
Understanding Knowledge Management in Agile
Software Development Practice

Yanti Andriyani1(*), Rashina Hoda1, Robert Amor2

1SEPTA Research, Department of Electrical and Computer Engineering,

The University of Auckland, Auckland, New Zealand
yand610@aucklanduni.ac.nz
r.hoda@auckland.ac.nz

2Department of Computer Science, The University of Auckland, Auckland, New Zealand

trebor@cs.auckland.ac.nz

Abstract: Knowledge management in agile software development has typically
been treated as a broad topic resulting in major classifications of its schools and
concepts. What inherent knowledge is involved in everyday agile practice and
how agile teams manage it is not well understood. To address these questions,
we performed a Systematic Literature Review of 48 relevant empirical studies
selected from reputed databases. Using a thematic analysis approach to the syn-
thesis, we discovered that (a) agile teams use three knowledge management strat-
egies: discussions, artifacts and visualisations to manage knowledge (b) there are
three types of software engineering knowledge: team progress as project
knowledge; requirements as product knowledge; and coding techniques as pro-
cess knowledge. (c) this knowledge is presented in several everyday agile prac-
tices. A theoretical model describing how knowledge management strategies and
knowledge types are related to agile practices is also presented. These results will
help agile practitioners become aware of the specific knowledge types and
knowledge management strategies and enable them to better manage them in
everyday agile practices. Researchers can further investigate and build upon
these findings through empirical studies.

Keywords: Agile Software Development Practice, Knowledge Type, Knowledge
Management Strategies

1 Introduction

Agile Software Development (ASD) methods such as Scrum and Extreme Program-
ming (XP) ushered in an era of lightweight software development [1]. Unlike traditional
software methods such as waterfall, which was driven by detailed specifications and

1Corresponding Author: Building 903, 386 Khyber Pass, New Market Auckland 1023, New
Zealand. Tel: +64 9 923 1377 Email address: yand610@aucklanduni.ac.nz (Y. Andriyani),
r.hoda@auckland.ac.nz (R. Hoda), trebor@cs.auckland.ac.nz (R. Amor)

 2

design upfront and involved rigorous documentation [2] as a process of managing
knowledge, agile methods emphasize social interactions and collaboration among team
members in applying and sharing knowledge.

Prior reviews and investigations of knowledge management in ASD have typically
treated it as a broad topic resulting in major classifications of its schools, concepts [3],
strengths, weaknesses, opportunities and threats [4]. However, what inherent
knowledge is involved in everyday agile practice and how agile teams manage this
knowledge is not well understood. To address this gap, we performed a Systematic
Literature Review (SLR) involving 48 relevant empirical studies [5] filtered from an
initial pool of 2317 articles selected from the reputed academic databases of Springer,
Scopus, and IEEE Xplore.

This SLR aims to provide an overview of the studies on this particular topic by an-
swering the following research questions (RQ):
RQ1: Which specific agile practices support knowledge management?
RQ2: What is the inherent knowledge involved in these agile practices and how do agile

teams manage that knowledge?
The next section provides an overview of background and related work of this re-

search. Section 3 gives the research method used and section 4 discusses the results of
this study. Section 5 provides the discussions of the findings and section 6 provides the
conclusion.

2 Background and Related Work
The relevant ASD and knowledge management concept definitions and summaries of
prior reviews are presented in this section to aid in the understanding of the findings
described later.

2.1 Knowledge Classifications

Knowledge is defined as: “A fluid mix of framed experience, values, contextual infor-
mation, and expert insight that provides a framework for evaluating and incorporating
new experiences and information” [6]. Knowledge is described in two basic forms:
tacit knowledge or the knowledge that is implicit and not clarified in an accessible form;
and explicit knowledge or the knowledge that is visualised or clarified in accessible
forms such as writing on sticky notes, drawing pictures to describe the processes or
feelings, drawing progress charts, etc. [7].

A classification of knowledge in software engineering describes three types of
knowledge: project, product and process knowledge [8]. Project knowledge is defined
as “the knowledge about resources, functional and attributes requirements, work prod-
ucts, budget, timing, milestones, deliverables, increments, quality targets and perfor-
mance parameters” [8]. Documentation and resources include contracts and project
plans based on requirement designs; and the parameters are analysed through compar-
isons between the planned and actual cost, effort and time [9].

