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Abstract

In a paper in 1982, Said Sidki defined a 2-parameter family of finitely-presented
groups Y (m,n) that generalise the Carmichael presentation for a finite alternating
group satisfied by its generating 3-cycles (1, 2, t) for t ≥ 3. For m ≥ 2 and n ≥ 2, the
group Y (m,n) is the abstract group generated by elements a1, a2, . . . , am subject to
the defining relations an

i = 1 for 1 ≤ i ≤ m and (a k
i a

k
j )2 = 1 for 1 ≤ i < j ≤ m and

1 ≤ k ≤ [n2 ]. Sidki investigated the structure of various sub-families of these groups,
for small values of m or n, and has conjectured that they are all finite. Sidki’s
conjecture remains open. In this paper it is shown that for all m ≥ 3, the group
Y (m, 6) is finite, and is isomorphic to a semi-direct product of an elementary abelian

2-group of order 2
m(m+3)

2 by Y (m, 3) ∼= Am+2. Also we exploit a computation for the
group Y (3, 8) to prove that Y (m, 8) is a finite 2-group, for all m.
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1 Introduction

At the August 2016 Escola de Álgebra in Brazil, which celebrated the 75th birthday of
Said Sidki (one of the founders of this biennial meeting), Said Sidki gave a lecture on a
2-parameter family of groups denoted by Y (m,n), which he defined in a paper [6] in 1982.

For m ≥ 2 and n ≥ 2, the group Y (m,n) is the abstract group with presentation

〈 a1, a2, . . . , am | an
i = 1 for 1 ≤ i ≤ m, (a k

i a
k
j )2 = 1 for 1 ≤ i < j ≤ m and 1 ≤ k ≤ [n

2
] 〉.

As noted by Sidki, for n = 3 this presentation generalises the one given by Carmichael [2]
for the alternating group of given finite degree, satisfied by its generating 3-cycles (1, 2, t)
for t ≥ 3; see also [3, §6.3]. Sidki observed that Y (m, 2) is elementary abelian of order
2m for all m, and that Y (2, n) is metabelian of order 2n−1n, having an elementary abelian
normal 2-subgroup of order 2n−1 with cyclic quotient of order n.
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Sidki further investigated the structure of other sub-families of the groups Y (m,n), for
small values of m or n, as well as the general case where n is odd. In particular, he proved

in [6] that Y (m, 4) is a finite 2-group of order 2
m(m+3)

2 and nilpotency class 3 for all m ≥ 2.
He also claimed in [6] that Y (m, 6) is infinite for all m ≥ 3, but then retracted this in a
subsequent paper [7], after proving that Y (3, n) is finite for all n.

Neubüser, Felsch and O’Brien used computational techniques to show that Y (m, 5) is
finite for 3 ≤ m ≤ 10, and Y (m, 7) is finite for 3 ≤ m ≤ 6, and Y (m, 11) is finite for
3 ≤ m ≤ 5, and indeed that in each of these cases, Y (m,n) is a simple orthogonal group
of characteristic 2, or has such a group as a quotient by a normal 2-subgroup. The latter
(unpublished) work was taken further recently by McInroy and Shpectorov [5] to show a
definite connection with the orthogonal groups. Also the work by Sidki in [7] was taken
further by Krstić and McCool to prove the non-finite presentability of the automorphism
group Φ2(Z) of the free Z-group of rank two; see [4].

Based on these and other discoveries, Sidki has conjectured that the groups Y (m,n)
are all finite, and that they are 2-groups when n is a power of 2. As far as we are aware,
and as reported in [5], these conjectures have not been resolved.

In this paper, we prove the following:

Theorem 1 For all m ≥ 2, the group Y (m, 6) is finite, and is isomorphic to a semi-direct

product of an elementary abelian 2-group of order 2
m(m+3)

2 by Y (m, 3) ∼= Am+2.

Theorem 2 For all m ≥ 2, the group Y (m, 8) is a finite 2-group.

