
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 592: 37–56, 2018
https://doi.org/10.3354/meps12519

Published March 29

INTRODUCTION

The Southern Ocean (SO) has profound effects in
the global ocean circulation, climate patterns and
biogeochemical processes of carbon and nutrients
(Rintoul et al. 2012). Because of the rapid climate-
induced changes that the SO is experiencing, the
Southern Ocean Observing System programme was
established, and is currently in its implementation
phase (Rintoul et al. 2012, Constable et al. 2014,
2016, Turner et al. 2014, Newman et al. 2015). This
programme will increase the sampling effort of the
biological components of the SO ecosystem, although
the remoteness of the SO restricts potential observa-
tion. Alternatively, modelling approaches can make
use of existing limited observations to interpolate in
unsampled locations, assess the state of an ecosystem

by combining different datasets and investigate
trends or changes over time (Rintoul et al. 2012). In
this study, we developed explanatory and predictive
statistical models for acoustic backscatter (sa) in the
epi- and mesopelagic zones in the SO, that can be
used as an interpolation tool for unsampled areas.

Mid-trophic level organisms (MTLOs) or micro -
nekton (referred to here as the mid-trophic level
of open-ocean ecosystems), play a key role in the
pelagic marine ecosystem by linking primary pro-
ducers and tertiary consumers (Kloser et al. 2009,
Catul et al. 2011). Their ecological significance is
related to their large biomass (net and acoustic-
derived biomass estimates of mesopelagic fish alone
range from ~1−10 billion tons; Gjøsaeter & Kawa -
guchi 1980, Irigoien et al. 2014) and their role as both
predators and prey (Mann 1984, Beamish et al. 1999).
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In addition to their ecological functional role, MTLOs
participate actively in the biochemical cycles of
the open-ocean ecosystems. They facilitate energy,
nutrient and carbon fluxes across the water column,
and affect oxygen consumption at different depth
strata through their diurnal vertical migration (DVM)
(Bianchi et al. 2013, Davison et al. 2013, Irigoien et
al. 2014). Micronekton is comprised of organisms
(1−20 cm) such as small fish, squid, crustaceans and
gelatinous animals (Lehodey et al. 2010). Mesopela-
gic fish are the largest unexploited biomass in marine
ecosystems worldwide (Gjøsaeter & Kawaguchi 1980),
and recent estimates suggest that their biomass is
about 1 order of magnitude higher than previously
thought (Irigoien et al. 2014). Mesopelagic fish abun-
dance is usually underestimated by net sampling due
to escape and avoidance (Collins et al. 2012, Kaart -
vedt et al. 2012); therefore, other sampling tech-
niques such as fisheries acoustics have been used
(e.g. Irigoien et al. 2014).

Fisheries acoustics is commonly used for study -
ing fish abundance and distribution (Simmonds &
MacLennan 2005). Mesopelagic fish often dominate
acoustic scattering layers throughout the water
 column (e.g. Barham 1966), and acoustic data have
the potential to provide information about the mid-
trophic levels (Lehodey et al. 2010, 2015, Handegard
et al. 2013). Most lanternfish (family Myctophidae)
have gas-filled swimbladders, making them good
sound-reflecting targets (Yasuma et al. 2006); they
are therefore considered one of the most important
components of the oceanic deep scattering layers
(Catul et al. 2011). Collecting acoustic data onboard
dedicated research vessels for ecosystem monitoring
endeavours and research studies of marine organ-
isms can be costly for research institutes, so vessels
of opportunity have become common research plat-
forms in acoustics (Karp 2007). Vessels of opportunity
expand the acoustic sampling effort spatially and
temporally, and the data collected can be used to
understand the relative distribution and abundance
and dynamics of the MTLOs (e.g. Escobar-Flores et
al. 2013).

Fisheries acoustics is based on the linearity princi-
ple that backscatter is proportional to an organism’s
density. Although this principle holds true for targets
with similar acoustic properties, in large-scale sur-
veys where mid-trophic community composition is
unknown and likely to change spatially (e.g. Koubbi
et al. 2011a), it may not apply (e.g. Davison et al.
2015). This relates to the variability of the acoustic
contribution of different organisms (target strength),
which is species-specific and even changes between

individuals of the same species (ontogenetic changes),
and to resonance scattering effects from different
organisms at varying sizes (e.g. Peña et al. 2014,
Davison et al. 2015, Kloser et al. 2016). Lanternfishes
display a variety of swimbladder shapes, as well as
changes in age-related swimbladder content and
atrophy (Marshall 1960, 1971, Davison 2011), compli-
cating the interpretation of acoustic data as a proxy
for biological density. Despite this uncertainty, large-
scale patterns of acoustic-derived measurements can
provide relative indices of distribution and abun-
dance of organisms consistently over time (Griffiths
et al. 2005), and be used in large-scale studies to
characterise the general status of marine ecosystems.
Quantifiable indicators can be overlapped with groups
of species or trophic levels, providing information
about the performance of management strategies, or
associate their performance to the state of other
trophic levels (Trenkel et al. 2011). Understanding
patterns of prey is important to determine the spatio -
temporal dynamics of large apex predators in the
open ocean (Bertrand et al. 2003, Lehodey et al. 2010).

Ecosystem models including MTLOs, e.g. ATLAN -
TIS (Fulton et al. 2004), APECOSM (Maury et al.
2007) and SEAPODYM (Lehodey et al. 2008, 2010),
which are constrained by the lack of observations of
mid-trophic levels, will benefit from increased acoustic
data collection (Handegard et al. 2013). Although
programmes for developing cost-effective sampling
platforms have been proposed (e.g. Mid-trophic Auto -
matic Acoustic Sampler [MASS], Handegard et al.
2009) — and there are collaborative projects to pro-
cess and make acoustic data accessible to users
through online repositories (e.g. the Integrated Mar-
ine Ob serving System [IMOS] collaborative program
in Australia, www.imos.org.au, and the European
Meso  pelagic Southern Ocean Prey and Predator
[MESOPP] project, www.mesopp.eu) — the vast ex -
tent of the pelagic open-ocean ecosystem cannot be
entirely covered by opportunistic data. Consequently,
modelling approaches have been advocated to over-
come the scarcity of available observations (Rintoul
et al. 2012).

The aim of this study was to use opportunistically
collected acoustic data and a set of readily available
environmental variables to develop explanatory and
predictive models for backscatter (as a proxy for
MTLO abundance). The overarching goal was to pro-
vide predictions of acoustic backscatter to describe
large-scale patterns of MTLOs in unsampled areas of
the SO. The acoustic data used in these models were
collected opportunistically from toothfish fishing
 vessels (TFVs) transiting across the SO between New
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Zealand (NZ) and the Ross Sea (RS).
Satellite-derived and geographical
information (retrieved from online
 re positories), climatologies and tem-
poral variables were used to de velop
the models. Boosted regression trees
(BRTs) (Elith et al. 2008), and gen -
eralised additive mixed models
(GAMMs) (Wood 2006) were used to
model backscatter. The predictions
from the resulting models were tested
in the Pacific sector of the SO (train-
ing location) and also in an independ-
ent area in the Indian sector of the SO.

