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A parametric computational model of the action
potential of pacemaker cells
Weiwei Ai∗, Nitish D. Patel, Partha S. Roop, Avinash Malik,

Sidharta Andalam, Eugene Yip, Nathan Allen and Mark L. Trew

Abstract—A flexible, efficient and verifiable pacemaker cell
model is essential to the design of real-time virtual hearts that
can be used for closed-loop validation of cardiac devices. A new
parametric model of pacemaker action potential is developed to
address this need. The action potential phases are modeled using
hybrid automaton (HA) with one piecewise-linear continuous
variable. The model can capture rate-dependent dynamics, such
as action potential duration (APD) restitution, conduction velocity
(CV) restitution, and overdrive suppression by incorporating
non-linear update functions. Simulated dynamics of the model
compared well with previous models and clinical data. The
results show that the parametric model can reproduce the
electrophysiological dynamics of a variety of pacemaker cells,
such as sinoatrial node (SAN), atrioventricular node (AVN) and
the His-Purkinje system (HPS), under varying cardiac conditions.
This is an important contribution toward closed-loop validation
of cardiac devices using real-time heart models.

Index Terms—Pacemaker cell, hybrid automaton, action poten-
tial duration restitution, conduction velocity restitution, overdrive
suppression, heart rate variability.

I. INTRODUCTION

CELLS within the cardiac conduction system, including
sinoatrial node (SAN), atrioventricular node (AVN) and

His-Purkinje system (HPS), can spontaneously initiate action
potentials and are referred to as autorhythmic cells or pace-
maker cells. Myocardial cells under some diseased condi-
tions can also possess pacemaking capability [1]. Normally
the SAN, the primary intrinsic pacemaker, has the highest
spontaneous discharge rate and dominates the heart rhythm. It
initiates electrical impulses propagating from atria to ventricles
through the AVN and HPS. The subsidiary pacemaker cells
in the AVN, HPS and other parts of the heart are usually
inhibited by the SAN. Abnormal activation in these subsidiary
pacemakers can introduce disturbances in heart activity leading
to arrhythmias. The dynamics of pacemaker cells play a crucial
role in heart rhythm formation and a corresponding model is,
therefore, essential to the development of virtual heart models.
However, compared to myocardial cells, electrophysiological
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data and mathematical models of pacemaker regions, espe-
cially in the human heart, are limited [2].

Most biophysical SAN models [3] and AVN models [4] are
built around animal data. However, a human SAN model [5]
has been developed by combining messenger RNA (mRNA)
data with an existing human right atria model [6]. In a similar
way, a human AVN model has also been constructed using
mRNA data [7]. Stewart and coworkers [8] developed a human
Purkinje fiber cell model with detailed ionic mechanisms.
The model exhibited overdrive suppression [1], critical to the
hierarchy of pacemaker function, but often not a feature of
cell models.

Such biophysically-based models provide accurate, realistic
and predictive dynamic insights into autorhythmic cell be-
havior. However, the coupled ordinary differential equations
can costly to solve and their solution characteristics may
vary between different cell-type models. Fundamentally, the
biophysically-based models are not designed for formal ver-
ification [9] or real-time emulation [11]. On the other hand,
due to the growing use of implantable cardiac devices [14], it
has become increasingly important to validate the functionality
of these devices under broader physiologically relevant condi-
tions. This necessitates a real-time virtual heart to facilitate the
closed-loop validation of the implantable devices [10], [11],
[12], [13].

The hybrid automaton (HA) [15] provides a promising
formalism to model continuous membrane voltage evolvement
and the observed distinct phases of an action potential while
retaining computational efficiency and the possibility of formal
analysis [9]. Heart models with real-time capacity have been
constructed from networks of myocardial nodes [10], [16],
[11] using timed automaton (TA) [17] or HA [15]. However,
complex pacemaker characteristics were not explicitly mod-
eled. Rather, they have been represented as an arbitrary timer,
which was not influenced by external stimuli and could not
exhibit realistic dynamics.

