On a family of groups defined by Said Sidki

Marston D. E. Conder
Department of Mathematics, University of Auckland Private Bag 92019, Auckland 1142, NEW ZEALAND
Email: m.conder@auckland.ac.nz

For Said Sidki on the occasion of his 75th birthday

Abstract

In a paper in 1982, Said Sidki defined a 2-parameter family of finitely-presented groups $Y(m, n)$ that generalise the Carmichael presentation for a finite alternating group satisfied by its generating 3 -cycles $(1,2, t)$ for $t \geq 3$. For $m \geq 2$ and $n \geq 2$, the group $Y(m, n)$ is the abstract group generated by elements $a_{1}, a_{2}, \ldots, a_{m}$ subject to the defining relations $a_{i}^{n}=1$ for $1 \leq i \leq m$ and $\left(a_{i}^{k} a_{j}^{k}\right)^{2}=1$ for $1 \leq i<j \leq m$ and $1 \leq k \leq\left[\frac{n}{2}\right]$. Sidki investigated the structure of various sub-families of these groups, for small values of m or n, and has conjectured that they are all finite. Sidki's conjecture remains open. In this paper it is shown that for all $m \geq 3$, the group $Y(m, 6)$ is finite, and is isomorphic to a semi-direct product of an elementary abelian 2 -group of order $2^{\frac{m(m+3)}{2}}$ by $Y(m, 3) \cong A_{m+2}$. Also we exploit a computation for the group $Y(3,8)$ to prove that $Y(m, 8)$ is a finite 2-group, for all m.

Keywords: Finitely-presented group; generators and relations; finiteness.
Mathematics Subject Classification (2010): 20 F 05.
Acknowledgements: The author gratefully acknowledges support from the N.Z. Marsden Fund (grant UOA1626), and the use of the MAGMA system [1] to discover and test various properties of this interesting family of groups.

1 Introduction

At the August 2016 Escola de Álgebra in Brazil, which celebrated the 75th birthday of Said Sidki (one of the founders of this biennial meeting), Said Sidki gave a lecture on a 2-parameter family of groups denoted by $Y(m, n)$, which he defined in a paper [6] in 1982.

For $m \geq 2$ and $n \geq 2$, the group $Y(m, n)$ is the abstract group with presentation $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right| a_{i}^{n}=1$ for $1 \leq i \leq m,\left(a_{i}^{k} a_{j}^{k}\right)^{2}=1$ for $1 \leq i<j \leq m$ and $\left.1 \leq k \leq\left[\frac{n}{2}\right]\right\rangle$.
As noted by Sidki, for $n=3$ this presentation generalises the one given by Carmichael [2] for the alternating group of given finite degree, satisfied by its generating 3-cycles (1, 2, t) for $t \geq 3$; see also $[3, \S 6.3]$. Sidki observed that $Y(m, 2)$ is elementary abelian of order 2^{m} for all m, and that $Y(2, n)$ is metabelian of order $2^{n-1} n$, having an elementary abelian normal 2 -subgroup of order 2^{n-1} with cyclic quotient of order n.

Sidki further investigated the structure of other sub-families of the groups $Y(m, n)$, for small values of m or n, as well as the general case where n is odd. In particular, he proved in [6] that $Y(m, 4)$ is a finite 2-group of order $2 \frac{m(m+3)}{2}$ and nilpotency class 3 for all $m \geq 2$. He also claimed in [6] that $Y(m, 6)$ is infinite for all $m \geq 3$, but then retracted this in a subsequent paper [7], after proving that $Y(3, n)$ is finite for all n.

Neubüser, Felsch and O'Brien used computational techniques to show that $Y(m, 5)$ is finite for $3 \leq m \leq 10$, and $Y(m, 7)$ is finite for $3 \leq m \leq 6$, and $Y(m, 11)$ is finite for $3 \leq m \leq 5$, and indeed that in each of these cases, $Y(m, n)$ is a simple orthogonal group of characteristic 2 , or has such a group as a quotient by a normal 2 -subgroup. The latter (unpublished) work was taken further recently by McInroy and Shpectorov [5] to show a definite connection with the orthogonal groups. Also the work by Sidki in [7] was taken further by Krstic and McCool to prove the non-finite presentability of the automorphism group $\Phi_{2}(\mathbb{Z})$ of the free \mathbb{Z}-group of rank two; see [4].

Based on these and other discoveries, Sidki has conjectured that the groups $Y(m, n)$ are all finite, and that they are 2 -groups when n is a power of 2 . As far as we are aware, and as reported in [5], these conjectures have not been resolved.

In this paper, we prove the following:
Theorem 1 For all $m \geq 2$, the group $Y(m, 6)$ is finite, and is isomorphic to a semi-direct product of an elementary abelian 2-group of order $2 \frac{m(m+3)}{2}$ by $Y(m, 3) \cong A_{m+2}$.

Theorem 2 For all $m \geq 2$, the group $Y(m, 8)$ is a finite 2-group.
In fact, computations using the Magma system [1] show that Theorem 1 is true in the cases $m=2,3$ and 4 , with the elementary abelian normal subgroup having order $2^{4}, 2^{9}$ and 2^{14} respectively. Also two different computations with Magma show that the group $Y(m, 6)$ has a quotient that is an extension by $Y(m, 3) \cong A_{m+2}$ of an elementary abelian group of order $2^{\frac{m(m+3)}{2}}$ when $m=5$ or 6 , and that $Y(3,8)$ has order 2^{21}. A proof of much of Theorem 1 follows almost immediately from the fact that $Y(3,6)$ is finite and has the required structure, but we give a computer-free proof in Sections 2 and 3. In both cases a key step involves consideration of the structure of 3-generator subgroups of the kernel N of the natural epimorphism from $Y(m, 6)$ to $Y(m, 3)$. Also we give a computer-assisted proof of Theorem 2 in Section 4, using Sidki's theorem on the groups $Y(m, 4)$ together with observed properties of the group $Y(3,8)$.

