
Collaborative Prototyping of Alternative Designs Under a Target

Costing Scheme

Timofey Shalpegin

Business School, University of Auckland, Auckland 1010, New Zealand,

t.shalpegin@auckland.ac.nz, +64 9 923 8447, corresponding author

Svenja Sommer

HEC Paris, 78350 Jouy-en-Josas, France, sommers@hec.fr, +33 1 39 67 74 31

Zhixi Wan

Lundquist College of Business, University of Oregon, Eugene, Oregon 97403, USA,

zwan@uoregon.edu, +1-541-346-3327

Abstract

Prototyping allows firms to evaluate the technical feasibility of alternative product designs and

to better estimate their costs. We study a collaborative prototyping scenario in which a manufac-

turer involves a supplier in the prototyping process by letting the supplier make detailed design

choices for critical components and provide prototypes for testing. While the supplier can obtain

private information about the costs, the manufacturer uses target costing to gain control over the

design choice. We show that involving the supplier in the prototyping process has an important

influence on the manufacturer’s optimal decisions. The collaboration results in information asym-

metry, which makes parallel prototyping less attractive and potentially reverses the optimal testing

sequence under sequential prototyping: It may be optimal to test designs in increasing order of

attractiveness to avoid that the supplier does not release technically and economically feasible pro-

totypes for strategic reasons. We also find that the classical target costing approaches (cost- and

market-based) need to be adjusted in the presence of alternative designs: Due to the strategic

behavior of suppliers, it is not always optimal to provide identical target costs for designs with

similar cost and performance estimates, nor to provide different target costs for dissimilar designs.

Furthermore, the timing is important: While committing upfront to carefully chosen target costs
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reduces the supplier’s strategic behavior, in some circumstances the manufacturer can take ad-

vantage of this behavior by remaining flexible and specifying the second prototype’s target costs

later.

Key words: Collaborative prototyping; parallel and sequential testing; supplier involvement;

target costing.
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1 Introduction

It is well known that a large portion of a product’s lifecycle costs is locked in early, during product

development (Clark and Fujimoto, 1991, p. 3). Therefore, prototyping has become an important

tool, not only to test the technical feasibility of alternative designs but also to obtain better cost

estimates (Mislick and Nussbaum, 2015), facilitating the choice of the final design. Before testing

alternative designs, a firm needs to answer several questions: Should the firm use sequential or

parallel testing? If the firm chooses sequential testing, which design should it test first and when

should it stop testing the remaining alternatives? Prior studies have previously addressed these key

questions assuming firms’ new product development is mostly an internal process (see literature

review for details).

Given that firms increasingly involve their suppliers in product development and component

testing, this paper considers the case where a manufacturer outsources the development of design

alternatives (for the same component) to the same supplier—as occurred, for example, in the design

of the floor beams for the Boeing 787: A subsidiary of Tata Motors developed prototypes for two

alternative designs, one using titanium and the other using composite material (Kulkarni, 2011).

To tap into the supplier’s design capabilities, the manufacturer provides only performance specifi-

cations, and it is the supplier who makes the detailed design choices for the particular component

(Stuart and McCutcheon, 2000; Ro et al., 2008). However, this results in significant information

asymmetry: By virtue of making product and process design decisions during the prototype devel-

opment, it is now the supplier who will ultimately determine the component costs, and the supplier

has little incentive to reveal the cost information to the manufacturer (Ro et al., 2008; Lamming

et al., 2005).1 Our first research question is therefore whether and how such supplier involvement

1For example, Ro et al. (2008) find that even in collaborative arrangements, U.S. car manufacturers do not achieve
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influences the optimal testing strategy, given the information asymmetry.

To achieve control over their component costs, manufacturers may employ component-level tar-

get costing, a technique that is often advocated for such situations because “component-level target

costing helps discipline and focus suppliers’ creativity in ways beneficial to the buyer” (Cooper and

Slagmulder, 1999, p. 24). The manufacturer determines a target cost for a component before the

development takes place, which then serves as a prominent reference point for the subsequent mass

production price of that component (Monczka et al., 2008, p. 413). The literature proposes two

fundamental approaches to determining target costs: A cost-based approach, where target costs are

derived from estimated purchasing and production costs for the component, and a market-based

approach, where the target costs are derived from the customer value minus a desired profit margin

(Kato, 1993; Ellram, 2000). However, to the best of our knowledge, the literature does not consider

incentive implications when a supplier designs alternatives for the same component. This moti-

vates our second research question, namely, when should manufacturers set target costs for design

alternatives (at the outset, or flexibly, just before developing a particular design), and how?

Our study shows that the information asymmetry resulting from the supplier involvement in

the prototyping phase indeed has an important influence on the optimal prototyping decisions: We

show that in this situation, parallel prototyping becomes less attractive than sequential prototyping.

Moreover, for sequential prototyping, our model reveals that supplier involvement (and the resulting

incentive conflicts) may force manufacturers to reverse the optimal testing sequence: It might be

optimal to test the less attractive design alternatives first. Regarding our research question about

target costing, we show that the joint testing of multiple design alternatives changes the optimal

target costing levels, making neither a cost-based nor a market-based approach generally optimal.

Interestingly, we demonstrate that manufacturers do not necessarily benefit from the flexibility

of being able to decide target costs for the second prototype after seeing the result of the first

prototype. Overall, our study provides guidance to managers about fine-tuning the target costing

approach in the case of alternative designs.

the level of trust required for having suppliers openly share their cost information, as Japanese manufacturers require
their suppliers to do.
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2 Literature Review

This paper contributes to two streams of literature. First, it contributes to the product development

literature by presenting new findings that complement existing results regarding (a) sequential

versus parallel testing and (b) the optimal sequence in which prototypes should be tested. Second,

it contributes to the target costing literature by providing a new perspective about setting target

costs when multiple design alternatives are being tested. In what follows, we review each literature

stream.

Our paper is closely related to the literature on the optimal search for the best alternative

(technology, design, prototype, etc.) over a specific landscape of potential solution candidates.

The cornerstone question in this literature, laid out by Weitzman (1979), is the choice between

sequential and parallel development (or testing) of alternatives. A number of papers have advanced

our fundamental understanding of these approaches. Thomke and Bell (2001) study the optimal

testing strategies for sequential testing and derive rules that define the optimal number of tests and

the optimal test fidelity. Dahan and Mendelson (2001) extend the extreme-value theory to parallel

testing scenarios and discuss the effects of probability distribution parameters on the optimal

number of tests and the testing budget. More recently, Massala and Tsetlin (2015) analyze parallel

testing of multi-attribute alternatives when the attributes exhibit uncertain relative importance;

they focus on the optimal number of alternatives to explore in parallel.

One benefit of sequential testing that has been studied in detail in the literature is the ability to

learn from the different sequential tests (Loch et al., 2001; Erat and Kavadias, 2008; Oraiopoulos

and Kavadias, 2014). While our paper also considers sequential and parallel testing, we focus on

the case where design alternatives differ sufficiently from each other so that the testing results from

one alternative are uninformative regarding the performance of the other alternative. This allows

us to show that a collaborative setting can make sequential development a preferable option even

in the absence of cost savings or learning effects. It also adapts the well-known result in Weitzman

(1979) on the optimal testing sequence for a single firm (which finds it optimal to test alternatives

in decreasing order of attractiveness) to the scenario where a manufacturer involves a supplier in

the prototyping stage, who can exploit the information asymmetry. Terwiesch and Loch (2004)

and Basu and Bhaskaran (2015) also consider collaborative prototyping, or customer co-design of

4



a product. However, in their context of custom-designed products, the supplier (i.e., the seller)

provides the prototypes and sets the prices, while we consider a product design context in which

the manufacturer (i.e., the customer) leads the process by setting the designs’ target costs.

Our paper is also related to the recent research on incentive issues in collaborative new prod-

uct development (where the product is developed jointly by multiple entities). Bhaskaran and

Krishnan (2009) focus on alliances and analyze the revenue-, investment-, and innovation-sharing

mechanisms between participating firms. Iyer et al. (2005) study vertical collaboration with hidden

supplier capabilities. Kim and Netessine (2013) explore vertical collaborative efforts (exerted by

both parties) to reduce the product cost. In our research, we forgo an analysis of the levels of effort

in order to concentrate on the dynamics arising from the development of multiple prototypes.

The second stream of literature, on target costing, is largely practitioner-oriented and builds

on case studies (see Ansari et al. (2006) for a comprehensive literature review). Kato (1993) and

Cooper and Slagmulder (1999) explain the key principles of target costing in the context of product

development, and Tani (1995) and Davila and Wouters (2004) discuss its benefits and drawbacks.

To the best of our knowledge, the work by Mihm (2010) is a notable exception to the empirical

work; it uses a formal modeling approach to study incentive issues in the practice of target costing.

Specifically, Mihm focuses on the incentives of product engineers, comparing target costing with

other management practices.

The empirical literature on target costing identifies two fundamental approaches to determining

target costs: a cost-based approach, where the target costs are derived from estimated purchasing

and production costs for the component, and a market-based approach, where the target costs

are derived from the customer value minus a desired profit margin. However, the literature does

not consider the influence of having multiple alternative designs prototyped by the same supplier.

