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Abstract. We investigate the non-perturbative stability of supersymmetric compactifications
with respect to decay via a bubble of nothing. We show examples where this kind of instability
is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension.
However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of
the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of
supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs
toy model coupled to supergravity. The compactification of this model to M3×S1 presents the
possibility of vacua with different windings for the scalar field. Away from the supersymmetric
limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-
Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference
of the topologically unobstructed bubble becomes infinite, thereby preventing the realization
of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed
to the more familiar argument based on the spin structure. We conjecture that this is a
generic mechanism that enforces stability of any topologically unobstructed supersymmetric
compactification.
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1 Introduction

Higher dimensional theories have been extensively studied in the last few decades as possible
extensions of the Standard Model. Incorporating these extra dimensions into the fundamental
theory adds new degrees of freedom to the low energy dynamics. One must first demonstrate
the existence of a perturbatively stable vacuum in such a theory before one can infer any
new physics. This is normally achieved by a compactification mechanism that generates a
potential for these new degrees of freedom. Our vacuum might be a minimum in such a
potential, and therefore perturbatively stable. Finding stable vacua compatible with current
observations is one of the major challenges facing all fundamental higher dimensional theories,
such as String Theory.
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It is far from obvious that there should exist a unique vacuum in the effective 4D
description of these higher dimensional theories, and often one encounters multiple minima
within the same compactification potential. This opens up the possibility of a new type of
instability due to the presence of large quantum mechanical fluctuations about the original
vacuum. Such tunneling processes were first discussed in a series of papers [1, 2] in the context
of a 4D field theory. The results of these papers are that a non-perturbative instability of false
vacua occurs through the nucleation of a bubble, whose interior consists of the lower energy
vacuum. The bubble wall is a field configuration interpolating between the higher energy
initial vacuum (parent vacuum) and the final one (daughter vacuum). In many cases, one
can reduce this problem to the simpler version within the so-called thin wall approximation,
where one can assume that the bubble is spherical and made of a thin solitonic domain
wall (of fixed tension) characterized by just its radius. Once the bubble is formed by the
quantum mechanical tunneling process, the pressure difference across the wall accelerates
the bubble, making it grow and gain kinetic energy by converting arbitrarily large regions
of spacetime into the new lower energy density vacuum. Clearly it is important to estimate
the rate of this instability if our universe is to be described by any of the theories susceptible
to vacuum decay. One can calculate the rate of this decay by the use of instanton methods
and the computation of the action of the appropriate Euclidean classical solutions. This was
done in [2] and further developed in the thin wall approximation for the case of a scalar
field potential coupled to gravity in [3]. After coupling the theory to gravity, one discovers
that there are now cases where the tunneling probability is completely suppressed. Certain
Minkowski and Anti-deSitter false vacua are exactly stable even at the non-perturbative level.
The reason for this is that all saddle points of their Euclidean action correspond to bubbles of
infinite circumference, which thus have infinite action. The nucleation rate is exponentially
suppressed by the Euclidean action, and therefore vanishes. This enforces the stability of the
parent vacuum, making such states interesting starting points for searches for realistic vacua
in theories beyond the Standard Model.

Another common ingredient in many extensions of the Standard Model is supersymme-
try. In particular, many higher dimensional theories also incorporate supersymmetry (such
as in string theory). It is therefore natural to consider compactifications that preserve some
supersymmetry. This is not only interesting from the point of view of phenomenology, but
also makes the question of stability a much simpler one to study, at least perturbatively [4].

At the non-perturbative level the question of stability becomes much more interesting.
This was studied in the context of a simple d = 4, N = 1 supergravity model in [5]. The
results of that paper indicate that indeed the supersymmetric vacua are stabilized by the
previously mentioned Coleman-De Luccia suppression mechanism. The conditions enabling
suppression are enforced in that case by the form of the potential: in a theory with distinct
supersymmetric vacua, there is a solution containing a domain wall interpolating between
them. This domain wall is static and has infinite area. One way to understand Coleman-De
Luccia suppression is to think about the required tension of the bubble wall that one would
need in a thin wall description of the decay. For sufficiently low tension, the Euclidean action
of the thin wall bubble always has a saddle point for a certain critical value of bubble radius,
describing the size of the bubble at nucleation. As the tension is increased, the critical radius
grows, and at a certain finite value of tension, the critical radius diverges. The static domain
wall described above is described precisely by this saddle point, and the infinite area is due
to the domain wall having the tension corresponding to a divergent critical radius.

From this analysis one concludes that there is a limiting tension above which the decay
process cannot happen. Interestingly, supersymmetry imposes a lower bound on the tension
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of the wall interpolating between supersymmetric vacua, so it is clear that the bubble decay
process cannot occur if this lower bound on tension is at or above the tension corresponding
to an infinite critical radius. Furthermore, one can show that the limiting case where these
two values of tension coincide preserves part of the original supersymmetry.

These arguments seem to suggest that models of compactification which can be described
by a supersymmetric theory would be stable if their compactification preserves part of the
supersymmetry. However, there may be new instabilities of a higher dimensional theory
that are not described in the context of a 4D low energy effective theory and therefore one
would have to take all the previous considerations with a little bit of caution. An example of
such an instability was demonstrated some time ago by Witten [6]. In the simplest example
of a 5D Kaluza-Klein compactification to M4 × S1, he was able to explicitly construct an
instanton for the decay by the formation of a bubble of nothing. This instanton describes the
formation of a bubble where the extra dimensions pinch off, disappearing, signaling the end
of spacetime in this region, hence the name bubble of nothing. Viewed from a 4D perspective,
these solutions would be singular,1 so it is hard to argue their existence or validity on the
basis of a pure 4D theory. Nevertheless, these potential new instabilities exist and one
would wonder if this could lead to the decay of some supersymmetric compactifications. The
original paper by Witten [6] already contains clues regarding this subject, which lead to the
conclusion that it would be impossible for a supersymmetric compactification with a circle
extra dimension to decay in this way. The argument is quite simple. The 5D Kaluza-Klein
theory allows for a supersymmetric extension including fermionic degrees of freedom, but
its compactification would only preserve some supersymmetry if these fermionic modes are
periodic around the extra dimension. On the other hand, the instanton solution that allows
the decay and disappearance of the extra-dimension (into nothing) forces the situation with
anti-periodic fermions, so it is clear that one would be in a different sector of the theory if
one starts with a supersymmetric compactification and this decay would not be possible.2

In this paper we want to investigate how generic this argument is. In particular, the jus-
tification for stability of supersymmetric compactifications in Witten’s argument is entirely
based on the spin structure of the theory and the instanton solution and it seems hard to
generalize it to other internal spaces. Furthermore, the reasoning for the tunneling suppres-
sion is also quite different in nature from the one described earlier in the N = 1 supergravity
scalar theory that relies on a dynamical mechanism first identified in field theory by Coleman
and De Luccia [3].

The main idea of this paper is to look for the simplest example of a supersymmetric
theory where the argument for stability based on the spin structure cannot be used and inves-
tigate in this case the possible existence of a bubble of nothing instability. In the following,
we will show that there are indeed some supersymmetric compactifications that allow for
the same spin structure as the bubble of nothing geometry, therefore circumventing Witten’s
argument on stability. However, we will show that in these cases, the stability of the compact-
ification is preserved by the Coleman-De Luccia suppression mechanism, where the nucleated
bubble would need to be infinitely large and the decay would therefore be completely sup-
pressed. Hence our conclusions are that, in fact, supersymmetric compactifications remain
stable but that the reason for this in some cases may be different from what was originally
envisioned in [6].

1See for example the discussion in [7].
2For a discussion of the pre-factor of the decay probability in this context see [8].
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The plan of the paper is the following. We describe in section 2 the simple model
of d = 4, N = 1 supergravity that we will consider. We show in section 3 how one can
compactify this theory on a circle down to three dimensions, analogous to the usual Kaluza-
Klein model. We also show in this section the conditions required to obtain a supersymmetric
compactification of this model and study the spin structure of those vacuum solutions. We
discuss in section 4 the kind of instanton solutions one would need in order to describe the
decay of these compactified vacuum states and their relation to the original bubbles of nothing
in the thin wall approximation. In section 5, we present our numerical approach to study
these instanton solutions in the supergravity model presented earlier. In section 6 we compare
analytic and numerical solutions within the thin wall regime and carefully investigate their
limit as the initial state becomes supersymmetric. In section 7 we present generic numerical
solutions. Finally we conclude with some remarks in section 8.

2 The model

As we mentioned in the introduction, we would like to study a model whose compactification
on a circle allows for anti-periodic fermionic boundary conditions, while still preserving part
of its supersymmetry. We will show in this paper that we can find a compactification with
these characteristics within the Abelian-Higgs model coupled to N = 1 supergravity in 3 + 1
dimensions.3 This model has been considered in the literature mainly in the context of cosmic
string solutions [9, 10] and we will see later on that these solutions also play a role in our
current discussion.4

The model describes the dynamics of a complex scalar field φ with Kähler potential
K(φ, φ̄) = φ̄φ minimally coupled to a U(1) gauge field Aµ. The superpotential is taken to be
W (φ) = 0, and the gauge kinetic function is f(φ) = 1. With these choices, the bosonic part
of the action is the well known Einstein-Abelian-Higgs model

Sbos =

∫
d4x
√
−g
[

1

2κ2
R−Dµφ̄D

µφ− 1

4
FµνF

µν − e2

2

(
η2 − φφ̄

)2]
, (2.1)

where the gauge covariant derivative is defined by Dµφ = (∂µ − ieAµ)φ, and Fµν = ∂µAµ −
∂νAµ is the U(1) field strength. We also introduce for future reference the dimensionless
parameter γ ≡ κ2η2, which controls, as we will see later on, the gravitational effects of the
typical energy scale of this theory.

