Optimising Queue-based Semi-Stream Joins by
Introducing a Queue of Frequent Pages

IM. Asif Naeem, 2Gerald Weber, and 2Christof Lutteroth

1School of Engineering, Computer and Mathematical Sciences,

Auckland University of Technology,

Private Bag 92006, Auckland, New Zealand.
2Department of Computer Science,
The University of Auckland,
Auckland, New Zealand.
'mnacem@aut.ac.nz

2ge}:ald@cs .auckland.ac.nz, christof@cs.auckland.ac.nz

Abstract. Semi-stream joins perform a join between a stream and a
disk-based table. These joins can easily deal with typical workloads in
online real-time data warehousing in many scenarios and with relatively
modest system requirements. The disk access is page-based. In the past,
several proposals have been made to exploit skew in the distribution
of the join attribute. Such skew is a common result of natural short-
or long-tailed distributions in master data. Several semi-stream joins
use caching strategies in order to improve performance. This works up
to a point, but these algorithms still require relatively slow processing
of stream data that matches with the infrequent tuples in the master
data. In this work we explore the possibility of an additional strategy to
exploit data skew: disk pages that are frequently accessed as a whole are
accessed with priority. We show that considerable gain in service rate can
be achieved with this strategy, while keeping memory consumption low.
In essence we gain a three-stage approach to deal with skewed, unsorted
data: caching plus our new strategy plus processing of the long tail of
the distribution. Our experiments show that the new approach improves
service rate significantly.

Keywords: Semi-stream join, Performance optimisation, Indexing

1 Introduction

Stream-based joins are important operations in modern system architectures,
where just-in-time delivery of data is expected. We consider a particular class
of stream-based joins, a semi-stream join that joins a single stream with a disk-
based table. Such a join can be applied, for example, in real-time data ware-
housing [7,6,5]. In this work we only consider one-to-many equijoins, as they
appear between foreign keys in the stream and a referenced primary key in the
master data table. This is obviously a very important class of joins, and they
are a natural case of a join between a stream of updates and master data in a

data warehousing context [5], online auction systems [2] and supply-chain man-
agement [15]. If a join is one-to-many and if high throughput is the aim, it
is important to exploit this and to choose a one-to-many join operator, since
it allows to expire stream tuples as soon as they have matched a master data
record. Consequently, we do not consider here many-to-many joins, e.g. joins on
categorical attributes in master data, such as gender.

Most semi-stream join algorithms keep recent stream tuples in main memory
in order to amortize the expensive disk access cost over a large section of the
stream[13, 14,10, 8,9, 11]. As a consequence, many algorithms have a queue data
structure that represents a section of the stream currently in processing. The
queue keeps track of the stream tuples based on their loading timestamps. The
queue typically stores join attribute values, and some of these algorithms [8,9,
11] use these join attribute values in the queue (queue elements) as look up and
load relevant disk-based master data through an index. In this paper we denote
these queue elements as lookup elements.

Several semi-stream algorithms have contributed caching strategies in order
to exploit skew in the distribution of join attributes in the stream. Skewed data
is the norm in many application scenarios [1], such as data warehousing for
purchases. A skewed distribution commonly found in applications is the 80/20
rule, for example it is a rule of thumb in many markets that 80% of sales are
related to 20% products [1]. However, caching is only effective down to a certain
frequency of the join attribute, even if one allows for a tuple-level cache [9, 11]. In
our recent work [12] we have investigated whether one can further improve the
disk-based part of the join operations. We have made some inroads by showing
that by optimizing the choice of a lookup element from the queue, the service rate
can be improved for a given skew. However, up to now it was not clear that this is
an optimal strategy. This strategy was evaluated in the existing HYBRIDJOIN
and CACHEJOIN algorithms [8,9]; in this paper we denote these algorithms
once they are improved by the lookup strategy (and therefore modified) by
HYBRIDJOIN-L and CACHJOIN-L respectively. In this paper we present a new
analysis that shows that this lookup strategy suffers still from two drawbacks:
(a) this position varies with the degree of skew in stream data and (b) at the
lookup position we do not find a good lookup element each time we look, so the
algorihm still performs suboptimal. Further details about these two issues are
presented in Section 3.2.