2 Some properties of the groups $Y(m, 6)$

Let $Y=Y(m, 6)$ be the group defined as in the Introduction, with $m \geq 2$ and $n=6$, and in this group, define $b_{i}=a_{i}^{3}$ and $c_{i j}=a_{i}^{-1} b_{j} a_{i}=a_{i}^{-1} a_{j}^{3} a_{i}$ for all i and j in $\{1,2, \ldots, m\}$. Also denote by $R_{i j}^{k}$ the relation $\left(a_{i}^{k} a_{j}^{k}\right)^{2}=1$, which holds for all distinct $i, j \in\{1,2, \ldots, m\}$ and all $k \in \mathbb{Z}$, and not just those i, j and k given in the defining presentation for $Y(m, n)$.

Before proceeding, we note that if $m \geq 3$ and $S=\left\{a_{i}, a_{j}, a_{k}\right\}$ is any subset of three of the given generators of Y, then those three elements satisfy the defining relations for $Y(3,6)$, and hence the subgroup generated by S is isomorphic to a quotient of $Y(3,6)$. In particular, many of the properties of the elements a_{i}, a_{j} and a_{k} follow immediately from the properties of the three given generators for $Y(3,6)$. Nevertheless we can prove the properties we need directly from the presentation for $Y(m, 6)$, thereby avoiding reliance on the results of computer calculations for $Y(3,6)$. The first properties we need are easy.

Lemma 1 In the group $Y(m, 6)$, the following relations hold:
(a) $b_{j}^{2}=c_{i j}^{2}=1$ for all i and j;
(b) $\left[b_{i}, b_{j}\right]=\left(b_{i} b_{j}\right)^{2}=1$ for all i and j;
(c) $a_{i} b_{j} a_{i}^{-1}=b_{i} b_{j} c_{j i}$ for all i and j with $i \neq j$;
(d) $\left[b_{i}, c_{i j}\right]=\left[b_{j}, c_{i j}\right]=1$ for all i and j with $i \neq j$;
(e) $\left[c_{i j}, c_{i k}\right]=1$ whenever i, j and k are distinct.

Proof. First, part (a) follows immediately from the relation $a_{j}^{6}=1$ and conjugation by a_{i}, and then (b) from the relation $\left(a_{i}^{3} a_{j}^{3}\right)^{2}=1$. Also conjugation of the relation $\left[b_{i}, b_{j}\right]=1$ by a_{i} gives $\left[b_{i}, c_{i j}\right]=1$, which is the first part of (d). Similarly, conjugation of the relation $\left[b_{j}, b_{k}\right]=1$ by a_{i} gives $\left[c_{i j}, c_{i k}\right]=1$, which is (e). Next, using $R_{j i}^{2}$ and $R_{i j}^{1}$ we find $a_{i} b_{j} a_{i}^{-1}=a_{i} a_{j}^{3} a_{i}^{-1}=a_{i} a_{j}^{-3} a_{i}^{-1}=a_{i}^{3} a_{i}^{-2} a_{j}^{-2} a_{j}^{-1} a_{i}^{-1}=a_{i}^{3} a_{j}^{2} a_{i}^{2} a_{i} a_{j}=a_{i}^{3} a_{j}^{3} a_{j}^{-1} a_{i}^{3} a_{j}=b_{i} b_{j} c_{j i}$ for $i \neq j$, and so (c) holds. Finally if $i \neq j$ then part (c) gives $1=a_{j} b_{i}^{2} a_{j}^{-1}=\left(a_{j} b_{i} a_{j}^{-1}\right)^{2}=$ $\left(b_{j} b_{i} c_{i j}\right)^{2}=\left[b_{j} b_{i}, c_{i j}\right]$, therefore $c_{i j}$ commutes with $b_{j} b_{i}\left(\right.$ since $\left.\left(b_{j} b_{i}\right)^{2}=c_{i j}^{2}=1\right)$, and then because $\left[b_{i}, c_{i j}\right]=1$ we find that $c_{i j}$ also commutes with b_{j}, giving the second part of (d).

The next observations are more substantial.

Lemma 2 In the group $Y(m, 6)$, the following relations hold:
(a) $a_{i}^{-1} c_{i j} a_{i}=b_{i} b_{j} c_{j i}$ for all i and j with $i \neq j$;
(b) $a_{i}^{-1} c_{j i} a_{i}=b_{j} b_{i} c_{i j}$ for all i and j with $i \neq j$;
(c) $a_{i}^{-1} c_{j k} a_{i}=c_{i j} b_{i} c_{j i} c_{j k} b_{k} b_{i} c_{i k} c_{k i} b_{k} c_{i k} c_{i j}$ whenever i, j and k are distinct.