The full supergravity model also involves the gravitino field, ψµ, and the fermionic
partners of the chiral and gauge fields, χ and λ, respectively.5 It is invariant under the local

3We make this choice in order to simplify the model and to use the well known 4D supersymmetric notation,
but we do expect the results of this paper to apply to more general models. It would be interesting to look
for generalizations of this idea to a truly higher dimensional model or models with other matter content.

4In this paper, we will follow the conventions in [11]. In particular we use the Minkowski metric with
signature (−,+,+,+), and we work with the units c = ~ = 1, so that the reduced Planck mass reads
κ2 ≡M−2

P = 8πG.
5The gravitino is usually written as a Majorana spinor ψµ, but sometimes it is convenient to split it into

its complex chiral parts, ψµL = 1
2
(1 + γ5)ψµ, and ψµR = 1

2
(1 − γ5)ψµ. The same notation applies to the

gauginos λ and the chiralinos χ.
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U(1) gauge transformations

δgφ = ieφα ,

δgχL = ie

(
1 +

η2κ2

2

)
χL α ,

δgψµL = −ie
η2κ2

2
ψµL α ,

δgλL = −ie
η2κ2

2
λL α, (2.2)

where α is the gauge parameter. Note that the combination ξ ≡ eη2 appearing in the scalar
potential also contributes to the charge of all fermions under the local U(1) symmetry. Such
a combination can be identified as the Fayet-Iliopoulos (FI) term of N = 1 supergravity, and
it is associated to the gauging of the R−symmetry which rotates the supercharges. In order
to simplify the notation, we will take the FI term to be a free parameter in the main part of
the paper and comment on its quantization in appendix A. The conclusions of the paper are
not affected by this quantization.

In later sections we will discuss the spontaneous breaking of supersymmetry by bosonic
backgrounds, so it will be useful to have the form of the supersymmetry transformations for
this model. In purely bosonic backgrounds only the supersymmetry transformations of the
fermions can be non-vanishing, which read

δψµL = DµεL =

(
∂µ +

1

4
ωabµ γab +

i

2
ABµ

)
εL , (2.3)

δχL =
1√
2
γµDµφ εR , (2.4)

δλ =
1

4
γµνF µνε+

i

2
e(η2 − φφ̄)γ5 ε, (2.5)

up to terms cubic in the fermions.6 Here ε is the parameter of the local supersymmetry
transformations, and the composite U(1) connection ABµ is given by

ABµ =
1

2
iκ2
[
φDµφ̄− φ̄Dµφ

]
+ eη2κ2Aµ . (2.6)

3 Supersymmetric Kaluza-Klein compactification on S1

3.1 Generalized Kaluza-Klein compactification

The model described by the action (2.1) admits a Kaluza-Klein type of vacuum, where one
of the spatial dimensions is compactified on a circle, M4 → M3 × S1, and the matter fields
are in their vacuum, namely

φφ̄ = η2, Dµφ =0, ψµ =χ = λ = 0, (3.1)

ds2 = −dt2 + dz2 + dr2 +R2dθ2. (3.2)

Here the coordinates t, z, r ∈ R parametrize the 3-dimensional Minkowski part of the
spacetime, and θ ∈ [0, 2π) is the angular variable associated to the compact dimension whose

6See [11] for further details.
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physical circumference is 2πR. In order to define the (generalized) Kaluza-Klein theory,
it is necessary to specify the boundary conditions7 of the fields around the compactified
dimension [18–20]. The fields need to be periodic only up to a global symmetry of the action,
so we can formally write

Φ(θ + 2π) = eiQ̂α Φ(θ), (3.3)

where we have denoted all fields collectively by Φ, and Q̂ is the generator of a global symmetry.
Any Lorentz invariant action is always invariant under the Z2 symmetry which flips the
sign of all fermions. In addition, the supergravity model (2.1) has a U(1)c × U(1)R global
symmetry, where the first factor corresponds to the U(1) symmetry associated with the chiral
supermultiplet, and the second one is the R−symmetry. Thus, on the spacetime described
by the line element (3.2) we can impose boundary conditions of the form

φ(θ + 2π) = eiαc φ(θ) ,

χL(θ + 2π) = ± eiαc eiαR χL(θ) ,

ψµL(θ + 2π) = ± e−iαR ψµL(θ) ,

λL(θ + 2π) = ± e−iαR λL(θ) , (3.4)

where αc ∈ [0, 2π) and αR ∈ [0, 2π) are the parameters of the global U(1)c and U(1)R
respectively.

As discussed in [6], in a spacetime with the topology of a bubble of nothing, the spinor
fields are uniquely defined and only admit anti-periodic boundary conditions along the com-
pactified dimension:8

χL(θ + 2π) = −χL(θ), ψµL(θ + 2π) = −ψµL(θ), λL(θ + 2π) = −λL(θ). (3.5)

This implies that for the arbitrary boundary conditions of eqs. (3.4), the Kaluza-Klein
vacuum and the bubble of nothing belong to topologically distinct sectors. This guarantees
the generic stability of Kaluza-Klein vacua with respect to this decay channel [6]. In summary,
only Kaluza-Klein vacua whose fermions satisfy anti-periodic boundary conditions may decay
via the formation of bubbles of nothing.

3.2 Pure vacuum solutions and periodic fermions

For the Kaluza-Klein background to preserve the full supersymmetry of the model, the super-
symmetry transformations (2.3), (2.4) and (2.5) must vanish for all values of the parameter ε.
In a background of the form (3.1), where the matter fields are on a pure vacuum configuration

φ = η, Aµ = 0, ψµ = χ = λ = 0, ds2 = −dt2 + dz2 + dr2 +R2dθ2, (3.6)

only the gravitino transformation is non-trivial, which reduces to

DµεL = ∂µεL = 0. (3.7)

Then, for this background to preserve supersymmetry the theory must admit a covari-
antly constant spinor. Such a solution must be globally well defined, meaning that it should

7In general, the fields can be identified with sections on a non-trivial fibre bundle, and the choice of
boundary conditions specifies the topology of the bundle [12–17].

8The construction of spinor structures on simply connected spacetimes and on the cylinder (3.6) is discussed
in [14, 16, 21–23].
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be consistent with the boundary conditions (3.4) that we have imposed for the Kaluza-
Klein reduction. The solutions to the previous equation are just constant spinor parameters,
εL(xµ) = ε0L, which are periodic, and thus the background (3.6) can only be supersymmetric
when the boundary conditions for the fermions in the Kaluza-Klein reduction are chosen to
be periodic.

In the case of the bubble of nothing, the background spacetime is simply connected and
asymptotically approaches a cylinder, where as we described earlier, one must impose that
the fermions be antiperiodic as one goes around the extra-dimensional circle. It therefore
follows that supersymmetry must be broken in the asymptotic pure KK background state of
the bubble of nothing. This is consistent with the results in [24–27] for purely gravitational
theories, where it was shown that covariantly constant spinors do not exist in asymptotically
conical spacetimes. Indeed, the spacetime of the bubble of nothing is asymptotically conical
with deficit angle of 2π, that is, a cylinder.

This relation between supersymmetry and the boundary conditions of the fermions can
also be understood intuitively by looking at the mass spectrum of the KK theory [18, 19].
When we perform a Kaluza-Klein reduction in the background (3.6) but with boundary
conditions other than periodic, some of the fermions that would be present in the reduced
theory acquire masses of the order of the KK scale. As a result, supersymmetry is broken in
the dimensionally reduced theory.9

This is just another way of stating the result in [6] that the simple supersymmetric
vacuum would not be allowed to decay by the formation of a bubble of nothing due to the
incompatibility of the spin structures between the supersymmetric compactification state and
the bubble of nothing geometry.

3.3 Winding compactifications and antiperiodic fermions

From our discussion in the previous paragraph, we see that imposing that the background (3.6)
be supersymmetric introduces a topological obstruction to the formation of bubbles of noth-
ing. However, this topological obstruction is not always present in all possible supersymmetric
backgrounds. Indeed, it is easy to see that the simple model (2.1) admits supersymmetric
compactifications demonstrating this. Consider the following bosonic background, which is
also of the form of eqs. (3.1)–(3.2),

φ = η eiθ, Aµ = e−1 δµθ, ψµ = χ = λ = 0, ds2 = −dt2+dz2+dr2+R2dθ2. (3.8)

The main difference with respect to the vacuum considered before (3.6) is that the
gauge vector has non-vanishing vacuum expectation value, so that the configuration has a
U(1) Wilson line on the compact direction. Furthermore, in order to satisfy Dµφ = 0, the
scalar field also needs to wind around the compact direction.

As in the previous example, the only non-trivial supersymmetry transformation is the
one of the gravitino,

DµεL =

(
∂θ +

i

2
κ2η2

)
εL = 0, =⇒ εL(xµ) = e−iκ

2η2

2
θ ε0L. (3.9)

We can see that, provided the parameters of the theory satisfy

γ = κ2η2 = 1 , (3.10)

9See a more detailed description of this point in the appendix A.
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it is possible to find a covariantly constant spinor which is consistent with imposing anti-
periodic boundary conditions for the fermions. This is just a special case of the result found
in [28], showing that covariantly constant spinors may exist in conical spacetimes when they
are coupled to a U(1) gauge field. Note that the background (3.8) can be consistently inter-
preted as the asymptotic region of a conical spacetime with deficit angle of 2π, where fermions
are necessarily anti-periodic, and therefore the same mechanism ensures that supersymmetry
is fully preserved.

