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Distinguished curves and integrability in Riemannian,

conformal, and projective geometry

A. Rod Gover, Daniel Snell, and Arman Taghavi-Chabert

Abstract

We give a new characterisation of the unparametrised geodesics, or distinguished

curves, for affine, pseudo-Riemannian, conformal, and projective geometry. This is

a type of moving incidence relation. The characterisation is used to provide a very

general theory and construction of quantities that are necessarily conserved along the

curves. The usual role of Killing tensors and conformal Killing tensors is recovered,

but the construction shows that a significantly larger class of equation solutions can

also yield curve first integrals. In particular any normal solution to an equation from

the class of first BGG equations can potentially yield such a conserved quantity. For

some equations the condition of normality is not required.

For nowhere-null curves in pseudo-Riemannian and conformal geometry additional

results are available. We provide a fundamental tractor-valued invariant of such curves

and this quantity is parallel if and only if the curve is an unparametrised conformal

circle.
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1 Introduction

In the context of Riemannian geometry, geodesics were first defined as the curves that min-
imise the distance between sufficiently close points. Such curves γ : I → M are governed by
the equation

∇γ̇ γ̇ = 0, (1.1)

where γ̇ denotes the curve velocity, ∇ is the Levi-Civita connection, and I ⊂ R is an interval.
This geodesic equation evidently makes sense and determines distinguished curves on any
manifold equipped with an affine connection, that we also denote ∇. (For simplicity all affine
connections will be assumed torsion free.) In particular this applies to pseudo-Riemannian
geometries (M, g) of any signature with ∇ taken to be the Levi-Civita connection. In any
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such case the resulting distinguished parametrised curves satisfying (1.1) are called geodesics.
These play an essential role in the geometry and analysis of manifolds and related physics,
especially in connection with general relativity [1, 28, 38, 40, 57].

It is well known that symmetries can help understand and determine geodesics. For
example on a pseudo-Riemannian manifold (M, g) a vector field k is called a Killing vector
field if Lkg = 0, where Lk denotes the Lie derivative along the flow of k. For such an
infinitesimal automorphism k it follows easily that along any geodesic γ, the function g(k, γ̇)
is constant. Thus g(k, γ̇) is called a first integral of γ. Higher rank Killing tensors and Killing-
Yano tensor fields (see Section 5 below), which are sometimes called hidden symmetries, can
also lead to first integrals and these have, for example, played an important role in the study
of the Kerr, Kerr-NUT-(A)dS and Plebański-Demiański metrics, and related issues including
black hole stability [1, 22, 28, 41, 53]. One key point is that if enough first integrals are
available then given a point and a direction one can completely determine the trace of the
curve with that data. (For a given curve γ : I → M by its trace we mean its image γ(I) in
the manifold.) This is the case for the metrics just mentioned. At an extreme of this theme
there is considerable interest in so-called superintegrable geometries where there are more
than dim(M) first integrals for any geodesic [6, 30, 42].

Given these considerations one of our aims here is to produce the first steps of a general
and uniform approach to producing first integrals. While the term “hidden symmetry”
already suggests a notion of symmetry that is not classically obvious we will explain in
Section 5 that the Killing, Killing tensor, and Killing-Yano, equations are just a small part
of a vast family of similar (in a suitable sense) overdetermined PDEs that are known as first
BGG equations. These PDEs are defined in Theorem 5.1 following [10, 16]. We show that
certain solutions of any of these equations can yield first integrals.

Each geodesic first integral yields a constraint on any geodesic trace, but not on its
parametrisation. This strongly suggests that as a first step we should describe distinguished
curves in a parametrisation independent way. Treating this effectively is linked to projective
differential geometry. This is the geometry not of an affine manifold (M,∇), but the
weaker structure (M,p), where p := [∇] denotes an equivalence class of torsion-free affine
connections that share the same unparametrised geodesics.

There is no preferred connection on the tangent bundle of a projective manifold (M,p).
However there is a canonical connection ∇T on a related bundle T of rank just one greater
[5]. The bundle T is called the projective tractor bundle and ∇T is the tractor connection.
The dual connection on T ∗ is also called the tractor connection and these yield in an obvious
way a tractor connection on the respective tensor powers of these and the tensor products
thereof. These are the basic objects of the invariant calculus for projective geometry that
we introduce in Section 3. Throughout the article, a k-tractor will refer to a section of the
kth exterior power ΛkT of the tractor bundle, and we use ∧ to indicate the exterior product
of sections of such bundles.

It is useful here to note that the link between T and the tangent bundle TM is via a
canonical sequence

0 → E(−1)
X→ T → TM(−1) → 0 (1.2)
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where the density bundle E(−1) is a suitable root of the square of the top exterior power
of TM , and TM(−1) means TM ⊗ E(−1). The bundle map X , which can alternatively be
thought of as a section of T (1) = T ⊗ E(−1)∗, is called the canonical tractor. This plays an
important role and, over a point x ∈ M , it invariantly encodes information concerning the
position of that point relative to other geometric data.

Throughout we will only consider curves with trace a connected smoothly embedded
1-manifold. We can now state one of the first main results.

Theorem 1.1 On an affine or projective manifold an unparametrised oriented curve γ is an
unparametrised oriented geodesic if and only if along γ there is a parallel projective 2-tractor
0 6= Σ ∈ Γ(Λ2T |γ) such that

X ∧ Σ = 0. (1.3)

For a given unparametrised oriented geodesic γ the 2-tractor Σγ satisfying (1.3) is unique up
to multiplication by a positive constant.

There is also considerable interest in the conformal analogues of the Killing equation and
its generalisations [8, 60, 43, 54, 49, 37, 45, 25]. Again first integrals provide one motivation.
On a pseudo-Riemannian manifold (M, g), a vector field k is said to be a conformal Killing
vector field if Lkg = ρg (for some function ρ). For such a vector field g(k, γ̇) is a first
integral for any parametrised null geodesic γ. Recall a curve γ : I →M is null if its velocity
γ̇ 6= 0 satisfies g(γ̇, γ̇) = 0 everywhere along the curve. More generally similar first integrals
for geodesics that are null, in this way, arise from conformal Killing tensors (see (5.3)), for
example.

Treating the natural extension of these observations involves conformal geometry. A
signature (p, q) conformal manifold consists of a pair (M, c) where c is an an equivalence
class of signature (p, q) metrics, where any two metrics g, ĝ ∈ c are related by conformal
rescaling, that is we have ĝ = fg for some positive smooth function f . In analogy with
projective geometry, on conformal manifolds the basic conformally invariant calculus is also
based around an invariant tractor bundle and connection, see Section 4.1 for details. To
emphasise similarities with the projective case, and also to simplify notation, we denote these
by essentially the same notation as in the projective case. Because of context, no confusion
should arise (and we do use a different index set). Thus T will denote the standard conformal
tractor bundle and ∇T the usual tractor connection on this, and X denotes the (conformal)
canonical tractor.

Upon conformal rescaling, null geodesics are simply reparametrised. Thus, as unparam-
etrised curves, null geodesics are among the distinguished curves of conformal manifolds
(M, c) of signature (p, q) with pq 6= 0. These are characterised by a close analogue of
Theorem 1.1 as follows.

Theorem 1.2 On a pseudo-Riemannian or conformal manifold, a curve γ is an unparam-
etrised oriented null geodesic if and only if along γ there is a parallel conformal 2-tractor
0 6= Σ ∈ Γ(Λ2T |γ) such that

X ∧ Σ = 0. (1.4)
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For a given oriented null geodesic trace γ the 2-tractor Σγ satisfying (1.4) is totally null and
unique up to multiplication by a positive constant.

The notion of totally null used in the Theorem is characterised by the nilpotency condition
given in expression (4.14).

Null geodesics are a very restricted class of distinguished curves. In particular, they
are unavailable in the case of definite signature. On a conformal manifold the nowhere-
null distinguished curves are the so-called conformal circles [59, 48, 27, 4]. The differential
equation for these is somewhat more complicated than the geodesic equation (1.1). Fixing
a metric g ∈ c, a parametrised curve γ : I →M is said to be a conformal circle if it satisfies
the (conformally invariant) equation

ub∇ba
c − 3

u · a
u · ua

c +
3 a · a
2 u · uu

c − (u · u)ubPb
c + 2Pabu

aubuc = 0 , (1.5)

where u = γ̇ and a = γ̈ and g(u, u) 6= 0. Parametrised conformal circles may be understood
in terms of tractors [5], and this provides some conceptual simplification and an equation
that, although third order, is similar in spirit to (1.1). We review this in Section 4.4. See
also [26, 56, 50] for alternative useful characterisations of these curves.

It is natural to investigate the possibility of first integrals for conformal circles. Any
näıve approach needs to confront two new problems. First that the governing equation is
of third order, so first integrals should be expected to involve higher order objects. Second
there is the related issue of parametrisation. Whereas geodesics have a distinguished class
of affine parametrisations the class of distinguished parametrisations determined by (1.5),
the so-called projective parametrisations (see Section 4.5), is larger. Thus comparing to
geodesics there is potentially an even greater gain from a parametrisation free description.
We shall say that an unparametrised curve γ is an unparametrised conformal circle if it
admits a projective parametrisation so that the resulting curve γ : I → M satisfies (1.5).
Then in terms of the conformal tractor bundle we have the following result.

Theorem 1.3 On a pseudo-Riemannian or conformal manifold a nowhere null curve γ is an
oriented conformal circle if and only if along γ there is a parallel 3-tractor 0 6= Σ ∈ Γ(Λ3T |γ)
such that

X ∧ Σ = 0. (1.6)

For a given oriented conformal circle γ the 3-tractor Σγ satisfying (1.6) is unique up to
multiplication by a positive constant, and unique if we specify |Σγ |2 = −1 when γ is spacelike,
or |Σγ|2 = 1 when γ is timelike.

Specialising to the case of the homogeneous model for projective geometry and then also
the homogeneous model for conformal geometry the condition X ∧ Σ = 0 agrees with an
incidence relation: In each of these settings the tractor field Σ may be taken to be parallel
not just along the distinguished curve it determines but rather parallel everywhere. Then
also, in each of these homogeneous models, the canonical tractor X can be identified with
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suitable homogeneous coordinates for the underlying point. See Sections 3.5, 4.3, and 4.6
for details.

Using the above theorems there is a simple route to certain first integrals. For example,
in the setting of Theorem 1.1 or 1.2, suppose one has a section ψ of ⊗s(Λ2T ∗) that is parallel
for the relevant tractor connection. Then ψ pairs with ⊗sΣ to yield a geodesic first integral.
There is a similar observation for conformal circles that uses Theorem 1.3. Parallel tractor
fields correspond to certain solutions, called normal solutions, of invariant overdetermined
PDEs called first BGG equations. See Theorem 5.1 in Section 5.1. Then the universal
construction of corresponding first integrals is treated by Theorem 6.1; this is one of the
main theorems here and applies simultaneously to the three settings of the Theorems 1.1,
1.2, and 1.3 above.

Theorem 6.1 is then illustrated by various examples in sections 6.2.1, 6.2.3, 6.3, 6.4.1, and
6.4.2. For the case of geodesics and null geodesics one expects, by classical theory, the first
integrals in all cases as constructed to be linked to Killing tensors. This arises naturally in
the constructions here and the explicit link is described in Proposition 6.4 and Proposition
6.6. These explain how normal BGG solutions yield normal Killing tensors and, respectively,
normal conformal Killing tensors.

Surprisingly the examples treated also lead to results that are, in each case, stronger than
that given by the general Theorem 6.1, as follows. Each of the examples treated exhibits
first integrals for geodesics, null geodesics, or conformal circles as arising from various first
BGG equations. The general theory of Theorem 6.1 requires that the solution be normal, in
that it corresponds to parallel tractor according to Theorem 5.1. But actually, for each of
the BGG equations and first integrals treated explicitly, the normality turns out to be not
required. See Remark 6.3, Theorem 6.5, Theorem 6.7, and Theorem 6.8. This suggests the
interesting possibility that there may be a strengthening of Theorem 6.1 in some generality.

Finally in this context we should mention that because the treatment of the curves is
parametrisation independent, and so also are the first integrals constructed, the results apply
to infinity on appropriately compactifiable complete non-compact manifolds. For example
the projective treatment provides first integrals that extend to the boundary at infinity of
manifolds that are projectively compact in the sense of [13, 14, 19]. The conformal treatment
yields curves and first integrals that extend to the infinity of conformally compact manifolds.
This should be useful for extending the theories of superintegrability and separation of
variables to such settings.

Some history is relevant here. First integrals for parametrised conformal circles were
looked at in the thesis works of the second author [51, 52] using the tractor approach from
[5]. A slightly different and parametrisation free approach was developed by Bell [7] and
his work has certainly influenced our development. He also gives another characterisation
of conformal circles in terms of a symmetric 2-tractor (that arises from our machinery in
Theorem 6.8 below). Recently Šilhan and Žádńık [50] have developed an interesting tractor
Frenet theory for curves, and associated with this recovered some first integrals in the same
spirit as those looked at by Bell and Snell.

There are additional results in the work here. In the case of nowhere-null curves in
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conformal geometry we can canonically associate the 3-tractor Σ, even if the curve is not
distinguished. See Lemma 4.12. Thus Σ is a fundamental invariant of such curves and
so may be used to construct, in obvious ways, other invariants of such curves. Indeed Σ
provides the full information of the curve. Then finally in Section 7 we show that for normal
first BGG equation solutions the zero locus of a suitable part of the solution jet describes a
distinguished curve. See Proposition 7.1, Proposition 7.2, and Proposition 7.3.