Arrhythmias caused by abnormal pacemaking functions are
a significant scenario that a cardiac device should respond to.
For instance, dysfunction of the SAN remains one of the most
common indications for permanent pacemaker implantation
[14]. The detection of premature ventricular complexes (PVCs)
is crucial for devices to deliver appropriate pacing [18], [19].
Additionally, overdrive pacing from a device may suppress
intrinsic pacemaking functions. The time to resumption of
the intrinsic rhythm and its dependence on prior pacing rates
directly affects subsequent interactions between the device and
the heart. Hence, a virtual heart model with the capability
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exhibiting various pacemaking arrhythmias in real-time is
desirable for cardiac devices validation.

In this paper, we develop a computational HA pacemaker
cell model with one piecewise continuous variable. The model
is able to efficiently describe dynamic electrical behaviors and
adaptation to pacing frequency, and compares well to known
data. Moreover, the HA model can be parameterized to capture
the features of different cardiac pacemaker cells. Pacemaker
cell models are combined in a network with myocyte models
[11] as the first step toward a comprehensive abstracted heart
model with real-time simulation capabilities.

II. METHODS

A. SAN and AVN Model

The course of the action potential can be divided into
several phases, and the evolvement of each phase is dominated
by the movement of various types of ionic currents [20].
The pacemaker cells possess the capability of initiating an
action potential without external stimuli, also referred to as
automaticity. This is due to the slow depolarization in phase
4 (Fig. 1), arising from the “funny”current If [1]. Once
the threshold potential VT is reached, an action potential is
initiated. Compared to the myocardial action potential (fast
response type), the action potentials of the pacemaker cells
found in SAN and AVN belong to the slow response type,
where the upstroke (phase 0) is less steep [20].
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Fig. 1: Schematic action potential of nodal pacemaker cells
with the embedded plot of myocardial action potential

During the effective refractory period (ERP), the cell cannot
be stimulated again. For the slow response cell, even after
complete repolarization (very late in phase 3 or early in phase
4), it may be difficult to be re-excited [20]. Hence, the ERP
may expand over phase 0, 2 and 3. The relative refractory
period (RRP) extends to phase 4, where a secondary excitation
with a small amplitude can be elicited.

The discharge frequency of pacemaker cells may vary by a
change in the rate of depolarization in phase 4, the maximal
diastolic potential (MDP), or the threshold potential (VT ) (Fig.

1). The rate of rhythm is modulated by both sympathetic and
parasympathetic divisions of the autonomic nervous system
[1].

If a pacemaker cell is depolarized at a higher frequency
than its intrinsic rate, its automaticity may be suppressed,
which is known as overdrive suppression. The mechanism is
mostly due to enhanced activity of the sodium potassium pump
resulting in more negative membrane potential. Suppression
continues when the overdrive pacing stops and spontaneous
depolarization is delayed [1]. The period of quiescence after
the cessation of overdrive is referred to as recovery time, as
shown in Fig. 2.

Fig. 2: Overdrive suppression, adapted from [1]

q4: Resting& DP
v̇ = d4f3(θ)
{v < VT}

θ = 0

q0: Upstroke
v̇ = d0f2(θ)
{v < Vmax}

q2: Plateau & ER
v̇ = d2f2(θ)
{v > VR}

q3: FR
v̇ = d3f2(θ)
{v > Vmin}

[g(~v) > VT ∧ v < VT ]
v′ = v

θ =
v − VT

Vmin − VT
Vmax = Vm · f1(θ)

n′ = n+ 1
Vmin = Vh · ω(n) · f4(θ)

[v > VT ]
v′ = v
θ = 0

Vmax = Vm
n′ = n− rn

Vmin = Vh · ω(n) · f4(θk)
[v ≥ Vmax]

v′ = v

[v 6 VR]

v′ = v

[v 6 Vmin]

v′ = v

i′ = i+ 1

d4 = χ(i)

Fig. 3: Pacemaker cell model-Nodal type

We model the action potentials of SAN and AVN with the
HA shown in Fig. 3. The locations q4, q0, q2 and q3 model the
dynamics of the action potential in phase 4, 0, 2 and 3 (Fig.
1), respectively. In each location, the membrane potential is
defined by a piecewise-continuous variable v.