Intuitively, the relation between the Wilson line, the winding scalar field and super-
symmetry breaking can also be understood as before by looking at how it affects the KK
mass spectrum. As was argued in [29], when the configuration has a Wilson line on the
S1, the whole KK mass spectrum of the fermions coupled to it gets shifted by an amount
proportional to the magnitude of the Wilson line. Then, choosing conveniently the expec-
tation value of the vector boson and the couplings, it is possible to tune to zero the masses
that would be induced by the non-periodic boundary conditions. As a consequence, the field
content left after the reduction is sufficient to form full supermultiplets, as in the case with
trivial boundary conditions, and therefore it possible to obtain a low energy theory invariant
under supersymmetry. We describe this arguments in more detail in the appendix A.

Summarizing, the field configuration (3.8) represents a supersymmetric KK compacti-
fication which is consistent with anti-periodic fermions on the circle and, in consequence, it
has is no topological protection against decay via nucleation of bubbles of nothing.

4 The bubble of nothing geometry

In previous sections we have discussed several compactification scenarios of our model. We
now describe the bubble of nothing geometries that would represent the decay of these com-
pactifications to nothing.

4.1 Bubble of nothing for pure vacuum solutions

We start our discussion with a lower dimensional version of the usual bubble of nothing
vacuum solution [6], which in 4D is given by the double Wick rotation of the Schwarzschild
solution:

ds2 = ρ2
(
−dt2 + cosh2 t dχ2

)
+

(
1− ρ0

ρ

)−1

dρ2 +

(
1− ρ0

ρ

)
dΘ2 . (4.1)

Here χ is an angular coordinate in [−π, π), ρ ∈ [ρ0,∞) is a radial coordinate, and Θ is a
periodic variable which runs from 0 to 2πR, R being the asymptotic radius of the compact KK
dimension. The parameter ρ0 determines the size of the bubble at the time of its formation,
t = 0. This is a vacuum solution of Einstein’s equations.

In order to discuss the geometry of this spacetime it is convenient to introduce a new
coordinate system {τ, r, z, θ}, given by

t = H0 τ, χ = H0 z, Θ = Rθ, (4.2)

where H0 = ρ−1
0 , which must be assumed positive for now. Note that the angular variable

z now takes values in [− π
H0
, π
H0

), and the coordinate θ parametrizing the compact direction
runs in [0, 2π). The new radial coordinate r ∈ [0,∞) is defined implicitly in terms of the
differential equation

dρ

dr
=

√
1− ρ0

ρ
, (4.3)
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and the boundary condition ρ(0) = ρ0 (or r(ρ0) = 0). That is, the position of the bubble is
now given by r = 0. In this gauge, the metric takes the form

ds2 = B(r)2
(
−dτ2 + cosh2(H0 τ) dz2

)
+ dr2 + C(r)2dθ2, (4.4)

where the metric profile functions B(r) = H0 ρ(r) and C(r) are determined implicitly by the
expressions

r(B) = H−1
0

√
(B − 1)B +H−1

0 log
(√

B +
√
B − 1

)
,

C(r) = R
√

1− 1/B(r). (4.5)

It is worth pointing out that the bubble of nothing geometry has a characteristic prop-
erty which is an immediate consequence of the definition of B(r) and the equations (4.3)
and (4.5):

B′(r) = H0

√
1−B−1 = H0C(r)/R. (4.6)

Later on we will use this property to determine when a solution is an approximate solution
of the vacuum Einstein’s equations of the bubble of nothing type. More specifically, when
the metric functions of our solutions fulfill (approximately) eq. (4.6), it will mean that the
metric configuration resembles that of the pure vacuum bubble of nothing solution.

Taking the limit r →∞ of (4.4) one identifies the asymptotics of this solution as M3×S1

in a coordinate representation similar to the Rindler slicing of Minkowski space,

ds2 ≈ r2H2
0

(
−dτ2 + cosh2(H0 τ) dz2

)
+ dr2 +R2dθ2. (4.7)

In other words, this geometry asymptotically approaches one of the simple KK compactifi-
cations described in (3.6). One can show that the Euclidean version of (4.1)–(4.4) possesses
a single negative mode in its spectrum of perturbations, which implies the existence of an
instability for these backgrounds.

We can understand the topology of this spacetime by studying its behaviour in the
vicinity of the bubble location, at r ≈ 0 (B(r) ≈ 1). In this regime equation (4.5) reduces to
r(B) ≈ 2H−1

0

√
B − 1, and the metric has the approximate form,

ds2 ≈ −dτ2 + cosh2(H0 τ) dz2 + dr2 + r2R
2H2

0

4
dθ2 , (4.8)

which shows that the extra dimension degenerates as one approaches r = 0. Moreover, we
can see that in order to avoid any conical singularity at r = 0, the radius R of the extra
dimension must satisfy the relation R = 2H−1

0 . This means that the transverse directions to
the bubble form a kind of smooth cigar geometry that approaches a cylinder of fixed radius
at large distances from the tip at r = 0 (see figure 1). As a consequence, any loop wrapping
the extra dimension can be shrunk to nothing if we take it to the tip of the cigar, so indeed
the spacetime is simply connected, which enforces that the fermions be anti-periodic along
the extra dimension. Therefore one can consider this as the appropriate geometry of the
instanton solution that describes the decay of a non-supersymmetric KK configuration with
anti-periodic fermions.

Note that the solution (4.4) depends on a single parameter, H0, which gives us the
Hubble scale of the two-dimensional de Sitter slice of the spacetime that corresponds to the
surface of the bubble, as well as the initial radius of the bubble, H−1

0 = R/2. Physically, this
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Figure 1. Representation of the bubble of nothing. Left: this figure shows the two large spatial
dimensions of the geometry with the apparent vertical separation representing the Kaluza-Klein extra
dimension. Right: this image represents the full extra-dimension but only the radial large direction.
We use a thick red region in both images to represent the vortex/string present at the interior edge
of lower-dimensional spacetime, where the extra dimension degenerates to zero size, as described in
section 4.2.

scale parametrizes the deviation of the geometry from Euclidean flat space near the r → 0
(B(r) → 1) region. At the same time, it also encodes the information about the size of
the compactified extra dimension in the asymptotic limit r → ∞ (B(r) → ∞) through the
relation R = 2H−1

0 .
In summary, this solution describes an asymptotically flat 3D spacetime with a compact

fourth dimension of radius R = 2H−1
0 . In the r → 0 limit, the extra dimension pinches off at

a ring, which bounds the excised hole in the two large spatial dimensions, and which expands,
eating all of future spacetime. This ring/hole is shown in figure 1, left. The fact that in the
full 4D geometry, the bubble is a co-dimension two submanifold is apparent in the right half
of figure 1.

4.2 The bubble of nothing in winding compactifications

As we described in previous sections our model allows for compactifications where the scalar
field φ winds around the extra dimension. Moreover, the configuration also involves a Wilson
line for the vector field. Putting these two features together along the extra-dimension does
not augment the energy-momentum tensor. This means that there is no backreaction on the
metric due to the presence of these new ingredients, and the solution is still given by the
pure KK compactification M3×S1. However, this background cannot have the same bubble
decay channel as in the absence of these winding modes. The reason is that if we imagine the
geometry of the vacuum bubble of nothing with the Wilson line wrapping the extra dimension
asymptotically, it is clear that since the spacetime is now simply connected, one finds some
magnetic field flux in the vicinity of the tip of this cigar geometry (see figure 1). This means
that the analogous bubble of nothing should be dressed with this flux. Here we propose that
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there is a simple configuration that meets these requirements: situating an Abelian-Higgs
vortex at the tip of the bubble of nothing geometry. This vortex has all the appropriate
charges to match the asymptotic requirements of our winding background compactification.

Instanton solutions similar to the one discussed here have been presented in the literature
in the context of flux compactifications [30–32].10 On the other hand there is an important
difference between those models and the one we study here. Our winding compactification
is not a flux compactification. (Indeed we have not induced any potential for the size of the
internal dimension.) Even though the presence of the vortex is dictated by the boundary
conditions at infinity, unlike a global vortex, there are no long range interactions, so the
vortices’ effects are much more localized.

There are several ways to justify our proposed dressing for the instanton. Having
identified the necessity of this Abelian-Higgs vortex (cosmic string) on the geometry we
would like to convince ourselves that wrapping the string around the ring at the tip of the
vacuum bubble of nothing geometry is, in fact, the correct configuration for the string in
this background. In order to do that, we will first assume that the Abelian-Higgs vortex is
accurately described by the Nambu-Goto (NG) equations of motion, and that it does not
distort the background in a significant way. In other words, that one can take the string to
be a probe in the background of a bubble of nothing geometry. Taking into account these
approximations one can then easily identify a solution of the NG equations of motion of a
string sitting at the tip of the bubble of nothing geometry where the circle extra dimension
shrinks to zero size. It is perhaps easier to understand this in the Euclidean version of the
solution where the string worldsheet is then wrapping the minimal surface sphere at the tip
of the cigar geometry. Intuitively it is clear that in this Euclidean geometry there is no other
place where this string can go. The Lorentzian continuation of this solution represents a
string being stretched by the de Sitter expansion of the bubble of nothing that is eating up
the spacetime.

We can now estimate what the effect of this string is on the bubble of nothing geometry,
drawing from our experience on cosmic string spacetimes. Assuming a low tension for the
string compared to the Planck scale, we can expect that the only effect on the background
would be to introduce a deficit angle on the space transverse to the string, similar to what
happens for a cosmic string in flat space [36].