Product knowledge is defined as “the knowledge about [the] product features and
how they relate to other products, standards, protocols and the like” [8]. Specifically,
product knowledge is related to the product features, its interface and its dependency
on technology (e.g. specific programming language or platform), network configura-
tions, standards (related to components of the product) and protocols.

 3

Process knowledge is defined as “the knowledge about business processes, work-
flows, responsibilities, supporting technologies and interfaces between processes” [8].
In other words, process knowledge comprises of work targets and task information re-
trieved from the business model; the workflow and responsibilities referring to how the
various artifacts are produced and who is responsible for specific tasks and how they
accomplish them based on the milestones [8].

2.2 Prior Reviews on Knowledge Management in ASD

Knowledge management in organizations is defined as: “A method that simplifies the
process of sharing, distributing, creating, capturing and understanding the company
knowledge” [6]. Knowledge management in traditional software development involved
the use of various documents to capture and represent the knowledge related to the
various stages of software development life cycles [3]. In contrast to traditional meth-
ods, agile methods emphasize tacit knowledge over explicit knowledge, relying on in-
dividual, team and customer communications and interactions [4].

Prior reviews and investigations on knowledge management in software engineering
in general and ASD, in particular, have classified knowledge schools [10] and concepts
[3]. Bjørnson & Dingsøyr [10] classified two types of knowledge management schools
in software engineering. The first category is the technocratic school, which refers to
knowledge management strategies that focus on explicating knowledge and its flows.
The second category is the behavioural school, which focuses on collaboration and
communication as knowledge management strategies.

Yanzer et al. [3] presented several concept maps about knowledge management in
agile projects. The first map covers ways of communication that focus on techniques
and tools to manage the conversation. The second is about human and social factors,
which discusses knowledge management adoption in agile projects and knowledge ar-
tifact usage in the projects. Other concepts include tools for knowledge management
and knowledge representation forms related to managing tacit knowledge, and empha-
size the managing of tacit knowledge by using tools to clarify the knowledge.

Analysing the prior reviews on knowledge management in ASD, we could see that
there was a need for a specific explanation of knowledge management in ASD from the
viewpoint of daily agile practice.

3 Review Method
A Systematic Literature Review (SLR) aims to collect evidence from the prior literature
based on research questions to provide guidelines for practitioners [11]. We followed
the specific steps of performing a SLR as recommended by Kitchenham [11], such as
planning, study selection, data extraction and synthesis, and reporting the review.

3.1 Planning the Review and Identifying Relevant Literature

We constructed a search strategy to identify relevant literature by deriving major terms
from the research questions, listing the keywords and developing search strings from
these major terms and their synonyms using AND/OR operators. The search string that
we used was: ("knowledge manag*" OR "learning manag*") AND ("agile" OR "scrum"
OR "XP" OR "Lean") AND ("software" AND "team")

 4

Fig. 1. SLR Screening Process

 The search string was used to filter articles from three reputed academic databases:
• Springer, http://www.springer.com
• Scopus, www.scopus.com
• IEEE Xplore, http://www.ieeexplore.ieee.org
A total of 2317 papers were obtained initially, of which 195 papers were from Scopus
based on title and abstracts while Springer Link resulted in 2097 papers and 25 results
were from IEEE Xplore.

3.2 Publication Selection

Inclusion and exclusion criteria (described in [5]) were designed to help select from the
initial pool of papers resulting from the searches. The results from the search string
generated 2317 papers, which were screened in the next stage (see Fig. 1). The second
stage generated 2297 papers, which screened the papers based on how the abstract and
keywords related to the RQs and the inclusion and exclusion criteria [5]. Stage 3 in-
volved reading the introduction section of the 2297 papers checked against the inclu-
sion and exclusion criteria and resulted in 116 papers being filtered. All 116 papers
were read in stage 4 resulting in a total of 48 papers selected as the primary studies
based on the inclusion and exclusion criteria. Most papers were excluded because they
only provided theoretical explanations and no empirical evidence.

