
Extending Linear Relaxation for Non-Square Matrices
and Soft Constraints

Noreen Jamil1, Johannes Müller1, M. Asif Naeem2, Christof Lutteroth3,
Gerald Weber3

1,3Department of Computer Science, The University of Auckland
38 Princes Street, Auckland 1020, New Zealand.

2School of Engineering, Computer and Mathematical Sciences, Auckland University of
Technology

Private Bag 92006, Auckland, New Zealand.

Abstract

Linear relaxation is a common method for solving linear problems, as they

occur in science and engineering. In contrast to direct methods such as Gauss-

elimination or QR-factorization, linear relaxation is particularly efficient for

problems with sparse matrices, as they appear in constraint-based user interface

(UI) layout specifications. However, the linear relaxation method as described

in the literature has its limitations: it works only with square matrices and

does not support soft constraints, which makes it inapplicable to the UI layout

problem.

To overcome these limitations we propose two algorithms for selecting the

pivot elements used during linear relaxation: random pivot assignment, and a

more complex deterministic pivot assignment. Furthermore, we propose three

algorithms for solving specifications containing soft constraints: prioritized IIS

detection, prioritized deletion filtering and prioritized grouping constraints. With

these algorithms, it is possible to prioritize constraints: if there are conflicting

constraints in a specification, as it is commonly the case for UI layout, only the

constraints with lower priority are violated to resolve the conflicts.

1{njam031, jmue933}@aucklanduni.ac.nz
2mnaeem@aut.ac.nz
3{lutteroth, gerald}@cs.auckland.ac.nz

Preprint submitted to Journal of Computational and Applied Mathematics June 14, 2016

The performance and convergence of the proposed algorithms are evaluated

empirically using randomly generated UI layout specifications of various sizes.

The results show that our best linear relaxation algorithm performs signifi-

cantly better than Matlab’s LINPROG, a well-known efficient linear program-

ming solver.

Keywords: UI layout, linear relaxation, soft constraints, non-square matrices

1. Introduction

Linear problems are encountered in a variety of fields such as engineering,

mathematics and computer science. Hence, various numerical methods have

been introduced to solve them. These methods can be divided into direct and

indirect, also known as iterative, methods. Direct methods aim to calculate an

exact solution in a finite number of operations, whereas iterative methods begin

with an initial approximation and usually produce improved approximations in

a theoretically infinite sequence whose limit is the exact solution [1].

Many linear problems are sparse, i.e. most linear coefficients in the corre-

sponding coefficient matrix are zero so that the number of non-zero coefficients

is O(n) with n being the number of variables [2]. Since it is useful to have

efficient solving methods specifically for sparse linear systems, much attention

has been paid to iterative methods, which are preferable for such cases [3]. Iter-

ative methods do not spend processing time on coefficients that are zero. Direct

methods on the other hand, usually lead to fill-in, i.e. coefficients change from

an initial zero to a non-zero value during the execution of the algorithm. In

these methods we therefore lose the sparsity property and have to deal with a

lot more coefficients, which makes processing slower. Although there are some

techniques to minimize fill-in effects, iterative, indirect methods are often faster

than direct methods for large sparse problems [4].

One domain where sparse problems frequently occur is user interface (UI)

layout. Section 2 describes the common properties of this domain, and delineates

the solving approaches that have been proposed for it. The contributions of this

2

paper are motivated by and were evaluated for the UI layout problem.

One of the most common iterative methods used to solve sparse linear sys-

tems is linear relaxation. Starting with an initial guess, it repeatedly iterates

through the constraints of a linear specification, refining the solution until a

sufficient precision is reached. For each constraint, it chooses a pivot variable

and changes the value of that variable so that the constraint is satisfied. Despite

its efficiency for sparse systems, linear relaxation is currently not used for UI

layout, for the reasons explained in the following.

A common property of many linear problems including UI layout is that the

matrices corresponding to these linear problems are non-square. For example,

when specifying UI layout with linear constraints, there are generally more

constraints than variables. This is a problem for the common linear relaxation

method, which assumes that the problem matrix is square and has a non-zero

diagonal.

The problem for non-square matrices is that of pivot assignment, i.e. of

choosing a pivot variable for each constraint during solving. The standard linear

relaxation algorithms choose the pivot variable on the diagonal of the coefficient

matrix. In case of square matrices with non-zero diagonals, this is an easy way

to ensure that every constraint has a pivot variable, and that every variable is

chosen once so that its value can be approximated. However, in the general case

the diagonal approach has several problems:

1. Not every constraint contains an element on the diagonal of the problem

matrix if there are more constraints than variables.

2. Diagonal elements may be zero, making them infeasible as pivot elements.

3. Diagonal elements may be small compared to the other elements on the

same row of the matrix, making them a bad choice that may cause the

solving process to diverge.

The common linear relaxation algorithms usually assume that a pivot as-

signment has been performed and that the chosen pivot elements are placed

on the diagonal of the problem matrix. In square matrices this can always be

3

achieved by simple matrix transformations. However, in the case of non-square

matrices, the problem number 1 above cannot be mitigated this way.

As a first contribution, we describe how the linear relaxation method can

be extended to deal with the abovementioned problems. We propose two pivot

assignment algorithms that can be used with any problem matrix, regardless

of its shape or diagonal elements. The first algorithm selects pivot elements

pseudo-randomly. The second algorithm selects pivot elements deterministically

by optimizing certain selection criteria. The problem of pivot assignment in the

case of non-square matrices and the two algorithms are explained in detail in

Section 4.

Besides its inability to deal with non-square matrices, the common linear

relaxation method has another shortcoming. Many problems, such as UI layout,

may contain conflicting constraints. This may happen by over-constraining, i.e.

by adding too many constraints, making a problem infeasible. If a specification

contains conflicting constraints, the common linear relaxation method simply

will not converge.

To deal with conflicts, soft constraints can be introduced. In contrast to

the usual hard constraints, which cannot be violated, soft constraints may be

violated if no other solution can be found. Soft constraints can be prioritized

so that in a conflict between two soft constraints only the soft constraint with

the lower priority is violated. This leads naturally to the notion of constraint

hierarchies, where all constraints are essentially soft constraints, and the con-

straints that are considered “hard” simply have the highest priorities [5]. Using

only soft constraints has the advantage that a problem is always solvable, which

cannot be guaranteed if hard constraints are used.

In Section 5 we propose three conflict resolution algorithms for solving sys-

tems of prioritized linear constraints with the linear relaxation method. The

first algorithm successively adds non-conflicting constraints in descending order

of priority. The second algorithm starts with all constraints and successively re-

moves conflicting constraints in ascending order of priority. The third algorithm

is a mixture of both and adapts the binary search algorithm to the problem of

4

searching the best conflict-free subproblem. These algorithms yield conflict-

free sub-problems to a given problem. There are some existing algorithms for

finding feasible subproblems for sets of constraints [6]. However, they do not

take into account prioritization of constraints, which is important for UI layout

problems. There are a number of UI approaches to taking into account soft

constraints [7, 8, 9, 10, 11].

With the presented pivot assignment algorithms and the conflict resolution

algorithms, linear relaxation can be applied to more linear constraint prob-

lems, such as constraint-based UI layout. Our two pivot assignment algorithms

together with the three conflict resolution algorithms give a total of six differ-

ent solution procedures. They were experimentally evaluated with regard to

their convergence and performance, using randomly generated UI layout spec-

ifications. The results show that most of the proposed algorithms are feasible

and efficient. Furthermore, we observed that some of our implemented solvers

outperform Matlab’s LINPROG linear optimization package [12], LP-Solve [13]

and the implementation of QR-decomposition of the Apache Commons Math

Library [14]. LP-Solve is a well-known linear programming solver that has been

used for UI layout. The implementation of QR-decomposition of the Apache

Commons Math Library is an example of a direct method. The methodology

as well as the results of the evaluation can be found in Section 6.