One can introduce such a deficit angle on the metric by changing the value of H0 in (4.4)
to make it depend on the tension of the string, and at the same time keeping fixed the radius
of the extra dimension R to be what we had before. The last condition ensures that at large
distances from the bubble, r →∞, the spacetime still asymptotes to a KK geometry M3×S1

with radius R for the extra dimension, as in (4.7). More specifically we should take

2H−1
0 =

R

1− ∆W
2π

=
R

1− µκ2

2π

=
R

1− 4Gµ
, (4.9)

where ∆W is the local11 deficit angle induced by the string of tension µ. (Remember that in
our notation κ2 = M−2

P = 8πG.) We can now repeat the same calculation that we had done
before to obtain the form of the metric in the limit r → 0. After substituting the previous

10See [33, 34] for a different approach to bubbles of nothing in this field theory context. See also [35] for
some discussion of bubbles of nothing in models of flux compactification in the String Theory context.

11A local deficit angle is measured at an infinitesimal distance from the Nambu-Goto string. Farther from
the string, ∆W is the deficit angle removed from Witten’s smooth bubble geometry.
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expression in (4.8) we find

ds2 ≈ −dτ2 + cosh2

(
2(1− 4Gµ)

R
τ

)
dz2 + dr2 + (1− 4Gµ)2 r2dθ2 . (4.10)

This solution has now a conical singularity at r → 0 signaling the presence of the string
of tension µ at that point. Furthermore the circumference of the initial bubble ring, which
can be read from the periodicity of z ∈ [− π

H0
, π
H0

), is now modified by the string, becoming

slightly bigger than before: H−1
0 > R/2. We will refer to the vacuum geometry characterized

by H−1
0 6= R/2 as a deformed bubble of nothing.12

These solutions describe the most important modifications of the geometry for the
bubble of nothing instantons in our model with the winding fields around the extra-dimension.
In particular they describe a very interesting property of the model in the limit of 4Gµ→ 1.
In this critically deformed case, one sees that the bubble size for our instanton becomes
infinite, H−1

0 → ∞. In other words, the string world-sheet becomes flat and the transverse
space to all these solutions corresponds to a cigar-like static geometry. This static, infinite
(string wrapped) bubble signals a complete suppression of the tunneling process to nothing,
exactly in the same way as what happens in the usual Coleman-de Lucia [3] transition. The
Euclidean action in this case diverges, and the decay rate to nothing vanishes much in the
same way as it occurs in field theory models without extra dimensions.

It is important to note that these configurations have been found using the thin wall
approximation, and it is not clear if the suppression will survive in the full field theory
description of our model. In the following sections we will test all these ideas by looking at
the smooth numerical solutions of the bubbles of nothing within the Abelian-Higgs model.

5 Bubble of nothing in the Abelian-Higgs model

Previous arguments suggest the existence of solutions describing the decay of a compactified
space via the formation of a bubble of nothing where the bubble is dressed with a cosmic
string. In this section we would like to explore the existence of these solutions in the Abelian-
Higgs model where the cosmic string will be represented by a smooth vortex. Our starting
point is the action,

S =

∫
d4x
√
−g
(

1

2κ2
R− |Dµφ|2 −

1

4
FµνF

µν − βe2

2
(η2 − φφ̄)2

)
, (5.1)

where we have introduced the deformation parameter β. Note that this action only coincides
with the bosonic sector of the supergravity model presented in section 2 for β = 1, and thus
this parameter determines an explicit breaking of supersymmetry for values of β 6= 1.

We will look for solutions with a generalized bubble of nothing ansatz for the metric,
namely solutions of the form (4.4), with the profile functions B(r), C(r) and the parameter
H0 yet to be determined. As in the previous section the induced metric on the bubble wall
(and the vortex) is a 2-dimensional de Sitter space with Hubble parameter H0, and the initial
bubble radius at τ = 0 is given by H−1

0 . The limiting behaviour of C(r) for large values of
the radial coordinate r fixes the asymptotic size of the compact dimension via the relation
R = limr→∞C(r).

12The thermodynamic properties of the euclidean version of this solution are discussed in [37, 38].
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We will consider the configuration for a vortex of unit winding number for the matter
fields, which is of the form [36],

φ(r) = f(r)eiθ, Aµ =
1

e
(1− a(r))δµθ. (5.2)

In order to simplify the notation, we can redefine fields and lengths by the following
rescalings,

f → ηf, τ → lgτ, r → lgr, z → lgz, C → lgC, H0 → l−1
g H0, (5.3)

where we are using the length scale lg ≡ 1
ηe , corresponding to the vector core thickness. Note

that all the coordinates {τ, r, z, θ} and the the parameters R and H0 are now dimensionless.
Using this ansatz we arrive at the matter field equations

(B2Cf ′)′

B2C
− a2f

C2
+ β(1− f2)f = 0,

C

B2

(
B2a′

C

)′
− 2f2a = 0. (5.4)

Furthermore the t-t component and the θ-θ component of the Einstein’s equations read (the
r-r component is a constraint)

(CBB′)′

B2C
= γ

(
a′2

2C2
− β

2
(1− f2)2

)
+
H2

0

B2
,

(B2C ′)′

B2C
= −γ

(
a′2

2C2
+

2a2f2

C2
+
β

2
(1− f2)2

)
, (5.5)

where we have made use of the dimensionless parameter γ = κ2η2 introduced earlier which,
as we see from these equations, determines the gravitational coupling of the string.

5.1 Compactificatified vacuum states

Using the ansatz given above it is easy to show that the following configuration solves the
equations of motion for arbitrary values of β and γ,

f(r) = 1, a(r) = 0, B(r) = H0 r, C(r) = R . (5.6)

Putting the dimensionful constants back in, we can see that this is nothing more than
our original M3 × S1 background given in the same gauge as in eq. (4.7),

φ = η eiθ, Aµ = e−1δµθ, ds2 = r2H2
0

(
−dτ2 + cosh2(H0 τ) dz2

)
+dr2 +R2dθ2. (5.7)

We note that fixing the values of β and γ we completely specify the theory to be
considered but we still have the freedom to set the radius of the compactified space, R, to
any value. This is just a reflection of the fact that the radius of the extra dimension is
a flat direction in the moduli space of the compactified theory. The constant H0 is also
left undetermined in this background, but here it has no physical meaning, it just signals a
coordinate freedom associated to the Rindler slicing we are using to parametrize the M3.
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5.2 Boundary conditions for the bubble solutions

In order for the spacetime of the bubble of nothing to be everywhere regular, the metric
profile functions must satisfy the following conditions on the bubble, that is, at r = 0 (see
appendix B):

C(0) = 0, C ′(0) = 1, B′(0) = 0. (5.8)

We will also require the gauge condition B(0) = 1, in order for the metric to have the
form (4.8) in the limit r → 0. These conditions mean that the geometry near the bubble
approaches that of dS2×R2, where the two factors represent the intrinsic de Sitter geometry
on the bubble and the smooth end of the compact dimension, respectively. In other words,
for r ≈ 0 we have

ds2 ≈ −dτ2 + cosh2(H0 τ) dz2 + dr2 + r2dθ2. (5.9)

Note that, since z ∈ [− π
H0
, π
H0

), the limit H0 → 0 of this geometry is locally that of 4-
dimensional Minkowski space.

For the matter field configuration to be regular at the bubble location we must also
require that

f(0) = 0, a(0) = 1. (5.10)

Solutions representing a bubble of nothing in a winding compactification should ap-
proach a KK vacuum of the form (5.7) asymptotically, therefore the profile functions must
have the following asymptotic behaviour for r →∞:

lim
r→∞

f(r) = 1, lim
r→∞

a(r) = 0, lim
r→∞

C(r) = R. (5.11)

Note that, a priori, the parameter H0 appears to be unfixed by the boundary conditions.
However once we demand the profile functions to meet all the boundary conditions specified
above, there is a unique value of H0 which is compatible with them and the fields equations.

In summary, we will obtain the parameter H0, together with the form of the profile
functions of the metric and matter fields as a result of numerically solving eqs. (5.4) and (5.5),
subject to the conditions (5.8), (5.10) and (5.11).

6 Comparing numerical results with the thin wall approximation

We have shown in previous sections that one can obtain a supersymmetric compactification
by specifying the condition,

β = 1 , γ = 1 . (6.1)

In the following we will consider different values of these parameters and their approach to the
supersymmetric limit. In this section we will consider the regime of parameter space where
the vortex size is much smaller than the compactification radius R and the initial bubble
size H−1

0 . This is the situation where we expect the thin wall approximation discussed in
section 4.2 to be an accurate description.

6.1 Non-supersymmetric compactification: the γ 6= 1 case

We start our investigation by looking at solutions where β = 1 and the gravitational coupling
of the vortex is small, γ � 1. It is clear that in this case, the compactification would break
supersymmetry spontaneously since the condition in eq. (3.10) will not be satisfied.
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B'(r)/H0

C(r)/R

f(r)

B(r)
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R = 10, β = 1, γ = 0.001

ΔW /2π = 0.00100031, H0
-1 = 5.00506

Figure 2. Bubble of nothing in the Abelian-Higgs model with β = 1, γ = 10−3 and asymptotic
radius of the compact dimension R = 10. Note that since R� 1, the vortex is much thinner than the
background curvature, and so we can compare the bubble deficit angle ∆W ≈ 2π 10−3 with the flat
space deficit angle ∆ = 2π 10−3 in eq. (6.2). This is a very light vortex with tension 4Gµ = 10−3, so
backreaction is almost negligible. In the left panel, the matter field profiles are shown, together with
the metric fields B′(r)/H0 and C(r)/R. These last two are on top of each other, inferring that we
are in a bubble of nothing configuration, as given by (4.6). This can be corroborated by the profiles
of B(r) and C(r) in the right panel.