3.3 Data Extraction and Synthesis

Data extraction involved extracting detailed information from the 48 primary studies,
such as the paper citation details, answers to the review questions and the main stufy
findings into an excel sheet. The emphasis was placed on extracting evidence to support
the review questions. The first author was responsible for data extraction overseen by
the co-authors who provided guidance throughout the process and helped reach con-
sensus in certain cases.

Data was analysed by determining themes from the selected papers using thematic
analysis [12]. Initial codes summarizing key ideas were selected after reading the pri-
mary studies thoroughly. For example, the specific artifacts used in ASD, such as prod-
uct backlog, user stories etc. were collectively classified as artifacts since they con-
tained useful knowledge about the software requirements. Similarly, UML modeling,
burn down charts etc. were classified as visualisations.

Stage 1: Search String (n=2317)

Stage 2: Exclude papers based on abstracts and keywords (n=2297)

Stage 3: Exclude papers based on introduction (n=116)

Stage 4: Final primary studies (n=48)

 5

Fig. 2. Emergence of Knowledge Types (KT) Theme Categories

Fig. 3. Emergence of Knowledge Management Strategies (KMS) Theme Categories

Themes were derived as the next level of abstraction, gathering similar codes together
[12]. For example, the codes artifacts, visualisation and discussion collectively formed
the theme knowledge management strategies since each of them is a type of knowledge
management strategy. Fig. 2 and 3 depict the emergence of the themes ‘knowledge
management strategies’ (KMS) and ‘knowledge types’ (KT) from the underlying codes.
Another theme that emerged naturally from the codes was ‘agile practices’ (AP) which
included the specific agile practices reported in the primary studies.

 6

4 Results
4.1 Agile Practices Supporting Knowledge Management

In response to RQ1 “Which specific agile practices support knowledge management?”
we identified the following agile practices to support knowledge management [5]:
• Scrum Practices: Sprint/Release Planning [S11,S13,S14,S20,S24,S38-S40], Daily

Scrum [S6,S7,S10-S12,S23,S24,S41-S43], and Sprint Retrospective
[S11,S13,S16,S24,S44-S46].

• XP Practices: Pair Programming [S3-S5,S7,S17,S19,S22,S48], Refactoring
[S15,S17,S19,S25], and Planning Game [S16,S17,S19,S27].
The agile practices above support knowledge management practices through activi-

ties such as discussions, artifacts and visualisations [5]. The most commonly referred
to agile practice was daily scrum across ten primary studies, followed by sprint/release
planning meeting and pair programming across eight primary studies each and sprint
retrospective across seven primary studies. Refactoring and the planning game were
referred to by four studies each.

Some agile practices were not covered, such as sprint review, product backlog re-
finement, testing and small releases. One possible explanation is that the product back-
log refinement is a relatively new, optional and lesser known Scrum practice [13]. The
knowledge involved in other practices such as the sprint review, testing, and small re-
leases, focuses more on the product knowledge which is presented as a deliverable
product or a product increment in a ‘demo’ meeting [13], and released in small units of
functionality to customers [1].

Although the sprint review, product backlog refinement, small releases, and testing
were not covered in the primary studies, it does not imply that they do not involve any
knowledge management. Knowledge based on product refinement, re-prioritisation,
customer feedback, team reviews, are all valuable knowledge that needs to be managed
by agile teams. Thus, further investigation is required to understand how agile teams
use, manage and refer to the knowledge involved in these practices.

4.2 Knowledge Involved in Agile Practices

In response to RQ2: “What is the inherent knowledge involved in these agile practices
and how do agile teams manage that knowledge?” we discovered that the three types
of software engineering knowledge – product, project, and process knowledge [8] were
captured in everyday agile practices.

Table 1 presents a summarized view of the knowledge types involved in agile prac-
tices. These knowledge types are managed in six agile practices. For example, product
knowledge found to be involved in the release and sprint planning meetings included
domain context [S6] and product features (systems requirements) [S12], which facili-
tates agile teams to gain knowledge about the product to be developed. In daily stand-
up, a wall or Scrum board [S12] is used to stick up story cards that contain several tasks,
which are broken-down from the product backlog.