Section 2, and then Section 3 up to Section 3.2 present background material on affine
and projective geometry, including the tractor calculus. Similar background for conformal
geometry is found in Section 4 and Section 4.1. The ordinary differential equations describing
the parametrisation independent treatment of geodesics, null geodesics, and then conformal
circles are found in Section 3.4, Section 4.2, and Section 4.4.2 respectively. Theorem 1.1,
Theorem 1.2 and Theorem 1.3 are proved in Section 3.4, Section 4.2, and Section 4.4.3,
respectively.

Conformal and projective geometries are special cases of the large class of parabolic
geometries [15] and for these structures there is a general theory of distinguished curves [17].
It seems likely that for all such distinguished curves there will be a tractor based incidence
type characterisation of these curves that generalises the developments on this article. This
should also lead to generalisation of the results found here on first integrals. This direction
and other extensions of the work here will be treated elsewhere.

Throughout manifolds and tensors on manifolds will be assumed smooth. When it is
convenient, we will use standard abstract index notation (in the sense of Penrose). For
example we may write Ea (respectively Ea) for the tangent bundle TM (respectively cotangent
bundle T ∗M) of a manifold M and ξa (respectively ωa) for a vector field (respectively a 1-
form field) on M . Then we write ξaωa for the canonical pairing between vector fields and
1-forms and denote by the Kronecker delta δba the identity section of the bundle End(TM) of
endomorphisms of TM . Indices enclosed by round (respectively by square brackets) indicate
symmetrisation (respectively skew-symmetrisation) over the enclosed indices. When tractor
bundles are introduced these will also be adorned with abstract indices when convenient.

Acknowledgments A. R. G. gratefully acknowledges support from the Royal Society
of New Zealand via Marsden Grant 16-UOA-051. A. T.-C. declares that this work was
partially supported by the grant 346300 for IMPAN from the Simons Foundation and the
matching 2015-2019 Polish MNiSW fund. A. T.-C. was also supported by a long-term faculty
development grant from the American University of Beirut for his visit to IMPAN, Warsaw,
in the summer 2018.

2 Background and notation for affine geometry

Let (M,∇) be an affine manifold (of dimension n ≥ 2), meaning that ∇ is a torsion-free
affine connection. The curvature

Rab
c
d ∈ Γ(Λ2T ∗M ⊗ TM ⊗ T ∗M)
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of the connection ∇ is given by

[∇a,∇b]v
c = Rab

c
dv

d, v ∈ Γ(TM).

The Ricci curvature is defined by Rbd = Rcb
c
d.

2.1 Decomposition of curvature: projective

On an affine manifold the trace-free part Wab
c
d of the curvature Rab

c
d is called the projective

Weyl curvature and we have

Rab
c
d = Wab

c
d + 2δc[aPb]d + βabδ

c
d, (2.1)

where βab is skew and Pab is called the projective Schouten tensor. That Wab
c
d is trace-free

means exactly that Wab
a
d = 0 and Wab

d
d = 0. Since ∇ is torsion-free the Bianchi symmetry

R[ab
c
d] = 0 holds, whence

βab = −2P[ab] and (n− 1)Pab = Rab + βab.

From the differential Bianchi identity we obtain that β is closed and

∇cWab
c
d = (n− 2)Cabd, (2.2)

where
Cabc := ∇aPbc −∇bPac (2.3)

is called the projective Cotton tensor. In dimension 2 the projective Weyl tensor is identically
zero.

As we shall see below the curvature decomposition (2.1) is useful in projective differential
geometry.

3 Geodesics and projective geometry

As mentioned above for Riemannian, pseudo-Riemannian, or more generally affine geometry,
the treatment of unparametrised geodesics involves projective differential geometry.

Some further notation is in order first. On a smooth n-manifold M the bundle K :=
(ΛnTM)2 is an oriented line bundle and thus we can take correspondingly oriented roots of
this. For projective geometry a convenient notation for these is as follows: given w ∈ R we
write

E(w) := K w

2n+2 . (3.1)

7



3.1 Projective geometry

Two affine connections ∇ and ∇̂ on a manifold are said to be projectively equivalent if they
have the same geodesics as unparameterised curves. Any two connections that differ only by
torsion are projectively equivalent, and thus in the study of projective differential geometry
it is usual to work with torsion-free connections. Two such torsion-free connections ∇ and
∇̂ are projectively equivalent if and only if there exists a 1-form Υ ∈ Γ(T ∗M) such that

∇̂aξ
b = ∇aξ

b +Υaξ
b + δbaΥcξ

c. (3.2)

Definition 3.1 A manifold M of dimension n ≥ 2 equipped with is an equivalence class p

of projectively equivalent torsion-free affine connections is called a projective manifold.

The standard homogeneous model for oriented projective manifolds is the (n+1)-dimen-
sional sphere arising as the ray projectivisation Sn := P+(R

n+1) of Rn+1 (i.e. the double
cover of RPn). The group of orientation-preserving projective diffeomorphisms of Sn can be
identified with the special linear group SL(n + 1,R) acting transitively on P+(R

n+1) in the
standard way.

Any affine connection ∇ induces a connection on the bundle K and hence a connection on
the bundles E(w) of projective densities. For two projectively equivalent affine connections

∇ and ∇̂ related as in (3.2) their induced connections on the bundles E(w) are related by

∇̂aσ = ∇aσ + wΥaσ . (3.3)

3.2 The projective tractor bundle and connection

As mentioned in the introduction, on a general projective n-manifold (M,p) there is no
distinguished connection on TM . However there is a projectively invariant connection on a
related rank (n + 1) bundle T . This is the projective tractor connection (of [55]) that we
now describe following [5, 21].

Consider the first jet prolongation J1E(1) → M of the density bundle E(1). (See for
example [46] for a general development of jet bundles.) There is a canonical bundle map
called the jet projection map J1E(1) → E(1), which at each point is determined by the map
from 1-jets of densities to simply their evaluation at that point, and this map has kernel
T ∗M(1). We write T ∗, or in an abstract index notation Eα, for J1E(1) and T or Eα for the
dual vector bundle. Then we can view the jet projection as a canonical section Xα of the
bundle Eα(1). Likewise, the inclusion of the kernel of this projection can be viewed as a
canonical bundle map Ea(1) → Eα, which we denote by Zα

a. Thus the jet exact sequence (at
1-jets) is written in this notation as

0 → Ea(1) Zα
a

→ Eα Xα

→ E(1) → 0. (3.4)

We write Eα = E(1) +✞✝ Ea(1) to summarise the composition structure in (3.4) and Xα ∈
Γ(Eα(1)), as defined in (3.4), is called the canonical tractor. The sequence (1.2) is the dual
to (3.4).
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As mentioned above, any connection ∇ ∈ p determines a connection on E(1) (and vice
versa). On the other hand, by definition, a connection on E(1) is precisely a splitting of
the 1-jet sequence (3.4). Thus given such a choice we have the direct sum decomposition

Eα ∇
= E(1)⊕ Ea(1) and we write

Yα : E(1) → Eα and W α
a : Eα → Ea(1), (3.5)

for the bundle maps giving this splitting of (3.4); so

XαYα = 1, Zα
bW α

a = δba, and YαW
α
a = 0.

Observe that any bundle map Eα → Ea(1) that splits the sequence (3.4) must differ from
W α

a by a section that takes the form Xα ⊗ Υb for some 1-form Υb. Thus from (3.4) we
deduce that there is a projectively invariant injective bundle map from TM(−2) into Λ2T :

X
αβ
b : E b(−2) → E [αβ] given by vb 7→ 2X [αW β]

bv
b. (3.6)

With respect to a splitting (3.5) we define a connection on T ∗ by

∇T ∗

a

(
σ

µb

)
:=

( ∇aσ − µa

∇aµb + Pabσ

)
. (3.7)

Here Pab is the projective Schouten tensor of ∇ ∈ p, as introduced earlier. It turns out
that (3.7) is independent of the choice ∇ ∈ p, and so the cotractor connection ∇T ∗

is
determined canonically by the projective structure p. Thus we shall also term T ∗ = Eα
the cotractor bundle, and we note the dual tractor bundle T = Eα has canonically the dual
tractor connection: in terms of a splitting dual to that above this is given by

∇T
a

(
νb

ρ

)
=

(
∇aν

b + ρδba
∇aρ− Pabν

b

)
. (3.8)

Note that given a choice of ∇ ∈ p, by coupling with the tractor connection we can differ-
entiate tensors taking values in tractor bundles and also weighted tractors. In particular we
have

∇aX
β =W β

a, ∇aW
β
b = −PabX

β, ∇aYβ = PabZβ
b, and ∇aZβ

b = −δbaYβ. (3.9)

These encode the tractor connection and the formula for connection acting on a section of
any tractor bundle can then be deduced from the Leibniz rule.

Finally, the tractor curvature Ωab
γ
δ of the tractor connection, defined by Ωab

γ
δΦ

δ :=
2∇[a∇b]Φ

γ, for any Φγ ∈ Γ(T ), can be expressed in a splitting as

Ωab
γ
δ =Wab

c
dW

γ
cZδ

d − CabcZδ
cXγ (3.10)

A projective structure is said to be (locally) flat if this tractor curvature vanishes, in which
case the manifold is locally diffeomorphic to Sn.
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3.3 The parametrisation independent treatment of geodesics

Throughout this article, a curve on a smooth manifold M will mean a connected one-
dimensional embedded submanifold γ of M , where this submanifold is identified with its
image under the embedding. (While curves may be defined in a way that defines more
general objects, locally our definition imposes no restriction.) A velocity (vector) field ua

along γ is a nowhere vanishing section of the tangent bundle Tγ of γ. A corresponding
parametrisation of the curve γ is a choice of real-valued smooth function on γ that satisfies
ua∇at = 1. Given the velocity field ua the parameter t may exist only locally. But locally it
is determined up to the addition of a constant and is equivalent to a map I → γ, where I
is a real interval, with ua the push-forward of d

dt
. By a slight abuse of terminology we shall

call the data (γ, ua) a parametrised curve.
An oriented curve is a curve together with a choice of orientation, that is, a nowhere-

vanishing 1-form on γ. This is clearly equivalent to a choice of velocity field along γ. In
particular, a choice of parametrisation endows a curve with an orientation. If the orientation
of a curve is defined by its velocity ua, then the velocity field −ua defines the opposite
orientation.

Note that vector and tractor bundles on M can be pulled back, i.e. restricted, to γ. This
will be reflected in the notation in this article where restriction of a bundle B to γ will be
denoted B|γ . In particular, the tangent bundle Tγ is a subbundle of the restriction TM |γ
of the tangent bundle TM to γ. We shall also write Tγ(w) for Tγ ⊗ E(w)|γ for any weight
w ∈ R.

3.4 Distinguished curves in projective geometry

Let (M,∇) be an affine manifold. A parametrised geodesic for (M,∇) is a parametrised
curve with velocity ua satisfying

ub∇bu
a = 0 . (3.11)

As a temporary simplification, let us suppose that ∇ is special, i.e. ∇ preserves a chosen
volume density. If we change to a projectively related special affine connection ∇̂ then we
have (3.2) with Υa = σ−1∇aσ for some σ ∈ E+(1), where E+(1) denotes the ray subbundle
of E(1) consisting of strictly positive densities. We will call such a σ a scale. Thus

ub∇̂bu
a = 2uaΥbu

b,

and so in this sense the geodesic equation is not projectively invariant. However there is
a commensurate reparametrisation of γ, equivalently a rescaling of the velocity ua: if we
reparametrise γ so that with this new parametrisation it has velocity ûa = σ−2ua then

ûb∇̂bû
a = 0.

This suggests a projectively invariant geodesic equation that we now describe in the general
setting.
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Before we proceed, we introduce some terminology. Given a projective manifold (M,p),
we say that a curve γ is an unparametrised geodesic in (M,p) if, given ∇ ∈ p, γ admits a
velocity field u satisfying (3.11). For a given unparametrised geodesic it is clear that the
velocity field depends on the choice of ∇ ∈ p and it is easily verified that the property of
being an unparametrised geodesic is independent of parametrisation.

Lemma 3.2 Let γ be an oriented curve on (M,p). Then γ is an unparametrised geodesic,
with respect to p, if and only if there exists a non-vanishing vector field ua ∈ Γ(Tγ(−2))
along γ satisfying the projectively invariant equation

ub∇bu
a = 0 , where∇ ∈ p. (3.12)

The weighted velocity field u is unique up to a positive factor that is constant along γ.

Proof. It follows at once from (3.2) and (3.3) that (3.12) is projectively invariant.
Suppose γ is an unparametrised geodesic for (M,p), and ua is a smooth non-vanishing

vector field tangent to γ that is consistent with the orientation. Let ∇ ∈ p. From (3.2)
it follows that ub∇bu

a = fua for some smooth function f along γ. Working locally let
σ ∈ Γ(E+(1)|γ) solve 2 σ−1ua∇aσ = f . Then ua := σ−2ua ∈ Γ(Ea(−2)|γ) satisfies (3.12).
One can easily check that the resulting ua is independent of the initial choice of oriented
parametrisation. Conversely, given any solution ua of (3.12) and any density σ ∈ Γ(E+(1)|γ)
along γ one obtains a vector field ua := σ2ua tangent to γ that satisfies an equation ub∇bu

a =
fua where f is smooth. Thus, locally (and hence globally), there is a reparametrisation with
velocity ûa satisfying ûb∇bû

a = 0. The final statement is obvious. �

Note that given an unparametrised geodesic γ, with corresponding weighted velocity u,
a projective scale σ ∈ Γ(E+(1)) determines a unique section ua = σ2ua of Tγ, and thus a
parametrisation of γ up to an additive constant. Also σ ∈ Γ(E+(1)) determines an affine
connection ∇a in p, then with respect to this ua is tangent to γ as an affinely parametrised
geodesic, i.e. it solves (3.11).