In this paper we address these issues by presenting a new approach that
replaces the early lookup element: it is a priority queue PQ of frequent pages. The
PQ contains page IDs of the master data pages with a high stream probability.
We added this new strategy again to the basic HYBRIDJOIN and CACHEJOIN,
resulting in two new algorithms HYBRIDJOIN-PQ and CACHEJOIN-PQ. In
this paper we compare them with HYBRIDJOIN-L and CACHEJOIN-L and can
demonstrate a further improvement. This improvement can be explained because
the new algorithms now access the frequent pages in an optimal time interval;
in contrast the strategy of HYBRIDJOIN-L and CACHEJOIN-L achieved a
preferential treatment of the high probability pages, but with the side effect

of loading other pages before time. Further details about this are presented in
Section 4.

Our main findings in this research can be summarized as follows:

Higher service rate: By implementing the new strategy, both HYBRIDJOIN-
PQ and CACHEJOIN-PQ outperform existing HYBRIDJOIN-L and CACHEJOIN-
L, respectively, for skewed data.

Adaptability: By using the new strategy both HYBRIDJOIN-PQ and CACHEJOIN-
PQ to adapt to changes in the stream data, e.g. the value of skew in stream
data. By contrast, due to the fixed position for the optimal lookup element in
the queue, HYBRIDJOIN-L and CACHEJOIN-L cannot optimally adapt them-
selves to skew variation in the stream data.

Three-stage approach to skewed data: The new algorithm CACHEJOIN-
PQ can be said to employ three different stages to deal with a skewed distribu-
tion. For very frequent tuples, an in-memory cache is employed, for tuples that
are not in themselved frequent but cluster on pages that then get frequent as

a page (e.g. due to locality effects), we employ the in-memory priority queue of
frequent pages. Finally, for all other tuples we use direct lookup.

The rest of the paper is structured as follows. Section 2 presents related
work. Section 3 describes background and based on that formulate the problem
statement. Section 4 presents the solution. Section 5 describes our experiments
and finally Section 6 concludes the paper.

2 Related work

In this section, we present an overview of the previous work that has been done
in the area of semi-stream joins, focusing on those that are closely related to our
problem domain.

A seminal algorithm MESHJOIN [13,14] has been designed especially for
joining a continuous stream with disk-based master data, like in the scenario
of active data warehouses. The MESHJOIN algorithm is a hash join, where
the stream serves as the build input and the disk-based relation serves as the
probe input. A characteristic of MESHJOIN is that it performs a staggered
execution of the hash table build in order to load in stream tuples more steadily.
To implement this staggered execution the algorithm uses a queue. The algorithm
makes no assumptions about data distribution or the organization of the master
data, hence there is no master data index. The algorithm always removes stream
tuples from the end of the queue, as they have been matched with all master
data partitions.

R-MESHJOIN (reduced Mesh Join) [10] clarifies the dependencies among the
components of MESHJOIN. As a result the performance is improved slightly.
However, R-MESHJOIN implements the same strategy as the MESHJOIN al-
gorithm for accessing the disk-based master data, using no index.

Partitioned Join [4] improved MESHJOIN by using a two-level hash table,
attempting to join stream tuples as soon as they arrive, and using a partition-
based wait buffer for other stream tuples. The number of partitions in the wait

buffer is equal to the number of partitions in the disk-based master data. The
algorithm uses these partitions as an index, for looking up the master data. If
a partition in a wait buffer grows larger than a preset threshold, the algorithm
loads the relevant partition from the master data into memory. The algorithm
allows starvation of stream tuples as tuples can stay in a wait buffer indefinitely
if the buffer’s size threshold is not reached.

Semi-Streaming Index Join (SSIJ) [3] was developed recently to join stream
data with disk-based data. In general, the algorithm is divided into three phases:
the pending phase, the online phase and the join phase. In the pending phase, the
stream tuples are collected in an input buffer until either the buffer is larger than
a predefined threshold or the stream ends. In the online phase, stream tuples
from the input buffer are looked up in cached disk blocks. If the required disk
tuple exists in the cache, the join is executed. Otherwise, the algorithm flushes
the stream tuple into a stream buffer. When the stream buffer is full, the join
phase starts where master data partitions are loaded from disk using an index
and joined until the stream buffer is empty. This means that as partitions are
loaded and joined, the join becomes more and more inefficient: partitions that
are joined later can potentially join only with fewer tuples because the stream
buffer is not refilled between partition loads. By keeping the stream buffer full
and selecting lookup elements carefully the performance could be improved.