The parameters d4, d0, d2 and d3 are the scaling factors of
the slope of the action potential. Non-linear functions f1(θ),
f2(θ), f3(θ), f4(θ) and ω(n) are used to modify the rate of
change of v to capture rate-dependent dynamics. The values
of these functions are updated when the transition from q4 to
q0 occurs.

The pacemaker cell can be excited by its neighboring cells.
We calculate the voltage induced at cell k by its n connected
neighbors in (1), where Dik denotes the decay factor of the
voltage contribution of cell i to cell k:

g(~v) =

n∑
i=1

Dik · vouti − vk (1)
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By default, the HA always starts in location q4, where
the cell goes through the slow depolarization and the action
potential v increases gradually. It stays in q4 as long as the
invariant condition v < VT is true, where VT is the threshold
potential. Otherwise, it moves to q0. The last value of v when
leaving q4 is used to set the initial value of v when entering
q0. In location q0, the cell depolarizes, v increases rapidly and
the action potential initiates.

The transition from q4 to q0 could be triggered by either of
the scenarios:

1) g(~v) > VT ∧ v < VT , when the differential voltage
between neighboring cells and itself g(~v) is greater than
VT but the membrane potential has not reached the
threshold, i.e., the cell is activated by stimuli rather than
excited itself;

2) v > VT , when the membrane potential is greater than VT ,
i.e., the cell spontaneously depolarizes.

To express how fast the second excitation occurs, a variable
θ that captures the frequency of stimuli is defined by (2). Vmin
represents the maximal diastolic potential (MDP) (Fig. 1) and
v is the voltage when the cell is stimulated. For the sake of
simplicity, we shift the action potential to be positive and the
initial Vmin = 0.

θ =
v − VT

Vmin − VT
(2)

The range of θ is [0, 1] and it is updated when the transition
from q4 to q0 happens. If the cell is paced faster and activated
in the early RRP, the value of θ is closer to 1.

The amplitude and upstroke slope gradually increase as
action potentials are stimulated in the late RRP [20]. In our
model, the amplitude Vmax is modified by f1(θ) defined by
(3) and the slopes in locations q0, q2 and q3 are modified by
f2(θ) defined by (4). The parameters h and f used in functions
(3) and (4) adjust the extent of the frequency dependency.

f1(θ) = e(−h·θ) (3)

f2(θ) = e(−f ·θ) (4)

When the action potential evolves in q0, q2 and q3, it cannot
be excited by any external stimuli, which is the ERP, computed
by (5), where Vm is the maximum voltage when the cell itself
initiates an action potential and VR is the voltage where the
final repolarization starts.

ERP =
Vm · f1(θ)− VT

d0 · f2(θ)
+
Vm · f1(θ)− VR
| d2 | ·f2(θ)

+
VR − Vmin
| d3 | ·f2(θ)

(5)
Stimulation at high rates can cause lengthy refractory peri-

ods (ERP) of AVN leading to conduction blocks [20]. In our
model, ERP becomes longer when paced faster as long as the
lengthening effect induced by f2(θ) and more negative Vmin
exceeds the shortening caused by f1(θ).

High-frequency overdrive results in hyperpolarization of
resting membrane potential, i.e., more negative MDP and

slower depolarization [1]. The study in [21] shows an expo-
nential increase in recovery time with incremental pacing rate.
Also, the recovery time depends on the pacing duration. While
the longer overdrive duration causes the longer quiescence [1],
it will not rise significantly beyond a certain duration [21].

In our model, n is the number of consecutive overdrive
stimuli representing the duration of overdrive. We define ω(n)
in (6) to capture the effect of duration. It is incorporated in (7)
and (8) to modify d4 and Vmin, which are the key parameters
affecting the rate of slow depolarization in q4.