Next we observe that the equation (3.12) has a nice interpretation in the tractor picture.
Let γ be a curve with weighted velocity ub ∈ Γ(Tγ(−2)). Observe that u determines a
weight zero 2-tractor, which we will denote Σ ∈ Γ(Λ2T |γ), along γ via the map (3.6):

Σαβ := X
αβ
b ub. (3.13)

Then we have:

Proposition 3.3 An oriented curve γ on (M,p) is an unparametrised geodesic if and only
if it admits a non-vanishing section ub ∈ Γ(Tγ(−2)) such that Σαβ = X

αβ
b ub is parallel along

γ.

Proof. Using the identities (3.9) we find

ua∇aΣ
αβ = X

αβ
b ua∇au

b , (3.14)

from which the result follows. �
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We are now ready to prove the main Theorem 1.1 from the introduction:

Proof of Theorem 1.1. The forward implication of the first statement is immediate from
Proposition 3.3.

For the converse let suppose that γ is a curve and Σ is a non-vanishing 2-tractor parallel
along γ and satisfying (1.3). Since X is nowhere zero, we have Σ = X ∧ V for some
V ∈ Γ(T (−1)|γ).

Now choose (locally) a parametrisation of γ with associated velocity u. Differentiating
(1.3) along γ, then using (3.9) and the fact that Σ is parallel, we have

U ∧ Σ = 0

where Uβ := ubW β
b . Taking into account the weight of V , it follows that locally along γ

V α = ubW α
b + τXα

where u ∈ Γ(Tγ(−2)) is a weighted velocity of γ and τ ∈ Γ(E(−2)). Thus

Σαβ = X
αβ
b ub.

Then since Σ is parallel along γ it follows at once from (3.14) that ua∇au
b = 0, or equivalently

ua∇au
b = 0. So according to Lemma 3.2, γ is an unparametrised geodesic.

Since Σ satisfying (1.3) is necessarily of the form Σαβ = X
αβ
b ub the uniqueness statement

also follows. �

3.5 The model, incidence, and the double fibration

Recall that the standard homogeneous model for oriented projective manifolds is the n-
dimensional sphere arising as the ray projectivisation Sn := P+(R

n+1) of R
n+1 (i.e. the

double cover of RPn).
In this case it is well known [5] that the standard tractor bundle T is naturally identified

with the trivial bundle over Sn

TRn+1/ ∼→ Sn (3.15)

where ∼ is the equivalence relation defined by (p, vp) ∼ (q, ṽq) iff p, q belong to the same ray
and vp and ṽq are parallel with respect to the standard affine structure on R

n+1. Let us write
Xα for the standard coordinates on R

n+1, so that [Xα] denotes homogeneous coordinates on
Sn. Then it is easily verified that the Euler vector field Xα∂/∂Xα on R

n+1 determines a
section Xα of T (1) and that this is the (projective) canonical tractor on Sn. Indeed it was
these facts that inspired the projective tractor notation in [5].

Choosing a section of Rn+1 → Sn, for example the round sphere, to represent the manifold
Sn, it now follows immediately from Theorem 1.1 (and its proof) that on Sn, each geodesic
trace is the curve of points lying in the span of a 2-plane Σ through the origin. That is, the
geodesic traces are the great circles. Of course this last fact is included in any understanding
that P+(R

n+1) is a model for projective geometry. Our main point here is that in this setting

12



Theorem 1.1, especially the incidence relation (1.3), reduces precisely to the usual incidence
relation describing the great circles. Turning this around we see Theorem 1.1 generalises this
incidence characterisation of great circles to a general characterisation of geodesic traces.

In fact, in the homogeneous setting here, we can describe the space of oriented geodesic
traces of Sn explicitly, as the (2n−2)-dimensional ‘twistor’ space P+T of all oriented 2-planes
in R

n+1 – here T := {Σαβ ∈ Λ2
R

n+1 : Σ[αβΣγ]δ = 0}.
To relate geometric objects between Sn and P+T, we introduce their correspondence

space, that is the (2n− 1)-dimensional submanifold of Sn−1 × P+T defined by the incidence
relation X ∧ Σ = 0, for [X ] ∈ Sn−1, [Σ] ∈ P+T. As a bundle over Sn, it is the ray
projectivisation P+(TS

n) of the tangent bundle of Sn, i.e. the fiber P+(TxS
n) ∼= Sn−1 at a

point x of Sn is the set of all oriented directions at x. The correspondence space is fibered
over both Sn and P+T:

P+(TS
n)

zz✉✉
✉✉
✉✉
✉✉
✉

%%
❏❏

❏❏
❏❏

❏❏
❏

Sn
P+T

A point in P+T gives rise to a geodesic in Sn and conversely any geodesic in Sn arises in this
way. Indeed, a curve γ in Sn lifts canonically to a curve γ̃ in P+(TS

n): the point of γ̃ in the
fiber over a point x̊ of γ is simply the oriented tangent direction γ̇ at x̊. It is clear that γ is
a geodesic if and only if γ̃ is (a subset of) a fiber of P+(TS

n) over P+T.
In view of Proposition 3.3, a point of P+T gives rise to a simple section, up to a posi-

tive scale, of the tractor bundle ∧2T over Sn, which is parallel with respect to the tractor
connection, along any direction, not only along the geodesic it defines.

Remark 3.4 The spaces under considerations are generalized flag manifolds and admit a
description as homogeneous spaces with automorphism group G = SL(Rn+1).

Remark 3.5 Replacing P+(TS
n) and P+T by P(TSn) and PT respectively gives us a de-

scription of unoriented great circles in Sn.

3.5.1 Initial conditions for geodesics

The geodesic equation on a projective manifold (M,p) is a second-order (semi-linear) ODE.
Thus given a point x̊ and a vector ů at that point, there is a unique parametrised (and thus
oriented) geodesic γ : I → M with γ(0) = x̊ and velocity γ̇(0) = ů. For a parametrisation
independent description, we merely need a direction at x̊, i.e. a point in the fiber P+(Tx̊M).

In the homogeneous picture, a point [Σ̊] in P+T corresponds to an oriented great circle
in Sn. But it also describes the initial conditions at a point x̊ of Sn with homogeneous
coordinates [X̊ ]. Indeed, [Σ̊] and [X̊ ] single out a point in the fiber P+(Tx̊S

n), which is none
other than the direction of a geodesic (i.e. a great circle) at x̊.

Although there is no twistor space in the curved setting, this understanding still carries
over. Here, our initial conditions at a point x̊ can simply be prescribed by a simple element
of P+(Λ

2Tx̊), which is isomorphic to P+T as described above.
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Theorem 3.6 Let (M,p) be an n-dimensional projective manifold. Fix a point x̊ in M so
that Xx̊ is the canonical tractor based at x̊. Then, for every non-zero element Σ̊ of Λ2Tx̊

satisfying

Xx̊ ∧ Σ̊ = 0 , (3.16)

locally there exists a unique unparametrised geodesic γ through x̊. Further, the tractor Σ
associated to γ (via Theorem 1.1) satisfies Σx̊ = λΣ̊ for some constant λ > 0. Any two
non-zero elements of Λ2Tx̊ satisfying (3.16) give rise to the same oriented geodesic through
x̊ if and only if they differ by a positive constant multiple.

Proof. Let x̊ and Σ̊ be as in the statement of the theorem. The condition (3.16) tells
us that Σ̊ is simple, and in particular, in a splitting of Tx̊, can be written in the form
Σ̊AB = 2ůbX [AWB]

b|̊x for some vector ůb in Tx̊M . These are precisely the initial conditions
which determine the unique local solution I → γ to the geodesic equation (3.11) through x̊

for some I ⊂ R. Clearly, if
˚̃
Σ = c Σ̊ for some constant c > 0, then

˚̃
Σ yields ˚̃u = c ů in Tx̊M ,

which determines the same oriented unparametrised geodesic. �

4 Conformal geometry and distinguished curves

On a given n-manifold M (n ≥ 2) two Riemannian or pseudo-Riemannian metrics g and ĝ
are said to be conformally related if

ĝ = e2 φg , for some smooth function φ. (4.1)

The Levi-Civita connections of the two metrics are related by the equation

∇̂av
b = ∇av

b +Υav
b − vaΥ

b +Υcv
cδba , v ∈ Γ(TM), (4.2)

where Υa := ∇aφ.
It follows easily from (4.2) that in general the geodesics of g are not the same as the

geodesics of ĝ, even after possible reparametrisation. Null geodesics form the exception. A
parametrised geodesic I → γ is a null geodesic if it is a geodesic and its velocity field ub

is (at some point, equivalently everywhere,) null. Thus we have ua∇au
b = 0 and ubu

b = 0
along the curve. Thus from (4.2) we deduce

ua∇̂au
b = 2(Υau

a)ub, (4.3)

and we conclude that there is a reparametrisation of the curve with velocity ûa satisfying
ûa∇aû

b = 0. Thus each null geodesic trace is conformally invariant.
As mentioned in the introduction the distinguished nowhere-null curves are governed by

the third-order conformal circle equation. To treat all these things we review the basic tools
of conformal geometry. We follow the approach developed in [5, 11, 36]. A useful summary
review with some detail may be found in [23].
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As in the case of projective geometry, the density bundles will be important for us. Recall
from Section 3 that any manifold is equipped with the oriented line bundle K := (ΛnTM)2.
For conformal geometry it is convenient to adopt a notation for its roots that differs slightly
from that used above for projective geometry: given w ∈ R we write

E [w] := K w

2n . (4.4)

For two metrics, conformally related as in (4.1), the induced Levi-Civita connections ∇ and

∇̂ on the bundles E [w] are related by

∇̂aσ = ∇aσ + wΥaσ . (4.5)

4.1 Conformal geometry and conformal tractor calculus

A conformal structure on a smooth manifoldM is an equivalence class c of metrics, whereby
two metrics g, ĝ ∈ c are conformally related as in (4.1). A conformal manifold is equipped
with a canonical section g of ⊙2T ∗M [2] called the conformal metric (see e.g. [23]). This
is non-degenerate (as a metric on TM [−1]) and carries the information of the conformal
structure. Indeed any choice of metric g ∈ c is equivalent to a choice of scale σ ∈ Γ(E+[1])
by the formula

g = σ−2g .

The conformal structure is said to be of signature (p, q) if this is the signature of g (equiva-
lently the signature of any g ∈ c).

For Riemannian and pseudo-Riemannian geometry we describe another decomposition
of the curvature. The curvature tensor Rab

c
d of the Levi-Civita connection ∇a of a metric

splits as

Rabcd = Wabcd + 2 gc[aPb]d − 2 gd[aPb]c ,

where Wab
c
d is the conformal Weyl tensor and Pab is the conformal Schouten tensor. The

conformal Weyl tensor is totally tracefree, satisfies the algebraic Bianchi identities, and is
conformally invariant. The conformal Cotton tensor is defined by Yabc := 2∇[bPc]a. The
Bianchi identity yields Ycab = (n− 3)∇dWab

d
c.

As for projective geometry, on a general conformal manifold there is no distinguished
connection on TM but there is one on a related higher tractor bundle that we again denote
T . In this case one considers the bundle J2E [1] of 2-jets of the E [1]. By definition one has
the jet exact sequence at 2-jets

0 → ⊙2T ∗M [1] → J2E [1] → J1E [1] → 0. (4.6)

but on a conformal manifold we may split ⊙2T ∗M , and hence also ⊙2T ∗M [1] using g.
We have ⊙2T ∗M [1] = E [−1] ⊕ ⊙2

0T
∗M [1] where ⊙2

0T
∗M [1] is the metric trace-free part of

⊙2T ∗M [1], E [−1] → ⊙2T ∗M [1] is included by ρ 7→ ρg and this is split by taking 1/n times
the g-trace. The standard tractor bundle T (or we write EA in the abstract index notation)
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is defined to be quotient of J2E [1] by the image of the map ⊙2
0T

∗M [1] → J2E [1]. It then
follows from (4.6) that T has the composition structure

0 → E [−1]
X→ T → J1E [1] → 0 and 0 → T ∗M [1] → J1E [1] → E [1] → 0 (4.7)

which we summarise as EA = E [1] +✞✝ Ea[1] +
✞
✝ E [−1]. The mapping X may be viewed as a

section of EA[1] and this is the conformal canonical tractor. It turns out that there is an
invariant tractor metric h = hAB, of signature (p + 1, q + 1), and with respect to this, X is
null, h(X,X) = 0. Note that this tractor metric identifies T with the dual tractor bundle
T ∗.

Given a choice of metric g ∈ c the sequences (4.7) split, as discussed in e.g. [11, 23], so

that EA g
= E [1] ⊕ Ea[1] ⊕ E [−1], and an element V A of EA may be represented by a triple

(σ, µa, ρ), or equivalently by

V A = σY A + µaZA
a + ρXA, (4.8)

where we have raised indices using h−1 = hAB and g−1 = gab. The last display defines
the algebraic splitting operators Y : E [1] → T and Z : TM [−1] → T (determined by the
choice g ∈ c) which may be viewed as sections Y A ∈ Γ(EA[−1]) and ZA

a ∈ Γ(EA
a [1]). As a

quadratic form the tractor metric is given by

V A 7→ 2σρ+ gabµ
aµb,

in terms of the splitting, or equivalently its inverse is

hAB = 2X(AY B) + gabZA
aZ

B
b.

We then use the tractor metric to raise and lower tractor indices so we also have hAB =
2X(AYB) + gabZA

aZB
b, with XAYA = 1, ZA

aZA
b = δab and all other pairings of the splitting

operators giving a zero section.
While XA is conformally invariant, a change of tractor splitting given by (4.1) is equiv-

alent to the transformations

ẐA
a = ZA

a −ΥaX
A , Ŷ A = Y A +ΥaZA

a +
1

2
ΥaΥaX

A

where, as usual, Υa = ∇aφ. Thus we conclude, for example, that there is a conformally
invariant injective bundle map from TM [−2] into Λ2T :

X
AB
b : E b[−2] → E [AB] given by vb 7→ 2X [AZB]

bv
b. (4.9)

There is a canonical conformally invariant (normal) tractor connection on T that pre-
serves h that we shall also denote ∇a. It can be coupled to the Levi-Civita connection of
any metric in c, and its action on the splitting operators is then given by

∇aX
A = ZA

a , ∇aZ
A
b = −PabX

A − gabY
A , ∇aY

A = Pa
bZA

b . (4.10)
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The general action on a section of a tractor bundle can then be deduced from the Leibniz
rule.