MATERIALS AND METHODS

Acoustic data

The acoustic dataset consisted of 28
acoustic transects conducted oppor-
tunistically in the Pacific sector of the
SO between November and March
from 2008 to 2014 (Table 1, Fig. 1;
dataset available through the IMOS
portal, https://portal.aodn.org.au/). This
period corresponds to the Antarctic
toothfish fishing season when the ice
retreats close to the Antarctic conti-
nent, allowing access to toothfish
 fishing grounds located in the RS
region. Transects were collected by 3
TFVs during their transits to and
from the fishing grounds, and by RV
 ‘Tangaroa’ during its transits to and
from the RS for research purposes
(Table 1). The TFVs (‘San Aotea II’, ‘San Aspiring’
and ‘Janas’) collected 38 kHz single frequency data
while the RV ‘Tangaroa’ collected multi-frequency
data. Only the 38 kHz data collected on the RV ‘Tan-
garoa’ were used in this study. The National Institute
of Water and Atmospheric Research (NIWA) cali-
brated all echo sounders on a regular basis following
procedures as per Demer et al. (2015) using a
38.1 mm tungsten carbide sphere. Transceiver set-
tings used during data collection were typically 2 ms
pulse length and 2000 W power.

The acoustic data were processed following the
IMOS Bio-acoustic Ships of opportunity (BASOOP)
sub-facility protocols (see Ryan et al. 2015), with
modifications described by Escobar-Flores (2017).
Acoustic backscatter, sa, defined by MacLennan et al.

(2002) in m2 m−2 units was echo-integrated in 1 km
long and 10 m vertical bins, and scaled by 1 × 106 for
practicality (units in m2 km−2).

Explanatory variables

The relationships between mean sa and 9 explana-
tory variables were analysed. Three surface oceano-
graphic variables were obtained from satellite obser-
vations: sea surface temperature (SST), chlorophyll
(chl a) and sea surface height (SSH). Salinity and
 potential temperature at depth for the epi- and meso-
pelagic zones were obtained from the Common -
wealth Scientific and Industrial Research Organisa-
tion (CSIRO) Atlas of Regional Seas (CARS)
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Vessel name Transects (n) 2008 2009 2010 2011 2012 2013 2014

‘San Aotea II’ 11 1 2 2 2 2 2
‘San Aspiring’ 5 1 2 1 1
‘Janas’ 6 1 2 1 2
‘Tangaroa’ 6 2 2 2

Table 1. Acoustic dataset breakdown indicating the number of transects by 
vessel and year

Fig. 1. Acoustic transects (n = 28) conducted between 2008 and 2014 between
New Zealand (NZ) and the Southern Ocean (SO) by the fishing vessels of op-
portunity ‘San Aotea II’, ‘San Aspiring’ and ‘Janas’, and the RV ‘Tangaroa’,
used for developing explanatory and predictive models. The thick red line
represents the ‘San Aotea II’ transect in 2010 used to compare prediction 

outputs (see ‘Results’ section)
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oceanographic climatologies. Three temporal vari-
ables were estimated from the acoustic data: fishing
year (covering the toothfish fishing season, i.e. Nov
2009 to March 2010 defined as the 2010 fishing year);
season (spring [November to December] or summer
[January to March]); and time of the day (discretised
as day or night). To classify day or night, sunrise and
sunset times were estimated for each horizontal bin
using the ‘sunriset’ function from the R package
‘maptools’ (Bivand & Lewin-Koh 2015), based on the
civil twilight daytime extent definition (i.e. sun
located 6° below the horizon). The mean projected
latitude and longitude of each bin were calculated us-
ing the SpatialPoints function from the R package ‘sp’
(Pebesma & Bivand 2005, Bivand et al. 2013), and
used in the ‘sunriset’ function along with the date of
data collection. Bins with a time stamp between sun-
rise and sunset were flagged as day, and as night oth-
erwise. Due to the earth’s rotation and angle of incli-
nation during summer within the Antarctic Circle, the
light period extends up to 24 h. Bins collected within
the 24 h of light period were flagged as day. Ocean
floor depth was obtained from the General Bathymet-
ric Chart of the Oceans 2014 dataset. Spatial and tem-
poral resolutions of variables are shown in Table 2.

Satellite-derived variables, bathymetry (depth) and
CARS salinity and potential temperature data com-
piled in NetCDF files were extracted using the
 statistical software R (R Core Team 2013) and the
package ‘ncdf’ (Pierce 2014). A bilinear interpolation
was performed for the mean latitude and longitude
to assign the variables to each 1 km bin, using the
interp.surface function of the ‘fields’ R package
(Nychka et al. 2015).

Statistical modelling

Acoustic data integrated at 1 km horizontal and
10 m depth resolution were summed vertically to
obtain mean sa over the epi- and mesopelagic zones.

The epipelagic zone was defined between 10 m from
the surface down to 200 m. The mesopelagic zone
was from 200 to 1000 m, or to the maximum range
where integration bins achieved criteria of 70% of
accepted samples (Escobar-Flores 2017).

The original acoustic data (1 km horizontal bins)
were averaged horizontally at 3 arbitrary coarser
 resolutions of 10 km (n = 5658), 25 km (n = 2444)
and 50 km (n = 1301). Assuming an average vessel
transit speed of 10 knots, the temporal resolutions
of the 3 new horizontal bin sizes were approxi-
mately 30, 75 and 150 min. Modelling mean sa

using 3 different horizontal resolutions had 2 main
objectives: first, to test modelling computation time;
second, to  perform sensitivity analysis relative to
the bin size selected. The response variable, mean
sa, was log10 and cubic root-transformed for the epi-
and mesopelagic zones, respectively, aiming to
attain a normal distribution.

Six models were examined, 1 model for each pel -
agic zone (epi- and mesopelagic zones) at 10, 25 and
50 km horizontal bin sizes. These models are referred
to hereinafter as the preliminary (explanatory)
 models.

We used 2 different modelling techniques, i.e.
GAMMs and BRTs, to compare model performance
and variable selection consistency across techniques.
This information was used as one of the model
 validation tools. Both GAMMs and BRT models
allow correlation structures to be specified using the
approaches described below.

GAMMs

Generalised additive modelling (Hastie & Tibshi-
rani 1990) is a semi-parametric regression tech-
nique that accommodates a variety of distributions
for the response, whose relationship with the
explanatory variables is modelled not only through
coefficients, but through partial non-parametric

40

Variable Units Spatial Temporal Product
resolution resolution

Sea surface temperature (SST) °C 4 km Monthly MODIS-Aqua day and MODIS-Aqua night
Chlorophyll-a (chl a) mg m−3 4 km Monthly MODIS-Aqua
Sea surface height (SSH) m 0.25° grid Daily Global Ocean Gridded Sea Level Anomalies 

SSALTO/Duacs
Bathymetry m 30 arc second (≈1 km) - General Bathymetric Chart of the Oceans 
Potential temperature °C 0.5° grid - CSIRO Atlas of Regional Seas (CARS)
Salinity PSU 0.5° grid - CARS

Table 2. Explanatory variables used for developing statistical models
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smoothing curves (Hastie & Tibshirani 1990). Gen-
eralised additive models (GAMs) can be used as
predictive models or as an exploratory method
(O’Brien & Rago 1996), because of their ability to
disentangle the underlying structure between vari-
ables, which is not feasible by other linear methods
(Hastie & Tibshirani 1990, Guisan et al. 2002). By
revealing the structure of the relationship, explana-
tory models aid comprehension of the ecological
processes driving patterns observed in the data
(Guisan et al. 2002). The principal strength of
GAMs is their potential to model highly non-linear
and non-monotonic relationships (Guisan et al.
2002).