2. Motivating Example for User Interface Layout

Constraints are a suitable mechanism for specifying the relationships among

objects. They are used in the area of logic programming, artificial intelligence

and UI specification. They can be used to describe problems that are difficult

to solve, conveniently decoupling the description of the problems from their

solution. Due to this property, constraints are a common way of specifying

UI layouts, where the objects are widgets and the relationships between them

are spatial relationships such as alignment and proportions. In addition to

the relationships to other widgets, each widget has its own set of constraints

5

describing properties such as minimum, maximum and preferred size.

UI layouts are often specified with linear constraints [15]. The positions

and sizes of the widgets in a layout translate to variables. Constraints about

alignment and proportions translate to linear equations, and constraints about

minimum and maximum sizes translate to linear inequalities. Furthermore, the

resulting systems of linear constraints are sparse. There are constraints for each

widget that relate each of its four boundaries to another part of the layout, or

specify boundary values for the widget’s size, as shown in Figure 1. As a result,

the direct interaction between constraints is limited by the topology of a layout,

resulting in sparsity.

Figure 1: Example constraint-based UI layout with hard and soft constraints

For sparse linear problems, linear relaxation is known to perform very well.

However, linear relaxation in its standard form cannot be applied to the UI

layout problem for two reasons. First, the coefficient matrices are non-square:

there are usually more constraints than variables. Second, many of the con-

straints are soft because they describe desirable properties in the layout (e.g.

preferred sizes), which cannot be satisfied under all conditions (e.g. all layout

6

sizes). As a result, the existing UI layout solvers use algorithms other than

linear relaxation. Some of these solvers will be discussed in Section 5.1.

3. Linear Relaxation

The approximate methods that provide solutions for systems of linear con-

straints starting from an initial estimate are known as iterative methods. Most

of the research on iterative methods deals with iterative methods for solving

linear systems of equalities and inequalities for sparse square matrices, the most

important method being linear relaxation. This section summarizes the most

important findings.

The best-known iterative method for solving linear constraints is the Gauss-

Seidel method [1]. Given a system of n equations and n variables of the form

Ax = b (1)

We can rewrite the equation for the ith term as follows

xi =
1

aii
(bi −

i−1∑
j=1

aijxj). (2)

The variable xi, which is brought onto the left side, is called the pivot vari-

able, and aii is the pivot coefficient or pivot element chosen for row i. An initial

estimate for x is chosen, which usually does not fulfil the equations. The algo-

rithm refines the estimate by repeatedly replacing all individual xi so that the

ith eqation becomes fulfilled. This is done in round-robin fashion, and one full

run through all n equations is one iteration, r being the iteration number. We

can therefore write the process as:

xr+1
i =

1

aii
(bi −

i−1∑
j=1

aijx
r+1
j −

n∑
j=i+1

aijx
r
j). (3)

The algorithm iterates until the relative approximate error is less than a pre-

specified tolerance. Convergence and divergence behaviour of Gauss-Seidel is

shown in Figure 2.

7

X1

X2

Initial

 guess

(a) Convergence behaviour

X1

X2

Initial

 guess

(b) Divergence behaviour

Figure 2: Convergence and divergence behaviour of Gauss-Seidel

Linear relaxation, also known as successive over-relaxation (SOR), is an

improvement of the Gauss-Seidel method [16]. It is used to speed up the con-

vergence of the Gauss-Seidel method by introducing a parameter ω, known as

relaxation parameter, so that

xr+1
i =

ω

aii
(bi −

i−1∑
j=1

aijx
r+1
j −

n∑
j=i+1

aijx
r
j) + (1− w)xri . (4)

This reduces to the Gauss-Seidel method if ω = 1. It is known as over-

relaxation if ω > 1, and known as under-relaxation if ω < 1.

3.1. Convergence

The convergence of the Gauss-Seidel method can be characterized in two

related but quite distinct approaches. The first approach, which is the best-

known theorem in this domain, is based on the coefficient matrix.

Definition 1. A matrix is called strictly diagonally dominant if for all i

|aii|>
∑
j 6=i

|aij |. (5)

If a coefficient matrix is strictly diagonally dominant, the problem is guar-

anteed to converge [17]. However, this is only a sufficient condition, and a very

strong condition that can be easily violated.

The notion of diagonal dominance gives naturally rise to a more general

quantity that describes the influence of a variable.

8

Definition 2. The influence of the kth variable in the ith constraint is

influenceik =
|aik|∑
j |aij |

. (6)

All influences of variables in a constraint sum up to 1. If the constraints

are normalized by dividing by the denominator above, then the absolutes of

the coefficients of the variables are simply their influences. This metric will be

helpful in defining our pivot assignment algorithms in Section 4.3.

The second approach to characterizing convergence is based on a derived

matrix, the iteration matrix, and leads to a necessary and sufficient condition

involving the spectral radius of the iteration matrix, defined as the absolute

value of the maximum eigenvalue, which applies for SOR, not only Gauss-Seidel.

Definition 3 (Iteration Matrix). The changes to the estimate xk in every step

of the SOR method for Ax = 0 are given by a linear function. The matrix

Mω(A) of this function with xk+1 = Mω(A)xk is called the iteration matrix of

Ax = 0.

The SOR method converges for all initial values if and only if the spectral

radius of the iteration matrix is smaller than one. If that condition is not

fulfilled, the problem will diverge, except for some special initial values (such

as the solutions itself). The smaller the spectral radius of the iteration matrix,

the faster the SOR method converges.

An important characteristic of the SOR method with regard to convergence

is translation invariance.

Lemma 1 (Translation Invariance). Let the SOR method for Ax = b converge

to x̄ starting with x0. Then the SOR method for Ay = 0 starting with y0 = x0−x̄

will have the same convergence behavior, i.e. for all j, r we have yrj = xrj − x̄j.

The proof is by induction over j, r.

With Lemma 1 we can simplify the existing proof [18] of convergence based

on the iteration matrix.

9

Theorem 1. The SOR method for Ax = b converges4 if the Iteration Matrix is

non-singular and M(A) has a spectral radius smaller than 1.

Proof. If the spectral radius is smaller than 1, then M(A)n converges to the

matrix 0. Hence SOR for Ax = 0 converges to the correct solution 0. From

translation invariance it follows that the SOR method for Ax = b converges.

Underrelaxation generally has better convergence behavior than Gauss-Seidel.

But even for Gauss-Seidel, convergence is usually not a problem in practice. If

there are concerns around convergence of the Gauss-Seidel method in a specific

domain, preconditioners can be used. Good preconditioners for iterative meth-

ods are scaling algorithms [19] and bipartite matching algorithms [20]. These

algorithms scale the infinity norm of both rows and columns in a matrix to

1 and permute large entries to the diagonal of a sparse matrix. We usually

have well-conditioned coefficient matrices in the UI layout problem for which

the Gauss-Seidel method converges quickly if appropriate pivot elements are

chosen.

3.2. Inequalities

Linear relaxation supports linear equalities as well as inequalities. Inequali-

ties are handled similarly to equalities [21, 22, 23]: in each iteration, inequalities

are ignored if they are satisfied, and otherwise treated as if they were equali-

ties. However, there are potential practical problems, which are described below

using the following definitions.

Definition 4. A system containing equalities as well as inequalities is called a

mixed system.