Finally, the tractor curvature Ωab
C
D of the tractor connection, defined by Ωab

C
DΦ

D :=
2∇[a∇b]Φ

C , for any ΦA ∈ Γ(T ), can be expressed in a splitting as

ΩabCD = WabcdZC
cZD

d − 2YcabX[CZD]
c (4.11)

A conformal structure is said to be (locally) flat if this tractor curvature vanishes as this
happens if and only if there is locally a flat metric in the conformal class.

4.2 Null geodesics

In view of the observation (4.3), some conformal aspects of null geodesics correspond to
projective features of arbitrary geodesics. The following Lemma gives a parametrisation
independent equation for null geodesics and is analogous to Lemma 3.2. Here we write
Tγ[w] for Tγ ⊗ E [w]|γ for any weight w ∈ R.

Lemma 4.1 Let γ be an oriented curve on (M, c). Then γ is a unparametrised null geodesic,
with respect to c, if and only if there exists a non-vanishing null vector field ua ∈ Γ(Tγ[−2])
along γ satisfying the conformally invariant equation

ub∇bu
a = 0 , for any g ∈ c with Levi-Civita ∇. (4.12)

The weighted velocity field u is unique up to a positive factor that is constant along γ.

Proof. The conformal invariance of (4.12) is an easy consequence of (4.2), (4.5).
The remainder of the proof is then a simple adaption of the proof of Lemma 3.2 that

uses now (4.3). �

We now find the tractor picture also agrees with the projective case as follows. Given a
curve γ and ua ∈ Γ(Tγ[−2]) we may use (4.9) to form the conformally invariant weight zero
2-tractor field

ΣAB := X
AB
b ub, (4.13)

along γ. By construction, Σ is simple, i.e. Σ ∧ Σ = 0. Furthermore, assuming ua is non-
vanishing, it is easily verified that, the curve γ is null if and only if Σ is totally null, i.e. the
span of Σ is totally null. This can be characterised equivalently by the property that

ΣA
BΣ

B
C = 0 , (4.14)

that is, ΣA
B is nilpotent of order 2. We then have a conformal analogue of Proposition 3.3.

Proposition 4.2 An oriented curve γ on (M, c) is an unparametrised null geodesic if and
only if it admits a non-vanishing section ub ∈ Γ(Tγ[−2]) such that Σαβ = X

αβ
b ub is parallel

along γ.
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Proof. It follows from the identities (4.10) that

ua∇aΣ
AB = X

AB
b ua∇au

b − 2X [AY B]gabu
aub. (4.15)

At each point the terms on the right hand side are linearly independent if non-zero. �

We are now in position to prove Theorem 1.2 in analogy to the projective case.
Proof of Theorem 1.2. The argument follows Proof of Theorem 1.1, but now uses (4.15) and
the conformal tractor calculus. �

It follows immediately from the proof that any 2-tractor Σ satisfying (1.4) must be of
the form (4.13), in particular, simple and totally null.

4.3 The model and incidence

To obtain the standard homogeneous model for oriented conformal structures of signature
(p, q) we begin with R

n+2, equipped with a fixed symmetric non-degenerate bilinear form h,
of signature (p+ 1, q + 1). In the case of definite signature, the model is discussed in detail
in [23] and [32]. We then form Sn+1 := P+(R

n+2) (cf. Section 3.5) and consider the quadric
Q := P+N, where N := {X ∈ R

n+2 | h(X,X) = 0} is the null quadric in R
n+2. As a smooth

manifold this is a sphere product Sp×Sq smoothly embedded as codimension 1 submanifold
in P+(R

n+2).
There is the projective standard tractor bundle T on P+(R

n+2) as constructed in Section
3.5 (see especially (3.15)) and the conformal standard tractor bundle Tc is simply the pull
back of T along the embedding i : Q → P+(R

n+2). Similarly, in this setting the conformal
tractor connection ∇Tc is simply the restriction of the projective tractor connection, and
so arises from the parallel transport of the standard affine structure on the vector space
R

n+2. The canonical tractor X ∈ Tc[1] is just the pullback to Q of the conformal canonical
tractor, that is, it is the tautological section of Tc[1] determined at each point x ∈ Q by
the homogeneous coordinates for x. The conformal tractor metric then arises in the obvious
way from the symmetric bilinear form h. We subsequently drop the subscript and denote
the conformal standard tractor bundle by T .

Arguing as in the projective case, it now follows immediately from these facts and The-
orem 1.2 that on Q, each unparametrised null geodesic is the curve of points lying in the
span of a totally null 2-plane through the origin. So Theorem 1.2 generalises this incidence
relation to a general characterisation of null geodesic traces.

The double fibration picture is very similar to the one presented in Section 3.5. Here,
the space of all oriented null geodesics in Q is the (2n− 3)-dimensional ray projectivisation
P+T of

T :=
{
ΣAB ∈ Λ2

R
n+2 : Σ[ABΣC]D = 0 ,ΣA

CΣ
C
B = 0

}
.

The space P+T consists of all oriented linear 1-dimensional subspaces contained in Q.
The correspondence space between Q and P+T is the (2n− 2)-dimensional submanifold

of Q × P+T defined by the incidence relation X ∧ Σ = 0, for [X ] ∈ Q, [Σ] ∈ P+T. As a
bundle over Q, it is the ray projectivisation P+C of the bundle C of null cones over Q: a
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fiber of P+C over a point x of Q consists of all oriented null directions through x. Again, the
correspondence space yields the double fibration:

P+C

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

""
❋❋

❋❋
❋❋

❋❋

Q P+T

Analogously to the projective case, the tangent directions of a curve γ in Q ∼= Sn canonically
determine a lift of γ to P+C, which descends to a point in P+T if and only if γ is a null
geodesic.

Remark 4.3 These spaces are generalized flag manifolds and admit a description as homo-
geneous spaces with automorphism group G = SO(p+ 1, q + 1).

Remark 4.4 Note that replacing P+C and P+T by PC and PT respectively yields a double
fibration for unoriented null geodesics.

4.3.1 Initial conditions for null geodesics

The discussion above allows us to treat the problem of initial conditions for null geodesics
on a conformal manifold in the same way as in Section 3.5.1. We leave the details to the
reader. One obtains the following theorem:

Theorem 4.5 Let (M, c) be a n-dimensional conformal manifold of indefinite signature. Fix
a point x̊ in M so that Xx̊ is the canonical tractor based at x̊. Then, for every totally-null
non-zero element Σ̊ of Λ2Tx̊ satisfying

Xx̊ ∧ Σ̊ = 0 , (4.16)

there locally exists a unique unparametrised null geodesic γ through x̊. Further, the tractor
Σ associated to γ (via Theorem 1.2) satisfies Σx̊ = λΣ̊ for some constant λ > 0. Any
two totally null elements of Λ2Tx̊ that satisfy (4.16) give rise to the same oriented geodesic
through x̊ if and only if they differ by a positive constant multiple.

Proof. The proof proceeds in the same way as that of Theorem 3.6. The only difference is
the additional requirement that Σ̊ is totally null, which does not follow from (4.16). This
condition ensures that the vector ů tangent at x̊ is null. �

4.4 Conformal circles

Next, we consider the conformally invariant generalisation of nowhere-null geodesics known
as conformal circles or conformal geodesics (see [4, 5, 56] and references therein). We shall
follow the definition of conformal circles introduced in [5], which is expressed in the language
of tractor calculus.
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4.4.1 Nowhere-null curves

On a Riemannian, pseudo-Riemannian, or conformal manifold, by a nowhere-null curve we
mean a curve γ that admits a velocity field u ∈ Γ(Tγ) with uaua = g(u, u) nowhere zero.
Let us first highlight a number of conformal properties of nowhere-null curves.

Note that such a velocity field ua determines a scale σu ∈ Γ(E+[1]|γ) along the curve via
the definitions

σu :=

{ √
uaua if ua is spacelike,√−uaua if ua is timelike.

(4.17)

Lemma 4.6 Let γ be an oriented nowhere-null curve. There exists a unique weighted vector
field ua ∈ Γ(Tγ[−1]) along γ that is compatible with the orientation and satisfies

uaua =

{
1 , if γ is spacelike,

−1 , if γ is timelike.
(4.18)

Proof. Given an oriented curve γ, let ua be a nowhere zero velocity vector field compatible
with the orientation, and define σu by (4.17). Then ua := σ−1

u ua does not depend on the
choice of velocity vector ua, and satisfies the properties given by (4.18). �

Definition 4.7 Let γ be an oriented nowhere-null curve on (M, c). We call the canonical
weighted vector field ua given in Lemma 4.6, the weighted velocity of γ. Given g ∈ c, we
define the weighted acceleration of γ to be

ab := uc∇cu
b ∈ Γ(E b[−2]|γ) . (4.19)

It is clear that

ubab = 0 . (4.20)

Furthermore if ĝ = e2φg then we have âb = ab + uaΥau
b ∓Υb whenever uaua = ±1.

Note that given an oriented curve γ, any scale σ ∈ Γ(E+[1]|γ) along the curve determines
a particular velocity vector ua := σua with σ2 = |uaua|, and thus a parametrisation of γ (up
to additive constant). We note further the relation between the weighted acceleration and
the acceleration vector ab := uc∇cu

b resulting from such a choice:

ac = σ2ac + σ
(
ub∇bσ

)
uc , ac = σ−2ac − σ−3

(
ub∇bσ

)
uc . (4.21)

4.4.2 The conformal circle equations

All curves locally admit projective parametrisation as defined in [4, 5]. A parametrised curve
γ is a projectively parametrised conformal circle if and only if it satisfies the equation (1.5).

We are interested in parametrisation independent descriptions of conformal circles. As a
step toward this we use the following easily verified result from [4].
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Proposition 4.8 Let γ be any curve on (M, c) with velocity vector field ua ∈ Γ(Tγ) and
acceleration ab := uc∇cu

b. The equations
(
ub∇ba

[a
)
ub] = 3

u · a
u · ua

[aub] + (u · u)ucPc
[aub] (4.22)

are parametrisation independent. Moreover the equation is satisfied if and only if there is a
reparametrisation that obeys the conformal circle equation (1.5).

The analogue of Lemmata 3.2 and 4.1 is given by:

Lemma 4.9 Let γ be an oriented nowhere-null curve on (M, c). Then γ is a conformal circle
if and only if its weighted velocity ua and acceleration aa satisfy the conformally invariant
equation

(
uc∇ca

[a
)
ub] = ±ucPc

[aub] , whenever uaua = ±1, (4.23)

or equivalently,

ub∇ba
a = ±ubPb

a − (Pbcu
buc ± a · a)ua , whenever uaua = ±1, (4.24)

for any g ∈ c with Levi-Civita connection ∇.

Proof. We first note that the equivalence of (4.23) and (4.24) follows from (4.20). The rest
of the lemma can be proved simply by choosing a density σ ∈ Γ(E+[1]|γ) along γ, setting
ua := σua so that ua is a vector field tangent to γ with uaua = ±σ2, using (4.21), and
substituting (4.23) to get (4.22). �

Remark 4.10 Equation 4.24 recovers Tod’s [56, Equations (11) and (14)], see also [26,
Equation (3)]. In a private communication, Michael Eastwood has informed us that in a
forthcoming work he and Lenka Zalabová provide a tractor derivation of the equation (4.24)
via Proposition 1 of the Doubrov-Žádńık article [24].

Since the equation (4.24) is scale (equivalently, parametrisation) independent we can
easily use it to deduce an equation for any choice of scale. For example, let σ ∈ E+[1] be a
scale determining a metric gab := σ−2gab. If ua is the weighted velocity of a curve γ with
uaua = ±1, then ua := σua is unit in the sense that uaubgab = ±1. If γ is a conformal
circle, then we conclude at once that its acceleration vector field satisfies

ub∇ba
a = ±ubPb

a −
(
Pbcu

buc ± (a · a)
)
ua . (4.25)

This generalises to arbitrary signature the definition of conformal circles presented in [59, 60].

4.4.3 The tractor formulation

Definition 4.11 Let γ be an oriented nowhere-null curve on a conformal manifold (M, c),
with weighted velocity ua. Choose σ ∈ Γ(E+[1]|γ). The velocity tractor and the acceleration
tractor associated to γ and σ are defined to be

UA := σua∇a

(
σ−1XA

)
, AA := σua∇aU

A ,

respectively.
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When written out explicitly, we have, for any g ∈ c with Levi-Civita connection ∇,

UA =
(
−σ−1ua∇aσ

)
XA + uaZA

a ,

AA =
(
σ−1 (ua∇aσ)

2 − aa∇aσ − uaub∇a∇bσ − uaubPabσ
)
XA

+
(
aaσ −

(
ub∇bσ

)
ua

)
ZA

a + (∓σ)Y A ,

whenever uaua = ±1, and with ab := ua∇au
b.

Note that both UA and AA depend on the choice of scale σ along γ, and thus on a choice
of parametrisation, see Section 4.5 below. However, the 3-tractor defined by

ΣABC := σ−1 6X [AUBAC] (4.26)

is independent of σ. We have the following result.

Lemma 4.12 An unparametrised oriented nowhere-null curve γ determines a canonical 3-
tractor Σ ∈ Γ(Λ3T |γ) along it via (4.26).