We contribute to the literature by showing that in this context, the manufacturer can benefit by

deviating from both the cost- and the market-based approaches.

3 Model

A manufacturer (“he”, also referred to as M) involves a supplier (“she”, also referred to as V, for

vendor) in the development of a component for a new product. Let us assume that M has two

alternative new designs, denoted as a and b, as well as an outside option (e.g., the conventional
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design). M must choose at most one design for mass production. In principle, he will choose a

particular new design if it proves to be cost-efficient and ensures a sufficiently high performance

compared to the other new design and the outside option.

To assess the performance of a particular component design, the manufacturer asks the future

component supplier to develop a prototype of the component, and then he must test the prototype.

M has two options: (1) to ask V to develop the design alternatives and produce the prototypes in

parallel and then test them, or (2) to ask V to first develop and produce one prototype, choosing

whether or not to develop the second prototype once the performance of the first prototype has

been determined.

Similar to prior studies on prototype testing, e.g., Terwiesch and Loch (2004), we model the

performance of design i as a scalar. In particular, we assume that, if tested, the performance of

prototype (design) i ∈ {a, b} has binary outcomes, and the performance is either ri with probability

αi or 0 with probability 1−αi. The value 0 captures technical failure as well as the possibility that

the prototype does not meet certain system requirements, while ri models the expected value that

design i creates for the manufacturer per unit of the component if the design is technically feasible

and chosen for mass production. For the analytical part of this study, we consider ri to be in the

interval (0, 1). We assume that ra and rb are common knowledge.2

Before the prototypes are designed, both M and V have only a rough estimate of design i’s

mass production cost, ci. We assume that they have the same prior belief that the values ca

and cb are independently and uniformly distributed from zero to one. Let g(ci) and G(ci) denote

the probability density function and the cumulative distribution function of ci. The assumption

of a common prior is reasonable for the target costing approach, in which the manufacturer’s

“supply management [team] is working closely with the supplier in developing cost breakdowns,

and gathering market data to assess the reasonableness of supplier cost estimates and determining

what the costs ‘should’ reasonably be” (Ellram, 2006, p. 21).

V’s detailed design and development of either prototype i allows her to obtain a better estimate

of design i’s mass production cost; for simplicity, we assume that she observes the exact value of ci.

We assume that the exact value of ci is the supplier’s private information, because her estimation

2This assumption is not necessary for our main analysis in §§4–6, in which we only need to ensure that V can
infer whether M would order her to prototype the second design should the first design prove to be feasible.
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involves a significant amount of V’s private knowledge, such as her ability to reduce the cost in

the long run (based on her technology know-how and the slope of her learning curve), her ability

to use existing tooling for the chosen detailed design, and her lower-tier suppliers’ capacities and

technical readiness.

M uses target costing to ensure that the chosen design will be cost-efficient; this is an effective

way for M to gain control over his costs despite his inferior knowledge during the prototyping

stage. In particular, before ordering prototype i, M sets a target cost, denoted as wi, and commits

to making no adjustment after the prototype is developed. Since the value wi is linked to the future

unit price in the supplier’s mass production contract, the supplier has an incentive to declare design

i cost-inefficient if her estimated cost ci is too high, thereby eliminating the possibility of the supply

chain ending up with the choice of a product design that is too costly. Formally, we assume that

V’s payoff is wi − ci if design i is chosen for mass production.

M bears a fixed cost each time he asks V to develop and produce a prototype for a design

alternative. For example, a manufacturer incurs the cost of sharing design specifications with a

supplier, but the manufacturer also frequently covers (part of) the prototyping costs, including

the material costs, tooling, and even engineering hours; this assumption is also made in Iyer et al.

(2005). The authors’ personal conversations with key component suppliers in the telecommunication

industry confirm that manufacturers often cover prototyping costs even when none of the prototypes

are selected for mass production. To keep the notation simple, we use K ≥ 0 to denote the fixed

cost allocation per unit of the component. We consider scenarios where K is not prohibitively high

relative to prototype performance, the probability of passing the tests, and V’s production costs.

Specifically, we assume that if prototype i were the only prototype, M would find it optimal to

develop it, or, more formally, ∃wi ≥ 0 : αiG(wi)(ri − wi) ≥ K, which is equivalent to K ≤ αir
2
i

2 .

We will now describe the sequence of events, as well as the information available to each player

in our model. At the outset, M chooses whether to test the designs in parallel or sequentially. If he

chooses to develop the two prototypes in parallel, M sets the target costs wa and wb upfront. If he

chooses sequential development, he first decides which design to test first. In the sequential case, we

use numerical subscripts 1 and 2 to represent the designs tested first and second, respectively. We

also consider two different scenarios regard the timing for his setting the target costs w1 and w2. In

the main part of the paper, we consider the case where M sets w1 and w2 together before ordering
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the first prototype, and we refer to this as the commitment case. In section §7, we consider M to

have more flexibility, so that he sets w2 only when he orders development of the second prototype.

Figure 1: Simplified Game Tree

Figure 1 depicts the game tree for the commitment case, with M denoting a move by the

manufacturer (M), N a move by nature, and V a move by the supplier (V).3 First, M sets the target

costs w1 and w2 and decides on the testing sequence. Next, V develops prototype 1 and observes

its actual cost c1. We denote the history at this point in the game as h1 ≡ {w1, w2, r1, r2, c1}, with

c1 representing V’s private knowledge of c1 and M knowing that V has observed this cost, and with

r1, r2 representing M’s sequence choice. Based on h1, V chooses an action av,1 ∈ {R,nR}, deciding

whether to release (R) a particular prototype for testing or to declare it not to be cost-efficient and

3The parallel case follows a similar, but simpler timeline, since both prototypes are developed together and the
supplier chooses all of her actions only once.
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therefore not release it (nR). In other words, we assume that the manufacturer cannot force the

supplier to release a prototype if the supplier is not able (or willing) to produce it at the specified

target costs. Moreover, he will not renegotiate the target costs.4

If V releases prototype 1, the two firms jointly test prototype 1 and learn its performance value,

which equals r1 with probability α1 or 0 with probability (1 − α1), where α1 ∈ (0, 1).5 We call a

prototype feasible if V declares it cost-efficient and it is technically and economically feasible for

the manufacturer M, i.e., the performance value that is revealed during the prototype test exceeds

its target cost w1. We denote the history at this point as h2(1) ≡ {w1, w2, r1, r2, c1, 1} (1 for one

feasible prototype). If any one of the conditions does not hold, we call the prototype infeasible and

we denote the history as h2(0) = {w1, w2, r1, r2, c1, 0} (0 for zero feasible prototypes).

Note that we present a simplified game tree since two sets of information result in the same

history h2(0): Either V chooses av,1 = nR or the performance of the released prototype turns out

to be zero. In this case, the two information sets end up in the same subgame, since M does not

obtain any information he needs to keep track of; neither the costs for nor the failure of the first

prototype provides any information about the second prototype’s costs or success probabilities (as

the draws are i.i.d.), and since the first prototype is infeasible, its costs do not influence V’s future

action choice av,2 or either party’s payoff.

At h2(1), M updates his belief about the cost of c1 from g(c1) to g(c1|h2(1)). We assume M

uses Bayes’ rule to update his belief about V’s private information (details are provided later).

M then chooses am ∈ {D,nD}, deciding whether to develop the second prototype (D) or not

(nD). We denote the history at this point as h3(x, y) ≡ {w1, w2, r1, r2, c1, x, am}, with x ∈ {0, 1}

representing the feasibility of the first prototype and am ∈ {D,nD} capturing M’s action choice.

If am = nD, the game is over and both parties receive their payoffs, and if am = D, V privately

observes c2 and then chooses av,2 = {R,nR} based on the history at this point, which we denote

as h4(x) ≡ {w1, w2, r1, r2, c1, x,D, c2}, with x ∈ {0, 1} again capturing the feasibility of the first

prototype.

In the following, we will denote the complete strategies of V and M as s ≡ (sv, sm). The action

4Renegotiation goes against the purpose of target costing, because it provides an incentive for the supplier to
withhold the prototype strategically and ask for a higher target. This would make the use of target costing in future
development cycles impossible.

5Such joint tests have become increasingly common because of high-tech solutions for collaborative prototype
testing (Cisco, 2010; Wijtkamp, 2014).
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space is {av,1, av,2} and {r1, w1, w2, am} for V and M, respectively. In other words, V decides

whether or not to release the first prototype and the second prototype, and M decides which

prototype to test first, sets target costs for the first prototype and for the second prototype, and

chooses whether or not to develop the second prototype.

Finally, either M chooses a feasible prototype i, and his payoff is ri−wi (minus the prototyping

costs) while the supplier’s payoff is wi − ci, (for details, see Figure 1), or, if no feasible prototype

is found, both parties receive their outside option, normalized to zero (minus costs). In the next

sections, we derive the firms’ expected payoff functions, denoting each firm j’s ex-ante expected

payoff given the strategies s as πj(s) and their expected payoffs “to go” given a history ht as πj(s|ht),

where t = {1, 2, 3, 4} and j = {v,m}. We assume that both firms maximize their expected payoffs.