GAMMs (see Wood 2006) combine GAMs and
mixed effect models, allowing auto-correlation and
multiple variances (Zuur et al. 2007). Mixed effect
models are suitable for data generated from a hierar-
chical underlying procedure, which may have fixed
or random coefficients and multiple error terms (Zuur
et al. 2007). In mixed models, a positive definite
matrix specifies the auto-correlation in the residuals
through non-complex models, implying that these
are no longer independent (Wood 2006). Models to
specify the degree of auto-correlation between the
residuals can be continuous autoregressive models
such as those developed by Pinheiro & Bates (2000).
In GAMMs, smoothers reveal the relationship be -
tween the response and the predictor variables incor-
porating the spatial dependency (Devictor et al.
2008).

We used the R package ‘mgcv’ (Wood 2015) to exa -
mine the relationship between predictor variables
and backscatter using GAMMs. Cubic regression
spline smoothers were used to model continuous
variables.

BRTs

For a full description of BRTs, see Elith et al. (2008).
BRT models combine a large number of simple tree
models to fit underlying relationships within the
data. This differs from a more traditional regression
approach (e.g. GAMs) which attempts to fit the single
‘best’ model. The BRT fitting process uses 2 algo-
rithms from 2 different modelling groups: regression
trees and boosting (Elith et al. 2008).

The BRT models have 2 key parameters: tree com-
plexity (tc) and learning rate (lr). Tree complexity
defines whether interactions between the predictor
variables will be allowed and if so, how many. The
learning rate establishes the contribution of each

 single tree to the entire ongoing fitting process. The
parameters lr and tc define the number of trees (nt)
required for achieving the most favourable predic-
tion (Elith et al. 2008).

A cross-validation (CV) method (Mosteller &
Tukey 1968) was used to find optimal model set-
tings and to prevent overfitting. Once an optimal
nt was achieved on the training samples of the
data, this was used to fit models using the full
dataset with the required tc and lr (Elith et al.
2008). The deviance and standard error estimated
using CV were used to assess model performance,
with lower values indicating better model perform-
ance (Williams et al. 2010).

The relative influence of explanatory variables
represents their contribution toward explaining the
response variable (Elith et al. 2008). Partial depend-
ence plots were used to visualise the fitted functions.
Predictor variables were tested to evaluate their sig-
nificance using bootstrapping (Efron & Tibshirani
1993). Here, 500 bootstrap replicates were used by
implementing the gbm.bootstrap function in R.

The BRTs were fitted using the ‘GBM’ (Ridgeway
2015) and ‘dismo’ packages (Hijmans et al. 2015)
in R.

Spatial autocorrelation

Because high-resolution acoustic data are collected
continuously along a vessel’s transit, we anticipated
the presence of spatial autocorrelation in our data.
Not accounting for spatial autocorrelation limits
hypothesis testing and predictions (Lennon 2000,
Dormann 2007), and can affect standard errors and
p-values of the fixed effects (Zuur et al. 2007).
Moran’s I autocorrelation test (Cliff & Ord 1981) was
used to measure spatial autocorrelation in model
residuals using the function ‘moran.test’ (R package
‘spdep’, Bivand et al. 2015), and visualised using the
‘correlog’ function (R package ‘ncf’, Bjornstad 2013).
Moran’s I-test index ranges from −1 to +1 (from
strong negative to strong positive spatial autocorrela-
tion), with 0 indicating no spatial autocorrelation
(Cliff & Ord 1981).

To account for spatial autocorrelation, an auto -
regressive correlation structure of order 1 (corAR1)
(Pinheiro & Bates 2000) was used in GAMMs.
In the BRT models, we used an extension of an
auto-logistic approach to include an auto-co variate
derived from the spatial autocorrelation in the
model residuals (residual autocovariate, RAC)
(Crase et al. 2012).

41
A

ut
ho

r c
op

y



Mar Ecol Prog Ser 592: 37–56, 2018

Variable selection

Preliminary models, fitted to the entire dataset
except 1 randomly excluded transect, were used for
variable selection. First, preliminary GAMM models
(including all explanatory variables) were fitted, and
non-significant (p < 0.5) variables were removed.
Second, we used changes in Akaike’s information
criterion (AIC) of <10 points to remove variables from
the preliminary GAMMs.

Unlike GAMMs, BRT models do not provide  p-
values to assess the significance of explanatory vari-
ables. Instead, we used changes in deviance explained
by the model (DEBM, 2%) and 95% con fidence inter-
vals (CI) built using bootstrapping (500 samples).
These methods allowed us to determine the best pre-
liminary models for each modelling technique at
each bin size and pelagic zone.

Model evaluation and selection

Model evaluation and selection were carried out on
the best preliminary models by comparing R2 values
in GAMMs and percentage of DEBM in BRTs, which
provide a measure of goodness of fit of the models.
We aimed to find the best single model for each
pelagic zone and modelling technique, assessing
their predictive performance using an ‘iterative’
approach where each of the 28 transects was re -
moved one at a time, while using the remaining tran-
sects as a training dataset to fit the models and to
 predict mean sa in the excluded transect.

Models developed for each pelagic zone
(epipelagic and mesopelagic) and modelling
technique were compared, and those that
achieved higher goodness of fit statistics
were selected and referred to as candidate
models. These models were used in the
model simplification and validation steps.

Model simplification and validation

Candidate models were simplified to test
whether more parsimonious models could
attain similar predictive performances and
are referred to as simplified models. These
models were fitted in cluding only those
variables that were identified consistently
by both modelling techniques as the most
important for ex plaining mean sa in each
pelagic zone.

The validation of the candidate models was done
by assessing their predictive performance using the
same iterative approach described above for model
evaluation and selection. The iterative validation
approach proposed also enabled a test of the model
sensitivity to changes in the training set provided (by
iteratively excluding transects).

The iterative selection approach was also used to
compare candidate and simplified models. Two sta-
tistical indicators of average model predictive per-
formance regularly used in model evaluation studies
(e.g. Zuur et al. 2009, Chai & Draxler 2014) were esti-
mated: the root mean square error (RMSE) and the
mean absolute error (MAE).

Testing model predictive power on an
independent dataset

An acoustic transect conducted by the fishing vessel
‘Southern Champion’ at 38 kHz in January 2010 in the
Indian Ocean sector of the SO retrieved from IMOS
BASOOP (https://imos.aodn.org.au/) was used to test
the simplified models’ predictive performance on an
independent transect from a different region (Fig. 2).