Proof. Along γ choose a scale σ ∈ Γ(E+[1]|γ). Then by the conformal invariance of the
tractor connection it follows that the tractors σ−1XA, UA and AA depend only on γ and σ.
Thus Σ as in (4.26) can depend only on γ and σ.

To facilitate calculation we pick some other background scale to split the tractor bundles.
Then Σ, as defined by (4.26), is given by

ΣABC = ±6ucX [AY BZC]
c + 6ubacX [AZB

bZ
C]

c , whenever uaua = ±1, (4.27)

where we note that there is no dependency on σ. �

Proposition 4.13 Let γ be a nowhere-null oriented curve on (M, c) with associated 3-
tractor ΣABC as defined by (4.26). Then γ is a conformal circle if and only if ΣABC is
constant along γ.

Proof. Let ua be the weighted velocity of γ. Then differentiating ΣABC gives

ud∇dΣ
ABC = 6

(
ud∇da

c ∓ udPd
c
)
ubX [AZB

bZ
C]

c , whenever uaua = ±1,

and the result follows immediately – see equation (4.23). �

Before we continue we need a few more technical results, as follows. Given an oriented
curve γ, and a choice of scale σ along γ, these are established using the definition of U , A,
and the tractor identities following (4.8) in Section 4.1:

U · U = ±1 , (4.28)

A · A = ±2 σ

(
uaub∇a∇bσ + aa∇aσ − 1

2
σ−1(ua∇aσ)

2 + uaubPabσ ± 1

2
ababσ

)
, (4.29)

X · A = ∓σ , (4.30)

X · U = 0 , (4.31)

U · A = 0 , (4.32)
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where the weighted velocity ua satisfies uaua = ±1, and ab is the weighted acceleration.
The signature of a simple k-tractor Σ will refer to the signature of the restriction of the

tractor metric to the span of the factors of Σ. The identities above yield the following lemma.

Lemma 4.14 Let γ be an oriented nowhere-null curve on (M, c) with weighted velocity ua

and associated 3-tractor Σ as defined by (4.26). At any point Σ has signature (+,+,−) if
γ is spacelike, and (+,−,−) if γ is timelike. Moreover, we have |Σ|2 := 1

6
ΣABCΣABC = ∓1

whenever uaua = ±1.

Proof. Let us define

BA :=
1√
2

(
AA ±

(
A ·A
2

− 1

)
σ−1XA

)
, CA :=

1√
2

(
AA ±

(
A · A
2

+ 1

)
σ−1XA

)
,

where the sign is chosen according to whether γ is spacelike or timelike respectively. Then,
from (4.30), it is easy to check that B · B = 1 and C · C = −1, and that UA, BA and CA

are mutually orthogonal. Using (4.28) now yields the signature of Σ. The final claim also
follows easily, or directly from the identities above. �

We are now ready to prove the main result.
Proof of Theorem 1.3. If γ is a conformal circle then we can simply take ΣABC to be (4.26)
and so the forward direction follows from Proposition 4.13.

For the converse suppose that γ is a nowhere-null oriented curve satisfying

X [AΣBCD] = 0 , (4.33)

for some non-zero 3-tractor ΣABC which is parallel along γ for the tractor connection. Let
ua denote the weighted velocity associated to γ. Picking a scale σ ∈ Γ(E+[1]) to compute,
and differentiating σ−1 times (4.33) (with ub∇b) along γ we obtain that

U [AΣBCD] = 0.

Now differentiating this last display, again with ub∇b, we conclude that

A[AΣBCD] = 0

where AA is the acceleration tractor of γ. Since XA, UA and AA are linearly independent,
ΣABC must be fσ−1X [AUBAC] for some function f along γ. Using the tractor metric to
contract this with itself, and comparing with the last statement of Lemma 4.14 we conclude
that f 2 is constant along γ, and with no loss of generality, Σ can be taken to be given by
(4.26). The result now follows from Proposition 4.13. �
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4.5 A comment on parametrised conformal circles

As is already pointed out in [4], the parametrised conformal circle equation (1.5) is equivalent
to its unparametrised counterpart (4.22) together with the additional condition

(
ub∇ba

a
)
ua = 3

(u · a)2
u · u − 3

2
(a · a)− (u · u)uaubPab . (4.34)

In particular, this equation must govern the choice the choice of parametrisation of a confor-
mal circle. In fact, it is shown in [5] that any curve γ on (M, c), not necessarily a conformal
circle, is projectively parametrised if and only if its acceleration tractor satisfies

A · A = 0 . (4.35)

From (4.29), we can immediately conclude

Lemma 4.15 Let γ be an oriented nowhere-null curve on (M, c) with weighted velocity ua

and acceleration aa. Then a density σ ∈ Γ(E [1]) determines a projective parametrisation of
γ if and only if, for any g ∈ c with Levi-Civita connection ∇, σ satisfies

uaub∇a∇bσ + aa∇aσ − 1

2
σ−1(ua∇aσ)

2 + uaubPabσ ± 1

2
ababσ = 0 ,

or equivalently, as a prolonged system,

ua∇aσ − τ = 0 ,

ua∇aτ −
1

2
τ 2σ−1 + uaubPabσ ± 1

2
ababσ = 0 ,

whenever uaua = ±1.

4.6 The model and incidence

In the context of conformal circles, we recall from section 4.3 that the flat model consists of a
conformal quadric Q embedded in Sn+1 = P+(R

n+2) as the image under P+ of the null cone
N ⊂ R

n+2 defined by a non-degenerate symmetric bilinear form h of signature (p+ 1, q + 1)
on R

n+2.
Each orbit of the Lie group G = SO(p + 1, q + 1) acting on R

n+2 is characterised by
the signature of h restricted to the lines through the origin. These may be null, spacelike
or timelike. In particular, we can identify Q as the closed orbit of the Lie group G =
SO(p+ 1, q + 1) on R

n+2 arising from N.
We can similarly describe the space of oriented conformal circles in Q as an open or-

bit of the Lie group G on the space P+T̃ of oriented 2-planes in P+(R
n+2) where T̃ :={

ΣABC ∈ Λ3
R

n+2 : Σ[ABCΣD]EF = 0
}
consists of all simple elements of Λ3

R
n+2. In indefinite

signature, the space of oriented conformal circles space splits into two disjoint connected
components according to whether they are spacelike or timelike.
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From our previous discussion, especially in connection to Lemma 4.14, the space of
oriented spacelike, respectively timelike, conformal circles is the (3n − 3)-dimensional ray
projectivisation P+T

+,+,−, respectively P+T
+,−,−, of the smooth variety

T
+,±,− :=

{
ΣABC ∈ Λ3

R
n+2 : Σ[ABCΣD]EF = 0 , sign(Σ) = (+,±,−)

}
⊂ T̃ , (4.36)

where sign(Σ) denotes the signature of an element Σ of T̃, that is, the signature of the
restriction of h to the span of the factors of Σ.

A conformal circle here is a circle in Q arising from the intersection of Q and the oriented
2-plane defined by an element of P+T

+,±,−.
Finally, the correspondence space between Q and P+T

+,±,− is the (3n − 2)-dimensional
submanifold F+,±,− ofQ×P+T

+,±,− defined by the incidence relationX∧Σ = 0, for [X ] ∈ Q,
[Σ] ∈ P+T

+,±,−. It gives rise to the double fibration

F+,±,−

{{①①
①①
①①
①①
①①

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

Q P+T
+,±,−

As a bundle over Q, a fiber of F+,±,− over a point x in Q can be identified as the space of all
velocity and acceleration directions of all curves through x. The velocity and acceleration
vectors up to scale of a curve γ in Q determine a lift of γ to F+,±,−, which descends to a
point of P+T

+,±,− if and only if γ is an oriented conformal circle.
Unlike in the projective and the null conformal cases, the metric on Λ3

R
n+2 allows us

to single out a unique representative Σ ∈ T
+,±,− of an element of P+T

+,±,− by choosing the
normalisation |Σ|2 = ∓1.

4.6.1 Initial conditions for conformal circles

The discussion above allows us to treat the problem of initial conditions for oriented con-
formal circles on a conformal manifold in a way similar to the projective and null conformal
treatments of Sections 3.5.1 and 4.3.1. The only difference here is that given a point x̊, we
need to specify a velocity ů and an acceleration å at x̊ consistent with initial conditions for
the third-order ODE (4.22) governing conformal circles.

Theorem 4.16 Let (M, c) be an n-dimensional conformal manifold. Fix a point x̊ in M so
that Xx̊ is the canonical tractor based at x̊. Then, for every non-zero element Σ̊ of Λ3Tx̊ that
satisfies the incidence relation:

Xx̊ ∧ Σ̊ = 0 , (4.37)

together with the following conditions

1. Σ̊ is simple,
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2. Σ̊ has signature (+,+,−) or (+,−,−) ,

there locally exists a unique unparametrised oriented conformal circle γ through x̊, which
is spacelike if sign(Σ̊) = (+,+,−) or timelike if sign(Σ̊) = (+,−,−). Further, if Σ̊ is
normalised to |Σ̊|2 = ∓1, then the tractor Σ associated to γ (via Theorem 1.3) satisfies
Σx̊ = Σ̊.

Proof. The reasoning follows the proofs of Theorems 3.6 and 4.5. The incidence relation
(4.37) together with the condition 1 yields two vectors ů and å at x̊. Condition 2 tells us
that ů is either spacelike or timelike. The existence and uniqueness of the conformal circle
through x̊ now follows from the theory of ODE applied to (4.22). �

5 Symmetry and first BGG type equations

On a Riemannian or pseudo-Riemannian manifold (M, g) a vector field k is an infinitesimal
isometry, or Killing vector, if it satisfies the Killing equation Lkg = 0, which may be written
as ∇(akb) = 0 in terms of the Levi-Civita connection ∇. More generally a tensor k ∈
Γ(⊙kT ∗M) is called a Killing tensor if it satisfies the equation

∇(a0ka1···ak) = 0. (5.1)

A rank-k Killing-Yano tensor (or form) is a k-form F ∈ Γ(ΛkT ∗M) that satisfies

∇F ∈ Γ(Λk+1T ∗M). (5.2)

Both Killing tensors and Killing-Yano tensors have been used for the construction of first
integrals of geodesics [1, 28].

There are conformal variants of these equations: the conformal Killing equation

∇(a0Ka1···ak)0 = 0, (5.3)

on trace-free rank-k tensors K (k ≥ 1); and the conformal Killing-Yano equation

tf(∇F ) ∈ Γ(Λk+1T ∗M), (5.4)

on k-forms F , where tf means the (metric) trace-free part of the given tensor. These are
known for providing first integrals of null geodesics.

For the cases of k ≥ 2, the solutions of these equations are sometimes called hidden
symmetries because they are not symmetries, in the usual sense, of (M, g) (or ‘configuration
space’), but rather symmetries of the standard metric Hamiltonian on the cotangent bundle
(or ‘phase space’) which do not descend to isometries, but nevertheless provide such conserved
quantities. It turns out that the equations (5.1) and (5.2) are projectively invariant, meaning
that they descend to well defined equations on projective manifolds, provided k and F are
assigned a suitable projective weight. In fact they are in the class of projective first BGG
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equations. Similarly if K and F are assigned suitable conformal weights then (5.3) and (5.4)
are conformally invariant and are, in particular, conformal first BGG equations.

The Killing type equations above are very specific examples of first BGG equations ;there
are a vast number of equations in this class. Using the characterisation of distinguished curves
from Theorems 1.1, 1.2, and 1.3 we will show that a suitable solution to any one of these can
lead to first integrals of geodesics (in the case of projective BGGs) and of conformal circles
(in the case of conformal BGGs). Moreover we will show that this fits into a uniform and
elegant general theory.

5.1 Elements of BGG theory

Recall our model for oriented projective geometry is Sn = P+(R
n+1). This is a homogeneous

space for G = SL(Rn+1) ∼= SL(n + 1), and P+(R
n+1) = G/P where P may be taken to be

the parabolic subgroup stabilising a fixed nominated ray from the origin.
Similarly recall our model oriented conformal geometries of signature (p, q) is the ray

projectivisation of N, where N is the null quadric N := {X ∈ R
n+2 | h(X,X) = 0} in R

n+2

equipped with a fixed symmetric non-degenerate bilinear form h, of signature (p+ 1, q + 1).
This Sp × Sq is acted on transitively by G = SO(p+ 1, q + 1) and the stabiliser of a point is
again a parabolic subgroup that we will also denote P .

Conformal and projective geometries are examples of parabolic geometries, as studied
generally in [15], and we refer the reader to that source for general background. Each such
geometry is by definition modelled on a homogeneous manifold G/P where G is a semi-
simple Lie group and P is a parabolic subgroup. It consists of a manifold M of dimension
dim(G/P ) and a P -principal bundle G → M equipped with a canonical Cartan connection
ω which is a suitably equivariant g-valued 1-form that provides a total parallelization of TG.
Here g denotes the Lie algebra of G. For any representation U of P , one has a corresponding
associated bundle G ×P U. The tractor bundles are the associated bundles W := G ×P W

where W is a linear representation space of G (and hence also of P by restriction)[12]. On
these the Cartan connection induces a linear connection∇W . In fact this is easily understood.
As for any associated bundle, a section T of W is equivalent to a function

t : G → W satisfying t(u · p) = ρ(p−1)t(u) (5.5)

for all u ∈ G and p ∈ P , with ρ denoting the representation of G (restricted here to P ) on
W. Given a smooth vector field ξ on M we can always find a lift ξ of ξ to G that is invariant
under the principal right action of P . Then

(ξ · t+ ρ′(ω(ξ))t) : G → W (5.6)

is a P -equivariant function, where the representation ρ′ : g → End(W) is the derivative of the
representation ρ. This is independent of the choice of lift ξ and is precisely the equivariant
function corresponding to ∇W

ξ T [12]. In particular, T is parallel along ξ, i.e. ∇W
ξ T = 0, if

and only if its corresponding P -equivariant function t satisfies

ξ · t+ ρ′(ω(ξ))t = 0 . (5.7)
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For a classical Lie group G the defining (or sometimes called standard) representation
gives the tractor bundle what we term the standard tractor bundle. Conversely given such a
tractor bundle T and its linear tractor connection we can recover the Cartan bundle, as an
adapted frame bundle for T , and the Cartan connection from the tractor connection ∇T on
T , see [12], essentially by extracting it from the formula (5.6). In particular for projective
and conformal geometries we obtain Cartan connections modelled on the appropriate (G,P )
as above, and the information of the Cartan connection is contained in the respective tractor
connections as introduced above. It is convenient here to use mainly the same notation for
the projective and conformal cases as the general discussion applies to both.