If M is indifferent between the two prototype choices, we assume that M chooses prototype 2 in

the sequential testing case (to avoid the possibility that V does not release the first prototype)

and prototype a in the parallel testing case (without loss of generality). If V is indifferent between

releasing (R) or not releasing (nR) a prototype, V will release the prototype.

The rest of the paper is organized as follows. In §4 we study the scenario where M chooses

sequential prototyping, and in §5 we consider the parallel prototyping scenario. In §6 we compare

the parallel and sequential prototyping. In §7 we further study the sequential prototyping scenario

for the case where M uses an alternative target costing approach, delaying the announcement of

w2 (the target cost for the prototype that is tested second) until after the first prototype has been

developed and tested. In §8 we summarize our findings.

4 Sequential Testing: Commitment Scheme

In this section, we solve the subproblem in which the manufacturer chooses sequential prototype

testing and sets both w1 and w2 upfront. We refer to this setting as the Commitment scheme, or

the C scheme for short.

4.1 V’s Problems at h4(·)

Solving the problem backwards, we start with the supplier’s choice of whether or not to release the

second prototype, i.e., the choice of av,2 ∈ {R,nR}. This decision depends on whether the first

prototype was feasible (h4(1)) or not (h4(0)).

10



Based on the game tree, we derive V’s expected profits (to go) at h4(·) in equations (1) and (2):

πv((sv, sm)|h4(0)) =


0, if av,2(h4(0)) = nR

α2(w2 − c2), if av,2(h4(0)) = R,

(1)

πv((sv, sm)|h4(1)) =


w1 − c1, if av,2(h4(1)) = nR

α2(w2 − c2) + (1− α2) (w1 − c1), if av,2(h4(1)) = R.

(2)

Comparing V’s profits in the two scenarios, we obtain V’s optimal actions defined by the release

thresholds, c
(·)
2 , for prototype 2 in the two subgames:

a∗v,2(h4(0)) =


nR, if c2 > c

(0)
2

R, if c2 ≤ c(0)2 ,

(3)

where c
(0)
2 ≡ w2, and

a∗v,2(h4(1)) =


nR, if c2 > c

(1)
2

R, if c2 ≤ c(1)2 ,

(4)

where c
(1)
2 ≡ w2 − (w1 − c1).

These results allow us to derive the optimal expected profits for V before c2 has been observed,

if the manufacturer orders the development of the second prototype, that is, given h3(·, D):

max
av,2

πv((sv, sm)|h3(0, D)) ≡ π∗v(s|h3(0, D)) = 0 + α2

∫ c
(0)
2

0
(w2 − c2)g(c2) dc2 =

α2w
2
2

2
, (5)

max
av,2

πv ((sv, sm)|h3(1, D)) ≡ π∗v(s|h3(1, D)) = w1−c1+α2

∫ c
(1)
2

0
((w2−c2)−(w1−c1))g(c2) dc2,

(6)

where
∫ c(1)2
0 ((w2 − c2)− (w1 − c1))g(c2) dc2 =


0, if c

(1)
2 < 0

(w2−w1+c1)2

2 , if 0 ≤ c(1)2 ≤ 1

w2 − 1
2 − w1 + c1, if c

(1)
2 > 1.

Equations (5) and (6) are structurally similar: They add together the payoff from the first

prototype, which is 0 for h3(0, D) and w1 − c1 for h3(1, D), and the expected added value of the

second prototype.

Trivially, π∗v(s|h3(1, nD)) = r1 − w1, as the development terminates in this case.
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4.2 M’s Problems at h2(·)

Next we turn to the manufacturer’s action choice am ∈ {D,nD}, i.e., M’s decision regarding

whether to develop the second prototype.

If the first prototype is not feasible, i.e., the history is h2(0), M always develops the second

prototype, as ∃w2 ≥ 0 : α2G(w2)(r2−w2) ≥ K by assumption (or there would not be a reasonable

second design alternative in the first place). V’s expected optimal profits at h2(0) are hence identical

to h3(0, D) above, and M’s expected optimal profits at h2(0) are given by

πm(s|h2(0)) = α2G(w2)(r2 − w2)− 2K, (7)

where G(w2) captures the probability that V will optimally release the second prototype given the

release threshold c
(0)
2 derived above.

If the first prototype is feasible, i.e., the history is h2(1), M must decide whether to develop

the second prototype, i.e., M must choose am ∈ {D,nD}. If he chooses am = nD, his expected

payoffs are the payoffs from the first prototype, i.e., r1 − w1 −K. However, if he chooses am = D,

his expected payoffs depend on how likely it is that V will release the second prototype, which

depends, as we showed above, on V’s private information c1. Thus, M needs to update his belief

about c1 conditional on h2(1).

Note that for the updating, M must know V’s strategy for the release of prototype 1. We follow

the standard equilibrium analysis procedure and assume M believes that V chooses a particular

strategy, which we will then show is indeed optimal for V. Consider a threshold-type policy, where

V releases prototype 1 if and only if c1 ≤ c1, and assume that M’s belief about this threshold is

given by

c̃1 =


w1 − π∗v(s|h2(0)), if a∗m = nD

w1, if a∗m = D.

(8)

Using this assumption, M can update his belief and obtain the posterior probability distribution

of c1 as follows (the complete derivation is shown in Online Companion A.1):

g(c1|h2(1)) =
g(h2(1)|c1)g(c1)

g(h2(1))
=


1
w1
, if 0 ≤ c1 ≤ w1

0, if c1 < 0 or c1 > w1.

(9)

We can now derive M’s expected profit at h2(1), given that the first prototype has been released.

If M decides not to develop the second prototype, he will simply receive the first prototype’s profits;
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if he decides to develop it, he receives the additional margin of the second prototype if V releases

the prototype (with probability
∫ c̃1
0 G(c

(1)
2 )g(c1|h2(1)) dc1) and the test turns out to be successful

(with probability α2), i.e.:

πm(s|h2(1)) =


r1 − w1 −K, if am = nD

r1 − w1 + α2 ((r2 − w2)− (r1 − w1))
∫ c̃1
0 G(c

(1)
2 )g(c1|h2(1)) dc1 − 2K, if am = D,

(10)

where c̃1 = w1 and

∫ w1

0
G(c

(1)
2 )g(c1|h2(1)) dc1 =


∫ w1
0 (w2−w1+c1) dc1

w1
= w2 − w1

2 , if w2 ≥ w1∫ w1
w1−w2

(w2−w1+c1) dc1

w1
= w2 − w1

2 + (w1−w2)2

2w1
, if w2 < w1.

(11)

Comparing M’s expected profits in these two cases, we can state M’s optimal action choice a∗m

in Lemma 1:

Lemma 1. The manufacturer’s optimal action choice regarding whether or not to develop the

second prototype is

a∗m =


D, if α2 ((r2 − w2)− (r1 − w1))

∫ w1

0 G(c
(1)
2 )g(c1|h2(1)) dc1 ≥ K

nD, otherwise.

(12)

All the proofs are provided in the Appendix.

The lemma reveals some interesting insights. First, K needs to be small enough for the manu-

facturer to find it optimal to develop the second prototype. More interestingly, the prototypes also

need to be tested in increasing order of attractiveness (to M), or M will not develop the second pro-

totype, even at zero cost of testing. The reason is that M will definitely choose the first prototype

for mass production, and thus developing the second does not add any value or alter V’s behavior

in any way.

We cannot simplify V’s expected profit function further, so we use the following function for

V’s optimal expected profits at h2(1):

π∗v(s|h2(1)) ≡


π∗v(s|h3(1, D)), if am = D

π∗v(s|h3(1, nD)), if am = nD.

(13)

13



4.3 V’s Problem at h1

We now solve V’s profit maximization problem at h1, i.e., after observing c1. V chooses av,1 to

maximize her expected profits:

πv (s|h1) =


π∗v(s|h2(0)), if av,1 = nR

α1π
∗
v(s|h2(1)) + (1− α1)π

∗
v(s|h2(0)), if av,1 = R.

(14)

Therefore, the supplier’s best response is a∗v,1 = R if π∗v(s|h2(1)) ≥ π∗v(s|h2(0)), and a∗v,1 = nR

otherwise. Setting these profits equal and eliminating infeasible cases, we can state V’s release

threshold for the first prototype in Proposition 1:

Proposition 1. The supplier releases the first prototype if and only if c1 ≤ c1, where

c1 =


w1 − π∗v(s|h2(0)), if ((r2 − w2)− (r1 − w1)) Prsuccess < K

w1, if ((r2 − w2)− (r1 − w1)) Prsuccess ≥ K
(15)

and Prsuccess ≡ α2

∫ w1

0 G(c
(1)
2 )g(c1|h2(1)) dc1.

Note that this proposition confirms that the assumed manufacturer’s belief about V’s release

threshold, c̃1, holds in equilibrium. The existence of the threshold c1 is intuitive. The supplier

releases the prototype if and only if its cost estimation c1 is sufficiently low. However, the main

implication of Proposition 1 is that the release threshold can be less than the target cost w1. If the

manufacturer does not develop the second prototype in the case where the first prototype is feasible,

the supplier may choose not to release the first prototype even if the prototype is profitable for

both parties. Thus, while it might seem useful to test the more profitable prototype first (to avoid

the testing costs K for a second prototype if the first one succeeds), testing the more profitable

prototype first also destroys the supply chain value: Prototypes that could create positive value for

both parties are withheld by the supplier for strategic reasons.