 7

Table 1. Knowledge Types (KT) in ASD (based on [8])

Knowledge
Types (KT)
based on [8]

Description [8] Examples in ASD practices

Product
Knowledge

“The knowledge about [the] product
features and how they relate to other
products, standards, protocols and the
like.

Domain context [S6]; product features on
user stories [S12]; coding [S12], testing
[S11].

Project
knowledge

“The knowledge about resources, func-
tional and attributes requirements, work
products, budget, timing, milestones, de-
liverables, increments, quality targets
and performance parameters”

Project/daily goals [S6]; timeline [S10]; pro-
gress line; lack of time for testing and work
targets [S10]

Process
Knowledge

“The knowledge about business pro-
cesses, workflows, responsibilities, sup-
porting technologies and interfaces be-
tween processes”

Systems flows [S11]; business process [S11];
other team member’s role and their interde-
pendencies [S6]; synchronizing teamwork;
ideas of improvement [S24]; workflow of
coding and working code [S19].

Project knowledge is managed in several agile practices, such as sprint/release plan-
ning, daily stand-up, sprint retrospective, and planning game. For example, in a daily
stand-up meeting agile teams clarify their cumulative work done by the team in a burn-
down chart [S10]. In a sprint retrospective project knowledge is shared when agile
teams share issues about lack of time to accomplish some tasks and uncompleted tasks
in the last sprint which can lead to some changes in the timeline [S6,S11].

Process knowledge is managed in several agile practices, such as sprint/release plan-
ning, daily stand-up, sprint retrospective, pair programming and refactoring
[S6,S11,S19,S24]. Process knowledge in these practices includes the knowledge about
the system flows that are visualised in UML modeling or other visualisations that rep-
resent coding flow, features and business processes [S11].

With regards to knowledge management strategies applied, agile teams were seen to
use: discussions (e.g. sharing requirements), artifacts (e.g. user stories) and visualisa-
tions (e.g. burn-down charts), to manage the project, product and process knowledge
[5]. See summarized description in Table 2.

Table 2. Knowledge Management Strategies (KMS) in ASD
Knowledge Man-
agement Strate-
gies (KMS)

Description Examples in ASD practices

Discussions Verbal communication
that involves interac-
tion among agile team
members which aims
to share knowledge

Sharing requirements [S20]; progress; plan and impedi-
ments [S13]; feedback; ideas/solutions [S24]; system
flow; coding; techniques; design problems [S11]; cod-
ing problems; techniques; analysing; estimating and ne-
gotiate to agree; communication over video conference
(e.g. Skype) [S47]

Artifacts Physical forms that
contain specific prod-
uct features and project
information

Story cards from Product backlog and Sprint backlog
[S20]; user stories; task card [S46]; the card of code;
code repositories [S13], JIRA [S47], Wiki [S6]

Visualisations Strategies that clarify
the resources about
product, process and
project into a visual-
ised form.

Information radiators; UI prototyping [S13]; UML mod-
elling [S11]; Burn down chart [S25].; story cards on the
Scrum board; wall; action points [S46]; showing the
code/working code [S5], JIRA, Wiki [S47], Microsoft
Excel [S8]

 8

Discussion was the most commonly used knowledge management strategy across
all agile practices (e.g. release/sprint planning, daily stand-up and retrospective). This
strategy facilitates agile teams to share knowledge, in particular process and project
knowledge [S11,S13,S20,S24,S47]. Process knowledge was shared during discussions
where agile teams share issues, ideas, solutions, new techniques in solving problems
[S13] (e.g. coding, testing) and feedback, and negotiate with team members in making
plans or decisions [S24]. Project knowledge was also included in the discussions where
the content of the discussion related to the project, such as blockers in the last sprint
which can affect the project timeline and other team members’ progress [S11].

Artifacts in agile practices were commonly used to share product knowledge which
included product requirements (e.g. in the form product backlog) and were further bro-
ken down into user stories. The product backlog also helped capture product knowledge
through task cards for coding [S46], design and user interface development [S20].