RESULTS

Spatial autocorrelation

Moran’s I-test applied over the best preliminary
models indicated that autocorrelation was lessened
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Fig. 2. Acoustic transect at 38 kHz frequency conducted by the fishing
vessel ‘Southern Champion’ in January 2010 used for testing the predic-
tive performance of the simplified models in an independent dataset from
the Indian Ocean. The transect was retrieved from the Integrated Marine 

Observing System (IMOS) (https://imos.aodn.org.au/)
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in all models that included a correlation structure
(Table 3). Adding a correlation structure to the
GAMMs during the variable selection stage reduced
the number of significant variables. Moreover, as
judged by lower AIC (>10 points), these GAMMs
outperformed models lacking a correlation struc-
ture. Including autocorrelation in the BRT models
changed the relative contribution of variables, with
some of this contribution subsequently assigned to
the autocorrelation variable (RAC). BRT models
which included spatial autocorrelation achieved
higher percentages of DEBM.

A visual representation of the spatial autocorrela-
tion in the residuals of GAMMs and BRT simplified
models (50 km bin size) is shown by correlogram
plots in Fig. 3. When accounting for spatial autocor-
relation, comparatively lower and faster decaying
Moran’s I indices as a function of distance classes
were obtained. Generally, spatial autocorrelation
in the residuals was stronger at short distances
(<150 km) in both pelagic zones. The spatial autocor-
relation structure in the GAMM residuals for the
epipelagic zone showed a transition between a posi-
tive and a negative Moran I index at ca. 150 km,
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Zone Bin size GAMM BRT Δ GAMM Δ Dev. 
(km) corAR1 absenta corAR1 present RAC absenta RAC present AIC Exp.

I index I index p I index I index p

Epipelagic 10 0.08 0.008 <0.0001 0.07 −0.002 0.0160 3944 12.28
25 0.10 0.013 <0.0001 0.07 −0.001 0.6610 1310 10.20
50 0.10 0.013 0.0331 0.06 −0.005 0.3190 489 9.83

Mesopelagic 10 0.16 0.008 <0.0001 0.05 −0.001 0.6920 6733 12.87
25 0.14 0.009 0.0056 0.03 −0.002 0.5600 2170 6.13
50 0.16 0.017 0.0061 0.05 0.001 0.6850 707 7.16

aMoran’s I index in GAMM and BRT model residuals with no correlation structure was highly significant (p < 0.0001)

Table 3. Moran’s I spatial autocorrelation indices estimated from the residuals of the best preliminary generalised additive
mixed model (GAMM) and boosted regression tree (BRT) models fitted to mean acoustic backscatter (sa) by bin size and
pelagic zone when correlation structures (corAR1) and residual autocovariates (RAC) are absent and present. Δ GAMM AIC:
difference in Akaike’s information criterion (AIC) score, and Δ Dev. Exp.: difference in the deviance explained by the BRT 
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which may be an effect of DVM by organisms into
and out of the epipelagic zone. By contrast, spatial
autocorrelation structure in the BRT model for the
mesopelagic zone was positive, indicating that the
deep scattering layers are more consistent over time
and distance.

Variable selection

The number of significant variables varied ac -
cording to bin size and zone amongst preliminary
GAMMs. Models fitted for the epipelagic zone mean
sa at 10 km bin size had 5 significant variables (SST,
depth, season, year, time of day), while the models at
25 and 50 km both had only 3 significant variables
(SST, season and time of day). Mesopelagic models at
10 km had 4 variables (SST, depth, SSH and temper-
ature at depth), and at 25 and 50 km resolution they
had 5 significant variables (SST, depth, SSH, season
and salinity).

Preliminary BRT models for the epipelagic zone
mean sa shared 2 variables across all bin sizes that
were significant and contributed at least with a 2% of
DEBM (SST and time of day), in addition to the
always significant RAC. Mesopelagic mean sa mod-
els at 10 km also had 2 variables (SST and depth),
while models at 25 and 50 km had 3 variables (SST,
depth and salinity) (Table 4).

The variable selection was relatively consistent
between models fitted at different bin sizes, and
showed that SST was always a main predictor vari-
able for mean sa in the epi- and mesopelagic zones
(e.g. SST relative contribution in the BRT models was
always >50%) (Table 4).

Model evaluation and selection

The model goodness of fit statistics obtained
from the iterative model evaluation and selection
approach showed that the best preliminary models
fitted using coarser bin size data (25 and 50 km)
performed better than models fitted at a finer bin
size (10 km), with higher statistics of goodness of
fit (Table 5).

Based on these results, the relative consistency of
variable selection across modelling techniques and
bin sizes, and practicality (computation time in -
creased considerably at smaller bin sizes), the best
preliminary models fitted at 10 km bin size for the
epi- and mesopelagic zones mean sa were dropped
from further analysis.

The iterative model selection approach gave con-
sistent results when modelling mean sa at 25 and
50 km bin sizes in both pelagic zones using the best
preliminary GAMMs and BRT models. Significance
and relative contribution of variables varied only
subtly, regardless of the training set (transects) used
in the model fitting process. This demonstrated that
the models were parsimonious and robust.

Since neither additional information nor predictive
performance was gained by fitting finer-scale mod-
els, the best preliminary GAMMs and BRT models
fitted at 50 km binned mean sa were considered as
performing the best for both pelagic zones.

Model simplification and validation

Two variables were consistently identified as im -
portant in all preliminary GAMMs and BRT models at
all bin sizes in the epi- and mesopelagic zones: SST
and time of day, and SST and depth, respectively.
Consequently, these 2 pairs of variables were used for
fitting simplified versions of the candidate models, re -
ferred to as the simplified models. Since the candidate
BRT model for mean sa in the epipelagic zone was al-
ready formulated using only SST and time of the day,
this model was used as the simplified version.

The percentage of the dataset used for training and
iteratively testing the predictive performance of the
candidate and simplified models varied according to
the length of transect (number of bins) excluded for
testing (predicting). The mean percentage of the
dataset used for training was 96.4% (min. = 93.5, and
max. = 98.7).

As evaluated by the RMSE and MAE, simplified
models (GAMM and BRT) fitted to mean sa in the epi-
and mesopelagic zones performed very similarly to
more complex models (candidate models), and no
significant differences between the means of their
statistics were detected (95% CI, t-test, n = 28, p >
0.05; Table 6). These results confirmed key variables
for producing reliable predictions of mean sa in the
epi- and mesopelagic zone, and highlighted the
robustness of the simplified models. These models
were adopted as the final models. In the case of the
GAMMs, they can be expressed as

g(E[yi]) = Bo + s (SST) + factor(time of day) + εi

(epipelagic)  (1)

g(E[yi]) = Bo + s(SST) + s(depth) + εi

(mesopelagic)  (2)

where g corresponds to the link function (identity) of
the expected response (y, mean sa), Bo is the inter-
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cept, s(SST) and s(depth) are the smooth functions of
SST and depth, factor(time of day) is the corresponding
categorical covariate, and  εi represents the model
residuals.

BRTs do not provide a single final model since this
technique fits many simple models, which are com-
bined for prediction (Elith et al. 2008).