Figure 2(a) demonstrates the proposition with an example: The threshold is equal to the target

cost if the prototype tested first has a relatively low profit margin (for low r1). In that case, V is

sure that M will test the second prototype regardless of the outcome of the first prototype test, and

she can therefore safely release the first prototype as long as it does not generate a loss. However,

if r1 is sufficiently large, M will not test the second prototype if the first one succeeds. This makes

the supplier cautious about releasing the first prototype, and thus the release threshold is below
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the target cost. It should be noted that this jump in the threshold level occurs not at r1 = r2

but rather for a lower value of r1. This is the effect of the prototyping costs K. When the profit

margin of the second prototype is marginally higher than that of the first, this is still not sufficient

to convince M to develop the second prototype if the first one is feasible. A higher K would shift

the discontinuity point even more to the left, while for K = 0 the discontinuity point would be at

exactly r1 = r2.
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Figure 2: c for different values of r1 and α2

Figure 2(b) demonstrates the impact of α2, the probability of the second prototype passing the

test, on this release threshold. If α2 is sufficiently low, M will test the second prototype only if

the first proves to be infeasible. In this case, an increase in α2 leads to a higher expected profit

for V from the second prototype, and thus V becomes increasingly reluctant to release the first

prototype. This continues until α2 becomes so high that M will always test the second prototype,

thus stripping V of any strategic considerations.

4.4 M’s Problem at h0

We can now state the manufacturer’s profit maximization problem at the outset of the game.

The manufacturer will choose the order {r1, r2} and the target costs {w1, w2} by maximizing the
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following function:

πm(s) ≡ α1G(c1)πm(s|h2(1)) + (1− α1G(c1))πm(s|h2(0)) (16)

=



α1G(w1 −
α1w2

2
2 )(r1 − w1 −K)

+
(

1− α1G(w1 −
α1w2

2
2 )

)
(α2G(w2)(r2 − w2)− 2K) , if a∗m = nD

α1G(w1)
(
r1 − w1 + α2 ((r2 − w2)− (r1 − w1))

∫ w1

0 G(c
(1)
2 )g(c1|h2(1)) dc1

)
+(1− α1G(w1))α2G(w2)(r2 − w2)− 2K, if a∗m = D,

(17)

where
∫ w1

0 G(c
(1)
2 )g(c1|h2(1)) dc1 is given by (11).

We briefly describe this equation: If the manufacturer chooses the sequence and target costs

such that a∗m = nD, M will get the first prototype’s profits if the supplier releases it (G(·)) and

the test succeeds (α1), and he will instead get the second prototype’s profits if the first one is not

feasible (1− α1G(·)) but the second is feasible (α2G(w2))—the latter, however, at the cost of 2K.

On the other hand, if the manufacturer chooses the sequence and target costs in such a way that

a∗m = D, M will once again get the first prototype’s profits if V releases it (G(w1)) and the test

succeeds (α1), but now also earns the additional margin on the second prototype if V releases it

(the integral in line 3) and it succeeds (α2). In addition, if the first prototype is infeasible (last

row), M will still earn the profits on the second prototype if V releases it (G(w2)) and it succeeds

(α2)—now, however, paying the prototyping costs for both prototypes.

While we cannot derive the order and the optimal target costs w1 and w2 in closed form, we

can nevertheless derive some interesting properties.

First, we can show by example that neither market-based nor cost-based target costs are nec-

essarily optimal when a manufacturer develops two alternative designs with the same supplier.

Figure 3 provides an example of the optimal target costs and testing sequence for both symmetric

and asymmetric design alternatives. Solid lines represent the target cost of the prototype tested

first, and dashed lines represent the target cost of the prototype tested second. In addition, thick

(solid or dashed) lines represent the target cost for prototype b. In Figure 3(a), the prototypes are

symmetric when ra = rb. In Figure 3(b), the prototypes are symmetric when αa = αb. Both sets

of examples demonstrate that symmetric design alternatives (symmetric in terms of probability of
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success and potential performance) do not necessarily require the same target costs for both pro-

totypes, despite a priori identical costs, for which both market- and cost-based approaches suggest

identical target costs for the two prototypes. The explanation for this is that asymmetric target

costs mitigate the supplier’s strategic non-release behavior. The figure also shows the impact of

asymmetric designs on optimal target costs. We can see that the design with superior performance

does not always require a higher target cost, and furthermore, that M should not necessarily test

it first. (For example, prototype b is better than a in the range 0.75 to 0.8 but nevertheless has a

lower target cost and is tested second.) For the case of identical performance, as per Figure 3(b),

unless the risk of one prototype is extreme (in the utmost left region), M should test the riskier

prototype first and set a higher target cost for it, as this is the only way that M can mitigate V’s

strategic non-release. Taken together, these results suggest that it is critical to take the supplier

behavior into account when setting target costs.
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Figure 3: Optimal Testing Sequence and Target Costs for Different Values of αb and rb

Second, we can derive some results about the order in which prototypes should be tested. There

are three distinct regions in Figure 3(a). If rb is low (here, below 0.42), M finds it optimal to test

the better prototype first and then stop if it succeeds. This can provoke V’s strategic non-release

but compensates for it by saving K if the first prototype succeeds. This region would disappear

if K = 0. As prototype b gets better, w∗b increases to improve its release probability should it

be tested. Otherwise, if rb is sufficiently high, M prefers to test the worse prototype first and

then develop the second, no matter what. In this case, M completely eliminates V’s strategic non-

release, at the cost, however, of always testing both prototypes. This is the case in two regions: (1)
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when rb is the worse prototype (rb < ra = 0.75) and is tested first, and (2) when rb is the better

prototype (rb > ra = 0.75) and ra is tested first. The intuition is similar for different values of αb,

as Figure 3(b) suggests.

We summarize the analytical results about the optimal testing order in Proposition 2:

Proposition 2. If K is sufficiently small, it is always optimal to sequence the prototypes and

choose target costs w∗1 and w∗2 such that they are tested in increasing order of attractiveness for M,

i.e., such that r2 − w∗2 ≥ r1 − w∗1.

In other words, our analysis suggests that if the per unit cost of prototyping, K, is not too large,

the manufacturer should always test the design with the higher profit margin second, because this

sequence mitigates the supplier’s strategic non-release behavior for the first prototype by assuring

the supplier that the manufacturer will always develop the second prototype and choose the last

feasible design.

Figure 4 shows M’s strategy in the C scheme for different payoff ranges (ra). We present the

charts for different cost distributions to extend the scope of our analytical results. We label the

prototypes so that ra ≥ rb. The vertical axis indicates the performance of the better prototype, ra,

and the horizontal axis the performance difference, ra − rb.

Region D:
ra−w∗a ≥ rb−w∗b ,
rb tested first,
a∗m = D

Region nD:
ra−w∗a < rb−w∗b ,
ra tested first,
a∗m = nD

Beta(2,10) distribution is defined on [0, 1], skewed to the left, unimodal with the mean equal to the
mode.

Figure 4: C Scheme: M’s optimal decisions at h0 (αa = αb = 0.5 and K = 0.005)

If both prototypes have sufficiently high performance and the performance difference is not

excessive (see region D), it is optimal for M to test the worse prototype first, that is, to choose
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wa and wb so that the prototypes are tested in increasing order of attractiveness for M and to

always test the second prototype, even if the first one is feasible. This strategy mitigates V’s

strategic non-release and is optimal as long as both prototypes feature high performance. However,

if the performance of at least one of the prototypes is relatively low (see region nD), testing both

prototypes is expensive. In that case, it is optimal for M to test the better prototype first and

to develop the second one only in the case of failure. In this case, M will choose wa and wb such

that the prototypes are tested in decreasing order of attractiveness for M. Note that this region

disappears if K goes to zero, which is consistent with Proposition 2.6

The findings in the proposition and the figure complement the well-known result in the sequential

testing literature (Weitzman, 1979) that suggests that a single decision-maker should always test

designs in decreasing order of attractiveness (decreasing performance-to-cost ratio). The intuition

behind starting the test with the most attractive design is that the tester can stop the search

(testing) as early as possible to save search (testing) costs. Our analysis demonstrates that this

intuition might not always hold when a third party is involved in the prototyping stage. The reason

is that the supplier can take advantage of information asymmetry and not release a technically and

economically feasible prototype, in the hope that the second prototype provides her with higher

returns. Reversing the optimal testing sequence allows the manufacturer to avoid this strategic

non-release. More specifically, in case of low testing costs, monetary or temporal, and a small

enough performance difference, the manufacturer should reverse the testing sequence and test the

more attractive, higher margin design second.