Keeping β = 1, the vortex solution is special in the sense that the scalar and magnetic
cores are of the same size, which is unity in our current units13 [36]. On the other hand, we
still have the freedom to fix the size of the compact dimension, so it makes sense to start our
investigation in the regime where there is a clear separation of scales between the size of the
vortex and the size of the extra dimension, R� 1. It is in these cases that we expect a bubble
of nothing solution that is very similar to Witten’s pure gravity solution. Furthermore, small
variations from this solution should be well captured in this regime of parameters by our
analysis within the thin wall approximation.

In figure 2 we present a numerical solution that corresponds to a bubble of nothing in
such a regime, where we have fixed γ = 10−3 and R = 10. We relegate to appendix B the
detailed explanations of the numerical procedure we use in order to find these solutions. Using
those techniques and given the values of the parameters (β, γ,R), we are able to compute
both the values of the initial size of the bubble H−1

0 , and the vortex induced deficit angle
∆W that one can infer from the asymptotic vacuum solution.

It can be shown that the effect of the string vortex on the bubble of nothing is negligible
and the profile functions B(r) and C(r) resemble almost exactly the form given by Witten’s
bubble configuration (4.4) and (4.5). The relation (4.6) is satisfied everywhere, as it can be
checked in figure 2, where the line representingB′(r)/H0 remains hidden by the one associated
to C(r)/R. As mentioned before, this property is characteristic of the pure vacuum bubbles
of nothing. Another way to quantify this is by looking at the ratio between the values of R
and H−1

0 , which in this case is very close to 2 as in the original bubble of nothing. In the
right panel of figure 2 we have displayed the asymptotic regime of the profile functions B(r)
and C(r), showing that the spacetime geometry approaches M3 × S1 in the limit r →∞.

The most notable difference with (4.4) and (4.5) is given for the asymptotic presence of
a deficit angle on this solution, which in our numerical solution is ∆W ≈ 2π 10−3. We can

13In flat space, the value of β determines if we are in the type-I (β < 1) or type-II regime (β > 1). β = 1 is
the Bogomolnyi limit. For β = 1 the vortex core radius is given by lg without the rescalings in eq. (5.3).
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Figure 3. Bubble of nothing in the Abelian-Higgs model with explicit breaking of supersymmetry,
β = 0.001, strong gravitational coupling γ = 1, and large asymptotic radius of the compact direction
R = 40. Note that the relation (4.6) is satisfied far from the core.

now compare this value with the deficit angle for the vortex in an asymptotic conical space
for the same values of the parameters β, γ. In our case, we can use the result for the case for
a vortex of a single unit of flux [36],

∆(γ)|β=1 = 8πG µ(γ)|β=1 = 2πγ = 2π 10−3. (6.2)

We see that the result obtained from the numerical calculation agrees perfectly with
the analytic results described earlier. Furthermore, the profile of the matter fields, f(r) and
a(r), are not very much affected by the existence of the bubble. This is not surprising, since
the radius of the bubble H−1

0 ≈ R/2 = 5 is large compared to the size of the defect.

6.2 Explicit supersymmetry breaking: the β 6= 1 case

We can also explore the regime where we set γ = 1 and vary β. In this case, the original
theory breaks supersymmetry explicitly, so we expect the existence of bubbles of nothing in
this case as well. The thickness of the scalar vortex gets bigger when decreasing the value of
β < 1, so in order to check the validity of the thin wall approximation we should also consider
large values of the extra dimensional space and integrate the equations to larger distances
from the core.

We show in figure 3 a solution for β = 0.001, and R = 40. This solution agrees well with
the thin wall approximation of a conical defect produced by the analogue vortex in an asymp-
totically locally flat spacetime that is placed on a bubble of nothing geometry. For instance
we see that far from the vortex core (r � 1) the metric profile functions approach those of
the standard bubble of nothing (4.4) and (4.5), and satisfy the characteristic relation (4.6).

Although the string tension decreases for smaller values of the parameter β the de-
pendence is logarithmic [36], which means that it is dominated by the large value of γ in
our case. This explains why there is still a quite important backreaction on the value of
H−1

0 ≈ 26 > R/2 = 20 compared to the pure bubble of nothing geometry in our example.
Note also that the equation (6.2) for the deficit angle of the vortex in an asymptotically
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Figure 4. In the left panel we plot a bubble of nothing configuration near the supersymmetric limit
(γ = 0.98). Note that although the matter fields rapidly approach their asymptotic (vacuum) values,
in the region plotted the extra dimension has size C(r) ≈ 1, and it only very slowly approaches its
asymptotic value of 10. The right plot shows a sequence of bubble of nothing geometries for increasing
values of γ, fixed β = 1, and R = 10. From top to bottom γ = {0.01, 0.1, 0.2, 0.3, . . . , 0.9}, showing
that for higher values of γ there is a larger region (1 . r . H−10 ) where the metric profile functions
B ≈ 1 and interestingly, C ≈ 1, regardless of the value of R.

conical spacetime is only valid for β = 1, and therefore it cannot be used in the present case
to predict the approximate value of ∆W . Nevertheless, we have checked that the obtained
∆W agrees well with the analogue value in a conical spacetime for the same parameters.

These solutions and their agreement with the thin wall approximation described in
section 4.2 validates our numerical techniques and demonstrates explicitly the existence of
these decay channels in models with broken supersymmetry.

6.3 Supersymmetric limit: approaching the critical bubble

Taking as our initial condition the solutions found previously, we would like to find what
happens as one approaches the supersymmetric compactification limit where β = 1 and
γ = 1. As in the previous subsections, we will restrict our attention to the case where the
asymptotic compactification radius is large compared to the vortex width, R� 1, so that the
predictions of the thin wall approximation are applicable. Nevertheless, due to the large value
of the gravitational coupling, γ, the backreaction of the vortex on the geometry is expected
to be large, and thus to induce significant deviations from Witten’s bubble of nothing given
by equations (4.4) and (4.5). We show a sequence of the numerical solutions in the right
panel of figure 4 with the parameter β fixed to unity, the asymptotic size of the compact
dimension set to R = 10, and γ varying in the range [0.01, 0.9].

Moving slowly in the parameter space towards this supersymmetric limit, we see the
appearance of two different vacuum regions. On the one hand, for 0 ≤ r � H−1

0 , the
geometry of the space adjacent to the vortex becomes increasingly similar to the background
of a string in an asymptotically conical spacetime with critical tension, i.e. with deficit angle
∆ ≈ 2π [36]. Outside the vortex core, 1� r � H−1

0 , this vacuum geometry resembles a static
cylinder where the radius of the extra dimension is constant and equal to the vortex size,
which in our units is C(r) = 1. This region of space is displayed in figure 4. At large distances
from the vortex core, r & H−1

0 , the spacetime begins to resemble the pure compactification,
and matches the boundary condition limr→∞C(r) = R = 10. It is instructive to view the
different behaviors over a large range of r, and so we will plot the profile functions over
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several decades in r in later sections (e.g., right panel of figure 5), showing how the solutions
interpolate between these two regimes.

As one approaches the supersymmetric case, (γ = 1, β = 1), the value of H0 decreases
quickly, becoming zero in that limit. Recall that H0 is the Hubble scale of the induced de
Sitter geometry on the bubble surface. The vanishing of this parameter thus indicates the
arrival at a flat bubble geometry. The values of H0 obtained numerically are in very good
agreement with the predictions from the thin wall approximation, i.e., with equations (4.9)
and (6.2). Note that the circumference of the bubble at the moment of nucleation is 2πH−1

0 .

In summary, in the supersymmetric limit the bubble becomes flat and infinitely large.
Moreover, as one approaches this limit, the geometry of the transverse directions ever more
slowly interpolates between two regimes:

• 1 . r � H−1
0 : outside (but near) the vortex core, the geometry resembles a cylinder

of approximately constant radius C(r) ≈ 1. This region becomes infinitely large in the
supersymmetric limit where H0 → 0.

• H−1
0 � r: far from the vortex core, the compact dimension approaches the asymptotic

radius C(r) ≈ R. In the supersymmetric limit (H0 → 0), this asymptotic regime occurs
at an infinite distance from the bubble, assuming R 6= 1.

We show in the left panel of figure 4 the profiles obtained close to the limiting case
(γ = 0.98). In this example the initial bubble size is given by H−1

0 ≈ 256, which still in good
agreement with the prediction obtained from the thin wall approximation

H−1
0

∣∣
tw

=
R

2(1− 4Gµ)
≈ 250, (6.3)

where we have used (4.9) and (6.2). This is important for the calculation of the decay rate of
the compactified spacetime, since an infinite bubble would give rise to an infinite action for
the instanton and therefore a total suppression of the tunneling transition. This is exactly
what happens in the usual Coleman-De Luccia suppression mechanism.

Although not plotted here, we have repeated the numerical calculations following dif-
ferent paths towards the supersymmetric limit in the (β, γ) parameter space while keeping
fixed the value of R, and in it is interesting to note that the behaviour we just discussed is
independent of the path.

7 Numerical results away from the thin wall regime

As we noted earlier, all possible values of the asymptotic KK radius R are allowed for each
point in the parameter space (β, γ). We expect that there will be instanton solutions rep-
resenting the decay to a bubble of nothing for all these values. We have argued that these
instantons should involve the presence of a vortex in their geometry that should fit inside the
bubble of nothing solution with the correct asymptotics. In the previous sections we have
shown explicitly that this is possible in our smooth Abelian-Higgs model when there is a
clear separation of scales between the compactification size and the vortex core size R� 1.