From (3.4) there is a projectively invariant injective bundle map

X : T ∗M → End(T )

given by ub 7→ XAZB
bub. Similarly for conformal geometry there the similar bundle embed-

ding (4.9)
X : T ∗M → Λ2T ⊂ End(T ),

where the tractor metric is used in the obvious way to identify elements of Λ2T with skew
elements of End(T ). In either case sections of End(T ) act on tractor bundles in the obvious
tensorial way and so, via each respective X, we have a canonical action of T ∗M on any
tractor bundle V and this induces a sequence of invariant bundle maps

∂∗ : ΛkT ∗M ⊗ V → Λk−1T ∗M ⊗ V, k = 1, · · · , n+ 1. (5.8)

This is the (bundle version of the) Kostant codifferential for projective, respectively confor-
mal, geometry and satisfies ∂∗ ◦ ∂∗ = 0; so it determines subquotient bundles Hk(M,V) :=
ker(∂∗)/ im(∂∗) of the V-valued tractor bundles ΛkT ∗M ⊗ V.

Next, for each tractor bundle V = G ×P V, with V irreducible for G, one obtains a
so-called BGG-sequence [16] see also [10].

H0
DV

0→ H1
DV

1→ · · ·
DV

n−1→ Hn .

Here Hk = Hk(M,V) and each DV
i is a linear projectively, respectively conformally, invariant

differential operator.
Here we will only be interested in the operator DV = DV

0 , which defines an overdetermined
system and is closely related to the tractor connection ∇ on V. The parabolic subgroup
P ⊂ G determines a filtration on V by P–invariant subspaces. Denoting the largest non–
trivial filtration component by V

0 ⊂ V, then H0 is the quotient V/V0. Here, V0 is the
corresponding associated bundle for V0, and we write Π : V → H0 for the natural projection.

We recall here the construction of the first BGG operators DV , and also the definition
of the special class of so called normal solutions (cf. [44]) for these operators. For the
current article we only need the following very general theorem in the setting of projective
or conformal geometry. If the former, we take G = SL(n + 1,R), G the projective Cartan
bundle and invariance means projective invariance. In the case of conformal geometry we
take G to mean SO(p + 1, q + 1), G the conformal Cartan bundle and invariance means
conformal invariance.
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Theorem 5.1 ([18]) Let V be a G-irreducible tractor bundle onM and V := G×P V. There
is a unique invariant differential operator L : H0 → V such that Π ◦ L is the identity map
on H0 and ∇ ◦ L lies in ker(∂∗) ⊂ T ∗M ⊗ V. For σ ∈ Γ(H0), DVσ is given by projecting
∇(L(σ)) to Γ(H1), i.e. DVσ = Π(∇(L(σ))).

Furthermore the bundle map Π induces an injection from the space of parallel sections of
V to a subspace of Γ(H0) which is contained in the kernel of the first BGG operator

DV : H0 → H1 . (5.9)

Definition 5.2 In the setting of the above theorem, elements of this subspace of Γ(H0) are
called normal solutions to the equation DVσ = 0.

The differential operator L : H0 → V, in the Theorem, is called a BGG splitting operator.
We sometimes denote this LV to emphasise the particular tractor bundle involved.

By definition normal solutions to (5.9) are in 1-1 correspondence with parallel sections
of the corresponding tractor bundle V. On geometries which are flat, according to the
tractor/Cartan connection, all solutions are normal and locally there is dim(V)-parameter
family of such normal solutions. A projective manifold is flat in this way if the projective
tractor curvature (3.10) vanishes and similarly a conformal manifold is flat if the tractor
curvature (4.11) vanishes.

On curved manifolds only for a very few representations V of G is it the case that a so-
lution σ of (5.9) is always normal. For example this happens for the defining representation
in both the conformal and projective cases, and also the dual of that in the latter setting. In
general ∇L(σ) is given by curvature terms acting on L(σ) (and this can be reorganised to
give an invariant prolongation connection on V so that solutions are in 1-1 correspondence
with parallel sections of V [39]). Normal solutions (for which these curvature terms necessar-
ily annihilate L(σ)) often correspond to interesting geometric conditions on the underlying
manifold. For example on a projective manifold a parallel maximal rank section of ⊙2T
(or the dual bundle) means that there is in the projective class p an Einstein metric with
non-zero scalar curvature [2, 3, 18, 34, 37].

6 Conserved quantities

Here we give the main theorem concerning the first integrals that arise from the normal
solutions of first BGG equations. For all of the cases there is a single principle for proliferating
these as described in the theorem below.

Given a representation space V of a Lie group G let us write
⊗

V for the tensor algebra
generated by V, and

⊙m
V for the m-fold symmetric tensor product of V. In each case we

take this equipped with the representation of G induced from that on V.
In the following theorem the meaning of the Lie group G, the corresponding Cartan

bundle G, and the irreducible G-representation space will depend on the setting. Either:
(p) we work on an arbitrary projective manifold (Mn,p) and view R

n+1 as the defining
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representation for G = SL(Rn+1) ∼= SL(n+ 1,R), and

W0 := Λ2
R

n+1;

or
(n) we work on an arbitrary conformal manifold (Mn, c) of strictly indefinite signature (p, q),
view R

n+2 as the defining representation for G := SO(h) ∼= SO(p + 1, q + 1), where h is a
fixed non-degenerate symmetric bilinear form (on R

n+2) of signature (p+1, q+1), and define

W0 := Λ2
R

n+2;

or
(c) we work on an arbitrary conformal manifold (Mn, c), view R

n+2 as the defining repre-
sentation for G := SO(h) ∼= SO(p + 1, q + 1), where h is a fixed non-degenerate symmetric
bilinear form (on R

n+2) of signature (p+ 1, q + 1), and define

W0 := Λ3
R

n+2.

Then we have:

Theorem 6.1 Let V1, · · · ,Vk be irreducible representation spaces of G, Vi = G ×P Vi, and
DVi, i ∈ {1, · · · , k} the corresponding respective first BGG operators.

For each i ∈ {1, · · · , k}, suppose that σi is a normal solution to the first BGG equation

DViσi = 0, (6.1)

and mi ∈ Z≥0. Then for each copy of the trivial G-representation R in

(⊙m0W0)⊗ (⊙m1V1)⊗ · · · ⊗ (⊙mkVk) (6.2)

there is a corresponding distinguished curve first integral.

Note distinguished curve here means: unparametrised geodesic in the setting (p); or un-
parametrised null geodesic in the setting (n); or unparametrised conformal circle in the
setting (c). In the following proof of the Theorem P ⊂ G is a parabolic subgroup in each
case as defined at the beginning of Section 5.1.

Proof of Theorem 6.1. Let V1, · · · ,Vk and m0, · · · , mk be as in the statement of the The-
orem. To each copy of the trivial G-representation R in (6.2) there is, in particular, a
G-epimorphism

φ : (⊙m0W0)⊗ (⊙m1V1)⊗ · · · ⊗ (⊙mkVk) → R, (6.3)

where G acts trivially on R. Let us fix such a map. Each normal solution σi (i = 1, · · · , k),
to the equations (6.1) (on the manifold (M,p) in the projective setting (p), or on (M, c) for
either of the conformal settings (c) or (n)) is equivalent to a parallel tractor field L(σi) = Si ∈
Γ(G ×P Vi), where L is the BGG splitting operator introduced in Theorem 5.1. Moreover,
as discussed above, each of these is equivalent to a P -equivariant function

si : G → Vi, i ∈ {1, · · · , k}
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that satisfies equation (5.7) with t = si, ρ
′ = ρi the representation of g on Vi and ξ is the

lift of any vector field ξ on M to G.
On the other hand, according to Theorem 1.1, Theorem 1.2, and Theorem 1.3, along any

distinguished curve γ there is a (characterising) parallel tractor Σ ∈ Γ(G ×P W0). On the
restriction of G that lies over the trace of γ we have that Σ is equivalent to a P -equivariant
function s0 : G → W0 that satisfies equation (5.7) with t = s0, ρ

′ = ρ0 the representation of
g on W0, and ξ is the lift of a vector field ξ everywhere tangent to γ.

Now we form the function

F = (⊙m0s0)⊗ (⊙m1s1)⊗ · · · ⊗ (⊙m1s1) : G → (⊙m0W0)⊗ (⊙m1V1)⊗ · · · ⊗ (⊙mkVk).

This is clearly P -equivariant, and, by the Leibniz property of the tractor connection, satisfies
(5.7) with t = F , ρ′ the representation of g on W = R, and ξ is the lift of a vector field ξ
everywhere tangent to γ. The composition φ ◦F is then by construction P -invariant, and so
descends to a function on the trace of γ. Moreover it is constant along γ as for any lift ξ of
a vector field ξ tangent to γ, we have

ξ · φ(F ) = φ(ξ · F ) = φ(ξ · F + ρ(ω(ξ))F ) = 0,

where we have used that φ is simply a fixed linear homomorphism on the values of F that
intertwines the product (6.2) with the trivial representation. �

There is an equivalent way to prove the Theorem which introduces another object, but
which is useful for applying the Theorem. Since the Cartan connection is g-valued it follows
easily that any G-epimorphism φ, as in (6.3), determines a corresponding parallel tractor T
field taking values in

(⊗m0W∗
0 )⊗ (⊗m1V∗

1 )⊗ · · · ⊗ (⊗mkV∗
k)

where W∗
0 := G ×P W

∗
0, and otherwise we continue the notation above. The quantity

T (⊙m0Σ,⊙m1S1, · · · ,⊙mkSk) (6.4)

is thus constant along any unparametrised geodesic γ, and this is the first integral.

Remark 6.2 There is no claim that different G-homomorphisms (6.3) necessarily yield
functionally independent first integrals. Indeed for any case where m0 = 0 the proof goes
through without assuming γ is a distinguished curve, and we thus conclude that any G-
homomorphism (6.3) determines a first integral for all curves; these are all functionally
equivalent and trivial as first integrals. It is easy to understand. In each such case the
quantity T (⊙m1S1, · · · ,⊙mkSk) is constant on M , and thus, if non-zero, may without loss of
generality be taken to be the constant function 1.

6.1 A digression on notation and Young symmetries

Given a vector space V and s, t ∈ Z≥1 we will write

V
(s,s,··· ,s) ⊂ ⊗t(⊙s

V)
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to be the subspace of tensors in ⊗t(⊙s
V) that vanish upon symmetrisation over any s + 1

indices, in the sense of abstract indices. This subspace is an irreducible component with
respect to the group GL(V) acting in the standard way on ⊗st

V (and V
(s,s,··· ,s) is the image

of a Young projector on ⊗st
V) [29, 47]. This notation is also used in [33] where there is

further discussion. We write V(s,s,··· ,s) ⊂ ⊗t(⊙s
V

∗) for the dual tensor space, with the same
symmetries but now constructed using the vector space V

∗ dual to V.
Similarly given the same vector space V we write

V
[s,s,··· ,s] ⊂ ⊙s(Λt

V)

to be the subspace of tensors in ⊙s(Λt
V) that vanish upon alternation over any t+1 indices.

This subspace also is an irreducible component with respect to the group GL(V) acting in
the standard way on ⊗st

V. In fact it is well known that there is an GL(V)-isomorphism

V
[s,s,··· ,s] ∼= V

(s,s,··· ,s)

(and V
[s,s,··· ,s] is the image of another Young projector on ⊗st

V that simply gives a different
realisation of the same representation). We write V[s,s,··· ,s] ⊂ ⊙s(Λt

V
∗) for the dual tensor

space, again constructed the same way but starting now with V
∗.

We will carry these notations onto tractor bundles in the obvious way. So in the setting
of either projective or conformal tractors

T [s,s,··· ,s],

for example, will mean the subbundle of ⊙s(ΛtT ) with fibre (Tx)
[s,s,··· ,s] at any x ∈M .

6.2 The first integrals of affine geodesics and projective curves

Recall that in this case we view R
n+1 as the defining representation for G = SL(Rn+1) ∼=

SL(n+ 1,R) and
W0 := Λ2

R
n+1

as an irreducible G-representation space.
Since affine connections determine a projective structure it suffices to study the invariants

on any projective manifold (Mn,p) and write G for the projective Cartan geometry modelled
on (G,P ) as discussed above.

Using Weyl’s invariant theory [58] we know that φ is determined by the volume form on
R

n+1, as preserved by G = SL(Rn+1), and traces. Equivalently in any example the formula
for T is constructed using the tractor volume form, its dual, and the identity δAB.

Thus in summary and informally the construction of first integrals is as follows. Any
normal solution of a first BGG equation provides (and is equivalent to) a parallel tractor
field. Given any collection of parallel tractor fields, including the tractor volume form and
its tensor powers, we form first integrals by simply contracting these into tensor powers of
Σ. We construct some simple examples as follows.
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6.2.1 The classical first integrals – Killing tensors

As mentioned above Killing tensors provide first integrals along geodesics. This is simply
because the velocity u of an affinely parametrised geodesic satisfies ∇uu = 0 and hence for
any Killing tensor kb···c the quantity ub · · ·uckb···c is constant along the geodesic – here, we
view kb···c as an unweighted tensor.