5 Parallel Prototyping

We now turn to the subproblem in which the manufacturer chooses parallel prototype testing.

Here we have only two decision points: First, the manufacturer chooses the target costs wa and wb

for prototypes a and b, respectively. Second, upon the completion of the prototypes, the supplier

observes both costs, ca and cb, and then chooses whether to release (Ri) or not release (nRi) each

prototype i, i.e., the supplier chooses av,a ∈ {Ra, nRa} and av,b ∈ {Rb, nRb}. Again we solve the

problem backward, starting with the supplier.

6Note that the nD region becomes larger (non-linearity in the dashed line in Figure 4, left-hand side) if the
performance of at least one prototype is significantly higher than the maximum component cost. This is not surprising.
In this case, M can afford higher target costs, and these approach the maximum possible costs for V, reducing the
probability of V’s strategic non-release until eventually V always releases the first prototype.
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Let πv(av,a, av,b) denote V’s expected payoff associated with her action choices. We label the

prototypes as a and b in such a way that ra − wa ≥ rb − wb.7 Thus, V’s expected payoff given her

action choices is

πv(av,a, av,b) =


αi(wi − ci), if av,i = Ri and av,−i = nR−i

αa(wa − ca) + (1− αa)αb(wb − cb), if av,a = Ra and av,b = Rb

0, otherwise.

(18)

Comparing V’s expected profits under the 4 scenarios, we state her release thresholds in the

following proposition:

Proposition 3. In the case of parallel prototyping, the supplier releases prototype a if and only if

ca ≤ wa −max{0, πv(nRa, Rb)}, and she releases prototype b if and only if cb ≤ wb.

The release thresholds are structurally similar to those for sequential testing. The thresholds

can be either equal to the target cost or lower by an amount equal to the supplier’s expected profit

from the other prototype. However, there is a profound difference: When testing in parallel, it is

always the prototype with the higher profit margin (labeled as prototype a) that has a lower release

threshold than the target cost. This is not the case for the sequential testing, as the manufacturer

can always choose a testing sequence such that the prototype with the higher profit margin has a

release threshold equal to the target cost.

We can now derive the manufacturer’s expected payoff:

πm =

∫ wb

0

(
αaG(wa−πv(nRa, Rb))(ra−wa)+

(
1− αaG(wa − πv(nRa, Rb))

)
αb(rb−wb)

)
g(cb) dcb

+

∫ 1

wb

αaG(wa − 0)(ra − wa)g(cb) dcb − 2K

= wb

([
wa − αb

wb
2

]+
αa(ra − wa) +

(
1−

[
wa − αb

wb
2

]+)
αb(rb − wb)

)
+ (1− wb)waαa(ra − wa)− 2K. (19)

Again, we explain the expression: If cb ≤ wb, V releases prototype a with probability G(wa −

πv(nRa, Rb)), and if it passes the test (with probability αa), M will surely adopt it for mass

production and receive the profit margin ra − wa. However, if prototype a is infeasible (with

probability 1 − αaG(wa − πv(nRa, Rb))), the manufacturer will adopt prototype b if it passes the

7If ra − wa = rb − wb and both prototypes are feasible, we let the manufacturer choose prototype a.
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test (with probability αb). If cb > wb, the difference is that V releases prototype a with probability

G(wa − 0), and if it passes the test, M receives ra − wa. However, if prototype a is infeasible, no

prototype will be adopted in this case. Finally, when testing prototypes in parallel, M always has

to bear the prototyping costs for both prototypes, 2K.
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Figure 5: Optimal Target Costs for Different Values of r2 and α2: Parallel Testing

As in the sequential case, there is no closed-form solution for the optimal target costs, but once

again they can be determined for a specific set of parameters. Figure 5(a) demonstrates that the

manufacturer, as one would expect, should generally set a higher (lower) target cost for a prototype

with better (worse) performance.8 If the prototypes have the same performance, as Figure 5(b)

shows, the manufacturer should set equal target costs for the two prototypes for a large range of

values of α2, and not only when α2 = α1. The explanation is that an increase in one of the target

costs leads to a lower release threshold for the other prototype. For this reason, if the prototypes

are similar enough, the manufacturer does not find it optimal to differentiate the target costs. The

effect is so strong that the manufacturer finds it optimal to reduce w∗2 as α2 increases.

6 Comparison of parallel and sequential prototyping

We now turn to a comparison of parallel and sequential prototyping. Comparing the manufacturer’s

optimal payoff under the parallel prototyping (πm in equation 19) to that under the sequential

prototyping (π in equation 16), we can show the following:

8In Figure 5, we use subscripts 1 and 2 merely for notational convenience because the labels ‘a’ and ‘b’ are
determined after the values of target costs are set.
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Proposition 4. The optimal target costing policy under parallel prototyping is strictly dominated

by the optimal policy under sequential prototyping, even for zero prototyping costs (K = 0).

The result in Proposition 4 demonstrates an additional benefit of sequential prototyping, beyond

saving prototyping costs and allowing the manufacturer to learn from one prototype to the next

(two factors already explored in the literature; the latter is intentionally omitted in this paper):

If a supplier is involved in the prototyping process, sequential prototyping lessens the strategic

behavior of the supplier, and that alone can make sequential prototyping optimal, even for a zero

cost of prototyping.9

Clearly, if there are important time-to-market benefits, which are ignored in our model, this can

override the benefits of sequential prototyping. However, time-to-market benefits are only relevant

if the development of this particular component is time critical. This might not be the case since

this component’s development might not even be on the critical path of the overall development

project. In addition, if the time-to-market benefits are only small (which for a single decision-maker

would make parallel prototyping optimal), in collaborative prototyping the incentive effects could

potentially outweigh these benefits and make sequential prototyping optimal.

7 Flexible Target Costing in Sequential Testing

In this section, we revisit the sequential prototyping scenario and study the case in which the

manufacturer uses the following flexible target costing scheme: He sets w2 only after observing

the outcome of the first prototype development. The interesting question is: When does the

manufacturer benefit from such flexibility? Note that the choice between a pre-committed target

cost and a flexible target costing scheme can only improve the sequential prototyping for the

manufacturer. Hence, the sequential testing will continue to dominate the parallel testing, and the

results of the comparison in Section 6 will remain intact.

We consider the same sequential game as in section 4, with one difference: At h2(·), the man-

ufacturer not only decides whether to develop the second prototype, but also chooses the target

costs for the second prototype depending on the outcome of the first prototype. Thus, compared

to the commitment scheme, we now have two different target costs for the second prototype: w
(0)
2f

for the target costs chosen at h2(0), i.e., when the first prototype is not feasible, and w
(1)
2f at h2(1),

9In Online Companion B.1, we demonstrate that this result continues to hold for different cost distributions.
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i.e., when the first prototype is feasible. Otherwise, the problem remains structurally the same and

we keep the same notation, using the subscript f when it is useful to differentiate the notations

under the flexible target costing scheme.

Once again solving the problem backward, we begin with V’s action choice av,2 ∈ {R,nR} and

obtain the same release thresholds at h4 for the second prototype with one difference: They now

depend on the target costs, which may be different for the two histories at h4: c
(0)
2f ≡ w

(0)
2f at h4(0)

and c
(1)
2f ≡ w

(1)
2f − (w1f − c1) at h4(1), where w1f is the target cost of the prototype tested first.

7.1 Optimal w
(·)
2f

V’s and M’s expected profit functions at h2(·) do not change structurally, and hence the results

(including those about am in Lemma 1) continue to hold. However, the profits now depend on

different beliefs about V’s release threshold for prototype 1 (see below) as well as two different

target costs, depending on the feasibility of the first prototype. This allows us to solve for the

optimal target costs for the second prototype in closed form.

For h2(1), as in the commitment scheme, M needs to again form a belief c̃1f about V’s release

threshold and to update his prior regarding c1. Again using Bayesian updating, his posterior belief

about c1 at h2(1) is given by:

gf (c1|h2(1)) ≡ gf (c1|h2(1), [0, 1]) =


1
c̃1f
, if 0 ≤ c1 ≤ c̃1f

0, if c1 < 0 or c1 > c̃1f .

(20)

Using this, we can now derive the optimal target costs for the second prototype (for complete

derivations see Online Companion A.2):10

w
(0)∗
2f =

r2
2
, (21)

w
(1)∗
2f = max

{
0,min

{
w1f +

r2 − r1
2

−
c̃1f
4
, w1f + 1− c̃1f

}}
. (22)

We can see that w
(1)∗
2f depends on M’s (rational) belief about V’s release threshold. V will hence

take this impact into consideration when choosing av,1 ∈ {R,nR}.11

7.2 V’s Decision at h1

Proposition 5 describes the supplier’s release threshold for the first prototype.

10In the proof of Proposition 5, we will show that w
(1)∗
2f simplifies to w

(1)∗
2f = max

{
0, w1f + r2−r1

2
− c̃1f

4

}
.