Definition 5. The subsystem that consists of all the equations in a system of

linear constraints is called maximum equality subsystem.

4We treat inequalities as equalities or ignore them if they are fulfilled (cf. Section 3.2).

10

A mixed system with a square coefficient matrix cannot have a unique solu-

tion because this is only possible if there is an equality for each variable. In a

typical mixed system, as it occurs for instance in UI layout specifications, the

maximum equality subsystem is under-determined, i.e. there are fewer equalities

than variables, and the whole system has more constraints than variables. This

means that for typical mixed systems the standard linear relaxation algorithm,

which works only on a square matrix, is insufficient. To use linear relaxation

for such mixed systems we have to extend it, e.g. by applying the algorithms

proposed in this article.

3.3. Advantages

Iterative methods such as linear relaxation have certain advantages over

direct methods. Iterative methods are typically simpler to implement, resulting

in smaller programs. Furthermore, they have fewer round-off errors than direct

methods [3]. They start with an approximate answer and improve its accuracy in

each iteration, so that the algorithm can be terminated once a sufficient accuracy

is achieved. Ill-conditioned matrices are problem for iterative methods just as

much as for direct methods. Compared to direct methods, iterative methods

are very efficient for sparse matrices, i.e. matrices where the number of non-zero

elements is a small fraction of the total number of elements in the matrix. They

are faster than direct methods because zero-coefficients are ignored implicitly,

whereas direct methods have to process the zero-coefficients explicitly [3]. This

implies that iterative methods need not store zero-coefficients explicitly, which

leads to less memory consumption than with direct methods [24]. Considering

these advantages, it would be useful if the limitations of linear relaxation could

be overcome.

4. Non-Square Matrices

As pointed out in Section 3.2, mixed systems usually have a non-square

matrix with more constraints than variables. Furthermore, they may have zero-

coefficients on the diagonal. In some cases, they may also have more variables

11

than constraints (under-determined). In all these cases, the standard linear

relaxation algorithm cannot be applied. In this section, we briefly present some

related work on constraint problems with non-square coefficient matrices and

propose two pivot assignment algorithms. Both algorithms help to overcome

the limitations of the standard linear relaxation algorithm.

4.1. Related Work

Linear systems with non-square matrices are typically solved using direct

methods, such as the QR-factorization method [17]. The QR-factorization

method is used to solve linear systems of equations. Several methods can be

used to compute QR-factorization, e.g. the Gram-Schmidt process, Householder

transformations, or Givens rotations [17]. These methods require the calculation

of a significant number of matrix norms, which slows them down as compared

to other methods such as the normal equations method.

The normal equations method [25], which is also a direct method, is used to

solve linear systems of the form ATAx = AT b. It is fairly simple to program, but

suffers from numerical instability when solving ill-conditioned problems. The

condition of the normal equation matrix ATA is worse than that of the original

matrix A. When an original matrix is converted into a normal equation matrix

and a right hand-side vector, information can be lost. The normal equations

method is considered the most common method despite the loss of information

because it has been shown that its accuracy can be improved if iterative re-

finement is applied [26]. Some iterative methods like Gauss-Seidel use normal

equations to solve non-square linear systems of equations [17].

There are some iterative methods [27] that can be used to solve systems

of linear equations that are non-square. These methods include the simplex,

the conjugate gradient and the generalized minimal residual methods. They

have some limitations that make them inapplicable for some problems. These

limitations are described as follows.

The simplex algorithm [28] is a well-known method used to solve linear

programming problems. It is an iterative method, but one linear solving step

12

per iteration is required, which means this method cannot be faster than linear

solving alone. It moves from one feasible corner point to another and continues

iteration until an optimal solution is reached. The revised simplex method [29]

is a variant of the simplex algorithm which is computationally more efficient for

large sparse problems.

While the simplex algorithm tries to find an optimal solution according to

an arbitrary linear objective function, there are other methods that try to find a

least squares solution to an over-determined system of linear equations. These

methods find a solution whose sum of squared errors is minimal. UI methods

that work on squared errors exists such as [10] but also methods using absolute

value [7] which is currently the basis for all layout in Apple,s Cocoa layout

engine.

The generalized minimal residual method [30] is considered the most efficient

method for solving least squares problems. One of the shortcomings of this

method is its instability and poor accuracy of the computed solution due to

the possibly high ill-conditioning of the normal equations system. This method

is unstable because a non-square matrix is converted into a square matrix by

applying normal equations.

The conjugate gradient method [31] can solve linear systems of equations

if the matrix is symmetric and positive definite. However, it only works for

well-conditioned problems as it cannot converge otherwise. Several methods

for iteratively solving linear least squares problems – so called Krylov subspace

methods – are surveyed in [32].

The Jacobi and Gauss-Seidel algorithms [33] are extended to solve non-

square matrices in least squares sense by applying a hierarchical identification

principle and by introducing block matrix inner-products. Numerical difficulties

encountered for under-determined problems are the same in over-determined

problems as described above. However, round-off errors accumulated in the

under-determined case are more complicated than in the over-determined case

because the solution is not unique.

13

4.2. Pivot Assignment

Since the diagonal elements do not lend themselves naturally as pivot ele-

ments if the matrix is non-square, we need to explicitly select a pivot element

for each constraint. In other words, we need to determine a pivot assignment.

Pivot assignment is also important for square matrices as it has an effect on

convergence.

Definition 6. A pivot assignment is an assignment of constraints to variables

γ : Constraints→ Variables.

A feasible pivot assignment γ must be surjective and total. Surjectiveness

is necessary because we require one constraint for each variable, otherwise the

variable’s value would not be changed by the algorithm. Totality is inherent in

the definition of the linear relaxation algorithm, which requires a pivot variable

for every constraint.

4.3. Pivot Assignment Algorithms

In the following we propose two pivot assignment algorithms, a random and

a deterministic one. While the random algorithm avoids the issues of surjective-

ness and totality by randomization, the deterministic algorithm ensures these

properties, using the notions of most influential variables and constraints defined

as follows.

Definition 7. The most influential variable of a constraint is the one with the

highest influence. The most influential constraint of a variable is the constraint

where the variable has the highest influence.

4.3.1. Random Pivot Assignment

The algorithm for random pivot assignment is depicted in Algorithm 1. The

random algorithm assigns the pivot variable for each constraint randomly in

each iteration (line 2). This means that in general the pivot assignment is

changed in each iteration.

14

It is not inherently obvious that randomized assignments work for the linear

relaxation approach, but it is the simplest approach that may work. Although

the random algorithm does generally not make the optimal assignment with

regard to convergence, it reduces the effect of bad assignments while allowing for

good assignments. In particular, it is guaranteed that every suitable variable will

be chosen as pivot variable at some point. The general assumption underlying

randomized algorithms is that the effect of good choices outweighs the effect of

bad choices.

Input: Constraints (C)

Output: Pivot Assignment γ

1: for each constraint c do

2: Choose variable x of c randomly

3: Assign γ(c) = x

4: end for

Algorithm 1: Random pivot assignment

One of the drawbacks of random assignment is that it causes fluctuation of

the error. This makes it harder to recognize whether the algorithm diverges, or

whether fluctuations are only temporary. To address this problem, we propose

a deterministic approach in the following section.

4.3.2. Deterministic Pivot Assignment

The algorithm for deterministic pivot assignment is presented in Algorithm 2.

It creates a single pivot assignment that is used consistently during the solving

process. It is explained in the course of the following proof of correctness.

Theorem 2. The deterministic algorithm produces only feasible assignments.