CACHEJOIN [9] is an extension of HYBRIDJOIN, which adds an additional
cache module to cope with Zipfian stream distributions. This is similar to Par-
titioned Join and SSIJ, but a tuple-level cache is used instead of a page-level
cache to use the cache memory more efficiently. CACHEJOIN is able to adapt its
cache to changing stream characteristics, but similar to HYBRIDJOIN, it uses
the last queue element as a lookup element for tuples that were not joined with
the cache. SSCJ [11] is an improved version of CACHEJOIN, which optimizes the
manipulation of master data tuples in the cache module. While CACHEJOIN
uses a random approach to overwrite tuples in the cache when it is full, SSCJ
overwrites the least frequent tuples. However, both SSCJ and CACHEJOIN use
the same suboptimal strategy to access the queue.

3 Background

Semi-stream joins which implement staggered execution of stream data mostly
use a queue data structure [13,14,10,8,9,11]. The key role of this queue com-
ponent is to keep track of every stream tuple in memory with respect to loading
time. The other purpose of the queue is to ensure that a stream tuple which
enters into memory will certainly be processed. Moreover, some of these semi-
stream joins [8,9, 11] also use these queue values as lookup values to load master
data into memory via an index.

3.1 HYBRIDJOIN-L and CACHEJOIN-L

We recently presented HYBRIDJOIN [8], an index-based semi-stream join with
a simple architecture as shown in Fig. 1. HYBRIDJOIN [8], addresses the issue

-~
=}

Queue

[o]--[eFef o Bef]

@ I:II:‘>|:‘> Join

60%

@
o

o
o

48%

IS
[=}

36%
30%

[
=}

Stream buffer output

N
=}

Hash table
Disk buffer

=
o

Position of optimal lookup element in the queue
(in % of the queue length from front to rear)

o

0.25 0. .75 1
The value of skew in stream data

Master data

Fig. 2. Analysis of position of the
Fig. 1. Data structures and archi- optimal lookup element in the
tecture of HYBRIDJOIN HYBRIDJOIN-L queue using dif-
ferent values of the skew

of accessing disk-based master data efficiently. Similar to SSIJ, an index based
strategy to access the disk-based master data is used, but every master data
partition load is amortized by joining over a full stream tuple queue. HYBRID-
JOIN uses the last queue element as lookup element, which means that unlike
Partitioned Join [4] it prevents starvation. However, the choice of the last queue
element as lookup element is suboptimal.

Since HYBRIDJOIN uses the oldest tuple of the queue as lookup element
before a partition is loaded again after a join, new tuples matching that partition
need to move all the way from the beginning to the end of the queue. For frequent
partitions (partitions that have more matches) in master data are loaded not
much more often than the common partitions. Therefore, the choice of the oldest
tuple of the queue as lookup element is not optimal. Recently, we presented our
work to determine a position for optimal lookup element from the queue [12].
This lookup element is then used as an index to load the master data partition
in memory.

We provided an explanation of the achievement by introducing the concepts
of stream probability and load probability. Based on these concepts it was em-
pirically determined that the position at about 30% of the queue size contains
a lookup element that results in a particularly high service rate for a skew of
1. This improved the performance of HYBRIDJOIN, and we refer to this new
improved algorithm as HYBRIDJOIN-L.

We also demonstrated this concept by applying to our existing CACHEJOIN [9]
yielding CACHEJOIN-L. We have shown in the past that this still delivers an
improvement over both CACHEJOIN and HYBRIDJOIN-L [12]. This means,
that even with a cache, the careful optimization of master data access of fre-
quent pages brings advantages.

3.2 Limitations and Problem Definition

HYBRIDJOIN-L and CACHEJOIN-L perform significantly better than their
counterparts those use only the oldest element in the queue for lookup. How-
ever, there are limtations. In [12] we were concerned with the optimal lookup
element position solely for the skew value of 1. However, in further experiments
we have confirmed that the optimal position of the lookup element is quite vari-
able depending on the data, and specifically depending on the skew in the data.
We present here the results of our experiment, and we use HYBRIDJOIN-L to
illustrate the effect. We ran HYBRIDJOIN-L algorithm with synthetic stream
data with different values for the skew and measured the position of the optimal
lookup element in the queue, maximising throughput. The results of the experi-
ment are presented in Figure 2. From the figure we can observe that the position
of the optimal lookup element in the queue moves forward to the young end of
the queue (where new stream tuples are inserted) as the skew increases, reaching
a position of 30 percent for a skew exponent of 1. For less pronounced skew with
an exponent of 0.25 the optimal value is nearer to the other end of the queue.