11Note that this does not mean that M can signal a “wrong” belief about the release threshold, so M’s belief
does not influence V’s choice. Similarly, V cannot credibly announce a “wrong” threshold to M and hence cannot
manipulate w

(1)
2f . It only means that V knows and takes into account that M will have rational beliefs about her

release threshold and that M will take those into account in his choice of w
(1)
2f .
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Proposition 5. The supplier releases the first prototype if and only if c1 ≤ c1f , where

c1f =


w1f − π∗vf (sf |h2(0)), if

(
(r2 − w(1)∗

2f )− (r1 − w1f )
)

Prsuccess,f < K

C, if
(

(r2 − w(1)∗
2f )− (r1 − w1f )

)
Prsuccess,f ≥ K

, (23)

with C = 2
9 ·

8+3α2(r2−r1)+4
√

4−3α2(r2−r1)− 9
2
α2(w1f−π∗

vf (sf |h2(0)))
α2

and Prsuccess,f = α2

∫ C
0 G

(
c2 ≤ c(1)2f

)
gf (c1|h2(1)) dc1.

Corollary 1. If
(

(r2 − w(1)∗
2f )− (r1 − w1f )

)
Prsuccess,f ≥ K and w1f > 2

3r1, then c1f > w1f .

Otherwise, c1f ≤ w1f .

Corollary 1 reveals an important difference from sequential testing without flexibility: the prototype

release threshold cf can be greater than w1, that is, V might find it optimal to act strategically and

release a prototype that is unprofitable for her.12 In particular, this is the case if the first-period

target cost is sufficiently large, and the manufacturer will choose to develop the second prototype,

even if the first prototype succeeds. By releasing the first, less profitable prototype, the supplier

makes the manufacturer believe that the first prototype could be profitable for her and that she

will be reluctant to release the second prototype. To overcome this reluctance, the manufacturer

will choose higher target costs for the second prototype if the first one has been accepted, i.e.,

w
(1)∗
2 > w

(0)∗
2 .

7.3 M’s Problem at h0

At h0, the manufacturer again chooses the order of the prototypes and in this case the optimal

target costs for the first prototype. His profit maximization problem is given by13

πmf (sf |h0) = α1G(c1f )πmf (sf |h2(1)) + (1− α1G(c1f ))πmf (sf |h2(0))

=



α1G(c1f )(r1 − w1f −K)

+ (1− α1G(c1f ))
(
α2G(w

(0)∗
2f )(r2 − w(0)∗

2f )− 2K
)
, if a∗m = nD

α1G(c1f )
(
r1 − w1f +

(
(r2 − w(1)∗

2f )− (r1 − w1f )
)

Prsuccess,f

)
+(1− α1G(c1f ))α2G(w

(0)∗
2f )(r2 − w(0)∗

2f )− 2K, if a∗m = D.

(24)

As in the commitment case, we cannot solve this in closed form. However, by solving the

problem numerically, we can derive some interesting results.

12Or rather, one with low profits, below the outside option, which we normalized to zero.
13For explanations regarding this equation, we refer the reader to those provided for equation (16) in the commit-

ment scheme, which is structurally very similar.
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Region SR:
c1f > w1f ,
rb tested first,
a∗m = D

Region SnR:
c1f < w1f

Figure 6: F Scheme: M’s optimal decisions at h0 (αa = αb = 0.5 and K = 0.005)

Figure 6 shows M’s optimal decisions for two different cost distributions. It demonstrates that it

is indeed sometimes optimal for M to take advantage of V’s strategic release behavior, region SR,

and to set w1 and choose the prototyping sequence in such a way that V will release the first

prototype even if the true cost exceeds the target cost, i.e., c1 > w1f . However, this is only possible

if the prototype that is tested second has a sufficiently high performance (compared to the expected

costs) and the performance difference is large enough. In this case, both M and V know that the

second prototype is much more attractive to M. Releasing the first prototype (if it passes the tests),

V credibly signals to M that she will be more reluctant to release the attractive second prototype

as she may prefer to proceed with the first. This forces M to set an exceptionally high target cost

for the second prototype. However, knowing these considerations upfront, M can set a sufficiently

low w1 and thus benefit from V’s strategic release.

In region SnR (strategic non-release), M cannot credibly convince V that w
(1)∗
2f will be high

enough. If the two prototypes have similar performance, M will stop if the first prototype is feasible,

and hence there is no incentive for V to release strategically. If the performance difference is high

but neither prototype has an exceptionally high performance, w
(1)∗
2f cannot be set high enough to

incentivize V’s strategic release.

7.4 Comparison of the Flexible Scheme to the Commitment Scheme

Since we do not have closed-form solutions, we designed extensive numerical studies to compare the

manufacturer equilibrium expected profit under the flexible target costing scheme to the expected

profits under the fixed target costs, as studied in section 4. Figure 7 represents the results of the

expected profit comparison for the two target costing approaches under different cost distributions;
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arrows represent the impact of K on this comparison.

Figure 7: C versus F Scheme Comparison: αa = αb = 0.5 and K = 0.005

When and why should the manufacturer prefer flexibility to commitment? The short answer

based on our numerics14 is: only when V would strategically release the first prototype. However, it

is not optimal for M to always take advantage of the strategic release: If the performance difference

is too high, i.e., one prototype has a very low performance, the C scheme performs better. The

reason is that M can save by stopping after developing the first prototype and thus avoid incurring

K twice, while the optimal F scheme would imply testing both prototypes. With this reason in

mind, we can now see why the optimal region of the F scheme shrinks as K increases. Under a

high value of K, the benefit of favorable supplier behavior cannot outweigh the cost of developing

the low performing prototype b, and thus the manufacturer is better off committing to target costs

upfront and not testing the second prototype at all, if prototype a turns out to be feasible.

8 Conclusion

In this paper, we study a stylized model in which a manufacturer involves a supplier in the joint

development and testing of prototypes for two alternative designs for a new product component.

We show that the involvement of the supplier influences the manufacturer’s optimal decisions: The

supplier may not release prototypes that would be profitable for both parties or may release proto-

types that are unprofitable for her. Therefore, when involving the supplier in product development,

the manufacturer should not blindly copy conventional strategies used in single-firm development

but should rather take the supplier’s strategic behavior into account.

14We ran numerous additional scenarios, for different levels of αi and K, and different cost distributions. While
the exact cutoffs naturally differ, all look structurally similar. In Online Companion B.2, we provide the graphs for
an additional example, where the more profitable prototype is also riskier, i.e., αa < αb.
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Our study shows that the information asymmetry resulting from the supplier’s involvement in

prototype testing makes sequential prototyping generally more attractive. While the manufacturer

can mitigate the supplier’s strategic behavior if prototypes are tested sequentially, this is impossible

to achieve if the testing is done in parallel. This has implications for manufacturers facing time-

to-market pressure. In the presence of time-to-market pressure, a fully informed manufacturer (no

information asymmetry) would test components concurrently if testing is not too expensive. How-

ever, supplier involvement breaks with this logic by introducing information asymmetry, thereby

favoring sequential testing despite low testing cost unless the time-to-market pressure is excessive.

It is known that prototyping should be done in a sequence of decreasing attractiveness (Weitz-

man, 1979) in the case of internal testing. However, we find that the involvement of the external

supplier, who accumulates private information, can reverse the optimal testing sequence under se-

quential prototyping. This is because the sequence of decreasing attractiveness can aggravate the

supplier’s strategic behavior: The supplier might not release the first prototype (the one preferred

by the manufacturer), since she is speculating on a lower cost and hence a higher profit margin

for the second one. Therefore, unless the testing costs are very large (so that the manufacturer

would never test the second prototype if the first one succeeds), the manufacturer should consider

testing the less attractive prototype first, as Figure 4 on page 18 illustrates. In other words, if a

manufacturer develops prototypes internally (no information asymmetry), it is always optimal to

test the higher margin design first. But if a manufacturer delegates the prototype development

to an external supplier, it can be optimal to reverse the sequence and start by testing the lower

margin design.

We also find that the classical target costing approaches (cost- and market-based) need to be

adjusted in the presence of alternative designs if tested sequentially. Due to the strategic non-

release behavior of suppliers, it is not always optimal to provide identical target costs for designs

with similar cost and performance estimates or different target costs for dissimilar designs, as shown

in Figure 3 on page 17. For example, if the designs have identical cost and performance estimates,

the target costs for the first prototype should be set higher to avoid the supplier’s strategic non-

release behavior and to avoid the risk of not obtaining a successful prototype. There are also

parameter constellations in which very different designs can have equal target costs.

Finally, committing to carefully chosen target costs upfront reduces the supplier’s strategic
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behavior and is preferable for the manufacturer for a wide range of cases, as shown in Figure 6 on

page 25. However, if one prototype features exceptionally high performance, the manufacturer can

take advantage of the supplier’s strategic behavior by remaining flexible and specifying the second

prototype’s target costs only after the first one has been tested (or not released). Doing so can

sometimes push suppliers to strategically release prototypes that are not profitable to them (or

that are below an acceptable level of profitability).