ω(n) =


0 if n < 1
1

1 + e(−hr·(n−hs))
if n > 1 and n ≤ 5

hr
+ hs

1

1 + e−5
if n > 5

hr
+ hs

(6)
We limit the value of n ≤ 5

hr
+ hs to avoid numerical

overflow when implementing. We also reset the value of ω = 0
when the value of n < 1. The parameters hr and hs can

modulate how fast ω(n) reaches the plateau
1

1 + e−5
.

To capture the impact of pacing rates on recovery time, we
use the exponential approximation f3(θ) in (7) to modify d4 in
location q4. The maximal diastolic potential Vmin is modified
by (8) and (9), where Vh is a negative voltage representing
the extra hyperpotential.

f3(θ) =
1

ω(n) ·m · θs + 1
(7)

Vmin = Vh · ω(n) · f4(θ) (8)

f4(θ) = e(j·(θ−1)) (9)

In general, normal SAN has relative resistance to overdrive
suppression and subsidiary pacemaker cells are more likely
to be suppressed [1]. In our model, the parameter m and Vh
are used to control the extent of overdrive suppression. The
bigger the values of m and Vh, the longer pause after overdrive
pacing. In addition, the parameters s and j can modulate the
suppression sensitivity to higher rate stimuli.

After pacing stops, spontaneous depolarization gradually
resumes the baseline rate [22]. This is modeled by resetting θ
to 0 and reducing the duration effect when the transition from
q4 to q0 occurs due to v > VT . This can be expressed as:

n′ = n− rn (10)

The range of parameter r (r ∈ R) can be [0, 1], which
defines the rate of recovery. If r = 1, the cell can recover
after the first spontaneous beat. When r = 0, the cell cannot
recover to the baseline rate. The Vmin (MDP) remains at:

Vmin = Vh · ω(n) · f4(θk) (11)

where θk refers to the value of θ when the last external
stimulus activates the cell.

When the action potential reaches Vmax in q0, the transition
to q2 is triggered and the membrane potential starts to drop.
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The final repolarization phase q3 is entered and the voltage
continues to decrease. Once it reaches the maximal diastolic
potential Vmin, the cell model transitions to q4 where it goes
through slow depolarization again.

The pacemaker cell model as described here can sponta-
neously initiate an action potential at fixed rates. Inspired by
the work [16], we can also capture another important feature,
called heart rate variability (HRV) [23], by updating d4 = χ(i)
on the edge from q3 to q4. The value of χ(i) is defined in (12)
and (13). The function RR(i) is the inter-beat (RR) interval
series, which is described in the supplementary material.

χ(i) =
VT − Vmin
RR(i)− C

(12)

C =
Vmax − VR
| d2 |

+
VR − Vmin
| d3 |

+
Vmax − VT

d0
(13)

By integrating RR(i) to the pacemaker cell model, we
can capture both intrinsic HRV and the influence of external
stimuli. In [16], the rhythm of SAN is independent of the
external excitation and therefore cannot capture the dynamics
like overdrive suppression.

B. Subsidiary pacemaker cell model

Some subsidiary pacemaker cells like His-Purkinje system
(HPS) belong to a fast response category. They behave like
cardiomyocytes, but also possess automaticity like the nodal
pacemaker cells.

We compose the fast response cardiomyocyte model [11]
and the nodal cell model to form the subsidiary pacemaker
cell model, as shown in Fig.4. The path model concept is
developed in the on-line supplemental material. The length of
the path, i.e., the distance between the connected cells, is zero,
which means that the pulse propagation between the CellA
(Nodal cell) and the CellC (Cardiomyocyte) does not consume
time. The external stimulus Vs is only applied on the CellC ,
which produces an action potential v. The CellA has no direct
interface with the external environment and can only initiate an
action potential when it is not suppressed by external stimuli.

CellA Path CellC

vA

apA

vC

vA

vC

apC

VS

v

Fig. 4: Pacemaker cell model-Subsidiary type

As a result, the pacemaking function of the compositional
cell is suppressed when a faster external stimulus is applied.
It acts like fast response cardiomyocyte. When the stimuli
are absent or the rate is slower than its intrinsic rate, its
automaticity emerges due to the pacemaking ability of CellA.
It possesses the same rate-dependent action potential duration
(APD) restitution as the fast response cardiomyocyte and sup-
pressed pacemaking dynamics as the slow response nodal cell.
As a subsidiary pacemaker cell is more sensitive to overdrive

stimuli than nodal cells, we adjust the relevant parameters
m, s, Vh, j, hr, hs used by (6)-(9) to fit the behavior.