Here we would like to numerically explore what happens when we are not in the above
regime, in other words, when we are well outside of the region of validity of the thin wall ap-
proximation. This is not just a technical curiosity, it is an important point for the conclusions
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Figure 5. A bubble of nothing for a winding compactification with KK radius R = 0.5 and gravi-
tational coupling γ = 1. The left panel shows the solution for β = 0.6. The right panel shows the
(β = 0.98) bubble of nothing, close to the supersymmetric case. In this panel the radial distance is
arranged on a logarithmic scale so that the figure shows the two regimes: inside/near the core, and
asymptotically the compactification boundary conditions.

of our paper. We are arguing that the supersymmetric limit of our compactification is pro-
tected from the bubble of nothing decay dynamically by the Coleman-De Luccia suppression
mechanism. If this is the case, it should be the same for any value of the compactification
radius R, not only for the situations that are easily described by the thin wall approxima-
tion. We therefore extend our investigations to some of the cases where one can only find
the solution by performing the numerical integration of the equations of motion.

7.1 Small compactification radius, R . 1

The situation seems more problematic in cases where the compactified space is smaller than
the vortex core. It would seem difficult to find the bubble of nothing instanton of the kind
that we have been discussing, since there seems to be no space for the vortex to fit in this
geometry.

In the left panel of figure 5, we present an example of such an instanton for the case
of R = 0.5, with supersymmetry breaking parameters γ = 1 and β = 0.6. We see that the
solution does exist, but its geometry is quite different from the previous cases. Close to the
vortex, the extra dimension is larger than its asymptotic value. This is due to the presence of
the vortex matter fields that force the extra-dimensional volume to be large enough to hold
the vortex. Once the matter fields are settled near their vacuum values f(r) = 1 and a(r) = 0,
the geometry relaxes (possibly very slowly) to the one imposed by the boundary condition
at infinity. In particular, we see that the metric profile functions satisfy the characteristic
relation (4.6). As we discussed above, the regions where this relation is satisfied signal
that the spacetime metric is an approximate solution of the vacuum Einstein’s equations.
The interesting point about this configuration is that it settles to a vacuum solution which
corresponds to a Schwarzschild-like solution of the type given by eq. (4.1) but with a negative
mass term. Indeed, when the metric is written in the gauge (4.4) this means that the metric
profile function C(r) has the following asymptotic behaviour for r � 1 (B(r)� 1):

B′(r) ≈ H−1
0 > 0, C(r) ≈ R

√
1 +B(r)−1, (7.1)

which can be obtained proceeding as in section 4.1, but setting ρ0 < 0. This explains how
the size of the extra dimension, C(r), can be a decreasing function of the distance from the
core, as figure 5 shows.
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Figure 6. A bubble (solid lines) superimposed with the corresponding asymptotic vacuum solution
B′vac(r) = H0 Cvac(r)/R (dotted). Numerically we also find H0 = 0.103 even though the asymptotic
vacuum solution would extrapolate to a smaller (Nambu-Goto wrapped) bubble with Hδ = 0.132. We
can characterize this “thick-vortex” effect as the ratio Hδ/H0 = 1.29.

A vacuum solution with this behavior cannot exist on its own, since this would lead to
a naked singularity, not a smooth bubble of nothing geometry. The reason is that a negative
mass Schwarzschild solution does not have a horizon, so both the Lorentzian geometry as well
as its analytic continuation would be singular. It is only due to the presence of the vortex
that one can cap the geometry, replacing the singularity by the smooth vortex.14 In this
sense, these solutions are clearly not a deformation of the usual vacuum bubble of nothing
geometry.

Taking the supersymmetric limit of these solutions, we arrive at the same conclusion as
in the previous section. As one approaches the β = 1, γ = 1 limit, the size of the bubble, H−1

0

diverges, signaling again the suppression of the decay. We show in the right panel of figure 5
an example of such behaviour for R = 0.5, and parameters (γ = 1, β = 0.98). In this case the
value we obtain for the Hubble parameter is H0 ≈ 4 × 10−3. We have plotted the solution
on a logarithmic axis to see clearly the two regions in the solution (which we described in
section 6.3), the vortex cylinder close to the tip, 1 . r � H−1

0 , and the compactification
geometry at large distances, H−1

0 . r. Outside the vortex, this case corresponds to an
analytically continued Schwarzschild solution with a negative mass term. In particular, we
see that for 1 . r . 200 the radius of the compact dimension is given by the vortex size
C(r) ≈ 1, or equivalently C(r)/R ≈ 2, and far away from the core, r � 200, it has decreased
toward the asymptotic value C(r)→ R.

7.2 Intermediate regime, R ∼ O(1)

We can also explore numerically the solutions that interpolate between the extreme cases
discussed earlier, i.e., cases with very small and very large compactification radius. In figure 6
we show a solution with R = 2. We have also represented, with a dashed line, the deformed
bubble solution of the vacuum Einstein’s equations given by (4.4) and (4.5), which matches
the same asymptotic behaviour of the fully numerical solution. As we discussed in section 4,
such a vacuum solution can be completely characterized by the boundary condition R = 2, as
well as the deficit angle ∆W = 5.45, and satisfies the relation (4.6) everywhere. Such solutions
require a delta-function (Nambu-Goto) source to induce the deficit angle deformation of

14It would be interesting to investigate these new configurations as regular Euclidean black hole solutions
with negative mass terms.
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Figure 7. Solutions for γ = 1 and R = 2 close to the supersymmetric limit, β = 0.98. Note that the
initial bubble radius H−10 � 1 is very large. The behaviour of the profile functions near the core of
the vortex, r . H−10 , are shown in the left plot. In the right plot the radial coordinate is represented
in logarithmic scale in order to display the behaviour far from the vortex core r � H−10 .

Witten’s bubble, ∆W . It should be located at a point r = rδ < 0 to correctly match the
profile functions for r → ∞. Instead, in the fully numerical Abelian-Higgs solution, the
presence of matter causes a sudden drop in both C and B′, with the bubble appearing at
r = 0, rather than the extrapolated value r = rδ.

Similarly to what we did before, we show in figure 7 the solution near the supersymmetric
limit, β → 1. The behaviour is similar to the other cases, and in particular we observe that
H0 becomes arbitrarily small, implying that the suppression persists for all values of the
asymptotic compactification radius R. This intermediate regime allows us to distinctively
see both regions of the deformed bubble solution, the vortex core which resembles a static
vortex solution and the large r geometry that matches the pure compactification. In figure 7,
we display the spacetime region near the vortex core r . H−1

0 on the left panel, and the
transition between the vortex core region and the asymptotic geometry for r & H−1

0 is shown
on the right. As usual, C ′(r) ≈ 1 while 1 . r . H−1

0 , after which it approaches its asymptotic
value R.

7.3 Limiting case R = 1, and the half-BPS solution

Finally we discuss the special case where the extra dimension is such that the asymptotic
radius of the compact dimension is R = 1. This is a particularly interesting case, since in our
conventions, this corresponds to the natural size of the vortex in the supersymmetric limit
of the theory, namely when β = 1 and γ = 1.

We cannot rely on the thin wall approximation in this case either since there is no real
separation between the size of the vortex and the compact space volume, specially if we take
the β < 1 case where the vortex core would be even bigger, as follows from the experience
in asymptotically conical spacetimes. We show an example of these solutions with β = 0.6
in figure 8, which proves the existence of bubble of nothing configurations in this regime.
Nevertheless it is interesting to note that taking the supersymmetric limit one arrives to
practically the same conclusions as in the previous cases, as shown in the right panel of
figure 8: the bubble becomes flat and infinite, signaling an exponential suppression of the
decay rate.

Let us now discuss more in detail the limiting solution we obtain for R = 1, as we
approach the supersymmetric case (γ = 1, β = 1). In previous sections we have shown that
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Figure 8. On the left plot we show a bubble with gravitational coupling γ = 1 and KK radius
R = 1 away from the supersymmetric state, β = 0.6. Note the important deviation from the thin
wall approximation. The right plot shows a bubble with γ = 1 and R = 1 near the supersymmetric
limit, β = 0.99. The radius of the bubble H−10 becomes very large in this case. All indications are
that H0 → 0 as β → 1 from below.

in this limit the spacetime metric displays two different regimes. On the one hand, near the
string core, 1 . r . H−1

0 , the geometry is dominated by the vortex configuration and C(r) ≈
1. On the other hand, at large distances from the core, r � H−1

0 , the metric approaches the
asymptotic KK configuration with radius C(r) = R. Our numerical calculations also indicate
that H0 vanishes in the supersymmetric limit, which implies that the first regime becomes
infinite. Interestingly, in the case R = 1 the near vortex configuration already meets the
asymptotic boundary condition C(r) = R = 1, and therefore it would seem that there is no
sense in which two regimes are present. As we shall argue in the following, this is precisely
the case at hand. Actually, the resulting configuration is a half-BPS vortex solution that is
known to exist in our model [9, 10].