Therefore both algorithms HYBRIDJOIN-L and CACHEJOIN-L would need
further adaptations to perform optimally. Furthermore, even in the optimal po-
sition, the early lookup does not make a good choice every time. In a substantial
fractions of the lookup, the element found is not on a frequent page and hence
the early lookup is inefficient. The advantage only materializes in the average
behavior. Therefore the question arises, whether we can avoid the bad cases and
load a frequent page, at the right time, every time. This is what we will propose
now.

4 Priority Queue of Frequent Pages

The improvement first offered in HYBRIDJOIN-L is based on the observation
that unmatched tuples in the queue take up space. Therefore it is best for achiev-
ing a high service rate to load frequent pages as soon as a certain number of
tuples in the queue is expected to match with this page. In HYBRIDJOIN-L
this is achieved with the early lookup element: this element has been shown to
be preferentially from a frequent page. However if we know which pages are fre-
quent, we can use a more direct approach. A page is frequent if it has a high
stream probability: This is the probability that if we pick a random stream tu-
ple, that stream tuple belongs to that page [12]. We denote this value for the
page here as page.frequency. This value can be easily observed at the time the
page is first looked up: the observed number of matches divided by the queue
length gives a good estimate of the frequency due to the law of large numbers:
cases where an infrequent page is just accidentally matched by many stream
tuples (and therefore this infrequent page enters the queue) are rare. For a fre-
quent page, if we wait longer with loading that page we get more matches with
a single lookup. However the many tuples that accumulate use up space in the
hashtable, and they do that for a longer time. Therefore there is a tradeoff value
at which it makes sense to load the page, we call this pageThreshold. Since

new incoming stream tuples belong to random pages (but we cannot tell which
tuple belongs to which page without accessing the disk) we know that after a
certain number of new stream tuples have been entered into the queue, there
is an expected number of tuples matching a given page. In fact for every page
(not only the frequent ones), the expected number of stream tuples matching
that page increases linearly with the number of stream tuples entered into the
queue. Therefore if this expected number is larger as pageT hreshold, then we
should load the page. This is the case after pageT hreshold * m new
loaded stream tuples. Hence the best strategy is to load each frequent page after
a period of so many newly loaded stream tuples. The straightforward way to
implement this is to keep a running counter of how many stream tuples have
been processed and to keep a priority queue. The pages are inserted into the
priority queue at the next counter value when they should be loaded. As soon
as the counter value for the top page in the priority queue has been reached,
this page is popped from the priority queue, the page is loaded and processed
according to the algorithm for the disk phase, and finally the page is inserted
with the new counter value ptc 4+ pageThreshold * page.ff%. We do not
discuss here issues of resetting the counter in order to prevent overflow since
these are trivial exercises. We also do not discuss here removal of pages from
the priority queue. This is trivial and can be based on the observed number of
matches. As soon as the number of matches is below a certain threshold the page
can be removed from the queue. Likewise the frequency of a page can steadily be
adapted, by using a gliding average. A gliding average with an exponential decay
model simple and does not require any further datastructure: Each time the page
is loaded, its current number of matches ¢ is observed, and we update accord-
ing to page. frequency = (page. frequency x d) + ¢ * (1 — d) with a parameter d
that controls the decay, e.g. d = 0.9 would be a typical value that smoothens
out accidental changes in page frequency. This gliding average was however not
installed in the algorithms used in our apparatus, since it would introduce an
element of arbitrariness in the measurements (which decay parameter should we
choose?) and the test data that we use here do not employ a drift of the skew.
Nevertheless the algorithm is adaptive as it is now: if it is run with data with
different skew values, it will adapt to whatever skew is present, without any
configuration necessary.

5 Experiments

In this section we present an extensive experimental study of our algorithms.
We compare the performance of all the algorithms using synthetic, TPC-H, and
real-life datasets.