Proof. In lines 1–7 each constraint is assigned a variable x, therefore the result-

ing assignment is total. In lines 8–11 every variable y that has not been assigned

a constraint yet is assigned a new constraint, which is a duplicate of an existing

constraint. As a result, the resulting assignment is surjective.

15

If the matrix is diagonally dominant, at the time the algorithm iterates over

a particular constraint, the most influential variable of this constraint will still

be unassigned. After the first loop, there will be no unassigned variables left.

As a result, the algorithm chooses the diagonal elements as pivots in the case

of diagonally dominant matrices. Duplicating constraints of a problem does not

change the problem, hence this is a valid transformation.

Input: Constraints (C)

Output: Pivot Assignment γ

1: for each constraint c do

2: if some variables of c are still unassigned then

3: Choose unassigned variable x of c with the largest influence, assign

γ(c) = x

4: else

5: Choose the most influential variable x of c, assign γ(c) = x

6: end if

7: end for

8: for each still unassigned variable y do

9: Find the most influential constraint c for y

10: Duplicate c to c′, assign γ(c′) = y

11: end for

Algorithm 2: Deterministic pivot assignment

In the general case constraint-based UIs are over-determined, which can

result in conflicts between constraints of the problem. A proper pivot assignment

algorithm alone is not sufficient to deal with such cases. A technique to handle

conflicts between constraints, e.g. in the form of soft constraints, is required.

5. Soft Constraints

Hard constraints are constraints that must always be satisfied. If this is

impossible, there is no solution. For many problems, including UI layout, con-

16

flicting constraints occur naturally in specifications, as they express properties

of a solution that are desirable but not mandatory. As a result, soft constraints

need to be supported, which are satisfied if possible, but do not render the spec-

ification infeasible if they are not. A natural way to support soft constraints is

to treat all constraints as soft constraints, with different priorities (p). These

priorities can be defined as a total order on all constraints that specifies which

one of two constraints should be violated in case of a conflict.

To define the solution of a system of prioritized soft constraints, we first have

to define the subset E ⊆ Constraints of enabled constraints. We consider the

characteristic function 1E : Constraints→ {0, 1} of E, which expresses whether

a constraint is contained in E, to construct an integer in binary representation

(ι). According to their priority, each constraint is represented by a bit of that

integer, with constraints of higher priority taking the more significant bits. The

value of the characteristic function for the constraint with the highest priority

is considered the most significant bit. Then such subsets can be compared

by using the numerical order ≥ of the integers. We are interested in the subset

that is largest in that order while containing only non-conflicting constraints. In

the following, we discuss existing approaches for solving linear soft constraints.

Then, we describe three algorithms that address support for soft constraints

in the linear relaxation method: prioritized IIS detection, prioritized deletion

filtering and prioritized grouping constraints.

5.1. Related Work

All constraint solvers for UI layout must support over-determined systems.

The commonly used techniques for dealing with over-determined problems are

weighted constraints and constraint hierarchies [34, 35, 36]. Weighted con-

straints are typically used with some general forms of direct methods, while

constraint hierarchies are especially utilized in linear programming based algo-

rithms. Many UI layout solvers are based on linear programming and support

soft constraints using slack variables in the objective function [7, 8, 9, 10, 15, 37].

Most of the direct methods for soft constraint problems are least squares

17

methods such as LU-decomposition and QR-decomposition [38]. The UI layout

solver HiRise [39] is an example of this category. Its successor, HiRise2 [40]

solves hierarchies of linear constraints by applying an LU-decomposition-based

simplex method.

However, if weights are used to express a hierarchy of constraints the dif-

ferences between them have to be very large. This in turn can push numerical

limits. Hence, it is desirable to enforce priorities of constraints without using

weights directly.

Many different local propagation algorithms have been proposed for solving

constraint hierarchies in UI layouts. The DeltaBlue [41], SkyBlue [42] and

Detail [43] algorithms are examples of this category. The DeltaBlue and SkyBlue

algorithms cannot handle simultaneous constraints that depend on each other.

However, the Detail algorithm can solve constraints simultaneously based on

local propagation. All of the methods to handle soft constraints utilized in

these solvers are designed to work with direct methods, so they inherit the

problems direct methods usually have with sparse matrices. Some orthogonal

projection methods are also extended to solve soft constraints for User Interface

Layout problems [44].

QUICKXPLAIN [45] tries to find a conflict-free constraint system by suc-

cessively adding or removing constraints from the group of constraints. The

groups of constraints to be added or removed are determined by a recursive

decomposition of the problem. It is mixture of QuickSort and MergeSort in the

sense that QuickXplain must solve both of the two subproblems resulting from

the problem decomposition. In contrast to QuickSort and MergeSort, the result

of the right subproblem, which is solved first by QuickXplain, has an impact on

the formulation of the left subproblem. This is a particularity of QuickXplain.

The Maximum Satisfiability (MAXSAT) problem is a generalization of Sat-

isfiability (SAT) that can represent optimization problems. SAT problem tries

to find an assignment that satisfies all the constraints if one exists otherwise

no assignment exists which can be satisfiable. The goal of MAXSAT is to find

an assignment that satisfies maximum number of constraints. The MAXSAT

18

solvers are based on branch and bound solvers and satisability testing [46, 47,

48, 49, 50, 51, 52].

The problem of finding the largest possible subset of constraints that has a

feasible solution given a set of linear constraints is widely known as the maximum

feasible subsystem (MaxFS) problem [6]. The dual problem of MaxFS is the

problem of finding the irreducible infeasible subsystem (IIS) [53]. If one more

constraint is removed from an IIS, the subsystem will become feasible. For both

problems different solving methods were proposed.

To solve the MaxFS problem, non-deterministic as well as deterministic

methods were proposed. Some of these methods use heuristics [54, 55]. Only a

few methods solve the problem deterministically. The branch and cut method

proposed by Pfetsch[56] is such a deterministic method. Besides methods to

solve MaxFS, there are some methods to solve the IIS problem. These methods

are: deletion filtering, IIS detection algorithm and grouping constraints method.

Deletion filtering [57] starts with the set of all constraints. For each con-

straint in the set, the method temporarily drops the constraint from the set

and checks the feasibility of the reduced set. If the reduced set is feasible, the

method returns the dropped constraint to the set of constraints. If the reduced

set is infeasible, the method removes the dropped constraint permanently. Bak-

eret al. [58] proposed an algorithm, Diagnosis of Over-determined Constraint

Satisfaction Problems. This algorithm tries to find the set of least important

constraints that can be removed to solve the remaining constraint satisfaction

problem. If solution is not optimal then it tries to find next-best sets of least-

important constraints until an optimal solution is found.

The IIS detection algorithm [59, 60, 61] starts with a single constraint and

adds constraints successively. If the system is infeasible after adding a new

constraint, then the method discards this new constraint.

The grouping constraints method was introduced by Guieu and Chinneck [62]

to speed up the IIS detection algorithm and deletion filtering. It adds or drops

constraints in groups by using the deletion filtering or IIS detection algorithms.

Even though these methods deal with the problem of finding a feasible sub-

19

system, it is not possible to apply them directly. The main reason is that they

do not consider prioritized constraints, as necessary for problems such as UI

layout. As discussed in Section 5, we have to find not only the set with the

maximum number of constraints, but the set of constraints with max(ι). We

call this problem prioritized MaxFS, and propose as a solution the following al-

gorithms: prioritized IIS detection, prioritized deletion filtering and prioritized

grouping constraints.