Following the evidence obtained by our previous numerical calculations we will set H0

to zero in order to study the supersymmetric limit. Then, the generalized ansatz for the
metric (4.4) reduces to

ds2 = B2(r)
(
−dτ2 + dz2

)
+ dr2 + C2(r)dθ2 . (7.2)

Note that the coordinate z now takes values in the range (−∞,∞), implying that the bubble
radius is infinite, and therefore the string wrapping it is also infinitely long and flat. If we
set H0 = 0 in the system of equations (5.4) and (5.5), it can be shown that they admit a first
integral (see for example [39]), leading to a new system of first order differential equations
called the BPS equations,15

f ′ − faC−1 = 0 , a′ − C (f2 − 1) = 0 , C ′ − 1 + γ
(
1 + a(f2 − 1)

)
= 0 , (7.3)

while the profile function B(r) can be consistently set to a constant, B(r) = 1. Furthermore,
the boundary conditions that impose regularity at the core as well as finite energy (per unit
length of the string) reduce to

C(0) = 0 , f(0) = 0 , a(0) = 1 , f(r →∞) = 1 , a(r →∞) = 0 . (7.4)

15Although we are discussing the supersymmetric limit, we leave here the parameter γ explicit for later
convenience.
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Figure 9. Solution in the supersymmetric limit γ = 1, β = 1, with asymptotic compactification
radius R = 1.

Field configurations satisfying the BPS equations and these boundary conditions can
be shown to leave unbroken half of the supersymmetries. More precisely, the unbroken
supersymmetries are those generated by a parameter ε of the form

εL(θ) = e−
1
2

iθε0L, (7.5)

where ε0 satisfies the projector condition γ12ε0 = −iγ5ε0 [9, 10]. Far away from the core,
r →∞, the BPS equation for the metric profile function C(r) becomes

C ′ ≈ 1− γ, (7.6)

therefore, if we want this spacetime to behave asymptotically as a compactified state we must
require that C ′(r) → 0 for large r, and thus we need the parameters of our theory to obey
the constraint γ = 1. In this case, for r →∞, the solution approaches the vacuum compacti-
fication discussed earlier and given eq. (3.8), where supersymmetry is fully restored since the
parameter γ satisfies the constraint (3.10). (See [10].) Furthermore, the θ−dependence of the
supersymmetric parameter (7.5) is consistent with the boundary conditions of the fermions,
which should be anti-periodic, as the spacetime is simply connected.

In figure 9 we show a numerical solution of the previous system of equations and bound-
ary conditions. Note that the radius of the compactification rapidly approaches the asymp-
totic value C(r) = R = 1, and therefore this configuration is also a solution of the full set of
equations of motion and boundary conditions imposed in section 5.2, which we used previ-
ously to obtain the bubble configurations. It is interesting to note that the field profiles in
this solution are identical to the ones we have found earlier for other values of R near the
supersymmetric limit (see e.g. figure 4). This is of course possible because those solutions
also have a very small H0 in that limit, so the bubble becomes effectively flat, and the outer
region r & H−1

0 is at a very large distance from the core. Indeed, as we anticipated at the
beginning of this section, in the solution of (7.3) and (7.4) represented in figure 9, the outer
regime is totally absent.
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The spacetime in the (r, θ) directions resembles a cigar type geometry, and it is pretty
close to that of a cylinder with a spherical cap attached to it on its end [10, 39]. Taking
into account this description of the solution, one can interpret the half-BPS cosmic string
solution as an interpolation between two different vacua. The compactified vacuum M3×S1

given by eq. (3.8) and the pure magnetic spherical compactification M2 × S2 at the vortex
core, which can also be shown to be a solution in our model [10, 39]. In this view, the
solution is very similar to the static supersymmetric domain walls that interpolate between
supersymmetric vacua in supergravity theories [5]. The presence of these half-BPS solutions
in those models signals the suppression of a possible decay between such vacua, which is
precisely the behaviour we encounter in our case. In our model, the decay to the bubble of
nothing is suppressed in this case when R = 1 by the appearance of a half-BPS cosmic string
solution that prevents the decay from happening. Other possible initial supersymmetric
configurations are also protected by a similar object, although in these cases the solution is
not half-BPS due to different asymptotic boundary conditions.

8 Conclusions

Several years ago, Witten showed that compactified higher dimensional theories are suscep-
tible to decay via the formation of a bubble of nothing. This happens by the spontaneous
nucleation of a bubble where the extra-dimension pinches off and disappears. It is generally
believed that supersymmetric compactifications would be stable with respect to this decay
channel due to the necessity of periodic fermions around the extra dimension (circle of com-
pactification). This periodicity is incompatible with the bubble of nothing cigar geometry,
which imposes antiperiodic fermions in the asymptotic region, the region that approaches
the compactification vacuum state.

On the other hand, this KK vacuum solution is not the only possible compactification
on a circle that preserves supersymmetry. We have shown in this paper an explicit example
of a supersymmetric compactification that allows anti-periodic fermions due to the presence
of extra matter fields winding the extra dimension. It would therefore seem possible for these
states to decay via an instanton similar to the one in the pure Witten bubble. Here we have
investigated this possibility and concluded that one can indeed find such instantons in those
models. The new ingredients in this vacuum solutions makes it necessary for a vortex to be
placed on the instanton geometry in order to reconcile the asymptotic boundary conditions
with the pinching off of the extra dimension. This vortex string can be chosen to only mildly
deform the geometry when the parameters of the theory are far from the supersymmetric
case, so one can expect these states to be unstable to the formation of the bubble of nothing.
However, in the limit where the compactification is supersymmetric, the solution is such that
the bubble becomes infinite and flat, signaling the suppression of the instability. This is
exactly the same kind of behaviour one encounters in field theory models and shows that, at
least in this case, the suppression of the decay is not due to any topological obstruction or
superselection rule, but rather it has a dynamical origin.

We have investigated the behaviour of the bubbles within a simple 4D model, where we
can use the thin wall (Nambu-Goto) approximation to estimate the effect of the vortex on
the spacetime geometry. Furthermore, we have done a thorough numerical exploration of this
model for different initial compactification scenarios and parameters, and we have concluded
that this effect is realized in all the cases, even in cases where the thin wall approximation
would not be appropriate. This gives us confidence to speculate that this mechanism is
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generic. It would be interesting to investigate the presence of this suppression mechanism in
higher dimensional models of flux compactification in field theory as well as String Theory.

We conjecture that this mechanism stabilizes any supersymmetric compactification that
is not prevented from decay by topological obstructions such as spin structure.
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A Quantization of the Fayet-Iliopoulos term

In the N = 1 locally supersymmetric version of the Abelian-Higgs model, the parameter η2,
i.e. the vacuum expectation value of the Higgs field φ, is the so called Fayet-Iliopoulos (FI)
term. This parameter also determines the charge of the gravitino under the local U(1) gauge
transformations and, as a consequence, it satisfies a quantization condition which takes the
form [40, 41]

η2κ2 = 2p, where p ∈ Z. (A.1)

For simplicity in the main text we have neglected this condition and treated the FI-term as a
continuous parameter, but it is straightforward to show that our conclusions are not affected
when the quantization is taken into account. In particular we will now show that this model
admits a supersymmetric compactification of Minkowski space to M3 × S1 compatible with
anti-periodic boundary conditions for the fermions on the S1. For this purpose we need to
consider a N = 1 locally supersymmetric Abelian-Higgs model with slightly more general
couplings than the one defined by (2.1). The bosonic sector of the theory we will discuss now
is given by

Sbos =

∫
d4x
√
−g
[

1

2κ2
R−Dµφ̄D

µφ− 1

4
FµνF

µν − e2

2

(
η2 − qφφ̄

)2]
, (A.2)

where the gauge covariant derivative is defined by Dµφ = (∂µ − iqeAµ)φ, and the integer
q ∈ Z. Note that, in contrast with the model given by (2.1), the charge of the Higgs is an
arbitrary integer multiple q of the gauge coupling e. As we shall now see, introducing this
new parameter is essential for the construction of the supersymmetric compactification with
anti-periodic fermions. Note also that this model only admits zero-energy vacuum solutions,
such as the spontaneous compactification to M3 × S1 that we wish to discuss, provided the
parameters satisfy

sign(p) = sign(q), (A.3)

which we shall assume in the following discussion. The line element corresponding to the
spontaneous compactification M4 →M3 × S1 has the form

ds2 = −dt2 + dz2 + dr2 +R2dθ2, (A.4)

where R is the radius of the compact S1 direction. In addition we will impose anti-periodic
boundary conditions for the all the fermions, χ, λ and ψµ, along the compact S1 direction.
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First we will argue that this setting is consistent with preserving all the supersymmetries
from a four dimensional point of view. If we restrict ourselves to bosonic configurations
ψµ = χ = λ = 0, the only non-vanishing supersymmetry transformations are the ones of the
fermions given in (2.3)–(2.5). Furthermore, we consider the field configuration

φ =
η
√
q

einθ, Aµ = n/(qe) δµθ, (A.5)

which ensures that the supersymmetry transformations of the chiralino χ and the gaugino
λ are also zero. The only remaining supersymmetry transformation is the one of the grav-
itino (2.3), which can also be made zero provided the supersymmetry parameter ε satisfies

DµεL = (∂θ +
p n

q
)εL = 0, =⇒ εL(xµ) = e

−in p
q
θ
ε0L. (A.6)

From equation (2.3) it also follows that the supersymmetry parameter must satisfy the same
boundary conditions as the gravitino, and thus it must be anti-periodic. Therefore the
gravitino equation (A.6) admits solutions which are consistent with the boundary conditions
provided the parameters satisfy the relation

|n|p
q

=
1

2
. (A.7)

As |p|, |n| ≥ 1, it is clear from this relation that supersymmetry can only be fully preserved
when the charge of the chiral field satisfies q ≥ 2, which justifies the inclusion of this parameter
in (A.2). It is worth mentioning that the relation (A.7) is precisely the condition which
ensures that the locally supersymmetric Abelian-Higgs model admits a critical cosmic string
solutions of winding n ∈ Z. Such solutions have a deficit angle of ∆ = 2π, and thus their
background geometry asymptotes to M3 × S1 far away from the centre of the string, where
supersymmetry is also fully preserved [9, 10]. The deficit angle of these strings solutions is
given by (see [39])

∆ = 2π|n|η
2κ2

q
= 2π, (A.8)

which is equivalent to the condition (A.7) when the quantization of the FI term is taken
into account. In the rest of the discussion we will assume for simplicity, and without loss of
generality, that n > 0.