Proof. First $a_{i}^{-1} c_{i j} a_{i}=a_{i}^{-2} b_{j} a_{i}^{2}=a_{i} a_{i}^{3} b_{j} a_{i}^{-3} a_{i}^{-1}=a_{i} b_{i} b_{j} b_{i}^{-1} a_{i}^{-1}=a_{i} b_{j} a_{i}^{-1}=b_{i} b_{j} c_{j i}$ by Lemma 1(b) and 1(c), while $a_{i}^{-1} c_{j i} a_{i}=a_{i}^{-1} a_{j}^{-1} b_{i} a_{j} a_{i}=a_{j} a_{i} b_{i} a_{i}^{-1} a_{j}^{-1}=a_{j} b_{i} a_{j}^{-1}=b_{j} b_{i} c_{i j}$ by $R_{j i}^{1}$ and Lemma 1(c). The proof of part (c) is more tricky. We know from Magma computations that (c) holds in the group $Y(3,6)$, and hence it holds in $Y(m, 6)$ for all $m \geq 3$, but here we give a proof that is free of (yet guided by) computer calculations. In fact we prove it backwards, by expanding the right-hand-side and then using known relations to reduce it, as follows:

$$
\begin{aligned}
& c_{i j} b_{i} c_{j i} c_{j k} b_{k} b_{i} c_{i k} c_{k i} b_{k} c_{i k} c_{i j} \\
& ==a_{i}^{-1} a_{j}^{3} a_{i} a_{i}^{3} a_{j}^{-1} a_{i}^{3} a_{j} a_{j}^{-1} a_{k}^{3} a_{j} a_{k}^{3} a_{i}^{3} a_{i}^{-1} a_{k}^{3} a_{i} a_{k}^{-1} a_{i}^{3} a_{k} a_{k}^{3} a_{i}^{-1} a_{k}^{3} a_{i} a_{i}^{-1} a_{j}^{3} a_{i} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{j}^{-2} a_{i}^{-2} a_{j}^{-1} a_{i}^{3} a_{k}^{3} a_{j} a_{k}^{3} a_{i}^{2} a_{k}^{2} a_{k} a_{i} a_{k}^{-1} a_{i}^{3} a_{k}^{-2} a_{i}^{-1} a_{k}^{3} a_{j}^{2}\right) a_{j} a_{i} \text { by cancellation }
\end{aligned}
$$

$$
\begin{aligned}
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i}^{2} a_{j} a_{i}^{3} a_{k}^{3} a_{j} a_{k} a_{i}^{-2} a_{i}^{-1} a_{k}^{-2} a_{i}^{3} a_{k}^{-2} a_{i}^{-1} a_{k} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i j}^{2}, R_{i k}^{2}, R_{i k}^{1} \text { and } R_{j k}^{2} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{i}^{2} a_{k}^{3} a_{j} a_{k} a_{i}^{3} a_{k}^{-2} a_{i}^{3} a_{k}^{-2} a_{i}^{-2} a_{i} a_{k} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i j}^{1} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-2} a_{i}^{-2} a_{k} a_{j} a_{k} a_{i}^{3} a_{k}^{-2} a_{i}^{3} a_{i}^{2} a_{k}^{2} a_{k}^{-1} a_{i}^{-1} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i k}^{2}, R_{i k}^{2} \text { and } R_{i k}^{1} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-2} a_{i}^{-2} a_{j}^{-1} a_{i}^{-1} a_{k}^{2} a_{i} a_{k} a_{i}^{-1} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{j k}^{1} \text { and } R_{i k}^{2} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-2} a_{i}^{-1} a_{j} a_{k} a_{i}^{-2} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i j}^{1} \text { and } R_{i k}^{1} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-2} a_{i}^{-1} a_{k}^{-1} a_{j}^{-1} a_{i}^{-2} a_{j}^{-2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{j k}^{1} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-1} a_{i} a_{j} a_{i}^{2} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i k}^{1} \text { and } R_{i j}^{2} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{j}^{-1} a_{k}^{-1} a_{j}^{-1} a_{i} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{i j}^{1} \\
& =a_{i}^{-1} a_{j}^{-1}\left(a_{i} a_{k} a_{i} a_{k}^{-2}\right) a_{j} a_{i} \text { by } R_{j k}^{1} \\
& =a_{i}^{-1} a_{j}^{-1} a_{k}^{3} a_{j} a_{i} \text { by } R_{i k}^{1} \\
& =a_{i}^{-1} c_{j k} a_{i} .
\end{aligned}
$$

Corollary 1 In $Y(m, 6)$, the relation $\left[c_{i j}, c_{j i}\right]=1$ holds whenever $i \neq j$.
Proof. By Lemmas 2(a) and 1(d) we have $1=a_{i}^{-1}\left[b_{j}, c_{i j}\right] a_{i}=\left[a_{i}^{-1} b_{j} a_{i}, a_{i}^{-1} c_{i j} a_{i}\right]=$ $\left[c_{i j}, b_{i} b_{j} c_{j i}\right]=\left[c_{i j}, c_{j i}\right]$.

Corollary 2 The relation in Lemma 2(c) can be simplified to $a_{i}^{-1} c_{j k} a_{i}=c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}$. Proof. This follows from Corollary 1 and parts (b) and (d) of Lemma 1, with j replaced by k in each case.

Corollary 3 In $Y(m, 6)$, the following relations hold whenever i, j and k are distinct:
(a) $\left(b_{i} b_{j} c_{i k} c_{j k}\right)^{2}=1$
(b) $\left(b_{i} c_{j k} c_{k j} c_{k i}\right)^{2}=1$
(c) $\left(c_{i j} c_{j k} c_{i k}\right)^{2}=1$
(d) $\left(c_{i j} c_{i k} c_{j k} c_{k i}\right)^{2}=1$.

