vanish outside of Ω; i.e., V is maximal on
Cn \ Rn and V = VK,Q on Cn.
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