C. Simulation methods

We validated the model by comparing the dynamics with
documented quantitative description, clinical study data [21],
[24], [25], [26] and simulated dynamics of previous biophys-
ically detailed models [8].

Dynamic behavior was determined by applying various
pacing protocols on the proposed model. The cell model was
stimulated at various rates (400, 500, 600, 700 ms) and then
the ERP was recorded at the ninth beat. We considered ERP
rather than APD in this study because the value of ERP can
be computed directly and it is the total time spent in locations
q0, q2 and q3.

To obtain the overdrive suppression dynamics, overdrive
stimuli at the designated rates were applied to the cell model
for certain periods and then the recovery time was measured
following termination of overdrive. The pacing rates and
durations are given in the results.

We intend to use generic models to cover the dynamics of
pacemaker cells under various conditions in different regions.
The regional differences in electrical properties are accom-
plished by adjusting the parameters. Table I summarizes the
impact of main parameters on the dynamics, where ↑ and ↓
denote that positive and negative changes at given θ with an
incremental parameter value. The horizontal bar “−”denotes
no direct impact. In the supplemental material, we present
more simulation results to illustrate this.

Parameters
Dynamics h f m s |Vh| j
Vmax ↓ − − − − −
|Vmin| − − − − ↑ ↓

ERP ↓ ↑ − − ↑ ↓
Recovery time − − ↑ ↓ ↑ ↓

TABLE I: The impact of main parameters

In Section III, we demonstrated the dynamic response of the
proposed model by showing the APD restitution of AVN. The
key features of overdrive suppression were illustrated on SAN
as well as subsidiary ventricular pacemakers by reproducing
clinical data and dynamics of previous model. This showed
the capability of the parametric model to capture dynamics
of a variety of pacemaker cells under varying conditions.
Furthermore, a test network of cells along the cardiac con-
duction system was used to validate the behaviors of the new
pacemaker cell models in a virtual heart.

III. RESULTS

A. APD restitution in AVN

Premature stimulation causes lengthening of the ERP in the
AVN. This is an important feature to protect the ventricles
when atrial impulses arrive at excessive repetition rates [20].
The study in [24] shows that the AVN ERP lengthens 30±39
ms with pacing cycle decrease of 214 ± 63 ms, as shown in
Fig. 5A.
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Fig. 5: Dynamic cell response to pacing. A. The rate-dependent response of ERP in an AVN model. Experimental ranges
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maximum pause in overdrive stimulation. The experimental relationship from [25] is indicated by the dotted line. C. The
maximum post overdrive pause as a function of pacing rate in a SAN model. Experimental observations from [25] are shown
overlaid on the simulation curve.

In our model, when f increases or h decreases, the ERP
lengthens with decreased pacing cycle. We set the intrinsic
cycle length at 1500 ms and vary parameters f and h to
fit different rate-dependent responses. The ERP is recorded
at different pacing cycle lengths. Each circle represents the
refractory period measured at that pacing cycle length in Fig.
5A, where ERP0 denotes the ERP at the intrinsic rate. The
result shows a similar trend to published observations [24].

B. Relation between intrinsic sinus rates and the sinus node
recovery time (SNRT)

Normally, the SNRT is less than 1500 ms [27] while SNRT
tends to be shorter with shorter baseline sinus cycle lengths
[25], which is illustrated by the dashed line in Fig. 5B, where
P-P denotes the interval between P waves, i.e., intrinsic sinus
cycle length, and the maximum pause represents SNRT.

We set the baseline sinus cycle lengths as 786, 858, 947,
1067 and 1234 ms. Then pacing is carried out at different rates
(90, 110, 130 and 150 bpm (beats/min)) for 90 seconds. Our
model exhibits incremental SNRT with longer baseline cycles,
as shown in Fig. 5B.