In fact, computations using the Magma system [1] show that Theorem 1 is true in the
cases m = 2, 3 and 4, with the elementary abelian normal subgroup having order 24, 29

and 214 respectively. Also two different computations with Magma show that the group
Y (m, 6) has a quotient that is an extension by Y (m, 3) ∼= Am+2 of an elementary abelian

group of order 2
m(m+3)

2 when m = 5 or 6, and that Y (3, 8) has order 221. A proof of much
of Theorem 1 follows almost immediately from the fact that Y (3, 6) is finite and has the
required structure, but we give a computer-free proof in Sections 2 and 3. In both cases
a key step involves consideration of the structure of 3-generator subgroups of the kernel
N of the natural epimorphism from Y (m, 6) to Y (m, 3). Also we give a computer-assisted
proof of Theorem 2 in Section 4, using Sidki’s theorem on the groups Y (m, 4) together
with observed properties of the group Y (3, 8).

2 Some properties of the groups Y (m, 6)

Let Y = Y (m, 6) be the group defined as in the Introduction, with m ≥ 2 and n = 6, and
in this group, define bi = a 3

i and cij = a−1i bjai = a−1i a 3
j ai for all i and j in {1, 2, . . . ,m}.

Also denote by R k
ij the relation (a k

i a
k
j )2 = 1, which holds for all distinct i, j ∈ {1, 2, . . . ,m}

and all k ∈ Z, and not just those i, j and k given in the defining presentation for Y (m,n).
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Before proceeding, we note that if m ≥ 3 and S = {ai, aj, ak} is any subset of three
of the given generators of Y , then those three elements satisfy the defining relations for
Y (3, 6), and hence the subgroup generated by S is isomorphic to a quotient of Y (3, 6). In
particular, many of the properties of the elements ai, aj and ak follow immediately from
the properties of the three given generators for Y (3, 6). Nevertheless we can prove the
properties we need directly from the presentation for Y (m, 6), thereby avoiding reliance on
the results of computer calculations for Y (3, 6). The first properties we need are easy.

Lemma 1 In the group Y (m, 6), the following relations hold :

(a) b 2j = c 2
ij = 1 for all i and j ;

(b) [bi, bj] = (bibj)
2 = 1 for all i and j ;

(c) aibja
−1
i = bibjcji for all i and j with i 6= j ;

(d) [bi, cij] = [bj, cij] = 1 for all i and j with i 6= j ;

(e) [cij, cik] = 1 whenever i, j and k are distinct.

Proof. First, part (a) follows immediately from the relation a 6
j = 1 and conjugation by

ai, and then (b) from the relation (a 3
i a

3
j )2 = 1. Also conjugation of the relation [bi, bj] = 1

by ai gives [bi, cij] = 1, which is the first part of (d). Similarly, conjugation of the rela-
tion [bj, bk] = 1 by ai gives [cij, cik] = 1, which is (e). Next, using R 2

ji and R 1
ij we find

aibja
−1
i = aia

3
j a
−1
i = aia

−3
j a−1i = a 3

i a
−2
i a−2j a−1j a−1i = a 3

i a
2
j a

2
i aiaj = a 3

i a
3
j a
−1
j a 3

i aj = bibjcji
for i 6= j, and so (c) holds. Finally if i 6= j then part (c) gives 1 = ajb

2
i a
−1
j = (ajbia

−1
j )2 =

(bjbicij)
2 = [bjbi, cij], therefore cij commutes with bjbi (since (bjbi)

2 = c 2
ij = 1), and then

because [bi, cij] = 1 we find that cij also commutes with bj, giving the second part of (d). �

The next observations are more substantial.

Lemma 2 In the group Y (m, 6), the following relations hold :

(a) a−1i cijai = bibjcji for all i and j with i 6= j ;

(b) a−1i cjiai = bjbicij for all i and j with i 6= j ;

(c) a−1i cjkai = cijbicjicjkbkbicikckibkcikcij whenever i, j and k are distinct.