In addition, GAMM smoothers and BRT partial de -
pendence functions fitted to mean sa in the epi- and

mesopelagic zones across preliminary, candidate and
simplified models showed only minor differences,
conserving similar shapes and trends (Fig. 4). These
functions for the epipelagic zone indicated an in-
crease in mean sa with warmer SSTs in the range of
observation (approx. −2 to +19°C), and higher levels
at night; and a similar relationship between SST and
mean sa in the mesopelagic zone, with the addition of
a negative depth effect on mean sa in shallow areas
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A) Epipelagic zone
Model  10 km bin                       25 km bin                     50 km bin
                          Variable             Sig. level (p)                Variable             Sig. level (p)               Variable             Sig. level (p)

GAMM               s(SST)                   <0.0001                                s(SST)                   <0.0001                               s(SST)                   <0.0001
                          s(depth)                  0.0024                              f.season                  <0.0001                             f.season                  0.0003
                          f. season                 <0.0001                   Day/night                <0.0001                          Day/night                <0.0001
                            f.year                    0.0005
                         Day/night                <0.0001

                               R2                                       0.59                            R2                                        0.6                             R2                                      0.62

                 Variable/parameter   Rel. cont. (%)      Variable/parameter   Rel. cont. (%)     Variable/parameter   Rel. cont. (%)

BRT                       SST                       54.29                          SST                       68.16                         SST                       73.06
                             RAC                       19.21                         RAC                        24.6                          RAC                      18.48
                         Day/night                   5.57                      Day/night                   7.24                     Day/night                   8.46

                                lr                           0.08                             lr                           0.03                            lr                          0.01
                               nt                          2750                            nt                          2250                           nt                         1800
                               bf                           0.5                              bf                           0.5                             bf                           0.5
                                tc                             5                               tc                             5                               tc                             5

                     Dev. expl. (%)                75.6                  Dev. expl. (%)                72.2                  Dev. expl. (%)                73.3

B) Mesopelagic zone

Model  10 km bin                       25 km bin                     50 km bin
                          Variable             Sig. level (p)                Variable             Sig. level (p)               Variable             Sig. level (p)

GAMM              s(depth)                  <0.0001                    s(depth)                  <0.0001                               s(SST)                   <0.0001
                            s(SST)                   <0.0001                      s(SST)                   <0.0001                             s(depth)                 <0.0001
                           s(SSH)                   <0.0001                                s(SSH)                   <0.0001             s(CARS salinity)           0.0004
                   s(CARS salinity)           <0.0001                    s(CARS salinity)           0.0002                               s(SSH)                   0.0003
                                                                                          f.season                  <0.0001                    f.season                  0.0002

                               R2                                       0.56                            R2                                       0.61                            R2                                      0.65

                 Variable/parameter   Rel. cont. (%)      Variable/parameter   Rel. cont. (%)     Variable/parameter   Rel. cont. (%)

BRT                       SST                       51.48                          SST                        51.2                          SST                       54.26
                             RAC                       28.62                        Depth                      21.82                       Depth                     20.91
                         Day/night                   19.9                          RAC                       13.55                         RAC                      14.37
                                                                                        CARS temp.                13.43                  CARS temp.                10.45

                                lr                            0.1                              lr                           0.04                            lr                          0.02
                               nt                          2200                            nt                          1950                           nt                         2150
                               bf                           0.5                              bf                           0.5                             bf                           0.5
                                tc                             5                               tc                             5                               tc                             5

                     Dev. expl. (%)               76.59                 Dev. expl. (%)                 79                   Dev. expl. (%)               73.37

Table 4. Summary of preliminary generalised additive mixed model (GAMM) and boosted regression tree (BRT) model out-
puts and settings used for 3 bin sizes (10, 25, and 50 km; number of bins 5658, 2444 and 1301, respectively) and A) the epilagic
and B) mesopelagic zone. RAC: residual autocovariate; CARS: CSIRO Atlas of Regional Seas; lr: learning rate; nt: number of
trees; bf: bag fraction; tc: tree complexity; SST (SSH): sea surface temperature (height); sig: significance; rel. cont.: relative 

contribution; dev. expl.: deviance explained
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(bottom depth <1000 m). A bottom depth effect on
mesopelagic mean sa occurs when transects cross
over the continental shelf or oceanic plateaus south
and southeast of NZ, where the meso pelagic zone
is confined to a reduced range in comparison to open-
ocean areas (Escobar-Flores et al. 2018, this Volume).

These results were in accord with backscatter-SST
Pearson’s correlation tests, which always showed
strong highly significant positive correlations in the
epi- and mesopelagic zones at all bin sizes used for
modelling. For example, Pearson’s correlation coeffi-
cient between backscatter and SST for the epi- and
mesopelagic zones was 0.62 and 0.92 (n = 5658, p <
0.001). The relationship between backscatter and
SST was also foreseeable, since both variables showed
a south−north increasing pattern (Fig. 5).

Both modelling techniques predicted mean sa more
accurately in the epipelagic (lower RMSE and MAE)
than in the mesopelagic zone (Table 6). The final
GAMM performed better than the final BRT model
when predicting mean sa in the epipelagic zone for
transect SAO 2010 NZ-SO used in the non-iterative
model validation process (GAMM MAE = 0.955; BRT
MAE = 0.972), but worse when predicting mean sa in

the mesopelagic zone (BRT RMSE = 3.31
and MAE = 2.53; GAMM RMSE = 4.17
and MAE = 3.39).

Fig. 6 illustrates a comparison of the
ob served mean sa along transect SAO
2010 NZ-SO and the predictions from the
final GAMM and BRT models for the epi-
and mesopelagic zones, respectively.
Pre dictions for both pelagic zones were
of the same order of magnitude. Epi -
pelagic predictions of mean sa followed
the north−south decreasing trend in ob -

served values reasonably well, but showed dif -
ferences in the peaks and inter-bin variability. Time
of day effect was evident by the periodic changes
in both predicted and ob served mean sa. Mesopela-
gic predictions displayed the overall north−south
decreasing trend and drastic changes in mean sa

around 55° S observed in the data, but small-scale
variability along the transect was not modelled as
accurately.

Validation from the independent dataset

Final models performed relatively well when tested
on the independent dataset providing moderate
measurements of predictive performance (Table 7,
Fig. 7). The predicted values for the ‘Southern Cham-
pion’ transect were of the same order of magnitude
as those observed, except at the northernmost end of
the transect in the mesopelagic zone, where ob -
served mean sa increased rapidly (Fig. 7). This tran-
sect extended further north (40° S) than any of the
training data from the Pacific sector. Both types of
models had better predictive performance in the epi -
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Bin size (km) GAMM — R2 BRT — deviance ex-
plained by the model (%)

Epipelagic Mesopelagic Epipelagic Mesopelagic

10 0.59 0.57 72.9 76.1
25 0.6 0.61 71.7 78.8
50 0.62 0.64 73.5 78.4

Table 5. Mean of the generalised additive mixed model (GAMM) and
boosted regression tree (BRT) models’ goodness of fit statistics by bin size
and pelagic zone, obtained through an iterative process where each transect 

(n = 28) was excluded one at a time

Statistic Zone Candidate models Simplified t-test p
(50 km bin size) models
GAMM BRT GAMM BRT GAMM BRT

RMSE Epipelagic 3.85 3.66 3.89 – 0.94 –
Mesopelagic 6.89 6.58 6.89 6.40 1.00 0.78

MAE Epipelagic 2.13 2.03 2.13 – 1.00 –
Mesopelagic 4.59 4.65 4.46 4.71 0.75 0.89

GAMM R2 Epipelagic 0.643 – 0.616 – – –
Mesopelagic 0.624 – 0.625 – – –

BRT deviance explained (%) Epipelagic – 73.5 – – – –
Mesopelagic – 78.5 – 75.5 – –