C. Effect of pacing rates on SAN suppression

The study in [25] shows an increase in the maximum pause
of SAN as the pacing rate increases. We pace the model with
the intrinsic cycle length of 786 ms. The result in Fig. 5C,
where the y-axis is the pause as a percent of the intrinsic cycle
length, shows that we can mimic the similar trend except for
the drop at 150 Beats/min.

They explain that the drop may be the result of enhanced
sympathetic discharge [25]. While d4 in our model can repre-
sent the sympathetic control, we do not link the heart rates to
this parameter. In our experiment, the value of d4 remain the
same therefore there is no decrease of SNRT at 150 Beats/min.

D. Effect of pacing rates on subsidiary ventricular pacemaker
suppression

An exponential increase in recovery time of subsidiary
ventricular pacemaker cells with incremental pacing rates is
shown in [21]. We set the interval of intrinsic heart beat 1419
ms to study the effect of pacing rates on the suppression. By
adjusting the parameters Vh,m, s, j, we can fit the experimen-
tal data in the study [21], [26] as well as the simulation results
of the model [8], as shown in Fig. 6.
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Fig. 6: Effect of pacing rates on recovery time of a Purkinje
cell model.

E. Effect of pacing duration on subsidiary ventricular pace-
maker suppression

The study [21] shows a biphasic increase in recovery time
with incremental pacing duration. Beyond a pacing duration
of 60 seconds, ventricular impulse suppression is primarily
dependent upon pacing rates. Fig. 7 shows the simulation
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Purkinje cell model.

results compared to the study [21] and the simulation results
of the model [8], where the cell more depends on duration at
higher pacing rates.

F. AVN filtering

We consider a network of cells along the cardiac conduction
system to illustrate the behaviors of the new pacemaker cell
models. The full network is depicted in the on-line supplemen-
tal material and Fig. 8A illustrates partial connectivity. Typical
action potentials in SAN, atrial subsidiary pacemakers, AVN
and ventricular subsidiary pacemakers are shown in Fig. 8C.
Fig. 8B shows selected action potentials of atrial muscle (OC),
middle of the slow and fast pathway (SP and FP) to AVN ,
the bundle of His (BH), and the apex of the right ventricle
(RVA).

Normally, the SAN inhibits other subsidiary pacemaker cells
before they have a chance to depolarize spontaneously to the
threshold potential. We block the pathway from the SAN to
CT node and enhance the automaticity so that the CT has
a chance to overdrive the SAN and other cells. Due to the
disturbance of the CT node, the atria present tachycardia.

As the ERP of action potentials along the slow pathway
are shorter than the fast pathway, more action potentials pass
through. Due to lengthy refractory periods of the AVN and the
bundle of His, more action potentials are further filtered and
only a fraction of the action potentials reach the ventricles.
The frequencies from OC to RVA are 5.3, 4, 3.3, 2.3 and 2.3
Hz, respectively.

When the disturbance of the CT node stops around 15
seconds, there is a pause caused by the overdrive suppression
effect and the SAN takes longer to resume spontaneous
depolarization.

G. Escape ectopic automatic rhythms

Regions of the heart other than the SAN may initiate beats
under special circumstances, referred to as escape ectopic
rhythms. To illustrate this, we enhance the automaticity of the
Purkinje fiber so that the RVA has a chance to excite before
the impulses from the atria arrive, and the rhythm is often

referred to as premature ventricular complex (PVC). In our
simulation (Fig. 8B), two consecutive PVCs are observed and
followed by a compensatory pause because the ventricles are
still in refractory from the PVC and the atrial impulse cannot
activate them.

IV. DISCUSSION

In this paper, we have proposed HA models of cardiac
pacemaker action potentials and shown that they can capture
the key dynamics of the cells. A feature of HA-based models
that has been exploited is their support of communication and
concurrency between components, which favors compositional
design. This has enabled us to model subsidiary pacemaker
cells by composing the pacemaker model and a cardiomyocyte
model [11] using a path model (Fig. 4). Importantly, the
approach enables a single HA formalism to model multiple
cell types with just a change of parameterization. This adds
computational certainty since the numerical behavior of each
cell type will be the same. Furthermore, HA are amenable
to formal verification [9], [16] and real-time implementations
[12], [28]. This is vital for model-based closed-loop validation
of implantable cardiac devices.