5.1 Experimental Setup

Hardware and software specifications: We performed our experiments on a
Intel-i5 with 8GB main memory and 250GB Solid Sate Drive (SSD) as secondary

Table 1. Data specifications for synthetic dataset

Parameter value

Total allocated memory M 50MB to 250MB

Size of disk-based master data R |0.5 million to 8 million tuples

Size of each disk tuple vr 120 bytes

Size of each disk page psize] % 210 bytes

Size of each stream tuple vg 20 bytes

Size of each node in the queue 12 bytes

Size of each node in the priority|16 bytes

queue PQ

Stream data based on Zipf’s law (skew value from 0.25 to 1)

storage. We implemented our experiments in Java using the Eclipse IDE. As join
attribute values can be duplicated in stream data due to the attribute being a
foreign key, a hash table is needed that can store multiple values against one
value of the master data. The hash table provided by the Java library does not
support this feature, therefore org.apache.MultiHashMap was used.

Measurement strategy: The service rate of the join is measured by calcu-
lating the number of tuples processed in a unit second. In each experiment, the
algorithm first completed their warmup phase before starting the actual mea-
surements. These kinds of algorithms normally need a warmup phase to tune
their components with respect to the available memory resources, so that each
component can deliver a maximum service rate. For each service rate measure-
ment, we calculated the 95% confidence interval. The calculation of the confi-
dence intervals is based on 1000 to 4000 measurements for one setting. During
the execution of the algorithm, no other application was running in parallel. We
used a constant stream arrival rate throughout a run in order to measure the
service rate for all algorithms.

Data specifications: We analyzed the service rate of the algorithms us-
ing synthetic, TPC-H, and real-life datasets. The master data R was stored on
disk using a MySQL database. Both the algorithms read master data from the
database. To measure the I/O cost more accurately, we set the fetch size for
ResultSet equal to the disk buffer size.

Synthetic data. The stream dataset we used is based on a Zipfian distribution.
We tested the service rate of all algorithms by varying the skew value from 0.25
(lightly skewed) to 1 (highly skewed). The master data we used was unsorted
and had an index. Moreover, the size of the master data could be changed online.
We used memory, master data, disk tuple, stream tuple and queue pointer sizes
similar to original CACHEJOIN-L and HYBRIDJOIN-L. The detailed specifi-
cations of our synthetic dataset are shown in Table 1.

TPC-H. We also analyzed the service rate of all algorithms using the TPC-
H dataset, which is a well-known decision support benchmark. We created the
dataset using a scale factor of 100. More precisely, we used the table Customer
as master data and the table Order as stream data. In table Order there is one

foreign key attribute custkey, which is a primary key in the Customer table, so
the two tables can be joined. Our Customer table contained 20 million tuples,
with each tuple having a size of 223 bytes. The Order table contained the same
number of tuples, with each tuple having a size of 138 bytes. The plausible sce-
nario for such a join is to add customer details corresponding to an order before
loading the order into the warehouse.

Real-life data. We also compared the service rate of all algorithms using a
real-life dataset!. This dataset basically contains cloud information stored in a
summarized weather report format. It was also used to evaluate the original
MESHJOIN, CACHEJOIN-L and HYBRIDJOIN-L. We consider our master
data table by combining meteorological data corresponding to months April and
August, while consider the stream data by combining data files from December.
The master data table contains 20 million tuples, while the streaming data table
contains 6 million tuples. The size of each tuple in both the master data table
and the stream data table is 128 bytes. Both tables are joined using a com-
mon attribute, longitude (LON). The domain of the join attribute is the interval
[0,36000].

5.2 Service Rate Analysis

We conducted the service rate analysis with respect to three key parameters:
the size of the master data table R, the total memory available, and the value
of skew in the Zipfian distribution. For the sake of brevity, we restricted the
discussion for each parameter to a one-dimensional variation, i.e. we vary one
parameter at a time.

Analysis by varying size of memory: In this experiment we compared
the service rate of all algorithms while varying the memory size from 50MB to
250MB, with the fixed size of R equal to 2 million tuples and skew value in the
stream data is equal to 1. Figure 3(a) presents the results of the experiment.
From the figure it can be noted that for even a small memory size (50MB) both
our algorithms perform noticeably better than the existing algorithms and this
improvement increases with the increase in the memory size. Furthermore in
case of HYBRIDJOIN-PQ the scale of improvement is even better as because of
no cache component, PQ takes the full advantage of the skew in stream data.