Proof. First a−1i cijai = a−2i bja
2
i = aia

3
i bja

−3
i a−1i = aibibjb

−1
i a−1i = aibja

−1
i = bibjcji by

Lemma 1(b) and 1(c), while a−1i cjiai = a−1i a−1j biajai = ajaibia
−1
i a−1j = ajbia

−1
j = bjbicij

by R 1
ji and Lemma 1(c). The proof of part (c) is more tricky. We know from Magma

computations that (c) holds in the group Y (3, 6), and hence it holds in Y (m, 6) for all
m ≥ 3, but here we give a proof that is free of (yet guided by) computer calculations.
In fact we prove it backwards, by expanding the right-hand-side and then using known
relations to reduce it, as follows:

cijbicjicjkbkbicikckibkcikcij
= a−1i a 3

j ai a
3
i a
−1
j a 3

i aj a
−1
j a 3

kaj a
3
k a

3
i a
−1
i a 3

kai a
−1
k a 3

i ak a
3
k a
−1
i a 3

kai a
−1
i a 3

j ai

= a−1i a−1j (a−2j a−2i a−1j a 3
i a

3
kaja

3
ka

2
i a

2
kakaia

−1
k a 3

i a
−2
k a−1i a 3

ka
2
j ) ajai by cancellation
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= a−1i a−1j (a 2
i aja

3
i a

3
kajaka

−2
i a−1i a−2k a 3

i a
−2
k a−1i aka

−2
j a−2k ) ajai by R 2

ij, R
2
ik, R 1

ik and R 2
jk

= a−1i a−1j (aia
−1
j a 2

i a
3
kajaka

3
i a
−2
k a 3

i a
−2
k a−2i aiaka

−2
j a−2k ) ajai by R 1

ij

= a−1i a−1j (aia
−1
j a−2k a−2i akajaka

3
i a
−2
k a 3

i a
2
i a

2
ka
−1
k a−1i a−2j a−2k ) ajai by R 2

ik, R 2
ik and R 1

ik

= a−1i a−1j (aia
−1
j a−2k a−2i a−1j a−1i a 2

kaiaka
−1
i a−2j a−2k ) ajai by R 1

jk and R 2
ik

= a−1i a−1j (aia
−1
j a−2k a−1i ajaka

−2
i a−2j a−2k ) ajai by R 1

ij and R 1
ik

= a−1i a−1j (aia
−1
j a−2k a−1i a−1k a−1j a−2i a−2j a−2k ) ajai by R 1

jk

= a−1i a−1j (aia
−1
j a−1k aiaja

2
i a
−2
k ) ajai by R 1

ik and R 2
ij

= a−1i a−1j (aia
−1
j a−1k a−1j aia

−2
k ) ajai by R 1

ij

= a−1i a−1j (aiakaia
−2
k ) ajai by R 1

jk

= a−1i a−1j a 3
kajai by R 1

ik

= a−1i cjkai. �

Corollary 1 In Y (m, 6), the relation [cij, cji] = 1 holds whenever i 6= j.

Proof. By Lemmas 2(a) and 1(d) we have 1 = a−1i [bj, cij]ai = [a−1i bjai, a
−1
i cijai] =

[cij, bibjcji] = [cij, cji]. �

Corollary 2 The relation in Lemma 2(c) can be simplified to a−1i cjkai = cijbicjicjkbickicij.

Proof. This follows from Corollary 1 and parts (b) and (d) of Lemma 1, with j replaced
by k in each case. �

Corollary 3 In Y (m, 6), the following relations hold whenever i, j and k are distinct :

(a) (bibjcikcjk)2 = 1 (b) (bicjkckjcki)
2 = 1 (c) (cijcjkcik)2 = 1 (d) (cijcikcjkcki)

2 = 1.

Proof. First, conjugating [ckj, cki] = 1 (from Corollary 1) by ak gives [bkbjcjk, bkbicik] = 1,
and then since bk commutes with bj, cjk, bi and cik, it follows that

1 = [bjcjk, bicik] = cjkbjcikbibjcjkbicik = cjkbjbicikcjkbjbicik = cjk(bjbicikcjk)2cjk

and therefore (bibjcikcjk)2 = (bjbicjkcik)2 = 1, which is (a).

Now conjugating bibjcikcjk by ai and using Lemma 2 and Corollary 2 gives

a−1i (bibjcikcjk)ai = bicij(bibkcki)(cijbicjicjkbickicij) = cijbkckicijbicjicjkbickicij
= cijckibkbicijcjicjkbickicij = cijckibi(bkcijcjicjk)bickicij.