Proof. First, conjugating $\left[c_{k j}, c_{k i}\right]=1$ (from Corollary 1) by a_{k} gives $\left[b_{k} b_{j} c_{j k}, b_{k} b_{i} c_{i k}\right]=1$, and then since b_{k} commutes with $b_{j}, c_{j k}, b_{i}$ and $c_{i k}$, it follows that

$$
1=\left[b_{j} c_{j k}, b_{i} c_{i k}\right]=c_{j k} b_{j} c_{i k} b_{i} b_{j} c_{j k} b_{i} c_{i k}=c_{j k} b_{j} b_{i} c_{i k} c_{j k} b_{j} b_{i} c_{i k}=c_{j k}\left(b_{j} b_{i} c_{i k} c_{j k}\right)^{2} c_{j k}
$$

and therefore $\left(b_{i} b_{j} c_{i k} c_{j k}\right)^{2}=\left(b_{j} b_{i} c_{j k} c_{i k}\right)^{2}=1$, which is (a).
Now conjugating $b_{i} b_{j} c_{i k} c_{j k}$ by a_{i} and using Lemma 2 and Corollary 2 gives

$$
\begin{aligned}
& a_{i}^{-1}\left(b_{i} b_{j} c_{i k} c_{j k}\right) a_{i}=b_{i} c_{i j}\left(b_{i} b_{k} c_{k i}\right)\left(c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}\right)=c_{i j} b_{k} c_{k i} c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j} \\
& =c_{i j} c_{k i} b_{k} b_{i} c_{i j} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}=c_{i j} c_{k i} b_{i}\left(b_{k} c_{i j} c_{j i} c_{j k}\right) b_{i} c_{k i} c_{i j} .
\end{aligned}
$$

Thus $b_{k} c_{i j} c_{j i} c_{j k}$ is conjugate to $b_{i} b_{j} c_{i k} c_{j k}$, and so from (a) we obtain $\left(b_{k} c_{i j} c_{j i} c_{j k}\right)^{2}=1$, and clearly (b) follows from this by a cyclic permutation of the subscripts.

Next, Corollary 2 gives $1=a_{i}^{-1} c_{j k}^{2} a_{i}=\left(c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}\right)^{2}$, and then by conjugation and Lemma 1 we obtain $1=\left(b_{i} c_{k i} c_{i j} c_{i j} b_{i} c_{j i} c_{j k}\right)^{2}=\left(b_{i} c_{k i} b_{i} c_{j i} c_{j k}\right)^{2}=\left(c_{k i} c_{j i} c_{j k}\right)^{2}$. Further conjugation and a permutation of the subscripts gives (c).

Finally, for (d), we have $\left(b_{k} c_{i j} c_{j i} c_{j k}\right)^{2}=1$ from (b), and then conjugation of this relation by a_{i} gives

$$
1=a_{i}^{-1}\left(b_{k} c_{i j} c_{j i} c_{j k}\right)^{2} a_{i}=\left(c_{i k}\left(b_{i} b_{j} c_{j i}\right)\left(b_{j} b_{i} c_{i j}\right) c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}\right)^{2}=\left(b_{i} c_{i k} c_{j k} c_{k i} b_{i} c_{i j}\right)^{2},
$$ and further conjugation gives $1=\left(b_{i} c_{i j} b_{i} c_{i k} c_{j k} c_{k i}\right)^{2}=\left(c_{i j} c_{i k} c_{j k} c_{k i}\right)^{2}$.

Lemma 3 In $Y(m, 6)$, we have $b_{i} c_{j k} b_{i}=c_{i j} c_{j k} c_{i j}$ whenever i, j and k are distinct.
Proof. First, an easy application of Lemma 2, Corollary 2 and parts of Lemma 1 gives

$$
\begin{aligned}
& b_{i}^{-1} c_{j k} b_{i}=a_{i}^{-3} c_{j k} a_{i}^{3}=a_{i}^{-2}\left(c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}\right) a_{i}^{2} \\
& =a_{i}^{-1}\left(\left(b_{i} b_{j} c_{j i}\right) b_{i}\left(b_{i} b_{j} c_{i j}\right)\left(c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j}\right)_{i}\left(b_{i} b_{k} c_{i k}\right)\left(b_{i} b_{j} c_{j i}\right) a_{i}\right. \\
& =a_{i}^{-1}\left(b_{i} b_{j} c_{j i} b_{j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j} b_{k} c_{i k} b_{i} b_{j} c_{j i}\right) a_{i} \\
& =a_{i}^{-1}\left(c_{j k} b_{i} c_{k i} c_{i j} b_{k} c_{i k} b_{i} b_{j} c_{j i}\right) a_{i} \\
& =a_{i}^{-1}\left(c_{j k} c_{k i} c_{i j} b_{k} c_{i k} b_{j} c_{j i}\right) a_{i} \\
& =\left(c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k} c_{i j}\right)\left(b_{i} b_{k} c_{i k}\right)\left(b_{i} b_{j} c_{j i}\right) c_{i k}\left(b_{i} b_{k} c_{k i}\right) c_{i j}\left(b_{i} b_{j} c_{i j}\right) \\
& =c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j} b_{i} b_{k} c_{i k} b_{i} b_{j} c_{j i} c_{i k} b_{i} b_{k} c_{k i} c_{i j} b_{i} b_{j} c_{i j} \\
& =c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j} b_{k} c_{i k} b_{j} c_{j i} c_{i k} b_{k} c_{k i} b_{j} .
\end{aligned}
$$