5.2. Prioritized IIS Detection

In prioritized IIS detection, which is depicted as Algorithm 3, we start with

an empty set E of enabled constraints (line 1). We add constraints incrementally

in order of descending priority so that E is conflict-free, until all non-conflicting

constraints have been added. Iterating through the constraints, we add each

constraint tentatively to E (“enabling” it), and try to solve the resulting speci-

fication (line 7). Note that whenever a constraint is added, the pivot assignment

needs to be recalculated. If a solution is found, we proceed to the next con-

straint. If no solution is found, the tentatively added constraint is removed

again. In that case, the previous solution is restored and we proceed to the next

constraint.

This algorithm assumes that the method used for solving converges if there

is no conflict. The algorithm approximates max(ι) starting from the most sig-

nificant bit and progressing down to the least significant bit. This property

distinguishes our algorithm from the existing IIS detection algorithm. The best

case time complexity of this algorithm is O(nlog(n)) and the worst case is O(n2).

5.3. Prioritized Deletion Filtering

Prioritized deletion filtering is an algorithm that assumes that a predicate

conflicting(c) with certain properties exists. The assumption is that during one

unsuccessful attempt to solve the current specification, we can collect reliable

information on each single constraint whether it is conflicting.

20

Input: Constraints (C)

Output: Non-conflicting constraints

1: DISABLE(C)

2: SORT(C) (by priority)

3: for each constraint c in order of priority, descending do

4: Remember current variable values

5: ENABLE(c)

6: Assign pivot elements for all constraints

7: Apply linear relaxation

8: if solution not optimal then

9: DISABLE(c)

10: Restore old variable values

11: end if

12: end for

Algorithm 3: Prioritized IIS Detection

The steps are shown in Algorithm 4. We start with all constraints enabled,

i.e. E = Constraints (line 1). We try to solve the specification, and if feasible

solution is found, this means E is conflict-free. In this case, we return the so-

lution. Otherwise, we remove the conflicting constraint with the lowest priority

from E (“disabling”) and recalculate the pivot assignment.

With a very simple heuristic predicate based on the error fluctuation, as

described below in detail, this algorithm was used quite successfully during

our evaluation. However, even if one assumes a completely reliable predicate

conflicting(C), the set of constraints getting disabled is generally larger than

allowed in our definition of soft constraints. In contrast to prioritized IIS detec-

tion, if there is a conflicting constraint c of a higher priority in a specification,

that constraint will only be deleted after it might have already triggered removal

of a constraint d of a lower priority. After c is removed, d might be solvable, but

has already been lost. We present this approach to provide another perspec-

tive on addressing soft constraints, and as a motivation for our third algorithm

21

described in Section 5.4.

Currently, we use the following heuristic: conflicting(c) is true if the value

of its pivot variable γ(c) has been changed significantly during the last linear

relaxation iteration. While this condition is true for conflicting constraints, it is

not a sufficient condition, as other non-conflicting constraints may be affected by

a conflict and hence satisfy this condition, too. The best case time complexity

of this algorithm is O(nlog(n)) and the worst case is O(n3).

Input: Constraints (C)

Output: Non-conflicting constraints

1: ENABLE(C)

2: SORT(C) (by priority)

3: for each constraint do

4: Assign pivot elements for all constraints

5: Apply linear relaxation

6: if solution is feasible then

7: return solution

8: end if

9: for each constraint c in order of priority, ascending do

10: if conflicting(c) then

11: DISABLE(c)

12: break

13: end if

14: end for

15: end for

Algorithm 4: Prioritized Deletion Filtering

5.4. Prioritized Grouping Constraints

The prioritized grouping constraints algorithm is a combination of priori-

tized IIS detection and prioritized deletion filtering. It tries to find a conflict-

free constraint system by successively adding or removing constraints from the

22

system of constraints. If a constraint system is conflict-free, the algorithm adds

constraints; if it has conflicts, the algorithm removes constraints. It adds and

removes not only one constraint at a time, but groups of constraints, whereby

the size of the groups follows the classic patterns of a binary search approach.

The algorithm ends if the system is conflict-free and no more constraints can be

added. In contrast to prioritized deletion filter, this algorithm does not require

a predicate conflicting(c).

The steps are shown in Algorithm 5. First, the algorithm is initialized by

sorting the list of constraints (C) (line 1) and initializing some variables (line 2).

The variables beginning and end determine the upper-inclusive and the lower-

exclusive bounds of the area of the list of constraints which possibly contains

conflicting constraints, the search window. These bounds are adjusted while

the algorithm is running. When initializing the algorithm, we set end = 2|C|,

which is adjusted to end = |C| in the first iteration. In the second iteration

we check the whole list from the first entry (beginning = 0) to the last entry

(end = |C| − 1).

After initialization the algorithm enters a loop which iteratively finds the

prioritized MaxFS (max(ι)). First, the algorithm checks whether the calculated

solution of the previous step is feasible. If this is the case, we know that, at least

up to end, no conflict is in the constraint list. We can, therefore, set the upper

bound beginning of the search window to end, ignore the old search window

in the following iterations, and increase the lower bound end to form a new

window. The variable value end is increased exponentially with δ.

If the solution is not feasible, we have either identified a conflicting con-

straint, or we still need to decrease the size of the search window exponentially

(line 15). We have found a conflicting constraint if the size of the search window

is shrunk to a single constraint (line 10). In that case, we deactivate this con-

straint (line 11), move the upper bound of our search space to index position

end (line 12), and set the size of our search window to one (line 13) for the

following iteration.

Now, after the bounds of the search window are calculated, the constraints

23

Solvable

Beginning

End

x Disabled Constraint Active Search WindowConflicting Constraints

1Iteration 2 3 5 6[
]

[
] [

] [] [
]

x

7 9

[]
[]

1
0

2
3
4
5
6
7
8
9

Non-Conflicting Constraints

[]

8

[]

δ

yes

10

10

2

no

8

10

2

no

8

9

2

no

9

10

2

yes

0

5

2

yes

5

7

4

no

7

8

2

no

0

10

2

0[
]

no

0

20

1

20

:

4

[
]

no

7

10

2

x x x
x x

x

Figure 3: Example run of the prioritized grouping constraints algorithm

within the search window (beginning, end) are enabled and all constraints below

the search window are disabled (line 18). The constraints above beginning are

still enabled from the preceding iterations. Finally, the pivot elements for the

enabled constraints are determined and the problem is solved for the enabled

constraints (lines 19 and 20).

Similar to the aforementioned algorithms, this algorithm assumes that linear

relaxation converges if there is no conflict in the system. Under that assumption,

it finds max(ι), i.e. it will end with the same constraints as prioritized IIS

detection. However, in contrast to prioritized IIS detection, it adds and removes

constraints in groups, which reduces the number of required iterations in most

cases. The best case time complexity of this algorithm is O(log(n)) and the

worst case is O(n).

Figure 3 depicts a run of the prioritized grouping constraints algorithm. In

this example, the problem consists of 10 constraints, ordered according to their

priority. The constraint pairs (2, 9), (5, 8) and (7, 10) are conflicting. The

objective is to find a problem with max(ι).