Table 6. Candidate versus simplified (final) model predictive performance statistics (root mean square error [RMSE] and mean
absolute error [MAE]), and mean R2 (generalised additive mixed model, GAMM) and percentage of deviance explained by the
model (boosted regression tree, BRT) obtained from the iterative validation process. Note that no values are given for the 

simplified BRT model in the epipelagic zone, as this was the same as the candidate model
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Fig. 4. Relationship between the log10-transformed mean acoustic
backscatter (sa) and (a1) sea surface temperature (SST), and (a2) the
estimated effect (solid lines) of the factor levels day/night (‘day’ = ref-
erence level) on sa, obtained by the simplified (final) generalised ad-
ditive mixed model (GAMM) in the epipelagic zone. Partial depend-
ency plots of the final boosted regression tree (BRT) model in the
mesopelagic zone, show the relationship between the cubic-trans-
formed mean sa and (b1) SST and (b2) depth, and (b3) the residual
autocorrelation covariate (Focal_rac_vect_brt) (used in the model for
accounting for spatial autocorrelation). Percentage in brackets in the
partial dependency plots show the variable relative contribution to the
model. Shading, dashed lines (a1, a2; GAMM) and grey lines (b1–3;
BRT) represent 95% confidence intervals. Thin tick marks on the
x-axis in (a1) refer to observed data points (GAMM) and thick tick 

marks in (b1–3) refer to deciles of the predictor variable (BRT)

Fig. 5. (a) Mean acoustic backscatter (sa, m2 km−2) and satellite-derived sea surface temperature (SST, °C) along a transect
 conducted by the vessel ‘San Aotea II’ (December 2010) across the Southern Ocean (SO). Indicated at the top of the panel are
front positions as defined by Orsi et al. (1995) and Sokolov & Rintoul (2009) (ACC: Antarctic Circumpolar Current). (b) Monthly 

composite of SST shows a latitudinal gradient in the Pacific sector of the SO in December 2010 
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pelagic zone than in the mesopelagic zone (Table 7,
Fig. 7). While the GAMM accomplished slightly
 better outcomes when predicting epipelagic mean sa

(lower RMSE and MAE), the BRT model obtained
better predictions in the mesopelagic zone.

DISCUSSION

There is an ongoing demand for information on
MTLOs for ecosystem model validation and parame-
terisation. The demand has been acknowledged, and
acoustic data collection, gathering and processing
endeavours are already underway. However, due to

the vast extent of the open ocean and the scarcity of
observations, the development of models for explain-
ing and predicting the abundance of MTLOs pro-
vides a valuable tool for filling current data gaps.
This study demonstrated that opportunistically col-
lected acoustic data and readily accessible explana-
tory variables can be used to successfully model and
predict acoustic backscatter, sa, a proxy for MTLO
abundance within the observed order of magnitude
in the epi- and mesopelagic zones in the Pacific and
Indian sector of the SO. Although the models devel-
oped for the epipelagic zone represented general
patterns well in both geographical regions of the SO
tested, models for the mesopelagic zone did not per-
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Statistic Zone Final models 95% CI statistics (Pacific Ocean)
(Indian Ocean) GAMM BRT

GAMM BRT Lower CI Upper CI Lower CI Upper CI

RMSE Epipelagic 1.86 2.43 3 4.79 2.82 4.52
Mesopelagic 22.90 22.30 5.84 7.94 5.45 7.33

MAE Epipelagic 1.46 1.87 1.69 2.56 1.65 2.42
Mesopelagic 19.00 10.50 4.05 5.38 3.88 5.03

Table 7. Final models’ predictive performance statistics, root mean square error (RMSE) and mean absolute error (MAE),
tested on an independent dataset in the Indian sector of the Southern Ocean. RMSE and MAE obtained from the final models’
iterative validation approach (Pacific sector of the SO) were used to create 95% confidence intervals (CI) using Student’s 

t-distribution for comparison. GAMM: generalised additive mixed model, BRT: boosted regression tree

Fig. 6. Observed and predicted mean acoustic backscatter (sa, m2 km−2) in the (a) epipelagic and (b) mesopelagic zones using
the final generalised additive mixed model (GAMM) and boosted regression tree (BRT) models, respectively, for the transect 

conducted by the vessel ‘San Aotea II’ in 2010 across the Southern Ocean
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form as well when applied to the Indian sector of the
SO. The key finding was that SST and time of day
were the main predictor variables for backscatter in
the epipelagic zone, and SST and depth were the
main predictors in the mesopelagic zone.

Role of temperature and depth

Epi- and mesopelagic final models included ex-
planatory variables with latitudinal gradients: SST
and depth. Physical and geographical variables have
been used previously in ecological modelling studies
to define ecosystems in the SO. For example, using
clustering algorithms, Grant et al. (2006) partitioned
the SO into bioregions, and Koubbi et al. (2011a) used
dissimilarity models to define ecoregions of mycto -
phids in the Indian Ocean sector of the SO. These
studies depicted ecological spatial subdivisions fol-
lowing bands of latitudinal environmental gradients
(e.g. SST) and geographical features (e.g. deep ocean,
continental shelves and slopes) or chl a concentrations.
Likewise, environmental variables from climatologies
and satellites as well as depth and latitude were used
to define myctophid zoogeography regions off eastern
Australia (Flynn & Marshall 2013), to predict the dis-
tribution of 8 species of myctophids in the SO based

on presence/absence data from net catches using BRT
(Duhamel et al. 2014), and to define potential habitats
of Electrona antarctica (Myctophidae) based on abun-
dance data around Kerguelen Island in the Indian
Ocean (Loots et al. 2007). Other studies have corre-
lated temperature with larval abundance of E. antarc-
tica, Notolepis coatsi and the squid Galiteuthis glaci -
alis, in the pelagic zone of the Cosmonaut Sea and
Prydz Bay (Van de Putte et al. 2010), and identified
SST and depth, in addition to krill, as the main factors
driving E. antarctica post larval density in the top
200 m in the Lazarev Sea (8° W−2° E) between 61 and
71° S (Flores et al. 2008). The only study exploring po-
tential relationships between acoustic data for meso-
pelagic fish and environ mental variables in the SO
(Scotia Sea) also  concluded that water temperature
was positively correlated to backscatter in the top
200 m, and consequently could be used to determine
its distribution (Fielding et al. 2012). Though only 1 of
the studies mentioned above used acoustic data as a
proxy for MTLO distribution and/or abundance, all
underscore the usefulness of SST and depth in devel-
oping explanatory and predictive models for meso-
pelagic fish, in congruence with our models.