This can be taken further using Corollary 3, as follows:

```
\(b_{i}^{-1} c_{j k} b_{i}=c_{i j} b_{i} c_{j i} c_{j k} b_{i} c_{k i} c_{i j} b_{k} c_{i k} b_{j} c_{j i} c_{i k} b_{k} c_{k i} b_{j}=b_{i}\left(c_{i j} c_{j i} c_{j k} c_{k i} c_{i j} b_{k} c_{i k} b_{j} c_{j i} c_{i k} b_{k} c_{k i} b_{j}\right) b_{i}\)
    \(=b_{i}\left(c_{k i} c_{j k} c_{j i} b_{k} c_{i k} b_{j} c_{j i} c_{i k} b_{k} c_{k i} b_{j}\right) b_{i}\) since \(\left(c_{j i} c_{j k} c_{k i} c_{i j}\right)^{2}=\left(c_{j k} c_{j i} c_{k i} c_{i j}\right)^{2}=1\) by part (d)
    \(=b_{i}\left(c_{k i} c_{j k} c_{j i} c_{i k} b_{k} b_{j} c_{j i} c_{k i} b_{k} c_{i k} b_{j}\right) b_{i}\)
    \(=b_{i}\left(c_{k i} c_{j k} c_{j i} c_{i k} c_{k i} c_{j i} b_{j} c_{i k} b_{j}\right) b_{i}\) since \(\left(b_{k} b_{j} c_{j i} c_{k i}\right)^{2}=\left(b_{j} b_{k} c_{j i} c_{k i}\right)^{2}=1\) by part (a)
    \(=b_{i}\left(c_{k i} c_{j i} c_{j k} c_{i k} c_{k i} c_{j i} b_{j} c_{i k} b_{j}\right) b_{i}\)
    \(=b_{i}\left(c_{j k} c_{j i} c_{k i} c_{i k} c_{k i} c_{j i} b_{j} c_{i k} b_{j}\right) b_{i}\) since \(\left(c_{j k} c_{k i} c_{j i}\right)^{2}=1\) by part (c)
    \(=b_{i}\left(c_{j k} c_{j i} c_{i k} c_{j i} b_{j} c_{i k} b_{j}\right) b_{i}=\left(b_{i} c_{j k} b_{i}\right) c_{j i} c_{i k} c_{j i} b_{j} c_{i k} b_{j}\).
```

Now from this we find that $1=c_{j i} c_{i k} c_{j i} b_{j} c_{i k} b_{j}$, and hence that $b_{j} c_{i k} b_{j}=c_{j i} c_{i k} c_{j i}$, and then the result follows by swapping the subscripts i and j.

Corollary 4 In $Y(m, 6)$, the relation $\left[b_{i}, c_{j k}\right]=1$ holds whenever i, j and k are distinct. Proof. This is an easy consequence of earlier observations:

$$
\begin{aligned}
1 & =\left(c_{i j} c_{j k} c_{i k}\right)^{2}=c_{i j} c_{j k} c_{i j} c_{i k} c_{j k} c_{i k} \quad \text { by Corollary } 3(\mathrm{c}) \text { and Lemma } 1(\mathrm{e}) \\
& =b_{i} c_{j k} b_{i} c_{i k} c_{j k} c_{i k} \quad \text { by Lemma } 3 \\
& =b_{i} c_{j k} b_{j} c_{j k} c_{i k} b_{i} b_{j} c_{i k}=b_{i} b_{j} c_{i k} b_{i} b_{j} c_{i k}=b_{j} c_{i k} b_{j} c_{i k} \quad \text { by Corollary 3(a) and Lemma } 1 \\
& =\left[b_{j}, c_{i k}\right]
\end{aligned}
$$

and then the result follows by swapping the subscripts i and j.

3 Structure and finiteness of the groups $Y(m, 6)$

We can now prove our main theorem, namely that the group $Y=Y(m, 6)$ is isomorphic to an extension by $Y(m, 3) \cong A_{m+2}$ of an elementary abelian 2-group of rank $\frac{m(m+3)}{2}$, and
hence finite, for all $m \geq 2$. We do this in steps.
Step 1 The subgroup N generated by the elements b_{i} and $c_{j k}($ for $j \neq k)$ is normal, with quotient Y / N isomorphic to the alternating group A_{m+2}.

Proof. Note that $a_{i}^{-1} b_{j} a_{i}=c_{i j} \in N$ for all i and j (with $c_{i j}=c_{i i}=b_{i}$ when $i=j$), and that $a_{i}^{-1} c_{j k} a_{i} \in N$ for all i, j and k with $j \neq k$ by Lemma 2. Hence N is normal in Y. Moreover, it follows that N is generated by all conjugates of the elements $b_{i}=a_{i}^{3}$, and so the quotient Y / N is isomorphic to the group obtained from Y by adjoining the relations $a_{i}^{3}=1$ for $1 \leq i \leq m$. In particular, Y / N is isomorphic to $Y(m, 3)$, and hence to A_{m+2}.

Step 2 The subgroup N is abelian.
This actually follows from the properties of the group $Y(3,6)$ found by computation with Magma, but we can prove it directly:

Proof. By Lemma 1 and Corollaries 1 and 4 we have $\left[b_{i}, b_{j}\right]=\left[b_{i}, c_{i j}\right]=\left[b_{i}, c_{j i}\right]=1$ for all distinct i and j, and $\left[b_{i}, c_{j k}\right]=1$ whenever i, j and k are distinct. Thus every b_{i} is central in N. Moreover, by conjugation it follows that each $c_{j k}\left(=a_{j}^{-1} b_{k} a_{j}\right)$ is central in N as well, and therefore N is abelian.

In particular, as N is generated by the m involutions b_{i} for $1 \leq i \leq m$ and the $m(m-1)$ involutions $c_{j k}$ for distinct j and k in $\{1,2, \ldots m\}$, it follows that N is an elementary abelian 2 -group of rank at most $m+m(m-1)=m^{2}$. The next two steps reduce this upper bound on the rank of N to $\frac{m(m+3)}{2}$.