This is recovered from the Theorem 6.1 as follows. The representation and corresponding
tractor bundle for Killing tensors can be read off from standard representation theory as
discussed in [9]. In this case the BGG splitting operator k 7→ L(k) is a map

Γ(⊙sT ∗M(2s)) ∋ kb1···bs 7→ Kα1···αsβ1···βs
∈ Γ(T[s,s]) ⊂ Γ(⊗2sT ∗),

where Kα1···αsβ1···βs
is a (weight zero) tractor that is skew on each pair αiβi, i = 1, · · · , s.

From the sequence (3.4) it follows easily that the map Π (of Theorem 5.1) that gives a left
inverse to L is obtained (up to multiplication by a non-zero constant) by contracting X

αiβi

ai
,

i = 1, . . . , s, into Kα1···αsβ1···βs
and, again using (3.4), it follows that

Kβ1···βs
:= Xα1 · · ·XαsKα1···αsβ1···βs

satisfies
Kβ1···βs

= c̃ · Zβ1

b1 · · ·Zβs

bskb1···bs ,

for some constant c̃ 6= 0. Thus along an unparametrised geodesic with weighted velocity ua

we have
Σα1β1 · · ·ΣαsβsKα1···αsβ1···βs

= c · ub1 · · ·ubskb1···bs , (6.5)

for some constant c 6= 0. Now according to the Theorem 6.1, if kb1···bs is a normal solution of
the Killing equation (5.1) then the display (6.5) is a first integral of unparametrised geodesics.
In this case we have recovered the well known quantity on the right hand side.

Remark 6.3 There is an interesting observation here. Evidently (6.5) defines a first integral
even if the solution is not necessarily normal, because (6.5) recovers the usual first integral
associated to Killing tensors. In the case where kb1···bs is a solution of the Killing equation
(5.1) but not necessarily normal then the tractor K is no longer parallel along the curve but
rather ∇uK is given by some algebraic action of the tractor curvature and its derivatives on K

[39]. Evidently the contraction with Σα1β1 · · ·Σαsβs annihilates these terms. Using a slightly
different splitting operator and prolongation procedure, an algorithm for explicitly computing
these curvature terms was found recently in [33]. Using this it is easily seen explicitly that the
given curvature terms are indeed annihilated by the contraction with the Xα1 · · ·Xαs implicit
in the Σα1β1 · · ·Σαsβs contraction. In light of the examples presented later in this paper, it
seems likely that a similar argument will show that Theorem 6.1 will extend to many cases
of non-normal BGG solutions and also to solutions of other geometric equations that have
the same leading symbol. This requires an extension of the programme initiated in [33] or a
theory that establishes similar results.
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6.2.2 The general case – Killing tensors from BGG solutions

The first integrals for geodesics found using Theorem 6.1 (with the assumptions (p)) are, by
construction, polynomial on the fibres of TM . On the other hand it is a classical result that
any first integral of geodesics that is polynomial on the fibres of TM is a sum of a constant
function and a finite number of “classical first integrals” as in Section 6.2.1 above. This is
easily seen directly for the geodesic first integrals (6.4) from the Theorem 6.1. We need first
a preliminary fact.

Proposition 6.4 On a manifold with a projective structure (M,p) let Q = Qα1β1···αm0
βm0

be
a parallel tractor field taking values in ⊗m0W∗

0 . Then

ka1···am0
:= X

α1β1

(a1
· · ·Xαm0

βm0

am0
) Qα1β1···αm0

βm0
(6.6)

is a normal Killing tensor, i.e. a solution to (5.1) with L(k) parallel for the normal tractor
connection.

Proof. Observe that for any section ua ∈ Γ(TM(−2)) the tractor field

ua1 · · ·uam0X
α1β1

a1
· · ·Xαm0

βm0
am0

(6.7)

takes value in ⊙m0(Λ2T ), but in any scale ua
X

αβ
a is simple: ua

X
αβ
a = 2X [αUβ], where

Uβ := ubWB
b in the notation of Section 3. It follows at once that skewing (6.7) over any

three indices will annihilate it and so

ua1 · · ·uam0X
α1β1

a1
· · ·Xαm0

βm0
am0

∈ T [m0,m0].

Thus in the contraction in (6.6) nothing is changed if we replace Q with P[m0,m0](Q). Here
P[m0,m0] is the natural projection from⊗m0W∗

0 to T[m0,m0]. But P[m0,m0](Q) is a parallel section

of the irreducible tractor bundle T[m0,m0] and acting on this contraction with X
α1β1

(a1
. . .X

αm0
βm0

am0
)

recovers (up to a non-zero constant multiple) the usual BGG projection Π, as follows easily
form the composition series (3.4). Since L is the splitting operator L(k) = P(m0,m0)(Q), the
result follows from Theorem 5.1. �

The use of this is as follows. Suppose that on a projective manifold we have normal
first BGG solutions σi, i = 1, · · · , k, and a homomorphism φ as in (6.3). Then we have the
corresponding parallel tractors Si, i = 1, · · · , k, and T (as in (6.4)), and

Q := T (·,⊙m1S1, · · · ,⊙mkSk)

is a parallel tractor on M taking values in ⊗m0W∗
0 . Thus from Proposition 6.4 we obtain

a corresponding normal Killing tensor and this is non-trivial if and only if the first integral
(6.4) is non-trivial.
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6.2.3 A sample BGG equation

We illustrate the above with a simple case that also reveals a further result. On projective
densities τ ∈ Γ(E(2)) the first projective BGG equation is

∇(a∇b∇c)τ + 4P(ab∇c)τ + 2τ∇(aPbc) = 0. (6.8)

This equation and its importance is discussed in some detail in e.g. [13, 19, 35]. In this case
the BGG splitting operator is a second-order differential operator L : E(2) → E(αβ) given by

τ 7→ L(τ) =
1

2
DαDβτ , (6.9)

(cf. [13, Section 3.3]) where Dα : E(w) → E(w − 1) is the projectively invariant Thomas-D
differential operator on weighted tractors defined by Dασ = wYασ + Zα

a∇aσ (with ∇ the
coupling of the tractor connection with the affine connection corresponding to the splitting).
For convenience let us write Hαβ := 1

2
DαDβτ .

Thus normal solutions to (6.8) correspond to H = L(τ) parallel and in this case it follows
at once from (6.1) that

Σα1β1Σα2β2Hα1α2
Hβ1β2

(6.10)

is a first integral for unparametrised geodesics. It is straightforward to see this is not trivial
in general. In fact L(τ) can be definite; this is exactly the case of there being a Levi-Civita
connection in the projective class ∇g ∈ p where g is a definite signature Einstein metric
[2, 3, 21]. Thus

kab := X
α1β1

(a X
α2β2

b) Hα1α2
Hβ1β2

is in general a non-trivial normal Killing tensor.
Now the sup rising aspect is that, as for the case of Killing tensors (see Remark 6.3), a

stronger result is available. Normality is not required, it is sufficient that τ solve (6.8):

Theorem 6.5 Suppose that τ ∈ Γ(E(2)) solves the third-order equation (6.8). Then with
H := L(τ), as in (6.9), the quantity

Σα1β1Σα2β2Hα1α2
Hβ1β2

(6.11)

is a first integral along unparametrised geodesics, where Σ is as in Theorem 1.1. Moreover

Γ(⊙2T ∗M(4)) ∋ kbc := τ ∇b∇cτ + 2Pbcτ
2 − 1

2
(∇bτ) (∇cτ) (6.12)

is a Killing tensor, in that it satisfies the equation (5.1).

Proof. We first calculate an explicit formula for (6.11). Computing (6.9) yields

Hα1α2
= τYα1

Yα2
+∇cτY(α1

Zα2)
c + Zα1

aZα2

b

(
1

2
∇a∇bτ + Pabτ

)
.
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Then, we have

Σα1β1Hα1α2

= ua
(
Xα1W β1

a −Xβ1W α1
a

)(
Yα1

Yα2
τ + Y(α1

Zα2)
b∇bτ + Zα1

bZα2

c

(
1

2
∇b∇cτ + Pbcτ

))

= uaτ W β1
aYα2

+
1

2
ua∇bτ W

β1
aZα2

b − 1

2
ua∇aτ X

β1Yα2
− ua

(
1

2
∇a∇cτ + Pacτ

)
Xβ1Zα2

c.

Contracting this section of End(T ) with itself yields (−1 times):

η := Σα1β1Σα2β2Hα1α2
Hβ1β2

= τ uaub∇a∇bτ + 2uaubPabτ
2 − 1

2
(ua∇aτ)

2 . (6.13)

Now differentiating (6.13) along γ, and using ua∇au
b = 0, we have:

uc∇cη = (uc∇cτ)u
aub∇a∇bτ + τuaubuc∇c∇a∇bτ + 2uaubuc(∇cPab)τ

2

+ 2uaubucPab(∇cτ
2)− (ua∇aτ)u

auc∇c∇aτ

= τuaubuc (∇a∇b∇cτ + 2 τ∇aPbc + 4Pab∇cτ)

= 0,

since τ was assumed a solution of (6.8). This calculation may also be viewed as the verifi-
cation that ∇(akbc) = 0. Indeed, from the definition (6.12), we have

∇(akbc) = τ
(
∇(a∇b∇c)τ + 2 τ∇(aPbc) + 4P(ab∇c)τ

)
.

Thus, uc∇cη = uaubuc(∇akbc) = 0, and since this is true for any geodesic, we conclude that
∇(akbc) = 0, i.e. kab is a Killing tensor. �

6.3 The first integrals of null geodesics

On an indefinite signature pseudo-Riemannian manifold, or the conformal structure (M, c)
that it determines, the Theorem 6.1 uses solutions of conformal first BGG equations to
generate first integrals along null geodesics. This is the setting (n) for that Theorem so
we view R

n+2 here as the defining representation for G := SO(h), where h is a fixed non-
degenerate symmetric bilinear form on R

n+2 of signature (p+ 1, q + 1), and define

W0 := Λ2
R

n+2.

The situation turns out to be closely analogous to that in Sections 6.2.1 and 6.2.2 above, so
we shall be brief.

In this case φ is constructed from the bilinear form h and the compatible volume form
on R

n+2, as preserved by G = SO(h), and traces. Equivalently, in any example the formula
for T is constructed using the tractor metric and its inverse, the tractor volume form and
the identity δAB.
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The classical results surround primarily conformal Killing tensors, i.e. solutions kb1···bs of
the first BGG equation (5.3). As for the cases above the representation and corresponding
tractor bundle for conformal Killing tensors can be read off from standard representation
theory as discussed in [9, 19]. The conformal splitting operator k 7→ L(k) in this case is a
differential operator

Γ(⊙sT ∗M [2s]) ∋ kb1···bs → KA1···AsB1···Bs
∈ Γ(T[s,s]0) ⊂ Γ(⊗2sT )

where T denotes the conformal standard tractor bundle, KA1···AsB1···Bs
is a (weight zero)

trace-free tractor field that is skew on each pair AiBi, i = 1, · · · , s. We write T[s,s]0 to
indicate the subbundle of T[s,s] consisting of tractors that are trace free (with respect to the
conformal tractor metric).

It is easily verified that for normal solutions of the conformal Killing equation the standard
first integral ua1 · · ·uaska1···as arises from

ΣA1B1 · · ·ΣAsBsKA1···AsB1···Bs
. (6.14)

Thus, in analogy with the observation in Remark 6.3, it is again the case that (6.14) is
conserved along null geodesics even if the solution k to (5.3) is not normal, i.e. K = L(k) is
not parallel.

Also there is an analogue of Proposition 6.4:

Proposition 6.6 On a manifold with an indefinite conformal structure (M, c), let Q =
QA1B1···Am0

Bm0
be a parallel tractor field taking values in ⊗m0W∗

0 . Then

ka1···am0
:= X

A1B1

(a1
· · ·XAm0

Bm0

am0
) QA1B1···Am0

Bm0
(6.15)

is a normal conformal Killing tensor, i.e. a solution to (5.3) with L(k) parallel for the normal
conformal tractor connection.

Proof. The proof is almost identical to that for Proposition 6.4. The additional ingredient is
that in this case ⊙m0Σ is trace-free with respect to the tractor metric because Σ is totally null,
as observed in Section 4.2, and so, using also that Σ is simple we have ⊙m0Σ ∈ Γ(T [m0,m0]0)
along any null curve. �

Thus in the setting (n), the first integrals coming from Theorem 6.1 may be viewed as
arising from (normal) conformal Killing tensors, but these conformal Killing tensors are, in
general, arising from other BGG solutions via Proposition 6.6.

6.4 The first integrals of conformal circles

On a pseudo-Riemannian manifold of any signature, or the conformal structure (M, c) that
it determines, Theorem 6.1 uses solutions of conformal first BGG equations to generate first
integrals along conformal circles. This is the setting (c) for that Theorem so we view R

n+2
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as the defining representation for G := SO(h), where h is a fixed non-degenerate symmetric
bilinear form on R

n+2 of signature (p+ 1, q + 1), and now define

W0 := Λ3
R

n+2.

Again in this case φ is determined by the bilinear form h and the compatible volume form
on R

n+2, as preserved by G = SO(h), and traces. Equivalently, in any example the formula
for T is constructed using the tractor metric and its inverse, the tractor volume form, and
the identity δAB.

Thus from the point of view of Theorem 6.1 and its general application there is little dif-
ference from the setting (n) above. However an important difference arises in that conformal
Killing tensors no longer have a distinguished role as there.