Cardiac cells are by nature a hybrid system [9]: trans-
membrane potentials vary continuously, but distinct phases
are present, for which the HA formalism [15] can be em-
ployed to describe the hybrid feature. Our choice of piecewise
linear approximation of each phase improves computational
efficiency. However, to capture the adaptation to pacing fre-
quency requires non-linear functions for which we have used
exponential functions. These functions are only updated once
in each solution cycle and the increase in computational cost
is minimal. Ventricular myocyte HA models have been shown
to be amenable to FPGA implementation [28], and we expect
similar performance for the models presented in this paper.

Due to the abstracted nature of the HA models, there is
no direct link between the model parameters and measurable
cellular data. However, we have indicated the effects of param-
eter movements on key electrophysiological measurements in
pacemaker cells that can be robustly measured (Table I). We
have shown that most of the available data can be matched
using our parameterized HA model [8], [21], [24], [25], [26]
and that the parameters can be readily adjusted to capture a
variety of pacemaking behaviors with the SAN, AVN and HPS.

In clinical electrophysiological studies [21], [24], [25],
[26], external stimuli are usually applied to particular loca-
tions in the heart. The observed dynamics are influenced by
downstream conductivity, and tissue loading factors that are
different to when stimuli are applied to the membrane of a
single cell. However, in the absence of other data we have
compared the HA cell model behavior to tissue level data.
We argue that the resulting parameterizations are sufficiently
flexible that when cell level data becomes available the models
can still be easily modified to account for this new information.

There are a limited number of data that cannot be replicated
by our models (Fig. 5C and Fig. 6), but until there are
better biophysical explanations of the functional basis for such
behavior this will be a challenge for any model. Apart from



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,, VOL. XX, NO. X, DECEMBER 2016 7

SAN

CT OC

SP FP

AVN

BH

RVA

0

50

100

0

30

60

m
V

0

50

100

0

50

100

Time(s)
6 8 10 12 14 16 18 20 22

0

50

100

PVCs

RVA

BH

FP

SP

OC

BA C

0

30

60

0

30

60

0

50

100

Time(s)
0 0.5 1 1.5

0

50

100

SAN

AVN

Atrial
Subsidiary
Pacemaker

Ventricular
Subsidiary
Pacemaker

Fig. 8: AVN filtering and PVCs. A. A schematic connectivity between the selected nodes. The connections are dashed as
they are only a subset of the network. The full network is given in the supplement, Fig. S3. B. Trains of action potentials
from a selection of node, which illustrate AVN filtering and PVCs. The green arrows indicate forward conduction, the purple
retrograde conduction from the RVA into the BH and the red arrows indicate possible blocks. C. Typical action potentials.

regional spatial heterogeneity expressed by the SAN, AVN and
HPS models, altered electrical dynamics due to cardiac disease
conditions can be replicated by altering parameters. Although
we have not fully investigated, there is potential for the HA
model parameters to be smoothly varied regionally from one
cell type to another, accounting for the non-discrete variation
of cell types in situ.

In addition to the flexibility and potential real-time im-
plementation, the amiability to formal analysis of HA-based
models is vital for the verification of safety-critical devices.
The next phase of the study will look at applying formal
verification like [16] to the closed-loop network of HA.
Model-based testing [29] techniques with a focus on both
requirements coverage and structure coverage will also be
further investigated.

V. CONCLUSION

We have developed a new parametric pacemaker cell model
to capture electrical restitution, automaticity and overdrive
suppression phenomenon. We have compared the simulated
dynamics of our model with those of previous models [8], as
well as the clinical data [21], [24], [25], [26], and observed that
the model is capable of simulating those observed dynamics.
Furthermore, our simulation of a conduction system network
demonstrates arrhythmias arising from the electrical restitution
and abnormal automaticity.
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