Step 3 If $m \geq 4$ then $c_{i j} c_{j i} c_{k \ell} c_{\ell k} c_{i k} c_{k i} c_{j \ell} c_{\ell j}=1$ whenever i, j, k and ℓ are distinct.
Proof. First, by the observations in Section 2 and the fact that N is abelian, we have

$$
\begin{array}{ll}
a_{i}^{-1} b_{j} a_{i}=c_{i j}, & a_{i} b_{j} a_{i}^{-1}=a_{i}^{-2} b_{j} a_{i}^{2}=a_{i}^{-1} c_{i j} a_{i}=b_{i} b_{j} c_{j i}, \\
a_{i}^{-1} c_{i j} a_{i}=b_{i} b_{j} c_{j i}, & a_{i} c_{i j} a_{i}^{-1}=b_{j}, \\
a_{i}^{-1} c_{j i} a_{i}=b_{j} b_{i} c_{i j}, & a_{i} c_{j i} a_{i}^{-1}=a_{i}^{-2} c_{j i} a_{i}^{2}=a_{i}^{-1} b_{j} b_{i} c_{i j} a_{i}=b_{j} c_{i j} c_{j i}, \\
a_{i}^{-1} c_{j k} a_{i}=c_{j i} c_{j k} c_{k i}, & a_{i} c_{j k} a_{i}^{-1}=a_{i}^{-2} c_{j k} a_{i}^{2}=a_{i}^{-1} c_{j i} c_{j k} c_{k i} a_{i}=b_{j} b_{k} c_{i j} c_{j i} c_{j k} c_{k i} c_{i k},
\end{array}
$$

whenever i, j, k and ℓ are distinct. It follows that

$$
a_{\ell}^{-1} a_{i}^{-1} c_{j k} a_{i} a_{\ell}=a_{\ell}^{-1} c_{j i} c_{j k} c_{k i} a_{\ell}=\left(c_{j \ell} c_{j i} c_{i \ell}\right)\left(c_{j \ell} c_{k \ell} c_{k \ell}\right)\left(c_{k i} c_{j k} c_{i \ell}\right)=c_{j i} c_{j k} c_{k i},
$$

while on the other hand

$$
\begin{aligned}
& a_{\ell}^{-1} a_{i}^{-1} c_{j k} a_{i} a_{\ell}=a_{i} a_{\ell} c_{j k} a_{\ell}^{-1} a_{i}^{-1}=a_{i}\left(b_{j} b_{k} c_{\ell j} c_{j \ell} c_{j k} c_{k \ell} c_{\ell k}\right) a_{i}^{-1} \\
& =\left(b_{i} b_{j} c_{j i}\right)\left(b_{i} b_{k} c_{k i}\right)\left(b_{\ell} b_{j} c_{i \ell} c_{\ell i} c_{\ell j} c_{j i} c_{i j}\right)\left(b_{j} b_{\ell} c_{i j} c_{j i} c_{j \ell} c_{\ell i} c_{i \ell}\right)\left(b_{j} b_{k} c_{i j} c_{j i} c_{j k} c_{k i} c_{i k}\right) \\
& \quad\left(b_{k} b_{\ell} c_{i k} c_{k i} c_{k \ell} c_{\ell i} c_{i \ell}\right)\left(b_{\ell} b_{k} c_{i \ell} c_{\ell i} c_{\ell k} c_{k i} c_{i k}\right) \\
& =c_{\ell j} c_{j \ell} c_{i j} c_{j k} c_{k \ell} c_{\ell k} c_{i k} .
\end{aligned}
$$

Comparing the two expressions found gives $c_{i j} c_{j i} c_{k \ell} c_{\ell k} c_{i k} c_{k i} c_{j \ell} c_{\ell j}=1$, as required.

Step 4 The rank of the subgroup N is at most $\frac{m(m+3)}{2}$.
Proof. By the previous step, $c_{\ell k} \in\left\langle c_{i j}, c_{j i}, c_{k \ell}, c_{i k}, c_{k i}, c_{j \ell}, c_{\ell j}\right\rangle$ whenever i, j, k and ℓ are distinct. This observation can be used to eliminate $c_{\ell k}$ as a generator for N whenever
(a) $3 \leq k<\ell \leq m$, by taking $(i, j)=(1,2)$,
(b) $(k, \ell)=(2, m),(2, m-1), \ldots,(2,4)$, by taking $(i, j)=(1, \ell-1)$ in each case in turn.

The number of generators eliminated in this way is $\binom{m-2}{2}=\frac{(m-2)(m-3)}{2}$ in case (a), and $m-3$ in case (b), making a total of $\frac{(m-2)(m-3)}{2}+m-3=\frac{m(m-3)}{2}$, and leaving a generating set of size $m^{2}-\frac{m(m-3)}{2}=\frac{m(m+3)}{2}$.

Step 5 A semi-direct product G of an elementary abelian 2 -group of order $2^{\frac{m(m+3)}{2}}$ by $Y(m, 3) \cong A_{m+2}$ can be constructed as a quotient of $Y(m, 6)$.

Proof. Let $A=A_{m+2} \cong Y(m, 3)$, with generating set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ satisfying the relations for $Y(m, 3)$, namely $x_{i}^{3}=1$ for $1 \leq i \leq m$ and $\left(x_{j} x_{k}\right)^{2}=1$ for $1 \leq j<k \leq m$, and let $B \cong C_{2}^{\frac{m(m+3)}{2}}$ be an elementary abelian 2-group of rank $\frac{m(m+3)}{2}$, with generating set $\left\{b_{i}: 1 \leq i \leq m\right\} \cup\left\{c_{j k}:(j, k) \in S\right\}$, where S consists of all pairs (j, k) for which $c_{j k}$ was not eliminated in (a) or (b) of the proof of Step 4 above, namely all (j, k) with either $1 \leq j<k \leq m$, or $j>k=1$, or $(j, k)=(3,2)$. Here we may note that the relation proved in Step 3 cannot be used to eliminate any further $c_{j k}$ with $(j, k) \in S$.