Temperature is among the most important abiotic
factors for living organisms, affecting physiological
functions and processes such as development, growth,
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Fig. 7. Observed and predicted mean acoustic backscatter (sa, m2 km−2) in the (a) epipelagic and (b) mesopelagic zones using
final generalised additive mixed model (GAMM) and boosted regression tree (BRT) models, respectively, for an independent 

transect from the Indian sector of the Southern Ocean

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 592: 37–56, 201850

digestion and movement (Nikolsky 1963, Reynolds &
Casterlin 1980, Withers 1992, Clarke 2009). Although
temperature can be an important environmental fac-
tor for fish, as observed in the growth of young cod in
the North Sea (Rindorf et al. 2008), it does not solely
determine fish distributions (Johnson 1974, 1982,
Barnett 1984). Despite the potential effects of tem-
perature on marine organisms and their distributions,
we considered that the relationship between SST
and backscatter described in the models is correla-
tional rather than functional. Existing bioregionalisa-
tion studies (e.g. Grant et al. 2006) in the SO have
defined regions using temperature gradients, and
they could incorporate backscatter as a new biologi-
cal parameter for characterising the productivity of
these bioregions.

Climate change effects in the SO marine environ-
ment through ocean warming might alter the rela-
tionships established in our models between SST and
backscatter; however, if the structure of the meso-
pelagic communities remains stable, the use of spa-
tially explicit variables could account for temporal
variations through a ‘space-for-time’ substitution (Blois
et al. 2013).

Models developed for the mesopelagic zone in-
cluded depth as 1 of the 2 main explanatory variables.
The depth effect relates to a decrease in sa when bot-
tom depth declines in the northern end of the tran-
sects as these approach the south and southeast side
of the NZ continental shelf (Escobar-Flores et al.
2018). As expected in shallower waters, the ‘meso-
pelagic’ habitat is substantially reduced. As depth
 increases from neritic to open-ocean areas, more
acoustic layers or functional groups, as de scribed by
Lehodey et al. (2010), become available for acoustic
detection, e.g. migrant and non-migrant mesopelagic
and bathypelagic. Reduction in sa in shallow areas
also may co-occur with changes in  species composi-
tion (e.g. Koubbi et al. 2011a).

Effect of time of day in the epipelagic models

Time of day was consistently identified as a signifi-
cant variable for explaining mean sa in the epipelagic
models. Mesopelagic fish perform extensive DVM
between bathypelagic (>1000 m) and mesopelagic
zones (200−1000 m) where they distribute during the
day, and the epipelagic zone (<200 m) which they
ascend to around sunset (Salvanes & Kristoffersen
2001). This behaviour, usually considered a strategy
for feeding on zooplankton in the upper 200 m or for
predator avoidance (Catul et al. 2011), is well docu-

mented in acoustics studies, where continuous sam-
pling allows capture of the whole diel cycle over 24 h
(Escobar-Flores et al. 2018). In terms of mean sa,
DVM is characterised by a substantial increase in
the epipelagic zone at night, which contrasts with
the rather subtle changes in the mesopelagic zone
(Escobar-Flores et al. 2013, Béhagle et al. 2016),
likely due to organisms migrating from deeper zones
or changes in scattering properties (Escobar-Flores et
al. 2018). Consequently, it seems reasonable that our
epipelagic models account for the day/night differ-
ences in mean sa.

Primary productivity and mesopelagic fish

Primary productivity (PP) is a function of phyto-
plankton biomass and growth rates. Although rela-
tionships between PP or chl a and backscatter have
been described in the literature (e.g. Escobar-Flores
et al. 2013, Irigoien et al. 2014), in our models we did
not find a relationship. Chl a is patchily distributed in
the SO, with major concentrations found in associa-
tion with coastal areas, fronts and the marginal ice
zone (Sakshaug & Holm-Hansen 1984, Hempel 1985,
Smith & Sakshaug 1990). These conditions differ from
typical oligotrophic conditions in open waters where
our dataset was mainly collected, and therefore a
lack of correlation between these variables seems
reasonable. Other modelling studies in the SO are in
agreement with our results and have not found sig-
nificant relationships between chl a or PP for defin-
ing the zoogeography (Flynn & Marshall 2013) and
determining community composition of lanternfish
(Koubbi et al. 2011a).

Model resolution

Environmental variables selected for modelling
need to be considered at the scale at which they
affect species distributions (UNESCO 2009). We
binned backscatter at 3 resolutions, the coarsest of
which provided the best outputs. Although using a
coarser resolution may lead to the loss of information,
it reduces variability by averaging, allowing us to
capture the most relevant variables driving the pro-
cess or phenomenon under investigation. Using data
at finer resolutions did not provide additional gains
in explanatory power in the models or alter the rela-
tionship between the re sponse and the explanatory
variables. In fact, high-resolution models may add
noise due to small-scale variability. Fulton (2010)
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stated that in end-to-end ecosystem modelling, high
resolution and complexity may not be the most useful
approach, and advocated a constrained balance
between performance and complexity. For example,
backscatter at 50 km resolution to complement prey
field studies of apex predators can still be considered
fine enough, because it can describe spatial ecologi-
cal processes, such as DVM, and can characterise
biologically relevant oceanographic features, such as
mesoscale eddies and meanders at spatial scales
between 50 and 500 km (Haury et al. 1978, Morrow &
Le Traon 2006); these features can drive mid-trophic
level distribution (Godø et al. 2012, Béhagle et al.
2014). Our model resolution is also within the range
used for predicting micronekton in other recent stud-
ies (1° grid, Lehodey et al. 2010; 36 km grid, Jennings
et al. 2008).

Acoustic backscatter as a proxy for MTLOs

Here, acoustic backscatter was assumed to be a
proxy for MTLO abundance. However, the lack of
biological sampling to verify the taxonomic composi-
tion (‘ground truthing’) is a major limitation and
source of uncertainty in this study. This is a common
weakness of acoustically derived indices from vessels
of opportunity (Handegard et al. 2013). We assumed
that mesopelagic fishes were the main group respon-
sible for sa at 38 kHz. Most of the backscatter came
from constant or intermittent sound scattering layers
distributed throughout the water column, and a dense
continuous deep scattering layer is consistently de -
scribed as being dominated by mesopelagic fishes,
particularly myctophids (e.g. Duhamel et al. 2000).
However, other taxa may also contribute to acoustic
backscatter at this frequency, particularly Antarctic
krill (e.g. Hewitt et al. 2003) and sipho nophores (e.g.
Lavery et al. 2007). Antarctic krill contribution to
total acoustic backscatter along some of the acoustic
transects used in this research collected with multi-
frequency systems (RV ‘Tangaroa’) was assessed by
Escobar-Flores (2017). Using the difference between
the mean volume backscattering strength measured
at 120 and 38 kHz (2−16 dB window) (Watkins &
Brierley 2002, Demer 2004), their contribution only
represented between 0.6 and 1.4%. The 2−16 dB fre-
quency difference window may also include fish spe-
cies without a swimbladder (e.g. Ant arctic silverfish,
O’Driscoll et al. 2011), so the actual krill composition
could be even lower.

Resonance scattering at various depths is a well
described phenomenon in mesopelagic organisms

(e.g. Kloser et al. 2016), which might positively bias
estimates of biological density obtained from acoustic
backscatter collected at 38 kHz (Davison et al. 2015).
Changes in depth (i.e. pressure) experienced by gas-
bearing organisms during DVM, may affect their
swimbladder volume or the pressure of the gas con-
tained in the swimbladder, causing them to resonate
at the operating frequency (Godø et al. 2009). Al -
though resonance for mesopelagic species is thought
to occur at frequencies <38 kHz (e.g. Kloser et al.
2002, Godø et al. 2009), individuals of small size
(<4 cm) or showing swimbladder atrophy in adult
stages might still resonate at greater depths at this
frequency, complicating the interpretation of back -
scatter as a proxy for mesopelagic fish biological
 density (Kloser et al. 2016).