Visualisation is the technique used to manage knowledge in a visible and accessible
form. This strategy helped agile teams to support tacit knowledge sharing among team
members. For example, the Scrum board was used to show progress based on the story
cards; the whiteboard for information such as feedback, feelings and action points in
the retrospective meetings [S46]; the burn-down chart for showing team progress,
achievements and performance [S25] and software code on display screens for showing
working code in pair programming [S48]. The most commonly used visualisation strat-
egy in agile practices was the Scrum board, which contained all user stories and pre-
sented teamwork progress through the work status of team members [S11].

5 Discussion
In this section, we discuss a theoretical model of knowledge management in ASD
which emerged from analyzing the knowledge types (KT), knowledge management
strategies (KMS) and agile practices (AP) as described in the previous section.

Table 3. Agile practices that support knowledge management

Agile Practices
(AP)

Knowledge Types
(KT) Supported

Knowledge
Management
Strategies (KMS)

Supporting
Primary Studies

Scrum
Practices

Sprint/Release
Planning

Product knowledge;
Project knowledge;
Process knowledge.

Discussions; Artifacts;
Visualisations.

S11,S13,S14,S20,S24,
S38-S40

Daily Scrum Product knowledge;
Project knowledge;
Process knowledge.

Discussion; Artifacts;
Visualisations.

S6,S7,S10-
S12,S23,S24, S41-S43

Sprint
Retrospective

Product knowledge;
Project knowledge;
Process knowledge.

Discussion; Artifacts;
Visualisations

S11,S13,S16,S24,S44-
S46

XP
Practices

Pair
Programming

Product knowledge;
Process knowledge.

Discussion; Artifacts;
Visualisations

S3,S5,S7,S17,S19,S22
,S48

Refactoring Product knowledge;
Process knowledge.

Discussion; Artifacts;
Visualisations

S15,S17,S19,S25

Planning game Product knowledge;
Project knowledge.

Discussions; Artifacts;
Visualisations.

S16,S17,S19,S27

 9

Table 3 presents a summarized view of the agile practices, knowledge types, and
knowledge management strategies identified in this review. The first column lists the
agile practices (AP) identified in the literature (section 4.1); the ‘Knowledge Types
(KT) Supported’ column lists the knowledge types as related to agile practices (section
4.2 and Table 1); ‘Knowledge Management Strategies (KMS)’ column lists the
knowledge management strategies inherent in the agile practices (section 4.2 and Table
2); and the primary studies, which can be seen in [5], supporting these findings. We
found that all three types of knowledge were addressed in all the Scrum practices in
varying degrees.

Furthermore, in synchronising teamwork through practices such as the daily stand-
up and inspecting the process through retrospectives, agile teams combine product, pro-
ject and process knowledge and build a framework to solve the problems or find ways
to improve. Dingsøyr [14] explained that agile teams gather and link the knowledge
through several processes referring to Nonaka and Takeuchi’s knowledge creation the-
ory. We expand on this work by highlighting the knowledge types and management
strategies involved in these processes: Socialization, a process of sharing tacit
knowledge (e.g. sharing mental models and technical skills) is achieved through dis-
cussion (identified as a KM strategy in our study). Externalization occurs when agile
teams gain the shape of metaphors, concepts and models in written form, such as doc-
umentation, diagrams or artifacts (i.e. types of product and project knowledge). Agile
teams gain and process the externalized knowledge to understand about “know-how”
(i.e. a type of process knowledge) as part of the internalization process. The final pro-
cess is a combination, where agile teams compile the knowledge from different sources
(e.g. artifacts, meetings, board) in order to transform it into action.

Despite the inclusion of product, process and project knowledge in daily agile prac-
tices, some knowledge management related challenges were also identified in other
reviews. Ringstad et.al. [15] and Stray et.al.[16] mention some challenges including:
lack of focus on what was working well; no specific discussion about improving team-
work; and difficulty in transforming lessons learned into action [17].

The results of this review indicate that there is a discrepancy between Scrum theory
and real practice, which could be attributed to the effectiveness of using knowledge in
each practice. In Scrum practices (e.g. sprint/release planning meeting, daily stand-up
and retrospective meeting) where product, process and project knowledge were in-
volved, agile teams do not fully pay attention to the knowledge at the same degree,
which means that they do not use the knowledge effectively. Another interesting find-
ing from Scrum practice was that agile teams also tend to discuss product and project
knowledge in the retrospective, which is theoretically meant to focus on the process
alone.