Thus bkcijcjicjk is conjugate to bibjcikcjk, and so from (a) we obtain (bkcijcjicjk)2 = 1, and
clearly (b) follows from this by a cyclic permutation of the subscripts.

Next, Corollary 2 gives 1 = a−1i c 2
jkai = (cijbicjicjkbickicij)

2, and then by conjugation
and Lemma 1 we obtain 1 = (bickicijcijbicjicjk)2 = (bickibicjicjk)2 = (ckicjicjk)2. Further
conjugation and a permutation of the subscripts gives (c).

Finally, for (d), we have (bkcijcjicjk)2 = 1 from (b), and then conjugation of this rela-
tion by ai gives
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1 = a−1i (bkcijcjicjk)2ai = (cik(bibjcji)(bjbicij)cijbicjicjkbickicij)
2 = (bicikcjkckibicij)

2,

and further conjugation gives 1 = (bicijbicikcjkcki)
2 = (cijcikcjkcki)

2. �

Lemma 3 In Y (m, 6), we have bicjkbi = cijcjkcij whenever i, j and k are distinct.

Proof. First, an easy application of Lemma 2, Corollary 2 and parts of Lemma 1 gives

b−1i cjkbi = a−3i cjka
3
i = a−2i (cijbicjicjkbickicij)a

2
i

= a−1i ((bibjcji)bi(bibjcij)(cijbicjicjkbickicij)bi(bibkcik)(bibjcji)ai
= a−1i (bibjcjibjbicjicjkbickicijbkcikbibjcji)ai
= a−1i (cjkbickicijbkcikbibjcji)ai
= a−1i (cjkckicijbkcikbjcji)ai
= (cijbicjicjkbickicij)(bibkcik)(bibjcji)cik(bibkcki)cij(bibjcij)

= cijbicjicjkbickicijbibkcikbibjcjicikbibkckicijbibjcij
= cijbicjicjkbickicijbkcikbjcjicikbkckibj.

This can be taken further using Corollary 3, as follows:

b−1i cjkbi = cijbicjicjkbickicijbkcikbjcjicikbkckibj = bi(cijcjicjkckicijbkcikbjcjicikbkckibj)bi
= bi(ckicjkcjibkcikbjcjicikbkckibj)bi since (cjicjkckicij)

2 = (cjkcjickicij)
2 = 1 by part (d)

= bi(ckicjkcjicikbkbjcjickibkcikbj)bi
= bi(ckicjkcjicikckicjibjcikbj)bi since (bkbjcjicki)

2 = (bjbkcjicki)
2 = 1 by part (a)

= bi(ckicjicjkcikckicjibjcikbj)bi
= bi(cjkcjickicikckicjibjcikbj)bi since (cjkckicji)

2 = 1 by part (c)

= bi(cjkcjicikcjibjcikbj)bi = (bicjkbi)cjicikcjibjcikbj.

Now from this we find that 1 = cjicikcjibjcikbj, and hence that bjcikbj = cjicikcji, and then
the result follows by swapping the subscripts i and j. �

Corollary 4 In Y (m, 6), the relation [bi, cjk] = 1 holds whenever i, j and k are distinct.

Proof. This is an easy consequence of earlier observations:

1 = (cijcjkcik)2 = cijcjkcijcikcjkcik by Corollary 3(c) and Lemma 1(e)

= bicjkbicikcjkcik by Lemma 3

= bicjkbjcjkcikbibjcik = bibjcikbibjcik = bjcikbjcik by Corollary 3(a) and Lemma 1

= [bj, cik],

and then the result follows by swapping the subscripts i and j. �

3 Structure and finiteness of the groups Y (m, 6)

We can now prove our main theorem, namely that the group Y = Y (m, 6) is isomorphic

to an extension by Y (m, 3) ∼= Am+2 of an elementary abelian 2-group of rank m(m+3)
2

, and
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hence finite, for all m ≥ 2. We do this in steps.

Step 1 The subgroup N generated by the elements bi and cjk (for j 6= k) is normal, with
quotient Y/N isomorphic to the alternating group Am+2.