Even näıvely some significant difference is to be expected as the first integrals found
by Theorem 6.1 will, by construction, be (pointwise) polynomial in the velocity and the
acceleration of the given distinguished curve. However we can see this clearly using the
construction directly, as follows. Recall that for a conformal circle γ the characterising
tractor Σ is a 3-tractor that, according to the normal tractor connection, is parallel along γ.
Using that Σ is simple and arguing in a similar way to the previous cases we have that

⊗sΣ ∈ Γ(T [s,s,s])

along γ. But now the difference is Σ does not satisfy any analogue of the nilpotency (4.14)
and ⊙sΣ does not take values in a G-irreducible tractor bundle if s > 1. We obtain the
different irreducible components of ⊙sΣ by splitting it into its various trace-free and trace
parts. The distinct irreducible components of ⊙sΣ can then pair with parallel tractors of
distinct tensor type, and thus with the prolongations of solutions to corresponding distinct
first BGG equations.

6.4.1 A basic example

For conformal circles the simplest application of Theorem 6.1 is on a conformal manifold
equipped with a tractor 3-form KABC ∈ Γ(Λ3T ∗) that is parallel for the normal conformal
tractor connection. Then clearly

ΣABC
KABC (6.16)

is necessarily constant along any conformal circle.
The composition series for Λ3T ∗ is

Λ3T ∗ = E[bc][3] +
✞
✝

(
E[abc][3]⊕ Ea[1]

)
+
✞
✝ E[bc][1].

Thus the first integral arises from a solution to the first BGG equation on the projecting
part E[bc][3]. In terms of a metric for the conformal class, this BGG equation is the conformal
Killing-Yano equation (or conformal Killing form equation) (5.4). Thus from Theorem 6.1
we see that normal solutions of equation (5.4) yield conformal circle first integrals via (6.16).

In fact the requirement that the solution is normal can be dropped.
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Theorem 6.7 On a pseudo-Riemannian manifold or conformal manifold, suppose that kab ∈
Γ(E[bc][3]) is a conformal Killing-Yano 2-form, i.e. kab satisfies

∇akbc = ∇[akbc] −
2

n− 1
ga[b∇pkc]p . (6.17)

Write Γ(Λ3T ∗) ∋ KABC := L(k) where L is the BGG splitting operator L : E[bc][3] → E[ABC],
then expression (6.16), equivalently,

uaabkab ∓
1

n− 1
ua∇pkpa,

is a first integral of a conformal circle with weighted velocity ua and acceleration ab with
uaua = ±1.

Proof. We assume the curve is spacelike or timelike, so that its weighted velocity ua satisfies
uaua = 1 or uaua = −1 respectively,

First, we explicitly compute the derivative of the quantity (6.16) along the curve. In the
conformal case we choose a metric g ∈ c to compute. Computing L(k) (cf. [37]) gives,

KABC = Y[AZB
bZC]

ckbc + Z[A
aZB

bZC]
c∇akbc +

2

n− 1
X[AYBZC]

a∇pkpa +X[AZB
bZC]

cρbc,

(6.18)
where ρab will not be important for our purposes.

Thus, using (4.27), we obtain

ΣABC
KABC = ±6ucXAY BZC

cKABC + 6ubacXAZB
bZ

C
cKABC

= 2uaabkab ∓
2

n− 1
ua∇pkpa.

Differentiating this and using (4.19) and (4.24), and the skew-symmetric of kab leads to

uc∇c

(
ΣABC

KABC

)
= ±2uaucPc

bkab + 2uaabuc∇ckab

∓ 2

n− 1
aa∇pkpa ∓

2

n− 1
uauc∇c∇pkpa .

(6.19)

Using (6.17) together with the fact that uaua = ±1 and ubab = 0 (see (4.20)) shows that
the two middle terms cancel. We compute

uauc∇c∇pkpa = uauc∇p∇ckpa − (n− 2)uaucPc
pkpa

=
1

n− 1
uauc∇c∇pkpa − (n− 2)uaucPc

pkpa ,

where we have commuted the covariant derivatives in the first line, and used (6.17) in the
second line. Hence,

uauc∇c∇pkpa = (n− 1)uaucPc
pkpa

from which we conclude that the first and last terms of (6.19) cancel each other out. Hence,

uc∇c

(
ΣABC

KABC

)
= 0 ,

as required. �
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6.4.2 An example from a trace-free part of ⊗2Σ

Let SAB := −1
2
ΣA

CDΣ
BCD and write S̊AB for the part that is trace-free with respect to the

conformal tractor metric. Since the tractor metric is parallel everywhere and Σ is parallel
along any conformal circle it follows at once that SAB and S̊AB are also parallel along any
conformal circle. Thus if HAB ∈ Γ(E(AB)0) is a parallel tractor on (M, c) then

S̊ABHAB = SABHAB (6.20)

is a first integral for any conformal circle γ. This is an example illustrating Theorem 6.1.
Let us write this explicitly in terms of the weighted velocity, acceleration and the normal

BGG solution corresponding toHAB. Since the projecting part of E(AB)0 is the density bundle
E [2] (recovered by the map HAB 7→ XAXBHAB) parallel sections of E(AB)0 are equivalent
to normal solutions from a first BGG operator on E [2]. The latter is a 3rd order operator
D0 : E [2] → E(abc)0 [2], the (conformally invariant) equation of which is explicitly given by

∇(a∇b∇c)0τ + 4P(ab∇c)0τ + 2 τ∇(aPbc)0 = 0, (6.21)

for any g ∈ c with Levi-Civita ∇. The corresponding BGG splitting operator is a fourth-
order differential operator

L : E [2] → E(AB)0

that takes the form

L(τ)AB =YAYBτ + Y(AZB)
b∇bτ +

1

2
Z(A

aZB)
b
[
∇a∇bτ + 2Pabτ −

1

n + 2
gab

(
∆τ + 2Jτ

)]

− 1

n+ 2
X(AYB)

[
∆τ + 2Jτ

]
−X(AZB)

b
[ 1

n+ 2
∇b

(
∆+ 2J

)
τ + Pa

r∇rτ
]

+XAXB

[
⋆],

(6.22)

where J := gabPab (and we do not need the form of the XX term.) The right hand side of
(6.22) is parallel if and only if τ is a normal solution of (6.21) (see Section 5.1). In particular
H = L(τ) for some τ ∈ Γ(E [2]). On the other hand using (4.27) SAB is found to be

SAB = uaubZA
aZ

B
b ± 2X(AY B) − 2abX(AZB)

b ∓ (acac)X
AXB, (6.23)

where ua and ac are the weighted velocity and acceleration of the unparametrised curve γ
respectively, and uaua = ±1. Thus, the conformal circle first integral (6.20) is explicitly
given by

SABHAB =
1

2
uaub(∇a∇bτ + 2Pabτ −

1

n+ 2
gab(∆τ + 2Jτ))

∓ 2

n+ 2
(∆τ + 2Jτ)− 2ab∇bτ ∓ (abab)τ,

(6.24)

in terms of a metric g ∈ c.
As for the earlier examples a stronger result is available. The normality is not needed:
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Theorem 6.8 If τ ∈ Γ(E [2]) is any solution of (6.21) then (6.24) is a first integral for
unparametrised conformal circles.

Proof. Suppose that τ ∈ Γ(E [2]) is a solution of (6.21) and that γ is an unparametrised con-
formal circle with weighted velocity u and weighted acceleration a. Then SAB = −1

2
ΣA

CDΣ
BCD

is parallel along γ and given by (6.23). So setting H := L(τ) we have

uc∇c

(
SABHAB

)
= ucSAB∇cHAB.

From the condition ∂∗∇L(τ) = 0 that in part defines L, or alternatively by direct calculation,
it follows that ∇H takes the form

∇cHAB = κcabZA
aZB

b + αbcX(AZB)
b + ωcXAXB,

for some weighted tensors αbc, ωc and κcab = κcba. Note that upon contraction with SAB, all
terms of this display are annihilated except for the Za

AZ
b
B term. Thus

ucSAB∇cHAB = uaubucκabc.

Now, using (6.22) and the tractor connection formulae one calculates that

κcab =
1

2
[∇c∇a∇bτ + 2(∇cPab)τ + 2Pab∇cτ + 2Pc(a∇b)τ

− 1

n+ 2
gab∇c(∆τ + 2Jτ)− 2

n+ 2
gc(a∇b)(∆τ + 2Jτ)− 2gc(aPb)

d∇dτ ]
(6.25)

Computing reveals that (6.25) is trace-free over any pair of indices. Moreover contracting
uaubuc into this display will force symmetrisation over abc. Thus

ucSAB∇cHAB = uaubucκ(abc)0 .

But κ(abc)0 is exactly D0(τ), as given by the left hand side of (6.21). Thus uc∇c(S
ABHAB) = 0

as claimed. �

7 Distinguished curves as zero loci

The curve characterisations of Theorems 1.1, 1.2 and 1.3 lead to the conclusion that for
suitable BGG solutions the zero locus of part of the solution jet describes a distinguished
curve. This uses the curved orbit Theorem 2.6 of [20]. What that result shows is that
on a parabolic geometry a parallel tractor field determines a stratification of the underlying
manifold, where the different strata are in general initial submanifolds, with different Cartan
geometries induced on the strata components. Moreover, and what is most important for us
here, by a comparison map it is shown that locally there is a diffeomorphism between the
given underlying manifold and the model which maps the strata to the corresponding strata
on the model. This means that, for example, if on the model a given stratum is an embedded
smooth submanifold then any corresponding stratum in the curved parabolic geometry must
necessarily also be an embedded smooth submanifold of the same dimension. In the case of
conformal and projective geometry the stratification is determined entirely by the algebraic
relation of the canonical tractor X to the given parallel tractor.
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7.1 Conformal equations with distinguished curves as zero loci

Proposition 7.1 On a connected conformal manifold (M, c) let kbc be a normal solution of
the conformal Killing form equation such that the parallel tractor L(k) ∈ Γ(Λ3T ) is simple,
and of signature (+,+,−) or (−,−,+). Then the locus of points where

(kbc,∇[akbc]) for any g ∈ c with Levi-Civita ∇,

both vanish is either empty or a conformal circle.

Proof. Since k is a normal solution, the image L(k) of the BGG splitting operator is parallel
for the normal conformal tractor connection. Note that L(k) is a section of Λ3T , see (6.18).
From the formula for L(k) in a scale the condition (kbc,∇[akbc]) = 0 at some point x̊ ∈M is
the same as

Xx̊ ∧ L(k)x̊ = 0

where Xx̊ is the canonical tractor at x̊.
In the case of the model, if K is a parallel simple 3-tractor of signature (+,+,−) or

(−,−,+) and X ∧ K is zero at some point x̊, then X ∧ K is zero along a curve through x̊
(namely the unique conformal circle through x with characterising 3-tractor Σ := K at x̊,
see Section 4.6.) From [20, Theorem 2.6] it follows that on (M, c) for a 3-tractor K that is
parallel and of the same algebraic type (i.e. simple and of signature (+,+,−) or (−,−,+))
the zero locus of X ∧K is either empty or is locally, and hence globally, an embedded curve.
If the latter then it must be a conformal circle by Theorem 1.3.

Thus, in particular, the zero locus of X ∧ L(k) is either empty or a conformal circle. �

By essentially the same argument we get the corresponding result for null geodesics in
indefinite conformal manifolds as follows.

Proposition 7.2 On a connected indefinite conformal manifold (M, c) let kb be a normal
solution of the conformal Killing equation (5.3), i.e. ∇(akb)0 = 0, such that the parallel tractor
L(k) ∈ Γ(Λ2T ) is simple and totally null as in (4.14). Then the locus of points where

(kb,∇[akb]) for any g ∈ c with Levi-Civita ∇,

both vanish is either empty or a null geodesic.

Proof. For a conformal Killing vector field k the image L(k) of the BGG splitting operator is
a section of Λ2T and is given explicitly in e.g. [31, 37, 39]. From any of these it is seen that
the vanishing of X∧L(k) = 0 at some point x̊ is equivalent to (kb,∇[akb])(̊x) = 0, where ∇ is
the Levi-Civita for any g ∈ c. The argument otherwise proceeds as the proof of Proposition
7.1 above, mutatis mutandis. �

7.2 Projective geodesics and weighted bivectors

Now we work on a projective manifold (M,p). In this case the relevant first BGG equation
is

∇aσ
bc − 2δ[ba τ

c] = 0 , (7.1)
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where σab ∈ Γ(E [ab](−2)) and hence τa := 1
n−1

∇bσ
ba. The prolonged system for this equation

is given by (7.1) together with the equation

∇aτ
b + Pacσ

bc +
1

2(n− 2)
σcdWcd

b
a = 0 ,

which must hold for any solution. The BGG splitting operator can then be computed to be

Γ(E [ab](−2)) ∋ σab 7→ L(σ) =W α
aW

β
bσ

ab +
2

n− 1
X [αW β]

a∇bσ
ba ∈ Γ(Λ2T ), (7.2)

where T is the standard projective tractor bundle.
Thus we have the following:

Proposition 7.3 Let σab ∈ Γ(E [ab](−2)) be a normal solution of (7.1) such that the corre-
sponding parallel 2-tractor Σαβ = L(σ) is simple. Then the zero set of σab is either empty
or is an unparametrised geodesic.

Proof. From (7.2) the vanishing of X ∧ L(σ) at some point x̊ is the same as σ(̊x) = 0.
Otherwise the argument again proceeds via an obvious adaption of the proof of Proposition
7.1 above. �
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[21] A. Čap, A. R. Gover, and H. R. Macbeth. Einstein metrics in projective geometry.
Geometriae Dedicata, 168(1):235–244, 2014.

[22] B. Carter. Global structure of the Kerr family of gravitational fields. Physical Review,
174(5):1559, 1968.

[23] S. Curry and A. R. Gover. An introduction to conformal geometry and tractor cal-
culus, with a view to applications in general relativity. In Asymptotic analysis in
general relativity, London Mathematical Society lecture note series; 443, 2018. ISBN
9781108186612.
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