In XP practices, product and process knowledge are discussed in pair programming
and refactoring (see the description in Table 3). These findings are aligned with the
theoretical aims of these practices. Pair programming aims to enhance agile team skills
by working in pairs [1]. In practice, agile teams discuss coding issues, integrate with
design and learn from other team member’s skills. Similarly, refactoring focuses on
maintaining coding and design, which involves product knowledge and process
knowledge. In addition, Table 3 shows that the planning game in XP refers to product
and project knowledge, being consistent with the theory [1] as this practice aims to

 10

capture and analyse overall product requirements and build plans to accomplish the
tasks.

The list of agile practices in Table 3 shows that most primary studies pay more at-
tention to practices such as pair programming, daily Scrum and release/sprint planning
meetings. Because meetings embody interaction and communication, these practices
emphasize tacit knowledge sharing rather than explicit knowledge; however, there is
evidence about some ways to transform tacit knowledge into explicit knowledge, such
as storing it on sticky notes, paper or online documentation. Thus, important infor-
mation or knowledge-related artifacts could be managed and used as a reference for
team members.

Fig. 4. A theoretical model of Knowledge Management in Agile Software Development

Based on the findings of this SLR, a theoretical model of knowledge management
in ASD was developed. The theory consists of Knowledge Types (KT), Knowledge
Management Strategies (KMS) and Agile Practices (AP). Fig. 4 depicts the theoretical
model that illustrates two layers involved in knowledge management in ASD: a
knowledge layer and a practice layer. The knowledge layer includes the three
knowledge types and is a fundamental layer on which the practice layer functions. The
practice layer includes agile practices and knowledge management strategies (or prac-
tices). The knowledge types from the knowledge layer are required and used in the agile
practices and knowledge management strategies in the practice layer.

Our hypothesis is that the three knowledge types are managed by performing agile
practices and knowledge management strategies, and the practices work using the
knowledge types involved. For example, in daily stand-up (an agile practice), discus-
sion, artifacts and visualisations (knowledge management strategies) are implemented
to manage product, project and process knowledge (knowledge types). It can be seen
that artifacts, visualisation and discussion in daily stand-up require particular
knowledge to be managed. Without using artifacts on the scrum board and discussing
the stories, the knowledge in daily stand-up cannot be managed effectively.

5.1 Implications

For practitioners, this SLR shows that there are three specific types of knowledge in-
volved in everyday agile practice, which suggests that knowledge is necessary to be
embedded and referred to by agile teams. It also seems important for agile teams to
identify the three types of knowledge included in each knowledge management strategy
(e.g. discussions, artifacts and visualisations), which must be applied by agile teams in

Agile Practices
(AP)

Knowledge Management
Strategies (KMS)

Are implemented
through Practice Layer

Knowledge Layer Knowledge Types (KT)

 11

everyday practice. Thus, in order to gain benefits of knowledge management, we sug-
gest that practitioners need to pay more attention to the types of knowledge described
in this review, focus on how to manage that knowledge using the strategies discussed
and implement the knowledge management concepts consciously in agile practices.

In terms of research, the SLR results suggest that instead of managing knowledge in
ASD by classifying it as tacit and explicit knowledge, the specific explanation of
knowledge management in ASD based on software engineering would be more relevant
for agile teams, such as product, project and process knowledge involved in each agile
practice. It also seems there is a need for further study into the knowledge types and
management strategies involved in agile practices.

5.2 Limitations

We now discuss some of the limitations of this SLR. First is related to completeness.
Despite our best efforts, and as common with most SLRs, there is a possibility that
some articles published in some journals and conferences, which can address the re-
search questions, were missed in this SLR. Thus, our results must be classified as ap-
plying to the papers selected from the three major digital libraries.

Furthermore, we are aware that some questions might arise about the selected arti-
cles. Thus, we defined inclusion and exclusion criteria (listed in [5] due to space con-
straints) as a protocol in selecting primary studies guided by the research questions. As
well as some papers that described knowledge management theories in ASD, the im-
plementation of knowledge management theories was reported but not discussed in de-
tail in the primary studies, and are therefore not included in this SLR. We also assumed
that selecting primary studies based on industrial empirical results would be more val-
uable for agile practitioners than summarizing findings from educational settings.