Proof. Note that a−1i bjai = cij ∈ N for all i and j (with cij = cii = bi when i = j), and
that a−1i cjkai ∈ N for all i, j and k with j 6= k by Lemma 2. Hence N is normal in Y .
Moreover, it follows that N is generated by all conjugates of the elements bi = a 3

i , and so
the quotient Y/N is isomorphic to the group obtained from Y by adjoining the relations
a 3
i = 1 for 1 ≤ i ≤ m. In particular, Y/N is isomorphic to Y (m, 3), and hence to Am+2. �

Step 2 The subgroup N is abelian.

This actually follows from the properties of the group Y (3, 6) found by computation
with Magma, but we can prove it directly:

Proof. By Lemma 1 and Corollaries 1 and 4 we have [bi, bj] = [bi, cij] = [bi, cji] = 1 for all
distinct i and j, and [bi, cjk] = 1 whenever i, j and k are distinct. Thus every bi is central
in N . Moreover, by conjugation it follows that each cjk (= a−1j bkaj) is central in N as well,
and therefore N is abelian. �

In particular, as N is generated by the m involutions bi for 1 ≤ i ≤ m and the m(m−1)
involutions cjk for distinct j and k in {1, 2, . . .m}, it follows that N is an elementary abelian
2-group of rank at most m+m(m− 1) = m2. The next two steps reduce this upper bound

on the rank of N to m(m+3)
2

.

Step 3 If m ≥ 4 then cijcjick`c`kcikckicj`c`j = 1 whenever i, j, k and ` are distinct.

Proof. First, by the observations in Section 2 and the fact that N is abelian, we have

a−1i bjai = cij, aibja
−1
i = a−2i bja

2
i = a−1i cijai = bibjcji,

a−1i cijai = bibjcji, aicija
−1
i = bj,

a−1i cjiai = bjbicij, aicjia
−1
i = a−2i cjia

2
i = a−1i bjbicijai = bjcijcji,

a−1i cjkai = cjicjkcki, aicjka
−1
i = a−2i cjka

2
i = a−1i cjicjkckiai = bjbkcijcjicjkckicik,

whenever i, j, k and ` are distinct. It follows that

a−1` a−1i cjkaia` = a−1` cjicjkckia` = (cj`cjici`)(cj`ck`ck`)(ckicjkci`) = cjicjkcki,

while on the other hand

a−1` a−1i cjkaia` = aia`cjka
−1
` a−1i = ai(bjbkc`jcj`cjkck`c`k)a−1i

= (bibjcji)(bibkcki)(b`bjci`c`ic`jcjicij)(bjb`cijcjicj`c`ici`)(bjbkcijcjicjkckicik)

(bkb`cikckick`c`ici`)(b`bkci`c`ic`kckicik)

= c`jcj`cijcjkck`c`kcik.

Comparing the two expressions found gives cijcjick`c`kcikckicj`c`j = 1, as required. �
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Step 4 The rank of the subgroup N is at most m(m+3)
2

.

Proof. By the previous step, c`k ∈ 〈 cij, cji, ck`, cik, cki, cj`, c`j 〉 whenever i, j, k and ` are
distinct. This observation can be used to eliminate c`k as a generator for N whenever

(a) 3 ≤ k < ` ≤ m, by taking (i, j) = (1, 2),

(b) (k, `) = (2,m), (2,m−1), . . . , (2, 4), by taking (i, j) = (1, `−1) in each case in turn.

The number of generators eliminated in this way is (m−22 ) = (m−2)(m−3)
2

in case (a), and

m−3 in case (b), making a total of (m−2)(m−3)
2

+ m−3 = m(m−3)
2

, and leaving a generating

set of size m2 − m(m−3)
2

= m(m+3)
2

. �

Step 5 A semi-direct product G of an elementary abelian 2-group of order 2
m(m+3)

2 by
Y (m, 3) ∼= Am+2 can be constructed as a quotient of Y (m, 6).