The algorithm starts in iteration 0 by just initializing the size of the search

24

Input: Constraints (C)

Output: Non-conflicting constraints

1: SORT(C) by priority

2: δ ← 1; beginning ← 0; end← 2(|C|)

3: while beginning < |C| do

4: if solution feasible then

5: Remember current variable values

6: beginning ← end

7: end← end+ δ (or |C| if it is out of bounds); δ ← 2δ

8: else

9: Restore old variable values

10: if end = beginning + 1 then

11: DISABLE(C[beginning])

12: beginning ← end

13: end← end+ 1 (or |C| if it is out of bounds); δ ← 2

14: else

15: end← beginning + end−beginning
2

16: end if

17: end if

18: ENABLE(C[beginning . . . (end−1)]) and DISABLE(C[end . . . (|C|−1)])

19: Assign pivot elements for all enabled constraints

20: SOLVE enabled constraints

21: end while

Algorithm 5: Prioritized grouping constraints

window and solving the complete list for the first time. With that result it enters

iteration 1 with a search window that consists of the complete list of constraints

(0 – 9), and tries to solve them. This problem cannot be solved since we have

three conflicts in the list, as described above. In iteration 2, the search window

is halved and the algorithm tries to solve the problem in the upper part (0 –

25

4). This subproblem is solvable and the algorithm moves the beginning of the

search window to index 5 and starts with a new search window of size δ = 2 in

iteration 3. The new subproblem is solvable as well and δ is doubled to 4, so

that the subproblem in iteration 4 contains again the whole list of constraints

which are not solvable. In iteration 5 the search window is halved again. Since

only one constraint is in the search window left and the problem is still not

solvable, the problem in the search window must be conflicting with one of the

higher prioritized constraints and has to be disabled. The new search window

in iteration 6 starts below the disabled constraint with size 2. Again it contains

conflicting constraints and is halved, which yields a search window of size 1 in

the next iteration and a subproblem which is still not solvable. Hence constraint

8 must be conflicting as well and is disabled. The search window is moved below

the disabled constraint in iteration 8. The new subproblem is not solvable and

constraint 9 is disabled. In the last iteration, the search window is of size 0

and the problem is solvable, which indicates that all conflicts are found and

the algorithm can terminate. As the example shows, the prioritized grouping

constraints algorithm deactivates only lower prioritized conflicting constraints,

resulting in max(ι). This property distinguishes our algorithm from the existing

grouping constraints algorithm.

6. Experimental Evaluation

In this section, we present an experimental evaluation of the proposed algo-

rithms. We conducted two different experiments to evaluate (1) the convergence

behavior, (2) the performance in terms of computation time.

6.1. Methodology

For both experiments we used the same computer and test data generator,

but instrumentalized the algorithms differently. We used the following setup: a

desktop computer with Intel i5 3.3GHz processor and 64-bit Windows 7 running

an Oracle Java virtual machine. Layout specifications were randomly generated

26

using the test data generator described in [15]. For each experiment the same

set of test data was used. The specification size was varied from 4 to 2402

constraints, in increments of 4 (2 new constraints for the position and 2 new

constraint for the preferred size of a new widget). For each size, 10 different

layouts were generated, resulting in a total of 6000 different layout specifications

that were evaluated. A linear relaxation parameter of 0.7 and a tolerance of 0.01

were used for linear relaxation. We use 1000 maximum number of iterations until

the algorithm gets near optimal solutions or an indication of likely infeasibility

of the system.

In Experiment 1, we investigated the convergence behavior of each algorithm

by measuring the number of sub-optimal solutions. A solution is sub-optimal if

the error of a constraint (the difference between right hand and left hand side)

is not smaller than the tolerance.

In Experiment 2, we measured the performance in terms of computational

time T in milliseconds (ms), depending on the problem size measured in num-

ber of constraints c. Each of the proposed algorithms was used to solve each

of the problems of the test data set, and the time was taken. As a refer-

ence, all the generated specifications were also solved with Matlab’s LINPROG

solver [12] and LP-Solve [13]. We selected these two solvers because LINPROG

is widely known for its speed 5, and LP-Solve was previously used to solve UI

layout problems [15]. Additionally, we wanted to know how well our algorithms

compete with a direct method. Hence we also used the implementation of QR-

decomposition of the Apache Commons Mathematics Library [14], which is a

freely available open-source library.

Algorithm 6 shows how random sets of areas A are created by partitioning

the bounding area of a GUI. First, A only contains the bounding area of the

GUI. Then, while the number of areas |A| in A is less than the number of areas

nareas that the layout should contain, we divide one of the existing areas, thus

increasing the total number of areas by one. Line 4 randomly chooses an area

5http://plato.asu.edu/ftp/lpfree.html

27

1: function GENERATE(nareas)

2: A ← (left, top, right, bottom)

3: while |A| < nareas do

4: a ←randomElement(A)

5: A ←A− (a)

6: if random < 0.5 then

7: A ← AU(a.left, a.top, xnew, a.bottom), (xnew, a.top, a.right, a.bottom)

8: else

9: A ← AU(a.left, a.top, a.right, ynew), (x.left, ynew, a.right, a.bottom)

10: end if

11: end while

12: end function

Algorithm 6: Generation of a random partition of areas.

a of A, and line 5 removes it from A. Then, we randomly decide whether to

divide a vertically or horizontally. Random is a random value between 0 and

1. xnew is a new x-tab that is inserted in order to divide a vertically; ynew is

a new y-tab that is inserted in order to divide a horizontally. Because of the

growing number of smaller areas and the uniformly random choice of the area

that is subdivided next, the algorithm produces layouts with some large areas

and many small ones. In our tests, we put a button into each of the areas of the

generated layouts. The total GUI size was chosen randomly to be (100 100, 800

600). A random minimum size was set for each area to be (10 (400/nareas),

10 (300/nareas). Minimum sizes are important for the controls in the areas

to be rendered correctly, and it is important to reduce the maximum for each

minimum size with increasing nareas in order to have a feasible layout. If the

minimum sizes are too large then the minimum widths or minimum heights of

adjacent areas might add up to more than the total size of the GUI so that there

cannot be a solution. For each area, pexpand and pshrink are chosen randomly

between 0 and 1.

28

6.2. Results

In Experiment 1, we found that all algorithms converge. This result is

obvious since the algorithms are designed to find a solvable subproblem.

In Experiment 2, we analyzed the trends of the computational performance

of the algorithms using different regression models (linear, quadratic, cubic and

log). We found that the best-fitting model is the polynomial model

T = β0 + β1c+ β2c
2 + β3c

3 + ε.

Key parameters of the models are depicted in Table 2; a graphical representation

of the models can be found in Figures 4 – 6. Table 1 explains the symbols used.

Symbol Explanation

β0 Intercept of the regression model

β1−3 Estimated model parameters

c Number of constraints

T Measured time in milliseconds

R2 Coefficient of determination of the estimated regression models

Table 1: Symbols used for the performance regression model

For some strategies, some parameters do not have a significant effect. That

can be interpreted as the complexity of the algorithm not following a certain

polynomial trend. For example, prioritized deletion filtering with determinis-

tic pivot assignment seems to have a purely quadratic runtime behavior. For

a better comparison of the runtime behavior of the strategies, we considered

all combinations of soft constraint and pivot selection algorithms. Figure 4

illustrates the performance comparison of prioritized IIS detection, prioritized

deletion filtering and prioritized grouping constraints using random pivot assign-

ment. As the graphs indicate, prioritized grouping constraints exhibits better

performance than prioritized deletion filtering and prioritized IIS detection.