6 Conclusion
This systematic literature review set out to analyse and summarize the empirical re-
search on knowledge management in agile software development (ASD). We analysed
48 primary studies filtered from an initial pool of 2317 papers using inclusion and ex-
clusion criteria, presenting agile practices that support knowledge management in ASD.

The results of this SLR describe the knowledge types and knowledge management
strategies in everyday agile practices. The most important contribution of this SLR is
providing a new understanding of knowledge management in ASD that involves man-
aging three different types of knowledge – process, project and product – by imple-
menting three knowledge management strategies – discussions, artifacts and visualisa-
tions – during every day agile practices. Understanding these specific dimensions of
knowledge and specific knowledge management strategies will help agile practitioners
become aware of, and enable them to manage, the knowledge in everyday agile prac-
tices effectively.

Acknowledgement

This research is supported by the Indonesia Endowment Fund for Education (LPDP) S-
669/LPDP/2013 as scholarship provider from the Ministry of Finance, Indonesia.

 12

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison- Wesley Professional (1999)
2. Royce, W.: Managing The Development of Large Software Systems. IEEE WESCON, vol. 26, pp. 328-

338. IEEE (1970)
3. Yanzer Cabral, A.R., Ribeiro, M.B., Noll, R.P.: Knowledge Management in Agile Software Projects: A

Systematic Review. Journal of Information and Knowledge Management 13, (2014)
4. Neves, F.T., Rosa, V.N., Correia, A.M.R., Neto, M.d.C.: Knowledge Creation and Sharing in Software

Development Teams Using Agile Methodologies: Key Insights Affecting Their Adoption. 6th Iberian
Conference on Information Systems and Technologies (CISTI 2011) 1-6 (2011)

5. Andriyani, Y., Hoda, R., Amor, R.: Research Literature of Knowledge Management in Agile Software
Development (ASD) – Technical Report. (2017)

6. Davenport, T.H., Prusak, L.: Working Knowledge-How Organizations Manage What They Know.
Harvard Business School Press 5, 193-211 (1998)

7. Ikujirō, N., Takeuchi, H.: The Knowledge-Creating company : How Japanese Companies Create the
Dynamics of Innovation. Oxford University Press 1995, New York (1995)

8. Ebert, C.D.M., J: Effectively utilizing project, product and process knowledge. Information and Software
Technology 50(6), 579-594 (2008)

9. Lindvall, M., Rus, I.: Knowledge Management for Software Organizations. Managing Software
Engineering 73-94 (2003)

10. Bjørnson, F.O., Dingsøyr, T.: Knowledge Management in Software Engineering: A Systematic Review
of Studied Concepts, Findings and Research Methods Used. Information and Software Technology, vol.
50, pp. 1055-1068 (2008)

11. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K., Rosenberg,
J.: Preliminary Guidelines for Empirical Research in Software Engineering. Software Engineering, IEEE
Transactions on 28, 721-734 (2002)

12. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative research in psychology 3, 77-
101 (2006)

13. Deemer, P., Benefield, G., Larman, C., Vodde, B.: A Lightweight Guide to the Theory and Practice of
Scrum Version 2.0. vol. 2015, (2012)

14. Dingsoyr, T.: Value-based knowledge management: The contribution of group processes. Value-Based
Software Engineering, pp. 309-325 (2006)

15. Ringstad, M.A., Dingsøyr, T., Moe, N.B.: Agile process improvement: Diagnosis and planning to
improve teamwork. pp. 167-178. Springer (2011)

16. Stray, V.G., Moe, N.B., Dingsyør, T.: Challenges to teamwork: A multiple case study of two agile teams
12th International Conference on Agile Processes in Software Engineering and Extreme Programming:
XP 2011 77 146-161 (2011)

17. Andriyani, Y., Hoda, R., Amor, R.: Reflection in Agile Retrospectives. International Conference on
Agile Software Development, vol. 283, pp. 3-19. Springer, Cologne, Germany (2017)