We acknowledge that our paper has several limitations. The comparison of manufacturer profits

between the commitment scheme and the flexible scheme cannot be done analytically, and hence

we use numerical studies to confirm the generality of our results. Furthermore, our model is

restricted to two prototypes and assumes no learning between designs (similar to the early testing

literature). While this adequately captures those scenarios where the manufacturer wants to test

a few very different designs, it is not very applicable to scenarios in which many closely related

design alternatives are being tested.

This research demonstrates that information asymmetry resulting from the involvement of an

external supplier can have a profound impact on the traditional approaches to testing and proto-

typing. This effect should by no means be limited to the target costing settings. Other contract

types applicable to new product development, e.g., performance-contingent contracts, can have a

substantially different influence on the incentive alignment between the parties. Furthermore, the

effects of cross-design learning, supplier competition, component improvement possibilities, and

many other factors are yet to be explored in greater detail. Finally, further research in the area

will greatly benefit from empirical studies quantifying the impact of the information asymmetry on

the benefits of collaborative design.

Appendix

Proof of Lemma 1

From (10) it follows that it is optimal for M to choose am = D if

r1 − w1 + α2 ((r2 − w2)− (r1 − w1))

∫ w1

0
G(c

(1)
2 )g(c1|h2(1)) dc1 − 2K ≥ r1 − w1 −K,

and to choose am = nD otherwise. Equation (12) follows directly.
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Proof of Proposition 1

The threshold is found by finding the cost at which V is indifferent between releasing and

not releasing the first prototype. This cost c1 must satisfy α1π
∗
v(s|h2(1)) + (1 − α1)π

∗
v(s|h2(0)) =

π∗v(s|h2(0)), or equivalently, π∗v(s|h2(1)) = π∗v(s|h2(0)). Note that π∗v(s|h2(1)) is continuous and

decreasing in c1, whereas π∗v(s|h2(0)) is independent of c1. Therefore, if there exists a c1 such that

π∗v(s|h2(1)) = π∗v(s|h2(0)), then this c1 is the unique release threshold.

Solving π∗v(s|h2(1)) = π∗v(s|h2(0)) (separately for a∗m = nD and a∗m = D), we obtain

c1 = w1 − π∗v(s|h2(0)) (25)

if a∗m = nD, and

c1 =



w1 − π∗v(s|h2(0)), if w2 − w1 + c1 < 0
w1

w1 + 2(1−α2w2)
α2

, if 0 ≤ w2 − w1 + c1 ≤ 1

w1 − α2(1−w2)2

2(1−α2)
, if w2 − w1 + c1 > 1

(26)

if a∗m = D.

The next step is to rule out infeasible cases by substituting the value of c1 into the corresponding

condition for w2−w1+c1 in equation (26) and verifying whether it holds. After ruling out infeasible

scenarios based on this substitution, equations (25)–(26) simplify to (15).

Proof of Proposition 2

Suppose w̃a and w̃b are jointly optimal for a given testing sequence (which is not necessarily

optimal). Let rb − w̃b < ra − w̃a. Suppose M decides to develop prototype a first. From Lemma 1,

it follows immediately that ãm = nD, i.e., M stops the development if prototype a is successful.

Then M’s expected profit is given as follows:

πm(s̃) = αaG(ca)(ra − w̃a −K) + (1− αaG(ca))αbG(w̃b)(rb − w̃b − 2K)

= αaG(w̃a − π∗v(s̃|h2(0)))(ra − w̃a) +
(
1− αaG(w̃a − π∗v(s̃|h2(0)))

)
αbG(w̃b)(rb − w̃b −K)−K.

(27)

Assume that K is sufficiently small, specifically, that

K < αa ((ra − w̃a)− (rb − w̃b))
∫ w̃b

0
G(c(1)a )g(cb|h2(1)) dcb. (28)
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Note that the right-hand side is strictly greater than 0, since ra − w̃a > rb − w̃b and αa, w̃b > 0,

which means there always exists a range of values of K satisfying (28).

Now suppose that M, while keeping the same target costs, changes the testing sequence so that

prototype b is tested first and prototype a second. For sufficiently small K, as defined in (28), it

always holds that âm = D under the new testing sequence, and hence c1 = w1. M’s corresponding

expected profit is then as follows:

πm(ŝ) = αbG(cb)
(
rb − w̃b + αa(ra − w̃a − rb + w̃b)

∫ c̃1

0
G(w̃a − w̃b + c)g(c|h2(1)) dc− 2K

)
+ (1− αbG(cb))αaG(w̃a)(ra − w̃a − 2K)

= αbG(w̃b)
(
rb − w̃b + αa(ra − w̃a − rb + w̃b)

∫ w̃b

0
G(w̃a − w̃b + c)g(c|h2(1)) dc

)
+ (1− αbG(w̃b))αaG(w̃a)(ra − w̃a)− 2K. (29)

Now we take the difference between the two expected profits under different testing sequences.

First, for the case where w̃a ≥ w̃b, which corresponds to w2 ≥ w1 in (11), we have

πm(ŝ|w̃a ≥ w̃b)− πm(s̃)

=
1

2
αaαb(w̃b)

2(rb − w̃b)(1− αbw̃b)−
1

2
αaαbw̃b

(
2w̃a − αb(w̃b)2

)
K − (1− αbw̃b)K. (30)

Note that for the case where w̃a < w̃b, the value of
∫ w1

0 G(w2 −w1 + c1)g(c1|h2(1)) dc1 as given

by (11) is greater than for the case where w̃a ≥ w̃b. Since all other components of (29) are the

same, this means that πm(ŝ|w̃a < w̃b) > πm(ŝ|w̃a ≥ w̃b).

From (30) and the fact that πm(ŝ|w̃a < w̃b) > πm(ŝ|w̃a ≥ w̃b), it follows that if K is sufficiently

small, πm(ŝ) > πm(s̃), irrespective of the relative values of w̃a and w̃b. The exact condition for K

derived from (30) is

K <
1
2αaαb(w̃b)

2(rb − w̃b)(1− αbw̃b)
1
2αaαbw̃b (2w̃a + αb(w̃b)2) + (1− αbw̃b)

(31)

if 1
2αaαbw̃b

(
2w̃a − αb(w̃b)2

)
+ (1− αbw̃b) > 0, and K is unconstrained otherwise.

Therefore, if K is sufficiently small, i.e., both (28) and (31) hold, and M chooses the testing

sequence such that r2−w̃2 < r1−w̃1, where the w̃i are optimal for the chosen sequence, M is always

better off swapping the prototypes so that r2 − w̃2 > r1 − w̃1. This means that r2 −w∗2 ≥ r1 −w∗1,

where the w∗i are the optimal target costs for the optimal testing sequence.
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Proof of Proposition 3

We first derive the conditions under which each of the four possible combinations of V’s actions

are optimal:

1. Release neither. a∗v,a = nRa and a∗v,b = nRb are jointly optimal if and only if cb > wb and

ca > wa. Proof:

� If both conditions hold, πv(Ra, nRb), πv(nRa, Rb), πv(Ra, Rb) < 0 = πv(nRa, nRb), and

thus a∗v,a = nRa and a∗v,b = nRb are optimal.

� If cb ≤ wb, then πv(nRa, Rb) > 0 = πv(nRa, nRb), and thus av,a = nRa and av,b = nRb

are not optimal.

� If ca ≤ wa, then πv(Ra, nRb) > 0 = πv(nRa, nRb), and thus av,a = nRa and av,b = nRb

are not optimal.

2. Release a only. a∗v,a = Ra and a∗v,b = nRb are jointly optimal if and only if cb > wb and

ca ≤ wa. Proof:

� If both conditions hold, πv(nRa, Rb) < 0. From (18), it follows that πv(Ra, Rb) =

πv(Ra, nRb) + (1−αa)πv(nRa, Rb). As πv(nRa, Rb) < 0, this means that πv(Ra, nRb) >

πv(Ra, Rb) > 0 > πv(nRa, Rb). Therefore, a∗v,a = Ra and a∗v,b = nRb are optimal.

� If cb ≤ wb, then πv(Ra, nRb) ≤ πv(Ra, Rb) and thus av,a = Ra and av,b = Rb are optimal,

so av,a = Ra and av,b = nRb are not optimal.

� If ca > wa, then πv(Ra, nRb) < 0, i.e., the strategy of not releasing any prototype

dominates av,a = Ra and av,b = nRb, and thus av,a = Ra and av,b = nRb are not

optimal.

3. Release both. a∗v,a = Ra and a∗v,b = Rb are jointly optimal if and only if cb ≤ wb and

ca ≤ wa − πv(nRa, Rb). Proof:

� If both conditions hold, it is straightforward that πv(Ra, Rb) ≥ πv(Ra, nRb) > 0. To

see that πv(Ra, Rb) ≥ πv(nRa, Rb), consider that πv(Ra, Rb) − πv(nRa, Rb) = αa(wa −

πv(nRa, Rb) − ca) ≥ 0, as ca ≤ wa − πv(nRa, Rb). Therefore, a∗v,a = Ra and a∗v,b = Rb

are optimal.
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� If cb > wb, then πv(Ra, Rb) < πv(Ra, nRb), and thus av,a = Ra and av,b = Rb are not

optimal.