Proof. Let A = Am+2
∼= Y (m, 3), with generating set {x1, x2, . . . , xm} satisfying the

relations for Y (m, 3), namely x 3
i = 1 for 1 ≤ i ≤ m and (xjxk)2 = 1 for 1 ≤ j < k ≤ m,

and let B ∼= C
m(m+3)

2
2 be an elementary abelian 2-group of rank m(m+3)

2
, with generating

set {bi : 1 ≤ i ≤ m} ∪ {cjk : (j, k) ∈ S}, where S consists of all pairs (j, k) for which cjk
was not eliminated in (a) or (b) of the proof of Step 4 above, namely all (j, k) with either
1 ≤ j < k ≤ m, or j > k = 1, or (j, k) = (3, 2). Here we may note that the relation proved
in Step 3 cannot be used to eliminate any further cjk with (j, k) ∈ S.

Next, define c`k for 2 ≤ k < ` ≤ m with (`, k) 6∈ S by the reverse of the process used in
Step 4, via the instances of the relation cijcjick`c`kcikckicj`c`j = 1 proved in Step 3. Then
it is not difficult to see that the latter relation holds generally in the group B. (In fact
B can be viewed as a quotient of the perhaps more natural elementary abelian 2-group of
rank m + m(m− 1) = m2, by the subgroup generated by the relators from Step 3.)

Now define G as the semi-direct product B o A, with conjugation of B by A given by

x−1i bixi = bi for all i in {1, 2, . . . ,m},
x−1i bjxi = cij for distinct i and j in {1, 2, . . . ,m},
x−1i cijxi = bibjcji for distinct i and j in {1, 2, . . . ,m},
x−1i cjixi = bibjcij for distinct i and j in {1, 2, . . . ,m},
x−1i cjkxi = cjicjkcki for distinct i, j and k in {1, 2, . . . ,m}.

It is an easy exercise to verify that this definition gives valid action of A on B, con-
sistent with the relation proved in Step 3. For example, if i and j are distinct then the
involution xixj induces the automorphism of B that swaps

bi with cji, and bj with bibjcji, and cij with bicijcji, and

bk with cijcikckj, and cik with cijcjicjkckjcki, and cjk with bibkcki,
and cki with cijcjicjkckjcik, and ckj with bibkcjkckickj, whenever k 6∈ {i, j}, and

ck` with ckick`c`i whenever i, j, k and ` are distinct.

Here we note that the fact that conjugation by xixj takes ckick`c`i back to ck` is a conse-
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quence of the relation cikckicj`c`jci`c`icjkckj = 1. Also the latter relation is preserved under
conjugation by xt, for every t.

Finally, define gi = bixi in G, for 1 ≤ i ≤ m. Then g 3
i = b 3i x

3
i = bi, so g 6

i = 1, for all i.
Also if i 6= j then (gigj)

2 = (bixibjxj)
2 = (bjcjixixj)

2 = 1 (since xixj centralises bjcji),
while (g 2

i g
2
j )2 = (b 2i x

2
i b

2
j x

2
j )2 = (x 2

i x
2
j )2 = 1 and (g 3

i g
3
j )2 = (bibj)

2 = 1, so the elements
g1, g2, . . . , gm satisfy the defining relations for Y (m, 6). The subgroup generated by these el-
ements contains g 3

i = bi for all i, and so also contains g−1i bjgi = x−1i bibjbixi = x−1i bjxi = cij
for all distinct i and j, and hence equals G. Thus G is a quotient of Y (m, 6), as required. �

By Steps 4 and 5, we deduce that Y (m, 6) has order exactly 2
m(m+3)

2 , and this completes
the proof of Theorem 1.

4 Structure and finiteness of the groups Y (m, 8)

In this final section, we use Sidki’s theorem on the groups Y (m, 4) and some computational
analysis of Y (3, 8) to prove Theorem 2, namely that Y (m, 8) is a finite 2-group for all m.

Computer-assisted proof of Theorem 2.

Let Y = Y (m, 8) be as defined as in the Introduction, and in this group, let N be
the subgroup generated by the elements ui = a 4

i and vjk = a−1j ukaj = a−1j a 4
kaj and

wjk = a−2j uka
2
j = a−2j a 4

ka
2
j , for all i, j and k in {1, 2, . . . ,m}. Note that each of these

generators for N has order at most 2, and that Y (2, 8) is metabelian of order 28−18 = 1024,

so we may assume that m ≥ 3. Also we note that Y (m, 4) is a 2-group of order 2
m(m+3)

2 ,
by Sidki’s theorem in [6, §3.1].