Figure 5 compares prioritized IIS detection, prioritized deletion filtering and

29

Strategy β0 β1 β2 β3 R2

Pr. grouping constraints / deter. 1.283e+03*** −1.045e+01*** 2.350e−02*** 5.865e−06*** 0.9877

Pr. grouping constraints / random 8.341e+00*** −4.692e−02*** 1.225e−04*** −1.305e−08*** 0.9917

Pr. deletion filtering / random −6.399e−01 5.333e−03 8.946e−05*** 2.831e−09*** 0.9925

Pr. IIS detection / random 4.174e+00*** −2.270e−02*** 1.620e−04*** −1.087e−08*** 0.9957

Pr. IIS detection / deter. −6.195e+02*** 3.953e+00*** −4.368e−03*** 1.243e−05*** 0.9971

Pr. deletion filtering / deter. 1.537e+00 −7.698e−03 1.668e−04*** 7.015e−10 0.9893

LINPROG 1.829e+01*** 1.591e−04 4.934e−05*** 1.577e−08*** 0.9367

LP-Solve −2.491e+00*** 3.924e−02*** 2.079e−04*** 1.904e−08*** 0.9900

QR-Decomposition −3.770e+01*** 2.802e−01*** −4.009e−04*** 2.850e−07*** 0.9989

Significance codes: *** p < 0.001

Table 2: Regression models for the different solving strategies

prioritized grouping constraints using deterministic pivot assignment. Gener-

ally, these strategies are slower than the strategies with random pivot assign-

ment because the computation of the pivot assignment is more complex and

takes longer. The slowest strategy is prioritized grouping constraints with de-

terministic pivot assignment, followed by prioritized IIS detection with deter-

ministic pivot assignment. Prioritized deletion filtering with deterministic pivot

assignment has the best performance. The runtime of prioritized deletion fil-

tering with deterministic pivot assignment appears almost linear in the number

of constraints. This is due to the fact that for prioritized deletion filtering,

the pivot assignment needs only be recomputed for each conflicting constraint.

The runtime performance of prioritized grouping constraints has the highest

volatility. This is due to the fact that the performance of prioritized grouping

constraints depends on the distribution of conflicting constraints over the list

of constraints. If conflicting constraints are close, the algorithm searches only

a small fraction of the whole list. If conflicting constraints are almost equally

distributed over the list of constraints, the algorithm searches the whole list.

Figure 6 compares all the aforementioned algorithms, except for the slow

30

Figure 4: Performance comparison of prioritized IIS detection, prioritized deletion filtering

and prioritized grouping constraints using random pivot assignment

prioritized IIS detection and prioritized grouping constraints with deterministic

pivot assignment, to LINPROG, LP-Solve and QR-decomposition. Generally,

all our algorithms perform significantly better than LINPROG, LP-Solve and

QR-decomposition, especially for bigger problems, with prioritized grouping

constraints with random pivot assignment exhibiting the best runtime behavior.

References

[1] A. B. Saeed, A. B. Naeem, Numerical Analysis, Shahryar, 2008.

[2] S. Kunis, H. Rauhut, Random sampling of sparse trigonometric poly-

nomials, ii. orthogonal matching pursuit versus basis pursuit, Journal

Foundations of Computational Mathematics 8 (6) (2008) 737–763. doi:

10.1007/s10208-007-9005-x.

31

http://dx.doi.org/10.1007/s10208-007-9005-x
http://dx.doi.org/10.1007/s10208-007-9005-x

Figure 5: Runtime comparison of prioritized IIS detection, prioritized deletion filtering and

prioritized grouping constraints with deterministic pivot assignment

[3] H. M. Anita, Numerical Methods for Scientist and Engineers, Birkhauser,

2002.

[4] M. Benzi, Preconditioning techniques for large linear systems: A survey,

Journal of Computational Physics 182 (2002) 418–477.

[5] A. Borning, B. Freeman-Benson, M. Wilson, Constraint hierarchies, Lisp

and Symbolic Computation 5 (3) (1992) 223–270.

[6] J. W. Chinneck, Fast heuristics for the maximum feasible subsystem prob-

lem, Informs Journal of Computation (2001) 210–223.

[7] G. J. Badros, A. Borning, P. J. Stuckey, The cassowary linear arithmetic

constraint solving algorithm, ACM Transactions on Computer-Human In-

teraction 8 (4) (2001) 267–306.

32

Figure 6: Performance comparison of the best solving strategies with LINPROG, LP-Solve

and QR-decomposition

[8] A. Borning, K. Marriott, P. Stuckey, Y. Xiao, Solving linear arithmetic

constraints for user interface applications, in: Proceedings of the 10th an-

nual ACM symposium on User interface software and technology (UIST

’97), ACM, 1997, pp. 87–96. doi:10.1145/263407.263518.

URL http://doi.acm.org/10.1145/263407.263518

[9] M. S. Bazaraa, J. J. Jarvis, H. D. Sherali, Linear Programming and Network

Flows, 1990.

[10] K. Marriott, S. C. Chok, A. Finlay, A tableau based constraint solving

toolkit for interactive graphical applications, in: Proceedings of the 4th In-

ternational Conference on Principles and Practice of Constraint Program-

ming, CP ’98, Springer, London, UK, 1998, pp. 340–354.

[11] N. Jamil, X. Chen, A. Cloninger, Randomized hildreth’s algorithm with

33

http://doi.acm.org/10.1145/263407.263518
http://doi.acm.org/10.1145/263407.263518
http://dx.doi.org/10.1145/263407.263518
http://doi.acm.org/10.1145/263407.263518

applications to soft constraints for user interface layout, Journal of Com-

putational and Applied Mathematics 288 (2015) 193–202.

[12] J. Stuart, Linprog:http://www.mathworks.com/matlabcentral/fileexchange/97-

linprog/.

[13] M. Berkelaar, P. Notebaert, K. Eikland, A (mixed integer) linear program-

ming problem solver: http://lpsolve.sourceforge.net/.

[14] Apache Software Foundation, Commons math, release 2.1; http://

commons.apache.org/math (2012).

[15] C. Lutteroth, R. Strandh, G. Weber, Domain specific high-level constraints

for user interface layout, Constraints 13 (3).

[16] D. M. Young, Jr, Iterative Solution of Large Linear Systems, Academic

Press, 1971.

[17] B. N. Datta, Numerical Linear Algebra And Applications, Cole Publishing,

1995.

[18] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia,

PA (2003) 112.

[19] D. Ruiz, A scaling algorithm to equilibrate both rows and columns norms

in matrices, Tech. rep. (2001).

[20] I. S. Duff, J. Koster, On algorithms for permuting large entries to the

diagonal of a sparse matrix, Tech. rep. (1999).

[21] J. L. Goffin, The relaxation method for solving systems of linear inequali-

ties, Mathematics of Operations Research 5 (3) (1980) 388–414.

[22] S. Agmon, The relaxation method for linear inequalities, Canadian Journal

of Mathematics (1954) 382–392.

[23] T. Motzkin, I. Schoenberg, The relaxation method for linear inequalities,

Canadian Journal of Mathematics (1954) 393–404.

34

http://lpsolve.sourceforge.net/
http://commons.apache.org/math
http://commons.apache.org/math

[24] R. L. Burden, J. Faires, Numerical Analysis, Bob Pirtle, 2005.

[25] M. T. Heath, Scientific Computing, An Introductory Survey, The McGraw-

Hill Companies, 1997.

[26] L. V. Foster, Modifications of the normal equations method that are nu-

merically stable, In Numerical Linear Algebra, Digital Signal Processing

and Parallel Algorithms (1991) 501–512.

[27] O. Axelsson, Iterative Solution Methods, Cambridge Uni. Press, 1996.

[28] G. B. Dantzig, Linear Programming and Extensions, 11th Edition, Prince-

ton Landmarks in Mathematics, Princeton Uni. Press, Princeton NJ, USA,

1998.

[29] H. A. Taha, Operations Research: An Introduction, Mcmillan Publishing,

1992.

[30] Y. Saad, M. H. Schultz, Gmres: a generalized minimal residual algorithm

for solving nonsymmetric linear systems, SIAM Journal on Scientific and

Statistical Computing 7 (3) (1986) 856–869. doi:10.1137/0907058.