Analysis by varying size of R: In this experiment we compared the service
rate of all the algorithms with different sizes of R. We keep fixed memory size
(50MB) and skew value is equal to 1. The results of the experiment are shown in
Figure 3(b). From the figure it can be seen that again both the new algorithms
perform considerably better than the existing algorithms. Also in case of increas-
ing the size of R the service rate of both CACHEJOIN-PQ and HYBRIDJOIN-
PQ does not decrease with that rate as it decreases in CACHEJOIN-L and
HYBRIDJOIN-L respectively. The plausible reason behind this behaviour is

! This dataset is available at: http://cdiac.ornl.gov/ftp/ndp026b/

5
25%10 . . . 2519 ‘
——CACHEJOIN-PQ ——CACHEJOIN-PQ
——CACHEJOIN-L —+—CACHEJOIN-L
~=~HYBRIDJOIN-PQ EX —=~HYBRIDJOIN-PQ
2} —=—HYBRIDJOIN-L 1 2f \ —=HYBRIDJOIN-L
o o
[Q
7] Y
2 2
- 150 15l
2 2
2 2
[o
o 1 1 o
L o
= 2
Q [
] (%]
0.5¢ = E
0 o
0 50 100 150 200 250 051 2 4 o
Memory (MB) Size of master data (tuples in million)
(a) Service rate vs memory (b) Service rate vs size of R
4 5
12X 10 . . ‘ 25%10 . . ‘
—+—CACHEJOIN-PQ ——CACHEJOIN-PQ
11} — CACHEJOIN-L 1 —+~CACHEJOIN-L
—=—~HYBRIDJOIN-PQ —=~HYBRIDJOIN-PQ
10} —= HYBRIDJOIN-L J 2}~ HYBRIDJOIN-L J
2 A
8 o 18 .
2 g
= 8f 1 & 15t A
g E)
e 7t 1
g g
o 6 1 1F 1
8 8 _
2 5t 12 .
Q -
g n o
at 1 o5t 4
3+]
5 L . . . 0
0 0.25 0.5 0.75 1 0 50 100 150 200 250
Skew in stream data Memory (MB)

(c) Service rate vs skew

Service rate (tuples/sec)

x10°

25 ——CACHEJOIN-PQ
—+—CACHEJOIN-L
—=~HYBRIDJOIN-PQ
2} —=~HYBRIDJOIN-L

1.5¢

G0 50 100 150 200 250
Memory (MB)

(e) Real-life dataset

Fig. 3. Service rate analysis

(d) TPC-H datasets

that, in the existing algorithms the position of optimal lookup element changes
by increasing the size of R.

Analysis by varying skew value: In this experiment we compared the
service rate of all the algorithms while varying the skew value in streaming data.
To vary the skew, we varied the Zipfian exponent from 0.25 to 1. At 0.25 the
input stream S has a light skew, while at 1 the stream has a strong skew. The
size of R was fixed at 2 million tuples and the available memory was set to
50MB. The results presented in Figure 3(c) show that both CACHEJOIN-PQ
and HYBRIDJOIN-PQ perform significantly better than CACHEJOIN-L and
HYBRIDJOIN-L respectively. Particularly for small values of skew this difference
of improvement is more prominent. This is an evidence for our argument that by
changing the skew value in stream data the position of optimal lookup element
in the queue also changes. We do not present data for skew values larger than
1, which would imply short tails. Also we do not consider fully uniform stream
data (1.e. Zipfian exponent is equal to 0) as this is very unlikely in supermarket
transactional data.

TPC-H and real-life datasets: In these experiments we measured the
service rate produced by all the algorithms at different memory settings. The
results of using both TPC-H and real-life datasets are shown in Figure 3(d)
and Figure 3(e) respectively. From the both figures it can be noted that under
all memory settings both CACHEJOIN-PQ and HYBRIDJOIN-PQ outperform
existing CACHEJOIN-L and HYBRIDJOIN-L respectively .