� If ca > wa − πv(nRa, Rb), then πv(Ra, Rb) < πv(nRa, Rb), and thus av,a = Ra and

av,b = Rb are not optimal.

4. Release b only. a∗v,a = nRa and a∗v,b = Rb are jointly optimal if and only if cb ≤ wb and

ca > wa − πv(nRa, Rb). Proof by exclusion.

Now we combine the derived conditions to formulate release rules for the supplier. First, a∗v,b =

Rb is optimal (irrespective of a∗v,a) if cb ≤ wb. Second, a∗v,a = Ra is optimal (irrespective of

a∗v,b) if either of the following holds: (i) cb > wb and ca ≤ wa, or (ii) cb ≤ wb and ca ≤ wa −

πv(nRa, Rb). Note that cb ≤ wb is equivalent to πv(nRa, Rb) ≥ 0. Therefore, the conditions from

the two cases can be combined into one condition: ca ≤ wa−πv(nRa, Rb)+, where πv(nRa, Rb)
+ =

max{πv(nRa, Rb), 0}.

Proof of Proposition 4

Consider a pair of optimal target costs for parallel testing, ŵa and ŵb, and label the prototypes

so that ra − ŵa ≥ rb − ŵb. Therefore,

πm = ŵb

([
ŵa − αb

ŵb
2

]+
αa(ra − ŵa) +

(
1−

[
ŵa − αb

ŵb
2

]+)
αb(rb − ŵb)

)

+ (1− ŵb)ŵaαa(ra − ŵa)− 2K. (32)

Now consider the scenario in which M tests the prototypes using the same target costs but tests

them sequentially. Let’s first consider the case where

αa ((ra − ŵa)− (rb − ŵb))
∫ ŵb

0
G(c(1)a )g(cb|h2(1)) dcb ≥ K

(which includes the case of K = 0), and suppose that M tests prototype b first, i.e., a∗m = D. In this

case, V releases prototype b if cb ≤ ŵb. If prototype b is feasible (cb ≤ ŵb), she releases prototype

a only if ŵa − ca ≥ ŵb − cb or, equivalently, ca ≤ ŵa − ŵb + cb, and if prototype b is infeasible,

she releases prototype a if ca ≤ ŵa. These conditions can be simplified to: ca ≤ ŵa − [ŵb − cb]+.

Note that
∫ 1
0

(
ŵa − [ŵb − cb]+

)
g(cb) dcb = ŵa −

∫ ŵb

0 (ŵb − cb)g(cb) dcb = ŵa − ŵb
2 . We denote the
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corresponding manufacturer profit as π1 and rewrite it as

π1 = αbŵb

[[
ŵa −

ŵb
2

]+
αa(ra − ŵa) +

(
1−

[
ŵa −

ŵb
2

]+)
(rb − ŵb)

]

+ (1− αbŵb)ŵaαa(ra − ŵa)− 2K. (33)

We now need to consider 3 subcases:

(i) Suppose ŵa ≥ ŵb
2 ≥

αbŵb
2 . Taking the difference between (33) and (32), we obtain: π1−πm =

αbŵb(1− αb)(rb − ŵb) ŵb
2 > 0.

(ii) Suppose ŵb
2 > ŵa >

αbŵb
2 . Taking the difference between (33) and (32), we obtain: π1−πm =

αbŵb
4 ((rb − ŵb)(ŵa − αbŵb

2 ) + αa(ra − ŵa)( ŵb
2 − ŵa)) > 0.

(iii) Suppose ŵa <
αbŵb
2 . Taking the difference between (33) and (32), we obtain: π1 − πm =

αa(1− αb)ŵaŵb(ra − ŵa) > 0.

Thus, in all three cases, sequential prototyping strictly dominates parallel prototyping.

Now consider the case where

αa ((ra − ŵa)− (rb − ŵb))
∫ ŵb

0
G(c(1)a )g(cb|h2(1)) dcb < K,

and suppose that the manufacturer tests prototype a first, i.e., a∗m = nD.

In this case, the supplier releases prototype a if ca ≤ ŵa. If prototype a is feasible, she does

not release prototype b, and if it is infeasible she releases prototype b if cb ≤ ŵb. We denote the

manufacturer profit in this case as π2, and we rewrite it as

π2 = αaŵa [ra − ŵa −K] + (1− αaŵa) [ŵaαb(rb − ŵb)− 2K] . (34)

This time we need to consider 2 subcases, as the maximum operator is present only in (32):

(i) Suppose ŵa ≥ αbŵb
2 . Taking the difference between (34) and (32), we obtain:

π2 − πm = αbŵb

(
(1− αa)ŵa(rb − ŵb) + αa

ŵb
2

(ra − ŵa)−
αbŵb

2
(rb − ŵb)

)
+ (1 + (1− αaŵa)(1− 2αbŵb))K > 0.

Note that in the above equation, both ŵa(rb− ŵb) and ŵb
2 (ra− ŵa) are greater than or equal

to αbŵb
2 (rb− ŵb), and therefore their weighted average (with αa as the weight) is greater than

or equal to αbŵb
2 (rb − ŵb).
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(ii) Suppose ŵa <
αbŵb
2 . Taking the difference between (34) and (32), we obtain:

π2 − πm = αaŵaŵb(ra − ŵa − αb(rb − ŵb)) + (1 + (1− αaŵa)(1− 2αbŵb))K > 0.

Hence in this case as well, sequential prototyping strictly dominates parallel prototyping.

Proof of Proposition 5

To find the first-period release threshold for the case a∗mf = D, we solve π∗vf ((svf , smf )|h3(D)) =

π∗vf ((svf , smf )|h2(0)) for c1:

w1f − c1 + α2

∫ c
(1)
2

0

(
(w

(1)
2f − c2)− (w1f − c1)

)
g(c2) dc2 =

α2

(
w

(0)
2f

)2
2

, (35)

where
∫ c(1)2
0

(
(w

(1)
2f − c2)− (w1f − c1)

)
g(c2) dc2 =


0, if c

(1)
2f < 0(

w
(1)
2f −w1f+c1

)2
2 , if 0 ≤ c(1)2f ≤ 1

w
(1)
2f −

1
2 − w1f + c1, if c

(1)
2f > 1.

First, if w
(1)∗
2f1

= w1f + 1− c1f , then

c1f1 = w1f +
α2

2
− π∗vf ((svf , smf )|h = 0). (36)

Second, if w
(1)∗
2f2

= w1f + r2−r1
2 − c1f

4 , then

c1f2 =
2

9
·

8 + 3α2(r2 − r1) + 4

√
4− 3α2(r2 − r1)− 9

2α2

(
w1f − π∗vf ((svf , smf )|h2(0))

)
α2

. (37)

We can further show that w
(1)∗
2f2

< w
(1)∗
2f1

for all feasible w1. To see this, consider

w
(1)∗
2f1
− w(1)∗

2f2
=

1

72α2

(
72α2 − 36α2

2 +M + 4
√

32 +M
)
, (38)

where M = 32 + α2

(
48(r1 − r2) + 9α2r

2
2 − 72w1

)
. Because w1 ≤ r1, (38) is always positive.

From the fact that w
(1)∗
2f2

< w
(1)∗
2f1

it follows that

w
(1)∗
2f =

(
w1f + min

{
r2 − r1

2
−
c̃1f
4
, 1− c̃1f

})+

=

(
w1f +

r2 − r1
2

−
c̃1f2

4

)+

.

If a∗mf = nD, we solve α1(w1 − c1) + (1 − α1)π
∗
vf ((svf , smf )|h2(0)) = π∗vf ((svf , smf )|h2(0)) for

c1 to find the first-period release threshold:

c1f3 = w1f − π∗vf ((svf , smf )|h2(0)). (39)

Now we formalize the first-period supplier release threshold:
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c1f =


w1f − π∗vf (sf |h2(0)), if a∗m = nD

2
9 ·

8+3α2(r2−r1)+4
√

4−3α2(r2−r1)− 9
2
α2(w1f−π∗

vf (sf |h2(0)))
α2

, if a∗m = D.

(40)

Proof of Corollary 1

Note that for the case a∗m = D, w
(1)∗
2f > 0 must hold because otherwise the manufacturer does

not test the second prototype. For c1f2 , this condition is equivalent to w1f ≥
2−4α2(r2−r1)−

√
4+α2

2r
2
2

6α2

(this follows from solving w
(1)∗
2f > 0). Solving cf2 > w1f for w1f , we obtain two regions: (1)

w1f <
2
3r1−

4
3r2 (which never holds for w1f ≥

2−4α2(r2−r1)−
√

4+α2
2r

2
2

6α2
) and (2) w1f >

2
3r1. Therefore,

c1f2 > w1f if w1f >
2
3r1, and the reverse holds if w1f <

2
3r1.

Trivially, c1f3 = w1f − π∗vf ((svf , smf )|h2(0)) < w1f .

Combining the above results, if
(

(r2 − w(1)∗
2f )− (r1 − w1f )

)
Prsuccess,f ≥ K (i.e., a∗m = D) and

w1f >
2
3r1, then c1f > w1f . Otherwise, c1f ≤ w1f .
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