Next, define $c_{\ell k}$ for $2 \leq k<\ell \leq m$ with $(\ell, k) \notin S$ by the reverse of the process used in Step 4, via the instances of the relation $c_{i j} c_{j i} c_{k \ell} c_{\ell k} c_{i k} c_{k i} c_{j \ell} c_{\ell j}=1$ proved in Step 3. Then it is not difficult to see that the latter relation holds generally in the group B. (In fact B can be viewed as a quotient of the perhaps more natural elementary abelian 2-group of rank $m+m(m-1)=m^{2}$, by the subgroup generated by the relators from Step 3.)

Now define G as the semi-direct product $B \rtimes A$, with conjugation of B by A given by

$$
\begin{aligned}
& x_{i}^{-1} b_{i} x_{i}=b_{i} \text { for all } i \text { in }\{1,2, \ldots, m\}, \\
& x_{i}^{-1} b_{j} x_{i}=c_{i j} \text { for distinct } i \text { and } j \text { in }\{1,2, \ldots, m\}, \\
& x_{i}^{-1} c_{i j} x_{i}=b_{i} b_{j} c_{j i} \text { for distinct } i \text { and } j \text { in }\{1,2, \ldots, m\}, \\
& x_{i}^{-1} c_{j i} x_{i}=b_{i} b_{j} c_{i j} \text { for distinct } i \text { and } j \text { in }\{1,2, \ldots, m\}, \\
& x_{i}^{-1} c_{j k} x_{i}=c_{j i} c_{j k} c_{k i} \text { for distinct } i, j \text { and } k \text { in }\{1,2, \ldots, m\} .
\end{aligned}
$$

It is an easy exercise to verify that this definition gives valid action of A on B, consistent with the relation proved in Step 3. For example, if i and j are distinct then the involution $x_{i} x_{j}$ induces the automorphism of B that swaps
b_{i} with $c_{j i}$, and b_{j} with $b_{i} b_{j} c_{j i}$, and $c_{i j}$ with $b_{i} c_{i j} c_{j i}$, and
b_{k} with $c_{i j} c_{i k} c_{k j}$, and $c_{i k}$ with $c_{i j} c_{j i} c_{j k} c_{k j} c_{k i}$, and $c_{j k}$ with $b_{i} b_{k} c_{k i}$,
and $c_{k i}$ with $c_{i j} c_{j i} c_{j k} c_{k j} c_{i k}$, and $c_{k j}$ with $b_{i} b_{k} c_{j k} c_{k i} c_{k j}$, whenever $k \notin\{i, j\}$, and
$c_{k \ell}$ with $c_{k i} c_{k \ell} c_{\ell i}$ whenever i, j, k and ℓ are distinct.
Here we note that the fact that conjugation by $x_{i} x_{j}$ takes $c_{k i} c_{k \ell} c_{\ell i}$ back to $c_{k \ell}$ is a conse-
quence of the relation $c_{i k} c_{k i} c_{j \ell} c_{\ell j} c_{i \ell} c_{\ell i} c_{j k} c_{k j}=1$. Also the latter relation is preserved under conjugation by x_{t}, for every t.

Finally, define $g_{i}=b_{i} x_{i}$ in G, for $1 \leq i \leq m$. Then $g_{i}^{3}=b_{i}^{3} x_{i}^{3}=b_{i}$, so $g_{i}^{6}=1$, for all i. Also if $i \neq j$ then $\left(g_{i} g_{j}\right)^{2}=\left(b_{i} x_{i} b_{j} x_{j}\right)^{2}=\left(b_{j} c_{j i} x_{i} x_{j}\right)^{2}=1$ (since $x_{i} x_{j}$ centralises $b_{j} c_{j i}$), while $\left(g_{i}^{2} g_{j}^{2}\right)^{2}=\left(b_{i}^{2} x_{i}^{2} b_{j}^{2} x_{j}^{2}\right)^{2}=\left(x_{i}^{2} x_{j}^{2}\right)^{2}=1$ and $\left(g_{i}^{3} g_{j}^{3}\right)^{2}=\left(b_{i} b_{j}\right)^{2}=1$, so the elements $g_{1}, g_{2}, \ldots, g_{m}$ satisfy the defining relations for $Y(m, 6)$. The subgroup generated by these elements contains $g_{i}^{3}=b_{i}$ for all i, and so also contains $g_{i}^{-1} b_{j} g_{i}=x_{i}^{-1} b_{i} b_{j} b_{i} x_{i}=x_{i}^{-1} b_{j} x_{i}=c_{i j}$ for all distinct i and j, and hence equals G. Thus G is a quotient of $Y(m, 6)$, as required.

By Steps 4 and 5, we deduce that $Y(m, 6)$ has order exactly $2 \frac{m(m+3)}{2}$, and this completes the proof of Theorem 1.

4 Structure and finiteness of the groups $Y(m, 8)$

In this final section, we use Sidki's theorem on the groups $Y(m, 4)$ and some computational analysis of $Y(3,8)$ to prove Theorem 2, namely that $Y(m, 8)$ is a finite 2-group for all m.

Computer-assisted proof of Theorem 2.

Let $Y=Y(m, 8)$ be as defined as in the Introduction, and in this group, let N be the subgroup generated by the elements $u_{i}=a_{i}^{4}$ and $v_{j k}=a_{j}^{-1} u_{k} a_{j}=a_{j}^{-1} a_{k}^{4} a_{j}$ and $w_{j k}=a_{j}^{-2} u_{k} a_{j}^{2}=a_{j}^{-2} a_{k}^{4} a_{j}^{2}$, for all i, j and k in $\{1,2, \ldots, m\}$. Note that each of these generators for N has order at most 2 , and that $Y(2,8)$ is metabelian of order $2^{8-1} 8=1024$, so we may assume that $m \geq 3$. Also we note that $Y(m, 4)$ is a 2 -group of order $2 \frac{m(m+3)}{2}$, by Sidki's theorem in [6, $\S 3.1]$.