Gelatinous zooplankton such as siphonophores,
which are poorly sampled by trawls, can also con-
tribute significantly in some regions to the acoustic
energy measured at 38 kHz due to resonance scatter-
ing (Lavery et al. 2007, Davison et al. 2015, Kloser et
al. 2016). Siphonophores are common organisms in
the epi- and mesopelagic zones of high latitudes
(Mapstone 2014). When these organisms are region-
ally dominant, a positive bias could be expected
when backscatter is attributed only to fish (Davison
et al. 2015). Consequently, we acknowledge that
some of the backscatter assumed as a proxy for meso-
pelagic fish might correspond to gelatinous zoo-
plankton. Uncertainties due to resonance scattering
at 38 kHz from siphonophores as well as for some
meso pelagic fish with a swimbladder at various
depths can preclude reliable estimates of biological
indices from bulk backscatter collected over large
depth ranges (Handegard et al. 2013, Davison et al.
2015, Kloser et al. 2016).

More research is needed using broadband acoustics
and scattering models to improve our understanding
of scattering properties of gas-bearing organisms at
different depths. Likewise, more biological sampling
(i.e. nets and optics) will reduce the uncertainty re -
garding the composition of the micronektonic com-
munity and the potential contribution of different
groups of organisms to sa.

Mesopelagic fish community composition effect
on backscatter

Patterns in acoustic backscatter may be due to
changes in species composition of mesopelagic fish
as well as abundance. Species composition affects
backscatter levels as the acoustic target strength
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varies between and within species (e.g. ontogenetic
changes), particularly for myctophids, which display
a variety of swimbladder shapes and content (Mar-
shall 1960, Foote 2001, Davison 2011). Latitudinal
changes in species composition or assemblages could
indirectly explain backscatter correlation with SST.
This hypothesis is worth considering, since the bio-
geography of lanternfishes proposed by McGinnis
(1982) and ecoregions defined by Koubbi et al.
(2011a) depict different lanternfish species assem-
blages  or ganised in latitudinal bands. Species diver-
sity  de creases towards the southern regions of the
SO (McGinnis 1982, Koubbi et al. 2011b), and the
few  species inhabiting these waters are endemic to
high latitudes (Andriashev 1965, Gon & Heemstra
1990). These species mainly belong to the genera
Gymnoscopelus and Lampanyctus, whose swim -
bladders are atrophied or absent as adults (Marshall
1960). A few species with swimbladders, e.g. Kreff t -
ichthys anderssoni and E. antarctica (whose adults
display reduced swimbladders) (Marshall 1960), also
belong to the southern groups. Conversely, towards
lower latitudes there seems to be a gradual transition
from less to more species-rich assemblages (McGin-
nis 1982, Macpherson 2002, Koubbi et al. 2011a),
dominated by myctophids with swimbladders (e.g.
Protomyctophum normani, Diaphus danae and E.
subaspera), which will contribute more in terms of
backscatter than their southern counterparts. This
concurs with a north−south negative significant rela-
tionship be tween latitude and backscatter observed
in the Pacific sector of the SO, although backscatter
does not necessarily correlate with biological density
(Escobar-Flores et al. 2018). Thus, the backscatter
latitudinal pattern observed in this region could be
related to abundance as well as latitudinal changes
in species composition as shown in bioregionalisation
studies and available trawl information (McGinnis
1982, Koubbi et al. 2011a, Escobar-Flores et al. 2018).

Ecological significance of the models

Backscatter can be converted into biological den-
sity using acoustic target strength and information
from trawl samples about species composition and
size distribution. When information from trawls is not
available, backscatter may still be useful as a proxy
for MTLO abundance (e.g. Irigoien et al. 2014). This
information can be used to parameterise and validate
ecosystem models such as the spatially explicit
SEAPODYM model (Lehodey et al. 2010), by pro -
viding reference values for evaluating their per -

formance for predicting micronekton biomass. Day−
night backscatter differences can also be used in the
SEAPODYM model, as the model is vertically re -
solved (Handegard et al. 2013). Other models such as
the ATLANTIS framework (Fulton et al. 2005), which
is spatially and vertically structured, could benefit
from the inclusion of backscatter indices. Likewise,
the open-ocean ecosystem model APESCOSM (size-
based) (Maury 2010) can use backscatter predictions
and differences in vertical distribution to validate 3D
spatially explicit (latitude, longitude and depth) pre-
dictions of open-ocean pelagic community biomass,
reducing uncertainty in apex predator models.

Our models can also be used in ecological studies
by characterising prey fields of apex predators in the
SO. The increase in tracking studies of top predators
has improved our capacity to identify the location of
feeding grounds (Bost et al. 2009, Thiers et al. 2017).
Combining predator tracking information and back -
scatter predictions will provide insights into the
trophic conditions of preference (in terms of acoustic
en ergy), and potentially help us to classify different
predator species based on these preferences. Explor-
ing these relationships could help to further validate
the models as a tool for providing information on
prey availability. Coupling mid-trophic level model-
ling studies and the dynamics of apex predators that
rely heavily on mesopelagic fish as prey (e.g. Antarc-
tic fur seals and king penguins) (Lea et al. 2002,
Cherel et al. 2007) can be mutually beneficial to fur-
ther validate the models, and to improve our under-
standing of predator trophic dynamics and behaviour,
and spatial distribution.

Conclusions and future directions

Bearing in mind that ‘nature is too complex and
heterogeneous to be predicted accurately in every
aspect of time and space from a single, although com-
plex, model’ (Guisan & Zimmermann 2000, p. 150), our
study has shown that it is possible to develop models
to predict mean sa in the epi- and mesopelagic zones
reasonably well, using opportunistically collected
acoustic data and readily available satellite-derived
oceanographic and bathymetry data. Our models
predicted acoustic backscatter as a proxy for MTLOs
within the observed order of  magnitude in the epi-
and mesopelagic zones in the Pacific and Indian sec-
tors of the SO.

Programs like IMOS, MESOPP and the Southern
Ocean Network of Acoustics will channel more
acoustic data from existing and new data collection
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initiatives. Future work on acoustic data collection
and modelling of backscatter as a proxy for MTLO in
the SO should concentrate on expanding the geo-
graphical extent of the existing training dataset,
since further testing and validation across other sec-
tors of the SO is still needed. At this stage, the use
of the models outside the latitudinal geographical
range of the training dataset is discouraged.

Although no temporal or seasonal variable other
than time of day was identified as significant, the
predictive power of the models in time is uncertain.
The current and future spatial distribution of envi-
ronmental gradients might differ (Guisan & Thuiller
2005); consequently, as the training dataset expands,
is it important to examine the appearance of tempo-
ral-related changes over larger scales.

Our models were based on available explanatory
variables derived from satellite or models with varied
temporal and spatial resolutions. Although this can
be seen as a limitation, we were still able to success-
fully capture useful relationships to predict acoustic
backscatter reasonably well. However, improvements
to our models may come with advances in the spatio-
temporal resolution and coverage of satellite-derived
variables, such as SST, in the SO.
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