In [18, 19, 29] it was shown that non-periodic boundary conditions for the fermions, or a
non-vanishing a vacuum expectation value of the gauge field, could induce masses of the order
of the KK scale for the fermions, leading to the breaking of all the supersymmetries after
the dimensional reduction. However, when both situations occur simultaneously both effects
may cancel each other, leading to a supersymmetric dimensionally reduced theory. We will
now argue that this is precisely the situation we have at hand. Following [29], we will discuss
the masses of the Kaluza-Klein modes, and in particular we show that the KK spectrum of
all fermions contain light modes (with no contribution of the order of the KK scale) when
the parameters satisfy the relation (A.7). This is a necessary condition for supersymmetry to
remain unbroken in the reduced theory, as otherwise we would not have the right spectrum of
particles to form the supermultiplets. The four dimensional fields can be expanded in series
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of Kaluza-Klein modes as follows:

φ =
∞∑
−∞

φm eimθ ,

χL = e
i
2
θ
∞∑
−∞

χm|L eimθ ,

Aµ =
∞∑
−∞

Am|µ eimθ ,

λL = e−
i
2
θ
∞∑
−∞

λm|L eimθ ,

ψµL = e−
i
2
θ
∞∑
−∞

ψm|µL eimθ , (A.9)

where m is an integer labeling the KK modes, and the fields φm, χm|L, etc. . . depend only on
the non-compact coordinates xa ≡ (t, z, r). For Aµ to be real we also need Am|µ = (A−m|µ)∗.
Note that this ansatz for the KK expansion corresponds to a generalised dimensional reduc-
tion [18, 19], which ensures that the fermions satisfy anti-periodic boundary conditions, e.g.
χL(xa, θ+2π) = −χL(xa, θ). The KK contribution to the masses is determined by the kinetic
terms of the fields, and more specifically, by the form of the covariant derivatives along the
compact θ coordinate of the S1. Taking into account the quantization of the FI-term the
U(1) gauge transformations read

δgφ = iqeφα ,

δgχL = i (q + p) e χL α ,

δgψµL = −ipeψµL α ,

δgλL = −ipeλL α , (A.10)

where α is the U(1) gauge parameter, and thus the covariant derivatives along the θ direction
have the form

Dθφ = (∂θ − iqeAθ)φ ,

DθχL = (∂θ − ie(q + p)Aθ)χL ,

DθψµL = (∂θ + iepAθ)ψµL ,

DθλL = (∂θ + iepAθ)λL . (A.11)

Note that, after taking into account the quantization of the FI-term, all the U(1) charges are
integer multiples of the gauge coupling constant e. Using the expectation value of the gauge
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boson (A.5), we find that the KK modes have a contribution to the mass of the form16

M(φm) ∼ |m− n|MKK ,

M(χm|L) ∼ |m+
1

2
− n− np

q
|MKK ,

M(ψm|µL) ∼ |m− 1

2
+
np

q
|MKK ,

M(λm|L) ∼ |m− 1

2
+
np

q
|MKK , (A.12)

where the Kaluza-Klein mass scale is set by the radius of the compactification, MKK = R−1.
Note that the contributions to the masses arising from the anti-periodicity of the fermions,
the 1/2 terms, are cancelled by the contribution associated to the background gauge field,
np/q, provided the relation (A.7) is satisfied. It is now straightforward to check that the
m = n KK modes in the chiral multiplet, φn and χn|L, do not receive contributions to the
mass of the order of the KK scale MKK. Similarly, in the gauge and graviton multiplets the
m = 0 modes, A0|µ, λ0|L and ψ0|µL, the Kaluza-Klein contributions to the mass are zero.
This completes the consistency check showing that the KK spectrum contains the necessary
light modes to form the supermultiplets of the reduced theory, and thus our results are fully
compatible with the ones presented in [18, 19, 29].

B Numerical solutions

We obtained numerical solutions to the equations of motion by shooting from the bubble core
outward, modifying the initial values until the desired asymptotic field values are achieved.
In practice, this must be done independently over many adjacent intervals, where interme-
diate shooting parameters are introduced whose values are determined by continuity and
smoothness at each junction. The full set of shooting parameters is solved for using New-
ton’s method. This is called the multiple-shooting method. Regardless of how shooting is
performed, a suitable initial (near core) and final (asymptotic) boundary condition must first
be obtained.

B.1 Near core

Because our equations of motion are singular at the bubble (where C = 0), we will first
Taylor expand all fields about r = 0, defined as where C(r) vanishes, into generic form. A
bubble solution without a conical singularity requires fixing the two coefficients

C(0) = 0, C ′(0) = 1, (B.1)

so C(r) = r+C ′′(0)r2/2 + . . . . The strongest singularities this introduces into the equations
of motion (5.4) and (5.5) are

0 =
γ
(
a′(0)2 + 4a(0)2f(0)2

)
2r2

+O(1/r), (B.2)

0 =
a(0)2f(0)

r2
+O(1/r), (B.3)

0 =
−γa′(0)2

2r2
+O(1/r), (B.4)

16The fields in the chiral and gauge multiplets have additional contributions due to other interactions in
the Lagrangian, as the scalar potential in the case of the chiral field φ.
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assuming (as we do throughout this paper) a single winding number for the vortex namely,
n = 1. Recall also that we work in a gauge where B(0) = 1. The relevant solution to these
equations is a′(0) = 0, f(0) = 0. At next order, we obtain

0 =

(
a(0)2 − 1

)
f ′(0)

r
+O(r0), (B.5)

0 =
B′(0)

r
+O(r0) (B.6)

which tells us that (since the sign of a is arbitrary)

a(0) = 1, B′(0) = 0. (B.7)

At next order, we obtain the system of equations

B′′(0) =
γ(a′′(0)2 − β)

4
+
H2

0

2
+O(r) (B.8)

C ′′(0) = 0 +O(r) (B.9)

f ′′(0) = 0 +O(r) (B.10)

Continuing order by order, we are left with three undetermined coefficients, H0, f
′(0), and

a′′(0). All three of these should be thought of as shooting parameters, chosen to achieve the
three boundary conditions for r →∞,

a→ 0, f → 1, C → R. (B.11)

Numerically, we can only integrate out to some finite r = rmax, so we need to match the
numerical solution there onto a suitable asymptotic solution.

B.2 Asymptotic solution

We can find an approximate asymptotic solution for rmax ≤ r <∞ by linearizing the matter
equations of motion about their vacuum values, yielding

a′′(r) = 2a(r)−
(

2B′(r)

B(r)
− C ′(r)

C(r)

)
a′(r) (B.12)

f ′′(r) = 2β [f(r)− 1]−
(

2B′(r)

B(r)
+
C ′(r)

C(r)

)
f ′(r). (B.13)

These can be solved by the WKB method, since at large r the geometrical coefficients(
2B′(r)
B(r) ±

C′(r)
C(r)

)
are small compared to the masses ma =

√
2, mf =

√
2β. By writing

a = exp(log a) and using the WKB approximation to drop second derivatives of log a, we
find the second-order equations are well-approximated by the first-order equations

a′(r) = −

√2 +

(
B′(r)

B(r)
− C ′(r)

2C(r)

)2

+

(
B′(r)

B(r)
− C ′(r)

2C(r)

) a(r), (B.14)

f ′(r) = −

√2β +

(
B′(r)

B(r)
+
C ′(r)

2C(r)

)2

+

(
B′(r)

B(r)
+
C ′(r)

2C(r)

) [f(r)− 1] , (B.15)
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where the signs of the square roots are chosen by the boundary conditions at r = ∞. Of
more immediate use, these equations provide an excellent matter boundary condition for finite
r = rmax, which allows us to use a shooting method to construct the numerical solutions. The
third boundary condition comes from the (vacuum) constraint equation (4.6), which implies

C(rmax) = RB′(rmax)/Hδ. (B.16)

These three relations (B.14)–(B.16) are the practical versions of equation (B.11).
From equations (B.14)–(B.15) it is clear that the matter fields will approach their vac-

uum values exponentially quickly. Far from the vortex we can trust the the vacuum Einstein
equations, which imply

r(B) = rδ +H−1
δ

√
B(B − 1) +H−1

δ log
(√

B +
√
B − 1

)
,

C(r) = R
√

1−B(r)−1 , (B.17)

where the parameter

Hδ = B′(rmax)/
√

1−B(rmax)−1 , (B.18)

is the Hubble parameter of the corresponding pure vacuum bubble of nothing, which would
have a delta-function singularity at

rδ = rmax −H−1
δ

√
B(B − 1)|rmax −H−1

δ log
(√

B +
√
B − 1

) ∣∣∣
rmax

. (B.19)

This means that having integrated the solution numerically to a large enough rmax, we
can read off the parameters of the vacuum solution directly from the numerical values of the
functions at r = rmax. This method allows us to obtain rδ and Hδ, and from there we can
get the more physical parameter, the deficit angle ∆W . These are related through R by

Hδ =
2π −∆W

πR
, (B.20)

where ∆W is the deficit angle (relative to Witten’s bubble of nothing), measured at r =∞.
This is the way we obtain the values of ∆W that we present in our numerical solutions and
that we compare with the analytic estimates based on the arguments of section 4.2.
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