A 45-minute computation with Magma [1] shows that the following hold when m = 3:

(a) N can be generated by {u1, u2, u3, v12, v21, v13, v31, v23, v32, w12, w23, w31},
(b) N is a normal subgroup of Y , of index 512,

(c) the abelianisation N/N ′ of N is elementary abelian of order 212 = 4096, and

(d) N itself has order 4096, and hence is an elementary abelian 2-group.

For the interested reader, we give the Magma code and resulting output in an Appendix.
Note that here the quotient Y/N is isomorphic to the 2-group Y (3, 4), of order 2

3·6
2 = 512.

From this computation we find that in the general case (for m ≥ 3), the following hold:

(d) For any i, j, k in {1, 2, . . . ,m}, each of a−1i ujai, a−1i vjkai and a−1i wjkai is expressible
as a word in {ui, uj, uk, vij, vji, vki, vik, vjk, vkj, wij, wjk, wki}, and so lies in N, and

(e) Each element ui commutes with every other uj, and with vjk and wjk for every j and
k in in {1, 2, . . . ,m}.

By (e) it follows that N is normal in Y , with the quotient Y/N being isomorphic to the
finite 2-group Y (m, 4). Next, by (f) we deduce that each of the elements ui is central in N,
and then by conjugation, so are each of the elements vjk and wjk. Hence N is abelian.
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Moreover, since it is generated by at most (indeed fewer than) m + 2m(m−1) = 2m2−m
involutions, N is a finite elementary abelian 2-group. Thus Y is a finite 2-group. �

A similar approach using Y (3, 10) shows also that Y (m, 10) is a finite group (with a
normal 2-subgroup N such that Y (m, 10)/N ∼= Y (m, 5)), for all m.

Finally, we believe that some of the arguments presented above can be adapted to prove
the following, which may be the subject of a sequel:

Conjecture If Y (m,n) is finite, then the group Y (m, 2n) has a finite normal elementary
abelian 2-subgroup N such that Y (m, 2n)/N ∼= Y (m,n).

Note that if this conjecture is true, it will follow that Y (m, 2s) is a finite 2-group for
all m and all s.
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Appendix

Code for Y(3,8):

F:=FreeGroup(3);

Rels:=[ F.i^8 : i in [1..3] ]

cat [ (F.i*F.j)^2 : i in [1..3], j in [1..3] | i ne j ]

cat [ (F.i^2*F.j^2)^2 : i in [1..3], j in [1..3] | i ne j ]

cat [ (F.i^3*F.j^3)^2 : i in [1..3], j in [1..3] | i ne j ]

cat [ (F.i^4*F.j^4)^2 : i in [1..3], j in [1..3] | i ne j ];

Y:=quo<F|Rels>;

N:=sub<Y| Y.1^4, Y.2^4, Y.3^4,

(Y.1^4)^Y.2, (Y.2^4)^Y.1, (Y.1^4)^Y.3, (Y.3^4)^Y.1, (Y.2^4)^Y.3, (Y.3^4)^Y.2,

(Y.2^4)^(Y.1^2), (Y.3^4)^(Y.2^2), (Y.1^4)^(Y.3^2) >;

print "Other three generators in N?",

(Y.1^4)^(Y.2^2) in N, (Y.2^4)^(Y.3^2) in N, (Y.3^4)^(Y.1^2) in N;

N:=Rewrite(Y,N); print "Is N normal?",IsNormal(Y,N);

print "Order of quotient Y/N is",Index(Y,N);

aqs:=AQInvariants(N); print "Abelian invariants for N are",aqs;

print "Abelianisation of N has rank",#aqs;

print "Order of N is",Order(N);

Output:

Other three generators in N? true true true

Is N normal? true

Order of quotient Y/N is 512

Abelian invariants for N are [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

Abelianisation of N has rank 12

Order of N is 4096
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