A 45-minute computation with Magma [1] shows that the following hold when $m=3$:
(a) N can be generated by $\left\{u_{1}, u_{2}, u_{3}, v_{12}, v_{21}, v_{13}, v_{31}, v_{23}, v_{32}, w_{12}, w_{23}, w_{31}\right\}$,
(b) N is a normal subgroup of Y, of index 512 ,
(c) the abelianisation N / N^{\prime} of N is elementary abelian of order $2^{12}=4096$, and
(d) N itself has order 4096, and hence is an elementary abelian 2-group.

For the interested reader, we give the Magma code and resulting output in an Appendix. Note that here the quotient Y / N is isomorphic to the 2 -group $Y(3,4)$, of order $2^{\frac{3 \cdot 6}{2}}=512$.

From this computation we find that in the general case (for $m \geq 3$), the following hold: (d) For any i, j, k in $\{1,2, \ldots, m\}$, each of $a_{i}^{-1} u_{j} a_{i}, a_{i}^{-1} v_{j k} a_{i}$ and $a_{i}^{-1} w_{j k} a_{i}$ is expressible as a word in $\left\{u_{i}, u_{j}, u_{k}, v_{i j}, v_{j i}, v_{k i}, v_{i k}, v_{j k}, v_{k j}, w_{i j}, w_{j k}, w_{k i}\right\}$, and so lies in N, and
(e) Each element u_{i} commutes with every other u_{j}, and with $v_{j k}$ and $w_{j k}$ for every j and k in in $\{1,2, \ldots, m\}$.

By (e) it follows that N is normal in Y, with the quotient Y / N being isomorphic to the finite 2-group $Y(m, 4)$. Next, by (f) we deduce that each of the elements u_{i} is central in N, and then by conjugation, so are each of the elements $v_{j k}$ and $w_{j k}$. Hence N is abelian.

Moreover, since it is generated by at most (indeed fewer than) $m+2 m(m-1)=2 m^{2}-m$ involutions, N is a finite elementary abelian 2 -group. Thus Y is a finite 2-group.

A similar approach using $Y(3,10)$ shows also that $Y(m, 10)$ is a finite group (with a normal 2-subgroup N such that $Y(m, 10) / N \cong Y(m, 5)$), for all m.

Finally, we believe that some of the arguments presented above can be adapted to prove the following, which may be the subject of a sequel:
Conjecture If $Y(m, n)$ is finite, then the group $Y(m, 2 n)$ has a finite normal elementary abelian 2-subgroup N such that $Y(m, 2 n) / N \cong Y(m, n)$.

Note that if this conjecture is true, it will follow that $Y\left(m, 2^{s}\right)$ is a finite 2-group for all m and all s.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput. 24 (1997), 235-265.
[2] R.D. Carmichael, Abstract definitions of the symmetric and alternating groups and certain other permutation groups, Quart. J. Pure Appl. Math. 49 (1923), 226-283.
[3] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer Berlin (1980).
[4] S. Krstić and J. McCool, The non-finite presentability of the automorphism group of the free \mathbb{Z}-group of rank two, J. London Math. Soc. 56 (1997), 264-274.
[5] J. McInroy and S. Shpectorov, On Sidki's presentation for orthogonal groups, J. Algebra 434 (2015), 227-248.
[6] S. Sidki, A generalization of the alternating groups - a question on finiteness and representation, J. Algebra 75 (1982), 324-372.
[7] S. Sidki, SL $_{2}$ over group rings of cyclic groups, J. Algebra 134 (1990), 60-79.

Appendix

Code for $\mathbf{Y}(3,8)$:

```
F:=FreeGroup(3);
Rels:=[ F.i^8 : i in [1..3] ]
    cat [(F.i*F.j)^2 : i in [1..3], j in [1..3] | i ne j ]
    cat [ (F.i^2*F.j^2)^2 : i in [1..3], j in [1..3] | i ne j ]
    cat [(F.i^3*F.j^3)^2 : i in [1..3], j in [1..3] | i ne j ]
    cat [(F.i^4*F.j^4)^2 : i in [1..3], j in [1..3] | i ne j ];
Y:=quo<F|Rels>;
N:=sub<Y| Y.1^4, Y.2^4, Y.3^4,
    (Y.1^4)^Y.2, (Y.2^4)^Y.1, (Y.1^4)^Y.3, (Y.3^4)^Y.1, (Y.2^4)^Y.3, (Y.3^4)^Y.2,
    (Y.2^4)^(Y.1^2), (Y.3^4)^(Y.2^2), (Y.1^4)^(Y.3^2) >;
print "Other three generators in N?",
    (Y.1^4)^(Y.2^2) in N, (Y.2^4)^(Y.3^2) in N, (Y.3^4)^(Y.1^2) in N;
N:=Rewrite(Y,N); print "Is N normal?",IsNormal(Y,N);
print "Order of quotient Y/N is",Index(Y,N);
aqs:=AQInvariants(N); print "Abelian invariants for N are",aqs;
print "Abelianisation of N has rank",#aqs;
print "Order of N is",Order(N);
```


Output:

Other three generators in N ? true true true
Is N normal? true
Order of quotient Y/N is 512
Abelian invariants for N are $[2,2,2,2,2,2,2,2,2,2,2,2$]
Abelianisation of N has rank 12
Order of N is 4096