6 Conclusions

Recently we published the strategy of finding a position of optimal lookup el-
ement from the queue. However, the approach suffers with two drawbacks (a)
it is not necessary that the lookup element always gives a frequent page from
the master data, a page that has frequent number of matches with stream tu-
ples in memory (b) the position of the lookup element can vary by varying the
nature of stream input, e.g. the value of skew in stream data. In this paper we
addressed these issues by introducing a new component called priority queue.
The priority queue keeps the record of frequent disk pages by storing their page
IDs. While the criteria of deciding that a page is frequent is based on the to-
tal number of matches in whole queue size stream data against that page. In
this way unlike to the existing approach, every element in the priority queue
gives a frequent page of master data and this does not affect by changing the
skew in stream data. To validate our argument we implemented our new strat-
egy to the existing CACHEJOIN-L and HYBRIDJOIN-L algorithms and named
them CACHEJOIN-PQ and HYBRIDJOIN-PQ. We provided experimental re-
sults that show that the both new algorithms perform significantly better than
the existing ones for all synthetic, TPC-H and real-life datsets.

In the future, we will extend our work to consider many-to-many equijoins
and certain classes of non-equijoins.

References

1.

2.

10.

11.

12.

13.

14.

15.

C. Anderson. The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion, 2006.

A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete language for
continuous queries over streams and relations. Technical Report 2002-57, Stanford
InfoLab, 2002.

M. Bornea, A. Deligiannakis, Y. Kotidis, and V. Vassalos. Semi-streamed index join
for near-real time execution of ETL transformations. In IFEE 27th International
Conference on Data Engineering (ICDE’11), pages 159 —170, april 2011.

A. Chakraborty and A. Singh. A partition-based approach to support streaming
updates over persistent data in an active datawarehouse. In IPDPS ’09: Proceedings
of the 2009 IEEE International Symposium on Parallel & Distributed Processing,
pages 1-11, Washington, DC, USA, 2009. IEEE Computer Society.

L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream warehousing with
datadepot. In SIGMOD ’09: Proceedings of the 35th SIGMOD International Con-
ference on Management of Data, pages 847-854, New York, NY, USA, 2009. ACM.
A. Karakasidis, P. Vassiliadis, and E. Pitoura. ETL queues for active data ware-
housing. In IQIS ’05: Proceedings of the 2nd International Workshop on Informa-
tion Quality in Information Systems, pages 28-39. ACM, 2005.

M. A. Naeem, G. Dobbie, and G. Weber. An event-based near real-time data
integration architecture. In EDOCW ’08: Proceedings of the 2008 12th Enterprise
Distributed Object Computing Conference Workshops, pages 401-404, Washington,
DC, USA, 2008. IEEE Computer Society.

M. A. Naeem, G. Dobbie, and G. Weber. HYBRIDJOIN for near-real-time data
warehousing. International Journal of Data Warehousing and Mining (IJDWM),
7(4), 2011.

M. A. Naeem, G. Dobbie, and G. Weber. A lightweight stream-based join with
limited resource consumption. In DaWaK ’12: Data Warehousing and Knowledge
Discovery, pages 431-442. Springer, 2012.

M. A. Naeem, G. Dobbie, G. Weber, and S. Alam. R-MESHJOIN for near-real-
time data warehousing. In DOLAP’10: Proceedings of the ACM 13th International
Workshop on Data Warehousing and OLAP, Toronto, Canada, 2010. ACM.

M. A. Naeem, G. Weber, G. Dobbie, and C. Lutteroth. SSCJ: A semi-stream cache
join using a front-stage cache module. In DaWaK ’18: 15th International Confer-
ence on Data Warehousing and Knowledge Discovery, pages 236-247. Springer,
2013.

M. A. Naeem, G. Weber, C. Lutteroth, and G. Dobbie. Optimizing queue-based
semi-stream joins with indexed master data. In DaWaK ’14: Data Warehousing
and Knowledge Discovery, pages 171-182. Springer, 2014.

N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N. Frantzell. Support-
ing streaming updates in an active data warehouse. In ICDE 2007: Proceedings of
the 23rd International Conference on Data Engineering, pages 476-485, Istanbul,
Turkey, 2007.

N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N. Frantzell. Meshing
streaming updates with persistent data in an active data warehouse. IFEFE Trans.
on Knowl. and Data Eng., 20(7):976-991, 2008.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pages 407-418, New York, NY, USA, 2006.
ACM.