URL http://dx.doi.org/10.1137/0907058

[31] M. R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving

Linear Systems, Journal of Research of the National Bureau of Standards

49 (1952) 409–436.

[32] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins Uni. Press,

1996.

[33] F. Ding, T. Chen, Iterative least-squares solutions of coupled sylvester ma-

trix equations, Systems and Control Letters 54 (2005) 95–107.

[34] P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, M. Sánchez, Current

approaches for solving over-constrained problems, Constraints 8 (1) (2003)

9–39.

35

http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058

[35] H. Hosobe, S. Matsuoka, A foundation of solution methods for constraint

hierarchies, Constraints 8 (1) (2003) 41–59.

[36] E. C. Freuder, Partial constraint satisfaction, International Joint Confer-

ence on Artificial Intelligence (1989) 278–283.

[37] C. Zeidler, C. Lutteroth, G. Weber, Constraint solving for beautiful user

interfaces: How solving strategies support layout aesthetics, In Proceedings

of CHINZ (2012) 23–32.

[38] Y. Yoshioka, H. Masuda, Y. Furukawa, A constrained least squares ap-

proach to interactive mesh deformation, in: Proceedings of the IEEE In-

ternational Conference on Shape Modeling and Applications 2006, SMI

’06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 23–33.

doi:10.1109/SMI.2006.1.

URL http://dx.doi.org/10.1109/SMI.2006.1

[39] H. Hosobe, A scalable linear constraint solver for user interface construc-

tion, in: Proceedings of the 6th International Conference on Principles and

Practice of Constraint Programming, CP ’02, Springer, London, UK, 2000,

pp. 218–232.

[40] H. Hosobe, A simplex-based scalable linear constraint solver for user in-

terface applications, in: Tools with Artificial Intelligence (ICTAI), 2011

23rd IEEE International Conference on, 2011, pp. 793–798. doi:10.1109/

ICTAI.2011.124.

[41] J. M. Freeman-Benson, A. Borning, An incremental constraint solver, Com-

munications of the ACM 33 (1) (1990) 54–63.

[42] M. Sannella, Skyblue: a multi-way local propagation constraint solver for

user interface construction, in: Proceedings of the 7th annual ACM sym-

posium on User interface software and technology (UIST ’94), ACM, 1994,

pp. 137–146. doi:10.1145/192426.192485.

URL http://doi.acm.org/10.1145/192426.192485

36

http://dx.doi.org/10.1109/SMI.2006.1
http://dx.doi.org/10.1109/SMI.2006.1
http://dx.doi.org/10.1109/SMI.2006.1
http://dx.doi.org/10.1109/SMI.2006.1
http://dx.doi.org/10.1109/ICTAI.2011.124
http://dx.doi.org/10.1109/ICTAI.2011.124
http://doi.acm.org/10.1145/192426.192485
http://doi.acm.org/10.1145/192426.192485
http://dx.doi.org/10.1145/192426.192485
http://doi.acm.org/10.1145/192426.192485

[43] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, A. Yonezawa, Locally

simultaneous constraint satisfaction, in: Proceedings of the Second Inter-

national Workshop on Principles and Practice of Constraint Programming,

PPCP ’94, Springer, London, UK, 1994, pp. 51–62.

URL http://dl.acm.org/citation.cfm?id=645814.668743

[44] N. Jamil, J. Müller, D. Needell, C. Lutteroth, G. Weber, Kaczmarz al-

gorithm with soft constraints for user interface layout, In Proceedings of

25th International Conference on Tools with Artificial Intelligence (ICTAI)

(2013) 818–824.

[45] U. Junker, Quickxplain: preferred explanations and relaxations for over-

constrained problems, Proceedings of the 19th national conference on Ar-

tifical intelligence (2004) 167–172.

[46] C. M. Li, F. Many, N. O. Mohamedou, J. Planes, Exploiting cycle struc-

tures in max-sat, SAT, Lecture Notes in Computer Science, Springer 5584

(2009) 467–480.

[47] F. Heras, J. Larrosa, A. Oliveras, Minimaxsat: a new weighted max-sat

solver, In International Conference on Theory and Applications of Satisfi-

ability Testing (2007) 41–55.

[48] H. Lin, K. Su, C. M. Li, Within-problem learning for efficient lower bound

computation in max-sat solving, In International Conference on Theory

and Applications of Satisfiability Testing (2008) 351–356.

[49] D. L. Berre, Sat4jmaxsat, a satisfability library for java: http://sat4j.

org/(2008).

[50] V. M. Manquinho, J. P. M. Silva, J. Planes, Algorithms for weighted

boolean optimization, In Procedings of the 20th International Conference

on Theory and Applications of Satisfiability Testing (2009) 495–508.

[51] C. Ansótegui, M. L. Bonet, J. Levy, Solving (weighted) partial maxsat

through satisfiability testing, In Procedings of the 20th International Con-

37

http://dl.acm.org/citation.cfm?id=645814.668743
http://dl.acm.org/citation.cfm?id=645814.668743
http://dl.acm.org/citation.cfm?id=645814.668743
http://sat4j.org/ (2008)
http://sat4j.org/ (2008)

ference on Theory and Applications of Satisfiability Testing 5584 (2009)

427–440.

[52] C. Anstegui, M. L. Bonet, J. Levy, A new algorithm for weighted partial

maxsat, In Proceedings of the Twenty-Fourth AAAI Conference on Artifi-

cial Intelligence.

[53] E. Amaldi, From finding maximum feasible subsystems of linear systems

to feedforward neural network design (1994).

[54] E. Amaldi, M. Bruglieri, G. Casale, A two-phase relaxation-based heuristic

for the maximum feasible subsystem problem, Computers and Operations

Research (2008) 1465–1482.

[55] O. Mangasarian, Misclassification minimization, Journal of Global Opti-

mization (1994) 309–323.

[56] M. Pfetsch, Branch and cut for the maximum feasible subsystemproblem,

SIAM Journal on Optimization (2008) 21–38.

[57] J. W. Chinneck, E. Dravnieks, Locating minimal infeasible constraint sets

in linear programs, ORSA Journal on Computing (1991) 157–168.

[58] R. Bakker, F. Dikker, F. Tempelman, P. Wogmim, Diagnosing and solv-

ing over-determined constraint satisfaction problems, International Joint

Conference on Artificial Intelligence (1993) 276–281.

[59] M. Tamiz, S. J. Mardle, D. F. Jones, Resolving inconsistency in infeasible

linear programmes, Tech. rep. (1995).

[60] M. Tamiz, S. J. Mardle, D. F. Jones, Detecting iis in infeasible linear pro-

grammes using techniques from goal programming, Computers and Oper-

ations Research (1996) 113–119.

[61] C. L. G. W. Noreen Jamil, Johannes Müller, Extending linear relaxation

for user interface layout, Proceedings of 24th International Conference on

Tools with Artificial Intelligence (ICTAI) (2012) 1–8.

38

[62] O. Guieu, J. W. Chinneck, Analyzing infeasible mixed-integer and integer

linear programs, INFORMS Journal on Computing (1999) 63–77.

39

	Introduction
	Motivating Example for User Interface Layout
	Linear Relaxation
	Convergence
	Inequalities
	Advantages

	Non-Square Matrices
	Related Work
	Pivot Assignment
	Pivot Assignment Algorithms
	Random Pivot Assignment
	Deterministic Pivot Assignment

	Soft Constraints
	Related Work
	Prioritized IIS Detection
	Prioritized Deletion Filtering
	Prioritized Grouping Constraints

	Experimental Evaluation
	Methodology
	Results

